Science.gov

Sample records for alkaline ph optima

  1. Characterization of two glycoside hydrolase family 36 α-galactosidases: novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity.

    PubMed

    Zhou, Junpei; Lu, Qian; Zhang, Rui; Wang, Yiyan; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-03-01

    Two α-galactosidases, AgaAJB07 from Mesorhizobium and AgaAHJG4 from Streptomyces, were expressed in Escherichia coli. Recombinant AgaAJB07 showed a 2.9-fold and 22.6-fold increase in kcat with a concomitant increase of 2.3-fold and 16.3-fold in Km in the presence of 0.5mM ZnSO4 and 30.0mM Pb(CH3COO)2, respectively. Recombinant AgaAHJG4 showed apparent optimal activity at pH 8.0 in McIlvaine or Tris-HCl buffer and 9.5 in glycine-NaOH or HCl-borax-NaOH buffer, retention of 23.6% and 43.2% activity when assayed at 10 and 20°C, respectively, and a half-life of approximately 2min at 50°C. The activation energies for p-nitrophenyl-α-d-galactopyranoside hydrolysis by AgaAJB07 and AgaAHJG4 were 71.9±0.8 and 48.2±2.0kJmol(-1), respectively. Both AgaAJB07 and AgaAHJG4 exhibited transglycosylation activity, but they required different acceptors and produced different compounds. Furthermore, potential factors for alkaline and multiple pH optima and low-temperature adaptations of AgaAHJG4 were presumed. PMID:26471539

  2. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  3. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  4. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  5. Alkaline pH Homeostasis in Bacteria: New Insights

    PubMed Central

    Padan, Etana; Bibi, Eitan; Ito, Masahiro; Krulwich, Terry A.

    2011-01-01

    The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g. the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologes from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na+/H+ antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure

  6. In vitro alkaline pH resistance of Enterococcus faecalis.

    PubMed

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed. PMID:24474287

  7. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  8. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  9. Decision making in C. elegans chemotaxis to alkaline pH

    PubMed Central

    Murayama, Takashi; Maruyama, Ichi N

    2013-01-01

    Monitoring of environmental and tissue pH is critical for animal survival. The nematode, Caenorhabditis elegans (C. elegans), is attracted to mildly alkaline pH, but avoids strongly alkaline pH. However, little is known about how the behavioral switching or decision making occurs. Genetic dissection and Ca2+ imaging have previously demonstrated that ASEL and ASH are the major sensory neurons responsible for attraction and repulsion, respectively. Here we report that unlike C. elegans wild type, mutants deficient in ASEL or ASH were repelled by mildly alkaline pH, or were attracted to strongly alkaline pH, respectively. These results suggest that signals through ASEL and ASH compete to determine the animal’s alkaline-pH chemotaxis. Furthermore, mutants with 2 ASEL neurons were more efficiently attracted to mildly alkaline pH than the wild type with a single ASEL neuron, indicating that higher activity of ASEL induces stronger attraction to mildly alkaline pH. This stronger attraction was overridden by normal activity of ASH, suggesting that ASH-mediated avoidance dominates ASEL-mediated attraction. Thus, C. elegans chemotactic behaviors to alkaline pH seems to be determined by signal strengths from the sensory neurons ASEL and ASH, and the behavior decision making seems to be the result of competition between the 2 sensory neurons. PMID:24563708

  10. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  11. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  12. TOXICITY OF COPPER TO CUTTHROAT TROUT ('SALMO CLARKI') UNDER DIFFERENT CONDITIONS OF ALKALINITY, PH, AND HARDNESS

    EPA Science Inventory

    Median lethal concentration (96-h LC50) values for acute copper toxicity to 3-10 g cutthroat trout (Salmo clarki) have been determined for nine different combinations of alkalinity, hardness, and pH. Equilibrium calculations were performed on the copper LC50 values; seven differe...

  13. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  14. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  15. Detection of Baking Soda in Flat Bread by Direct pH Metery and Alkalinity Measurement

    NASA Astrophysics Data System (ADS)

    Jahed Khaniki, G. H. R.; Vaezi, F.; Yunesian, M.; Nabizadeh, R.; Paseban, G. H. A.

    The objective of this study is evaluation of direct pH metery and alkalinity measurement methods for determination of baking soda in lavash bread (a kind of flat bread) in order to introduce and recommend a good practice of control. For running the experiments, various samples of lavash bread having different concentrations of baking soda were prepared. Ten grams of each sample were mixed with distilled water and then the prepared solutions were filtrated. The filtrates were then analyzed for pH and total alkalinity according to the distractions described in Standard Methods. Results show a significant correlation between the pH values of bread samples and the amount of baking soda. Also, a positive correlation has been observed between the alkalinity of bread samples and used baking soda. By comparing the R2-values specified for these two methods it could be concluded that the direct pH metery method is more reasonable. Furthermore, by this simple method it is possible to accelerate the detection of minute amounts of this chemical in bread.

  16. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  17. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  18. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  19. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs

    PubMed Central

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-01-01

    Statement of the Problem Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Materials and Method Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). Conclusion An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH. PMID:26966703

  20. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    PubMed Central

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  1. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  2. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  3. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  4. Alkalinity, pH, and copper corrosion by-product release

    SciTech Connect

    Edwards, M.; Meyer, T.E.; Schock, M.R.

    1996-03-01

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water increases linearly with bicarbonate concentration at constant pH. This relationship implicates cupric hydroxide solubility in control of copper release from relatively new (less than a few years old) copper plumbing. Decision-marking guidance from a traditional Larson`s ratio or Langelier index approach can aggravate copper corrosion problems; consequently, their use should be discontinued for copper corrosion mitigation. In contrast, aeration-CO{sub 2} stripping is a particularly attractive strategy because benefits from higher pH are realized without adverse effects from higher alkalinity.

  5. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  6. Uranium(VI) Diffusion in Sodium-Montmorillonite at Alkaline pH Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.; Tournassat, C.; Birkholzer, J. T.

    2015-12-01

    Diffusive transport of uranium(VI) in montmorillonite clay and bentonite has important implications for uranium(VI) mobility in engineered barrier systems or host rocks in high level radioactive waste repositories, and clay-rich soils and sediments in the environment. The prediction of uranium(VI) adsorption and diffusion in clay-rich media, however, is complicated by (1) the complexity of the mineralogical structure of montmorillonite, in terms of its pore-size distributions and available surface site types, and (2) the complex uranium(VI) solution speciation, which can include cationic, uncharged, and anionic complexes, depending on solution conditions. For instance, a partial or full exclusion of anions from negatively charged clay interlayer spaces could change the effective 'anion-accessible' porosity and decrease the diffusive flux of these solutes under steady state conditions. In contrast, weak cation exchange reactions can result in 'surface diffusion' of adsorbed cations, such as UO2OH+, in addition to diffusion in the liquid phase, resulting in greater diffusive fluxes at steady state. In order to investigate these complex interactions, we performed two, lab-scale uranium(VI) through-diffusion experiments in lightly compacted Na-montmorillonite at slightly different, alkaline pH conditions (average pH values of 8.69 and 8.87). Observed uranium(VI) diffusive fluxes were decreased by approximately an order of magnitude in comparison to a tritium tracer. This indicates a relevance of 'anion exclusion' effects, the full or partial exclusion of anionic U(VI)-carbonato species from clay interlayer spaces. In addition, uranium(VI) sorption reactions were shown to be relevant in the diffusion experiments, even at alkaline pH values of around 8.7 and 8.9, where uranium(VI) sorption is low compared to other pH conditions. Despite the similarity of pH conditions, different degrees of uranium(VI) retardation were determined for the two systems. Additionally, we

  7. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  8. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    SciTech Connect

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  9. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. II. THE EFFECT OF TEMPERATURE, PH, ALKALINITY, AND DOM PROPERTIES

    EPA Science Inventory

    The influence of temperature, pH, alkalinity, and type and concentration of the dissolved organic matter (DOM) on the rate of ozone (O3) decomposition, O3-exposure, .OH-exposure and the ratio Rct of the concentrations of .OH and O3 has been studied. For a standardized single ozon...

  10. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  11. Extracellular Alkaline pH Leads to Increased Metastatic Potential of Estrogen Receptor Silenced Endocrine Resistant Breast Cancer Cells

    PubMed Central

    Khajah, Maitham A.; Almohri, Iman; Mathew, Princy M.; Luqmani, Yunus A.

    2013-01-01

    Introduction Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER) by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. Methods Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP) activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. Results Exposure of ER –ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation); this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na+/K+ and Na+/H+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER –ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. Conclusions Endocrine resistant breast cancer cells behave very differently to estrogen responsive cells in

  12. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  13. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  14. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  15. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis.

    PubMed

    Shanahan, John W; Semmens, Michael J

    2015-05-01

    A nitrifying biofilm was grown in a laboratory-scale membrane aerated bioreactor (MABR) to calibrate and test a one-dimensional biofilm model incorporating chemical equilibria to calculate local pH values. A previously developed model (Shanahan and Semmens, 2004) based upon AQUASIM was modified to incorporate the impact of local pH changes within the biofilm on the kinetics of nitrification. Shielded microelectrodes were used to measure the concentration profiles of dissolved oxygen, ammonium, nitrate, and pH within the biofilm and the overlying boundary layer under actual operating conditions. Operating conditions were varied to assess the impact of bicarbonate loading (alkalinity), ammonium loading, and intra-membrane oxygen partial pressure on biofilm performance. Nitrification performance improved with increased ammonium and bicarbonate loadings over the range of operating conditions tested, but declined when the intra-membrane oxygen partial pressure was increased. Minor discrepancies between the measured and predicted concentration profiles within the biofilm were attributed to changes in biofilm density and vertical heterogeneities in biofilm structure not accounted for by the model. Nevertheless, predicted concentration profiles within the biofilm agreed well with experimental results over the range of conditions studied and highlight the fact that pH changes in the biofilm are significant especially in low alkalinity waters. The influent pH and buffer capacity of a wastewater may therefore have a significant impact on the performance of a membrane-aerated bioreactor with respect to nitrification, and nitrogen removal. PMID:25703659

  16. Angle performance on optima MDxt

    SciTech Connect

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  17. Upper ocean carbon cycling inferred from direct pH observations made by profiling floats and estimated alkalinity

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.; Sakamoto, C.; Riser, S.

    2015-12-01

    The annual cycle of dissolved inorganic carbon (DIC) is a key tracer of net community production and carbon export in the upper ocean. In particular, the DIC concentration is much less sensitive to air-sea gas exchange, when compared to oxygen, another key tracer of upper ocean metabolism. However, the annual DIC cycle is observed with a seasonal resolution at only a few time-series stations in the open ocean. Here, we consider the annual carbon cycle that has been observed using profiling floats equipped with pH sensors. Deep-Sea DuraFET pH sensors have been deployed on profiling floats for over three years and they can provide temporal and spatial resolution of 5 to 10 days and 5 to 10 m in the upper ocean over multi-year periods. In addition to pH, a second carbon system parameter is required to compute DIC. Total alkalinity can be derived from the float observations of temperature, salinity and oxygen using equations in these variables that are fitted to shipboard observations of alkalinity obtained in the global repeat hydrography programs (e.g., Juranek et al., GRL, doi:10.1029/2011GL048580, 2011), as the relationships should be stable in time in the open ocean. Profiling floats with pH have been deployed from Hawaii Ocean Time-series (HOT) cruises since late 2012 and an array of floats with pH have been deployed since early 2014 in the Southern Ocean as part of the SOCCOM program. The SOCCOM array should grow to nearly 200 floats over the next 5 years. The sensor data was quality controlled and adjusted by comparing observations at 1500 m depth to the deep climatology of pH (derived from DIC and alkalinity) computed with the GLODAP data set. After adjustment, the surface DIC concentrations were calculated from pH and alkalinity. This yields a data set that is used to examine annual net community production in the oligotrophic North Pacific and in the South Pacific near 150 West from 40 South to 65 South.

  18. The immobilization of all spermatozoa in vitro by bitter lemon drink and the effect of alkaline pH.

    PubMed

    Nwoha, P U

    1992-12-01

    Researchers at Obafemi Awolowo University in Ile-Ife, Nigeria, collected semen samples from 7 healthy men 25-30 years old who had abstained from sex for at least 5 days in order to examine the spermicidal action of 4 soft drinks (Krest bitter lemon, Afri-Cola, Coca-Cola, and Pepsi-Cola), the effect of increased temperature of the drinks on spermicidal action, and the effect of changing the soft drinks from an acid, as it comes from the factory, (ph 2.4) to an alkaline (pH 7.5). Increasing the temperature of the soft drinks from room temperature (22 degrees Celsius) to body temperatures (37 degrees Celsius) did not significantly change the spermicidal action any of the soft drinks. All soft drinks with an acid pH, except Coca-Cola, had a significantly lower percent of sperm motility than those with an alkaline pH (0-42.3% vs. 20-52.1%; p .001). In fact, Krest bitter lemon in its factory form (acid pH) completely immobilized all spermatozoa within 1 minute after the researchers diluted the semen with the soft drink. Alkaline Coca-Cola had a significantly lower percent of sperm motility than did acid Coca-Cola (35.8% vs. 46.5%; p .001). Other than Krest bitter lemon, the significant decreases in sperm motility were not enough to prevent pregnancy. These findings indicated that researchers should test Krest bitter lemon for effectiveness as a postcoital contraceptive. If indeed it proves effective, it has great potential as such a contraceptive among the poor in the densely population developed countries since it is readily available and inexpensive. PMID:1493713

  19. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  20. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins. PMID:15982915

  1. Geochemical Modeling of pH Neutralization of High Alkaline-Saline Waste Fluids in Unsaturated Sediments

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, Z.

    2004-12-01

    Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.

  2. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed. PMID:19494466

  3. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W.; Nelson, P. N.; Li, M.-H.; Cai, J.; Zhang, Y.; Zhang, Y.; Shan, Y.; Wang, R.; Han, X.; Jiang, Y.

    2015-08-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate containing soils and 1700 km sub-transect with non-carbonate containing soils) across northern China. Soil pHBC was greater in the carbonate containing soils than in the non-carbonate containing soils. Acid addition decreased soil pH in the non-carbonate containing soils more markedly than in the carbonate containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate containing soils and CEC was the main determinant of buffering capacity in the non-carbonate containing soils. Soil pHBC was positively related to aridity index and carbonate content across the carbonate containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate and non-carbonate containing soils, leading to different rates, risks, and impacts of acidification. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  4. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W. T.; Nelson, P. N.; Li, M.-H.; Cai, J. P.; Zhang, Y. Y.; Zhang, Y. G.; Yang, S.; Wang, R. Z.; Wang, Z. W.; Wu, Y. N.; Han, X. G.; Jiang, Y.

    2015-12-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate-containing soils and 1700 km sub-transect with non-carbonate-containing soils) across northern China. Soil pHBC was greater in the carbonate-containing soils than in the non-carbonate-containing soils. Acid addition decreased soil pH in the non-carbonate-containing soils more markedly than in the carbonate-containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate-containing soils and CEC was the main determinant of buffering capacity in the non-carbonate-containing soils. Along the transect, soil pHBC was different in regions with different aridity index. Soil pHBC was positively related to aridity index and carbonate content across the carbonate-containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate- and non-carbonate-containing soils. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  5. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  6. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  7. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  8. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  9. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems. PMID:24996531

  10. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  11. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH.

    PubMed

    Keller, M; Braun, F J; Dirmeier, R; Hafenbradl, D; Burggraf, S; Rachel, R; Stetter, K O

    1995-12-01

    A novel coccoid-shaped, hyperthermophilic, heterotrophic member of the archaea was isolated from a shallow marine hydrothermal system at Vulcano Island, Italy. The isolate grew between 56 and 90 degrees C with an optimum around 85 degrees C. The pH range for growth was 6.5 to 10.5, with an optimum around 9.0. Polysulfide and elemental sulfur were reduced to H2S. Sulfur stimulated the growth rate. The isolate fermented yeast extract, peptone, meat extract, tryptone, and casein. Isovalerate, isobutyrate, propionate, acetate, CO2, NH3, and H2S (in the presence of S degrees ) were detected as end products. Growth was not inhibited by H2. Based on DNA-DNA hybridization and 16S rRNA partial sequences, the new isolate represents a new species of Thermococcus, which we named Thermococcus alcaliphilus. The type strain is isolate AEDII12 (DSM 10322). PMID:8588740

  12. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies.

    PubMed

    Piccirillo, Sarah; White, Melissa G; Murphy, Jeffrey C; Law, Douglas J; Honigberg, Saul M

    2010-03-01

    Multicellular organisms utilize cell-to-cell signals to build patterns of cell types within embryos, but the ability of fungi to form organized communities has been largely unexplored. Here we report that colonies of the yeast Saccharomyces cerevisiae formed sharply divided layers of sporulating and nonsporulating cells. Sporulation initiated in the colony's interior, and this region expanded upward as the colony matured. Two key activators of sporulation, IME1 and IME2, were initially transcribed in overlapping regions of the colony, and this overlap corresponded to the initial sporulation region. The development of colony sporulation patterns depended on cell-to-cell signals, as demonstrated by chimeric colonies, which contain a mixture of two strains. One such signal is alkaline pH, mediated through the Rim101p/PacC pathway. Meiotic-arrest mutants that increased alkali production stimulated expression of an early meiotic gene in neighboring cells, whereas a mutant that decreased alkali production (cit1Delta) decreased this expression. Addition of alkali to colonies accelerated the expansion of the interior region of sporulation, whereas inactivation of the Rim101p pathway inhibited this expansion. Thus, the Rim101 pathway mediates colony patterning by responding to cell-to-cell pH signals. Cell-to-cell signals coupled with nutrient gradients may allow efficient spore formation and spore dispersal in natural environments. PMID:20038633

  13. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  14. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  15. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    PubMed

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  16. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  17. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  18. Characterizing Local Optima for Maximum Parsimony.

    PubMed

    Urheim, Ellen; Ford, Eric; St John, Katherine

    2016-05-01

    Finding the best phylogenetic tree under the maximum parsimony optimality criterion is computationally difficult. We quantify the occurrence of such optima for well-behaved sets of data. When nearest neighbor interchange operations are used, multiple local optima can occur even for "perfect" sequence data, which results in hill-climbing searches that never reach a global optimum. In contrast, we show that when neighbors are defined via the subtree prune and regraft metric, there is a single local optimum for perfect sequence data, and thus, every such search finds a global optimum quickly. We further characterize conditions for which sequences simulated under the Cavender-Farris-Neyman and Jukes-Cantor models of evolution yield well-behaved search spaces. PMID:27234257

  19. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  20. A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe.

    PubMed

    Rott, E; Schneider, S C

    2014-03-15

    Alpine and Nordic rivers are often considered as being among the most pristine in Europe. Nevertheless, acidification and eutrophication impact surface waters in these regions. Soft-bodied, i.e. non-diatom, benthic algae are used as indicators for eutrophication and acidification in both Norway and Austria, but consistency of indicator values has never been tested. We compared species optima with respect to pH, conductivity, total phosphorus (TP), and NO₃(-)-N concentration for 21 species, derived from geographically and temporally extensive datasets from Norway and Austria, respectively. The ranges of all four measured parameters were different between Norway and Austria, with Austria having generally higher values for all measured parameters. Optima for all 21 species with respect to pH, conductivity and NO₃(-)-N were significantly different between Norway and Austria, while 5 of the 21 taxa showed no significant differences for TP. Nevertheless, species optima for Norway and Austria were significantly correlated with each other for TP, pH and conductivity. This indicates that positions of species optima relative to each other may be stable across ecoregions, in spite of the absolute values of species optima being different. In contrast, optima with respect to NO₃(-)-N were not correlated, possibly suggesting a lesser importance of NO₃(-) in shaping benthic algal assemblages than TP and pH. We conclude that the use of eutrophication and acidification models across different ecoregions may give meaningful results, but requires regional testing of species optima. PMID:24021481

  1. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  2. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  3. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition. PMID:23711470

  4. Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach

    PubMed Central

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5–8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0±0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars. PMID:25402470

  5. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    PubMed

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. PMID:21959092

  6. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    DOE R&D Accomplishments Database

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  7. Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Flechoso, Fabio; Martín, Juan F

    2006-01-01

    Corynebacterium glutamicum, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7.0-9.0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9.0. Growth still occurred at pH 9.5 but at a reduced rate. The expression of the pH-regulated F0 F1 ATPase operon (containing the eight genes atpBEFHAGDC) was induced at alkaline pH. A 7.5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9.0. The same occurred with a 1.2 kb transcript corresponding to the atpB gene. RT-PCR studies confirmed the alkaline pH induction of the F0 F1 operon and the existence of the atpI gene. The atpI gene, located upstream of the F0 F1 operon, was expressed at a lower level than the polycistronic 7.5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the F0 F1 operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in C. glutamicum and Escherichia coli. Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative sigma factor of C. glutamicum, whereas the -35 and -10 boxes of P-atp2 fitted the consensus sequence for sigma(H)-recognized Mycobacterium tuberculosis promoters C(C)/(G)GG(A)/(G)AC 17-22 nt (C)/(G)GTT(C)/(G), known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the F0 F1 operon is highly expressed at alkaline pH, probably using a sigma (H) RNA polymerase. PMID:16385111

  8. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions

    PubMed Central

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-01-01

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments. PMID:22829666

  9. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection.

    PubMed

    Felle, Hubert H; Waller, Frank; Molitor, Alexandra; Kogel, Karl-Heinz

    2009-09-01

    We analyze here, by noninvasive electrophysiology, local and systemic plant responses in the interaction of barley (Hordeum vulgare L.) with the root-colonizing basidiomycete Piriformospora indica. In the short term (seconds, minutes), a constant flow of P. indica chlamydospores along primary roots altered surface pH characteristics; whereas the root-hair zone transiently alkalized-a typical elicitor response-the elongation zone acidified, indicative of enhanced H(+) extrusion and plasma membrane H(+) ATPase stimulation. Eight to 10 min after treating roots with chlamydospores, the apoplastic pH of leaves began to acidify, which contrasts with observations of an alkalinization response to various stressors and microbe-associated molecular patterns (MAMPs). In the long term (days), plants with P. indica-colonized roots responded to inoculation with the leaf-pathogenic powdery mildew fungus Blumeria graminis f. sp. hordei with a leaf apoplastic pH increase of about 2, while the leaf apoplast of noncolonized barley responded to B. graminis f. sp. hordei merely with a pH increase of 0.8. The strong apoplastic pH response is reminiscent of B. graminis f. sp. hordei-triggered pH shifts in resistance gene-mediated resistant barley leaves or upon treatment with a chemical resistance inducer. In contrast, the MAMP N-acetylchito-octaose did not induce resistance to B. graminis f. sp. hordei and did not trigger the primed apoplastic pH shift. We speculate that the primed pH increase is indicative of and supports the potentiated systemic response to B. graminis f. sp. hordei-induced by P. indica in barley. PMID:19656052

  10. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  11. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed Central

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-01-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  12. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-09-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  13. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells.

    PubMed

    Pastor-Soler, Núria M; Hallows, Kenneth R; Smolak, Christy; Gong, Fan; Brown, Dennis; Breton, Sylvie

    2008-02-01

    In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H(+)-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N(6)-monobutyryl-3'-5'-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 microM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2-O-methyl-cAMP (8CPT-2-O-Me-cAMP; 10 microM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 microM), 8CPT-2-O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli. PMID:18160485

  14. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2015-01-01

    Inland waters have been recognized as a significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Currently, direct measurements of water pCO2 remain scarce in freshwaters, and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14 200 μmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were >10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were >100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, which increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. No empirical relationship could be derived from our data set in order to correct calculated pCO2 for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we conclude that regional and global estimates of CO2 outgassing from freshwaters based on pH and TA data only are most likely overestimated, although the magnitude of the overestimation needs further quantitative analysis. Direct measurements of pCO2 are recommended in inland waters in general

  15. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. PMID:25592465

  16. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  17. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

    PubMed

    Hallows, Kenneth R; Alzamora, Rodrigo; Li, Hui; Gong, Fan; Smolak, Christy; Neumann, Dietbert; Pastor-Soler, Núria M

    2009-04-01

    Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK. PMID:19211918

  18. OPTIMA: A Photon Counting High-Speed Photometer

    NASA Astrophysics Data System (ADS)

    Straubmeier, C.; Kanbach, G.; Schrey, F.

    OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.

  19. Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans

    PubMed Central

    Cornet, Muriel; Bidard, Frédérique; Schwarz, Patrick; Da Costa, Grégory; Blanchin-Roland, Sylvie; Dromer, Françoise; Gaillardin, Claude

    2005-01-01

    Ambient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C. albicans and show that Vps28p (ESCRT-I) and Vps32p/Snf7p (ESCRT-III) are required for the transcriptional regulation of known targets of the Rim pathway, such as the PHR1 and PHR2 genes encoding cell surface proteins, which are expressed at alkaline and acidic pH, respectively. We additionally show that deletion of these two VPS genes, particularly VPS32, has a more drastic effect than a RIM101 deletion on growth at alkaline pH and that this effect is only partially suppressed by expression of a constitutively active form of Rim101p. Finally, in an in vivo mouse model, both vps null mutants were significantly less virulent than a rim101 mutant, suggesting that VPS28 and VPS32 gene products affect virulence both through Rim-dependent and Rim-independent pathways. PMID:16299290

  20. An overview on fermentation, downstream processing and properties of microbial alkaline proteases.

    PubMed

    Gupta, R; Beg, Q K; Khan, S; Chauhan, B

    2002-12-01

    Microbial alkaline proteases dominate the worldwide enzyme market, accounting for a two-thirds share of the detergent industry. Although protease production is an inherent property of all organisms, only those microbes that produce a substantial amount of extracellular protease have been exploited commercially. Of these, strains of Bacillus sp. dominate the industrial sector. To develop an efficient enzyme-based process for the industry, prior knowledge of various fermentation parameters, purification strategies and properties of the biocatalyst is of utmost importance. Besides these, the method of measurement of proteolytic potential, the selection of the substrate and the assay protocol depends upon the ultimate industrial application. A large array of assay protocols are available in the literature; however, with the predominance of molecular approaches for the generation of better biocatalysts, the search for newer substrates and assay protocols that can be conducted at micro/nano-scale are becoming important. Fermentation of proteases is regulated by varying the C/N ratio and can be scaled-up using fed-batch, continuous or chemostat approaches by prolonging the stationary phase of the culture. The conventional purification strategy employed, involving e.g., concentration, chromatographic steps, or aqueous two-phase systems, depends on the properties of the protease in question. Alkaline proteases useful for detergent applications are mostly active in the pH range 8-12 and at temperatures between 50 and 70 degrees C, with a few exceptions of extreme pH optima up to pH 13 and activity at temperatures up to 80-90 degrees C. Alkaline proteases mostly have their isoelectric points near to their pH optimum in the range of 8-11. Several industrially important proteases have been subjected to crystallization to extensively study their molecular homology and three-dimensional structures. PMID:12466877

  1. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties. PMID:25986749

  2. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.

    PubMed

    Chen, Yinguang; Liu, Kun; Su, Yinglong; Zheng, Xiong; Wang, Qin

    2013-07-01

    This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis. PMID:23685363

  3. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  4. Measurement of secretory vesicle pH reveals intravesicular alkalinization by vesicular monoamine transporter type 2 resulting in inhibition of prohormone cleavage

    PubMed Central

    Blackmore, Colin G; Varro, Andrea; Dimaline, Rod; Bishop, Lisa; Gallacher, David V; Dockray, Graham J

    2001-01-01

    The acidic interior of neuroendocrine secretory vesicles provides both an energy gradient for amine-proton exchangers (VMATs) to concentrate small transmitter molecules, for example catecholamines, and an optimal pH for the prohormone convertases which cleave hormone precursors. There is evidence that VMAT activity modulates prohormone cleavage, but in the absence of measurements of pH in secretory vesicles in intact cells, it has not been possible to establish whether these effects are attributable to raised intravesicular pH due to proton transport through VMATs. Clones were generated of the hamster insulinoma cell line HIT-T15 expressing a pH-sensitive form of green fluorescent protein (GFP-F64L/S65T) targeted to secretory vesicles, with and without co-expression of VMAT2. In order to study prohormone cleavage, further clones were generated that expressed preprogastrin with and without co-expression of VMAT2. Confocal microscopy of GFP fluorescence indicated that the pH in the secretory vesicles was 5.6 in control cells, compared with 6.6 in cells expressing VMAT2; the latter was reduced to 5.8 by the VMAT inhibitor reserpine. Using a pulse-chase labelling protocol, cleavage of 34-residue gastrin (G34) was found to be inhibited by co-expression with VMAT2, and this was reversed by reserpine. Similar effects on vesicle pH and G34 cleavage were produced by ammonium chloride. We conclude that VMAT expression confers the linked abilities to store biogenic amines and modulate secretory vesicle pH over a range influencing prohormone cleavage and therefore determining the identity of regulatory peptide secretory products. PMID:11251044

  5. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2016-10-01

    In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)). PMID:27132820

  6. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa).

    PubMed

    Bhunia, Biswanath; Basak, Bikram; Mandal, Tamal; Bhattacharya, Pinaki; Dey, Apurba

    2013-03-01

    A novel extracellular serine protease (70 kDa by SDS-PAGE) was purified and characterized. This enzyme retained more than 93% of its initial activity after preincubation for 30 min at 37 °C in the presence of 25% (v/v) tested organic solvents and showed feather degradation activity. The purified enzyme was deactivated at various combinations of pH and temperature to examine the interactive effect of them on enzyme activity. The deactivation process was modeled as first-order kinetics and the deactivation rate constant (k(d)) was found to be minimum at pH 9 and 37 °C. The kinetic analysis of enzyme over a range of pH values indicated two pK values at 6.21 and at 10.92. The lower pK value was likely due to the catalytic histidine in the free enzyme and higher pK value likely reflected deprotonation of the proline moiety of the substrate but ionization of the active site serine is another possibility. Inhibition kinetic showed that enzyme is serine protease because enzyme was competitively inhibited by antipain and aprotinin as these compounds are known to be competitive inhibitors of serine protease. The organic solvent, thermal and pH tolerances of enzyme suggested that it may have potential for use as a biocatalyst in industry. PMID:23219732

  7. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested. PMID:26122565

  8. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H/sup +/ pump activity

    SciTech Connect

    Arvan, P.; Castle, J.D.

    1986-10-01

    Secretion granules have been isolated from the parotid glands of rats that have been chronically stimulated with the ..beta..-adrenergic agonist, isoproterenol. These granules are of interest because they package a quantitatively different set of secretory proteins in comparison with granules from the normal gland. Polypeptides enriched in proline, glycine, and glutamine, which are known to have pI's >10, replace ..cap alpha..-amylase (pI's = 6.8) as the principal content species. The internal pH of granules from the treated rats changes from 7.8 in a potassium sulfate medium to 6.9 in a choline chloride medium. The increased pH over that of normal parotid granules (approx.6.8) appears to protect the change in composition of the secretory contents. Whereas normal mature parotide granules have practically negligible levels of H/sup +/ pumping ATPase activity, the isolated granules from isoproterenol-treated rats undergo a time-dependent internal acidification that requires the presence of ATP and is abolished by an H/sup +/ ionophore. Additionally, an inside-positive granule transmembrane potential develops after ATP addition that depends upon ATP hydrolysis. Two independent methods have been used that exclude the possibility that contaminating organelles are the source of the H/sup +/-ATPase activity. Together these data provide clear evidence for the presence of an H/sup +/ pump in the membranes of parotid granules from chronically stimulated rats. However, despite the presence of H/sup +/-pump activity, fluorescence microscopy with the weak base, acridine orange, reveals that the intragranular pH in live cells is greater than that of the cytoplasm.

  9. Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond.

    PubMed

    Rockne, Karl J

    2007-02-15

    To better understand the dynamics of Fe2 + oxidation in facultative wastewater stabilization ponds, water samples from a three-pond system were taken throughout the period of transition from anoxic conditions with high aqueous Fe2 + levels in the early spring to fully aerobic conditions in late spring. Fe2 + levels showed a highly significant correlation with pH but were not correlated with dissolved oxygen (DO). Water column Fe2 + levels were modeled using the kinetic rate law for Fe2 + oxidation of Sung and Morgan.[5] The fitted kinetic coefficients were 5 +/- 3 x 10(6) M(- 2) atm(-1) min(-1); more than six orders of magnitude lower than typically reported. Comparison of four potential Fe redox couples demonstrated that the rhoepsilon was at least 3-4 orders of magnitude higher than would be expected based on internal equilibrium. Surprisingly, measured nitrate and DO (when present) were typically consistent with both nitrate (from denitrification) and DO levels (from aerobic respiration) predicted from equilibrium. Although the hydrous Fe oxide/FeCO3 couple was closest to equilibrium and most consistent with the observed pH dependence (in contrast to predicted lepidocrocite), Fe2 + oxidation is kinetically hindered, resulting in up to 10(7)-fold higher levels than expected based on both kinetic and equilibrium analyses. PMID:17365293

  10. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  11. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    PubMed

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  12. Optima MDxt: A high throughput 335 keV mid-dose implanter

    SciTech Connect

    Eisner, Edward; David, Jonathan; Justesen, Perry; Kamenitsa, Dennis; McIntyre, Edward; Rathmell, Robert; Ray, Andrew; Rzeszut, Richard

    2012-11-06

    The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allows high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.

  13. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  14. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  15. Ellenberg's water table experiment put to the test: species optima along a hydrological gradient.

    PubMed

    Bartelheimer, Maik; Poschlod, Peter

    2016-08-01

    An important aspect of niche theory is the position of species' optima along ecological gradients. It is widely believed that a species' ecological optimum takes its shape only under competitive pressure. The ecological optimum, therefore, is thought to differ from the physiological optimum in the absence of interspecific competition. Ellenberg's Hohenheim water table experiment has been very influential in this context. However, the water table gradient in Ellenberg's experiment was produced by varying the soil thickness above the water table, which confounded the potentially disparate impacts of water table depth (WTD) and soil depth on species growth. Accordingly, here we have re-evaluated Ellenberg's work. Specifically, we tested the hypothesis that physiological and ecological optima are identical and unaffected by interspecific interaction. We used the same six grasses as in Ellenberg's experiments, but in our mesocosms, WTD was varied but soil depth kept constant. The design included both an additive component (with/without plant interaction) and a substitutive component (monocultures vs. species mixtures). The results show that the physiological optima along the hydrological gradient varied greatly between species, even in the absence of interspecific interaction. Within species, however, physiological and ecological optima appeared identical in most cases, irrespective of the competition treatment. We conclude that the 'physiological capacity' of species largely determines where they are able to persist and that any impact of interspecific interaction is only marginal. These findings are at variance with Ellenberg's rule, where competition is considered to shift the distribution of a species away from its physiological optimum. PMID:27094542

  16. 75 FR 6870 - Washita and Optima National Wildlife Refuges, Comprehensive Conservation Plan, Custer and Texas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-12

    ...We, the U.S. Fish and Wildlife Service (Service), announce the availability of our final comprehensive conservation plan (CCP) and finding of no significant impact (FONSI) and environmental assessment (EA) for the Washita and Optima National Wildlife Refuges (NWRs, Refuges) near Butler, Oklahoma. In this final CCP, we describe how we will guide the development and management of the Washita and......

  17. Selection for mechanical advantage underlies multiple cranial optima in new world leaf-nosed bats.

    PubMed

    Dumont, Elizabeth R; Samadevam, Krishna; Grosse, Ian; Warsi, Omar M; Baird, Brandon; Davalos, Liliana M

    2014-05-01

    Selection for divergent performance optima has been proposed as a central mechanism underlying adaptive radiation. Uncovering multiple optima requires identifying forms associated with different adaptive zones and linking those forms to performance. However, testing and modeling the performance of complex morphologies like the cranium is challenging. We introduce a three-dimensional finite-element (FE) model of the cranium that can be morphed into different shapes by varying simple parameters to investigate the relationship between two engineering-based measures of performance, mechanical advantage and von Mises stress, and four divergent adaptive zones occupied by New World Leaf-nosed bats. To investigate these relationships, we tested the fit of Brownian motion and Ornstein-Uhlenbeck models of evolution in mechanical advantage and von Mises stress using dated multilocus phylogenies. The analyses revealed three performance optima for mechanical advantage among species from three adaptive zones: bats that eat nectar; generalized insectivores, omnivores and some frugivores; and bats that specialize on hard canopy fruits. Only two optima, one corresponding to nectar feeding, were consistently uncovered for von Mises stress. These results suggest that mechanical advantage played a larger role than von Mises stress in the radiation of New World Leaf-nosed bats into divergent adaptive zones. PMID:24433457

  18. Optima: A Model for HIV Epidemic Analysis, Program Prioritization, and Resource Optimization.

    PubMed

    Kerr, Cliff C; Stuart, Robyn M; Gray, Richard T; Shattock, Andrew J; Fraser-Hurt, Nicole; Benedikt, Clemens; Haacker, Markus; Berdnikov, Maxim; Mahmood, Ahmed Mohamed; Jaber, Seham Abdalla; Gorgens, Marelize; Wilson, David P

    2015-07-01

    Optima is a software package for modeling HIV epidemics and interventions that we developed to address practical policy and program problems encountered by funders, governments, health planners, and program implementers. Optima's key feature is its ability to perform resource optimization to meet strategic HIV objectives, including HIV-related financial commitment projections and health economic assessments. Specifically, Optima allows users to choose a set of objectives (such as minimizing new infections, minimizing HIV-related deaths, and/or minimizing long-term financial commitments) and then determine the optimal resource allocation (and thus program coverage levels) for meeting those objectives. These optimizations are based on the following: calibrations to epidemiological data; assumptions about the costs of program implementation and the corresponding coverage levels; and the effects of these programs on clinical, behavioral, and other epidemiological outcomes. Optima is flexible for which population groups (specified by behavioral, epidemiological, and/or geographical factors) and which HIV programs are modeled, the amount of input data used, and the types of outputs generated. Here, we introduce this model and compare it with existing HIV models that have been used previously to inform decisions about HIV program funding and coverage targets. Optima has already been used in more than 20 countries, and there is increasing demand from stakeholders to have a tool that can perform evidence-based HIV epidemic analyses, revise and prioritize national strategies based on available resources, set program coverage targets, amend subnational program implementation plans, and inform the investment strategies of governments and their funding partners. PMID:25803164

  19. Identification and characterization of alkaline serine protease from goat skin surface metagenome.

    PubMed

    Pushpam, Paul Lavanya; Rajesh, Thangamani; Gunasekaran, Paramasamy

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  20. Identification and characterization of alkaline serine protease from goat skin surface metagenome

    PubMed Central

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  1. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  2. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin.

    PubMed

    Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A

    2015-05-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  3. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin[S

    PubMed Central

    Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.

    2015-01-01

    A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441

  4. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule. PMID:11328588

  5. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  6. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  7. Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

    SciTech Connect

    DRIESSEN,BRIAN; SADEGH,NADER

    2000-04-25

    This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

  8. For free swimming the efficiency and economy optima are the same

    NASA Astrophysics Data System (ADS)

    Haj-Hariri, Hossein

    2011-11-01

    Most computational and experimental studies into the ``optimality'' of fins or wings are based on the placement of a model in a uniform stream and finding an optimum of either efficiency or economy. This approach is easy, but inherently inconsistent: any efficiency other than zero implies the presence of thrust, which is then incompatible with uniform speed. The proper way to reconcile the two is to assume the presence of sufficient parasitic drag to balance the thrust. But then different wings are implicitly attached to different bodies, and the optima are over a range of unrelated bodies. The consistent way to address optimization is in the context of free swimming. In this work a simple theoretical model based on a heaving and pitching plate is used to investigate the implications of free swimming. In particular, performance is optimized over the manifold of constant average thrust. Once constrained to this manifold, then the efficiency and economy optima are collocated. This simple model can predict the results of our prior computations for flexible wings. More importantly, the model details the interplay between the circulatory and non-circulatory lift/thrust, and can predict the motion of whale tails. The phase of pitch and heave work themselves out so as to keep the motion on the aforementioned manifold. These results have significance to swimming and to insect flapping in air where added mass has considerable effect.

  9. Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations

    PubMed Central

    Kracher, Daniel; Zahma, Kawah; Schulz, Christopher; Sygmund, Christoph; Gorton, Lo; Ludwig, Roland

    2015-01-01

    The flavocytochrome cellobiose dehydrogenase (CDH) is secreted by wood-decomposing fungi, and is the only known extracellular enzyme with the characteristics of an electron transfer protein. Its proposed function is reduction of lytic polysaccharide mono-oxygenase for subsequent cellulose depolymerization. Electrons are transferred from FADH2 in the catalytic flavodehydrogenase domain of CDH to haem b in a mobile cytochrome domain, which acts as a mediator and transfers electrons towards the active site of lytic polysaccharide mono-oxygenase to activate oxygen. This vital role of the cytochrome domain is little understood, e.g. why do CDHs exhibit different pH optima and rates for inter-domain electron transfer (IET)? This study uses kinetic techniques and docking to assess the interaction of both domains and the resulting IET with regard to pH and ions. The results show that the reported elimination of IET at neutral or alkaline pH is caused by electrostatic repulsion, which prevents adoption of the closed conformation of CDH. Divalent alkali earth metal cations are shown to exert a bridging effect between the domains at concentrations of > 3 mm, thereby neutralizing electrostatic repulsion and increasing IET rates. The necessary high ion concentration, together with the docking results, show that this effect is not caused by specific cation binding sites, but by various clusters of Asp, Glu, Asn, Gln and the haem b propionate group at the domain interface. The results show that a closed conformation of both CDH domains is necessary for IET, but the closed conformation also increases the FAD reduction rate by an electron pulling effect. PMID:25913436

  10. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  11. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  12. Profiling local optima in K-means clustering: developing a diagnostic technique.

    PubMed

    Steinley, Douglas

    2006-06-01

    Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate distributions of clusters; and (e) various multidimensional data structures. The results are evaluated in terms of the Hubert-Arabie adjusted Rand index, and several observations concerning the performance of K-means clustering are made. Finally, the article concludes with the proposal of a diagnostic technique indicating when the partitioning given by a K-means cluster analysis can be trusted. By combining the information from several observable characteristics of the data (number of clusters, number of variables, sample size, etc.) with the prevalence of unique local optima in several thousand implementations of the K-means algorithm, the author provides a method capable of guiding key data-analysis decisions. PMID:16784337

  13. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    SciTech Connect

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafer high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.

  14. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    NASA Astrophysics Data System (ADS)

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-01

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafer high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.

  15. An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2010-11-01

    Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ⩽ I ⩽ 1 M), total dissolved carbonate concentration (10 -4 M < ΣCO 2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO 32- activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory ( Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r=k{>MgOH2+}41-exp (-4ART), where rd represents the BET surface area normalized dissolution rate, {>MgOH2+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO 2 stem from a corresponding decrease in {>MgOH2+}. This decrease in {>MgOH2+} results from the increasing stability of the >MgCO3- and >MgOH° surface species with increasing temperature, pH and CO 32- activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.

  16. OPTIMA: advanced methods for the analysis, integration, and optimization of PRISMA mission products

    NASA Astrophysics Data System (ADS)

    Guzzi, Donatella; Pippi, Ivan; Aiazzi, Bruno; Baronti, Stefano; Carlà, Roberto; Lastri, Cinzia; Nardino, Vanni; Raimondi, Valentina; Santurri, Leonardo; Selva, Massimo; Alparone, Luciano; Garzelli, Andrea; Lopinto, Ettore; Ananasso, Cristina; Barducci, Alessandro

    2015-10-01

    PRISMA is an Earth observation system that combines a hyperspectral sensor with a panchromatic, medium-resolution camera. OPTIMA is one of the five independent scientific research projects funded by the Italian Space Agency in the framework of PRISMA mission for the development of added-value algorithms and advanced applications. The main goal of OPTIMA is to increase and to strengthen the applications of PRISMA through the implementation of advanced methodologies for the analysis, integration and optimization of level 1 and 2 products. The project is comprehensive of several working packages: data simulation, data quality, data optimization, data processing and integration and, finally, evaluation of some applications related to natural hazards. Several algorithms implemented during the project employ high-speed autonomous procedures for the elaboration of the upcoming images acquired by PRISMA. To assess the performances of the developed algorithms and products, an end-to-end simulator of the instrument has been implemented. Data quality analysis has been completed by introducing noise modeling. Stand-alone procedures of radiometric and atmospheric corrections have been developed, allowing the retrieval of at-ground spectral reflectance maps. Specific studies about image enhancement, restoration and pan-sharpening have been carried out for providing added-value data. Regarding the mission capability of monitoring environmental processes and disasters, different techniques for estimating surface humidity and for analyzing burned areas have been investigated. Finally, calibration and validation activities utilizing the CAL/VAL test site managed by CNR-IFAC and located inside the Regional Park of San Rossore (Pisa), Italy have been considered.

  17. The Temperature Optima and Temperature Sensitivity of Soil Respiration Explained By Macromolecular Rate Theory (MMRT).

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; O'Neill, T.; Arcus, V. L.

    2014-12-01

    One of the most fundamental factors controlling all biological and chemical processes is changing temperature. Temperature dependence was originally described by the Arrhenius function in the 19th century. This function provides an excellent description of chemical reaction rates. However, the Arrhenius function does not predict the temperature optimum of biological rates that is clearly evident in laboratory and field measurements. Previously, the temperature optimum of biological processes has been ascribed to denaturation of enzymes but the observed temperature optima in soil are often rather modest, occurring at about 40-50°C and generally less than recognised temperatures for protein unfolding. We have modified the Arrhenius function incorporating a temperature-dependent activation energy derived directly from first principles from thermodynamics of macromolecules. MacroMolecular Rate Theory (MMRT) accounts for large changes in the flexibility of enzymes during catalysis that result in changes in heat capacity (∆C‡p) of the enzyme during the reaction. MMRT predicts an initially Arrhenius-like response followed by a temperature optimum without the need for enzyme denaturation (Hobbs et al., 2013. ACS Chemical Biology. 8: 2388-2393). Denaturation, of course, occurs at much higher temperatures. We have shown that MMRT fits biogeochemical data collected from laboratory and field studies with important implications for changes in absolute temperature sensitivity as temperature rises (Schipper et al., 2014. Global Change Biology). As the temperature optimum is approached the absolute temperature sensitivity of biological processes decreases to zero. Consequently, the absolute temperature-sensitivity of soil biological processes depends on both the change in ecosystem temperature and the temperature optimum of the biological process. MMRT also very clearly explains why Q10 values decline with increasing temperature more quickly than would be predicted from the

  18. Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India.

    PubMed

    Salwan, Richa; Gulati, Arvind; Kasana, Ramesh Chand

    2010-04-01

    The diversity of proteolytic bacteria associated with a glacier and cold environment soils from three different locations in Lahaul and Spiti, India was investigated. Two hundred seventeen bacterial strains were isolated in pure culture. Subsequently these strains were screened for protease-production and one hundred nine showed protease production. From these protease producing psychrotrophic bacteria twenty showing high enzyme production at low temperature and alkaline pH were characterized and identified. The 16S rRNA phylogenetic analysis revealed that none of the strains showed 100% identity with the validly published species of various genera. Isolates belonged to three classes i.e. Actinobacteria, Gammaproteobacteria and Alphaproteobacteria, and were affiliated with the genera Acinetobacter, Arthrobacter, Mycoplana, Pseudomonas, Pseudoxanthomonas, Serratia and Stenotrophomonas. The optimal growth temperature ranged from 10 to 28 degrees C and interestingly, high levels of enzyme productions were measured at growth temperatures between 15 and 25 degrees C, for most of the isolates in plate assay. Most of the isolates were found to produce at least two other hydrolytic enzymes along with protease. The crude protease from one strain was active over broad range of temperature and pH with optima at 30 degrees C and 7.5, respectively. The protease activity was enhanced by Ca(2+), dithiothreitol and beta-mercaptoethanol. While Na(+), Hg(2+), Zn(2+), Mn(2+), phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid did not showed much effect on protease activity. The results enrich our knowledge on the psychrotrophic bacterial diversity and biogeographic distribution of enzyme producing bacteria in western Himalaya. PMID:20082368

  19. Using macroinvertebrates to identify biota-land cover optima at multiple scales in the Pacific Northwest, USA

    USGS Publications Warehouse

    Black, R.W.; Munn, M.D.; Plotnikoff, R.W.

    2004-01-01

    Macroinvertebrate assemblages and environmental variables were evaluated at 45 stream sites throughout the Puget Sound Basin, Washington, USA. Environmental variables were measured at 3 spatial scales: reach, local, and whole watershed. Macroinvertebrate distributions were related to environmental variables using canonical correspondence analysis to determine which variables and spatial scales best explained the observed community composition and to identify biota-land cover optima. The calculation of a biota-land cover optimum was a 2-step process. First, an individual taxon's optimum was estimated for a particular land cover by weighting the mean value for that land cover by the abundance of that taxon at all sites. Second, the biota-land cover optimum was determined as the point at which the greatest numbers of taxa, at their calculated optima, appeared for a particular land cover. Sampling reaches were located on streams in watersheds with varying levels of forest, agriculture, and urban/suburban land cover that represented the full range of physical conditions typically found in Puget Sound streams. At the reach scale, taxa composition was correlated with conductivity and mean velocity. At the local and whole-watershed scales, taxa composition was correlated with % forest and agricultural land cover and % forest and bedrock land cover, respectively. For all of the scales, the dominant environmental variables represented an anthropogenic gradient. There was little difference in the amount of variability explained by each spatial scale. At the local-watershed scale, a biota-land cover optimum of ???80 to 90% forest land cover was identified. The total number of taxa at their optima declined rapidly as forest land cover within the local scale declined below 80 to 90%. At the whole-watershed scale, a biota-land cover optimum of 70 to 80% forest land cover was identified. The total number of taxa at their optima declined rapidly as forest land cover within the

  20. Alkaline Band Formation in Chara corallina

    PubMed Central

    Lucas, William J.

    1979-01-01

    The nature of the transport system responsible for the establishment of alkaline bands on cells of Chara corallina was investigated. The transport process was found to be insensitive to external pH, provided the value was above a certain threshold. At this threshold (pH 5.1 to 4.8) the transport process was inactivated. Transport function could be recovered by raising the pH value of the external solution. The fastest rate of recovery was always obtained in the presence of exogenous HCO3−. Experiments in which plasmalemma integrity was modified using 10 millimolar K+ treatment were also performed. Alkaline band transport was significantly reduced in the presence of 10 millimolar K+, but the system did not recover, following return to 0.2 millimolar K+ solutions, until the transport site was reexposed to exogenous HCO3−. The influence of presence and absence of various cations on both alkaline band transport and total H14CO3− assimilation was examined. No specific cation requirement (mono- or divalent) was found for either process, except the previously established role of Ca2+ at the HCO3− transport site. The alkaline band transport process exhibited a general requirement for cations. This transport system could be partially or completely stalled in low cation solutions, or glass-distilled water, respectively. The results indicate that no cationic flux occurs across the plasmalemma in direct association with either the alkaline band or HCO3− transport systems. It is felt that the present results offer support for the hypothesis that an OH− efflux transport system (rather than a H+ influx system) is responsible for alkaline band development in C. corallina. The results support the hypothesis that OH− efflux is an electrogenic process. This OH− transport system also appears to contain two allosteric effector sites, involving an acidic group and a HCO3− ion. PMID:16660706

  1. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  2. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  3. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  4. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  5. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  6. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-plate machine.

    PubMed

    Scholes, S C; Unsworth, A

    2007-04-01

    In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications. PMID:17539583

  7. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200 °C as a function of pH, aqueous solution composition and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Gautier, Quentin; Oelkers, Eric H.

    2012-04-01

    Magnesite precipitation rates were measured at temperatures from 100 to 200 °C as a function of saturation state and reactive fluid composition in mixed flow reactors. Measured rates were found to increase systematically with increasing saturation state but to decrease with increasing reactive fluid aqueous CO32- activity and pH. Measured rates are interpreted through a combination of surface complexation models and transition state theory. In accord with this formalism, constant saturation state BET surface area normalized magnesite precipitation rates (rMg) are a function of the concentration of protonated Mg sites at the surface (>MgOH2+) and can be described using: rMg=kMg-Kn 1-ΩMgn where kMg- represents a rate constant, KOH and KCO3 stand for equilibrium constants, ai designates the activity of the subscripted aqueous species, n refers to a reaction order equal to 2, and ΩMg denotes the saturation state of the reactive solution with respect to magnesite. Retrieved values of n are consistent with magnesite precipitation control by a spiral growth mechanism. The temperature variation of the rate constant can be described using kMg-=Aaexp(-Ea/RT), where Aa represents a pre-exponential factor equal to 5.9 × 10-5 mol/cm2/s, Ea designates an activation energy equal to 80.2 kJ/mol, R denotes the gas constant, and T corresponds to the absolute temperature. Comparison of measured magnesite precipitation rates with corresponding forsterite dissolution rates suggest that the relatively slow rates of magnesite precipitation may be the rate limiting step in mineral carbonation efforts in ultramafic rocks.

  8. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  9. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  10. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  11. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  12. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  13. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.

    PubMed

    Goomber, Shelly; Kumar, Rakesh; Singh, Ranvir; Mishra, Neelima; Kaur, Jagdeep

    2016-07-01

    Small molecular weight Bacillus lipases are industrially attractive because of its alkaline optimum pH, broad substrate specificity and production in high yield by overexpression both in Escherichia coli and Bacillus subtilis. Its major limitation of being mesophilic in nature is constantly targeted by laboratory evolution studies. Herein metagenomically isolated Bacillus LipJ was randomly evolved by error prone PCR and library of variants were screened for enhanced thermostability. Point mutant Gln121Arg was extensively characterized and it showed dramatic shift of Temp. opt to 50°C compared to 37°C for parent enzyme. Thermostability studies at 45°C and 50°C determined six fold increase in half life for point variant Gln121Arg compared to LipJ. Circular dichroism (CD) and tryptophan fluorescence study established enhanced thermostability of Gln121Arg. Specific activity of point variant Gln121Arg was comparable to wild type with increased substrate affinity (Km reduced). Reduced kcat for variant Gln121Arg infer that kinetic and catalytic efficiency of mutant was compromised. Structural implications by homolog modelling predicted Gln121 to be placed within longest loop of the structure at surface. Localization of loop due to additional polar interactions by Arg121 to protein core defines molecular basis of enhanced thermostability of random point variant Gln121Arg. PMID:27083848

  14. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant.

    PubMed Central

    Becker, D; Braet, C; Brumer , H; Claeyssens, M; Divne, C; Fagerström, B R; Harris, M; Jones, T A; Kleywegt, G J; Koivula, A; Mahdi, S; Piens, K; Sinnott, M L; Ståhlberg, J; Teeri, T T; Underwood, M; Wohlfahrt, G

    2001-01-01

    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. PMID:11336632

  15. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  16. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  17. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  18. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  19. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    PubMed

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  20. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. PMID:25912910

  1. Chemostat Culture of Escherichia coli K-12 Limited by the Activity of Alkaline Phosphatase

    PubMed Central

    King, Stagg L.; Francis, J. C.

    1975-01-01

    The growth-limiting reaction of a chemostat culture of Escherichia coli K-12 was the hydrolysis of β-glycerophosphate by alkaline phosphatase. The culture was buffered at pH 5.2 where alkaline phosphatase was unable to supply phosphate to the cell at a rate sufficient to sustain the maximum rate of growth. Alkaline phosphatase activity in this system is discussed in terms of the so-called Flip-Flop mechanism. PMID:240310

  2. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  3. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  4. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  5. Qualitative aspects of the degradation of mitomycins in alkaline solution.

    PubMed

    Beijnen, J H; den Hartigh, J; Underberg, W J

    1985-01-01

    The major degradation product in alkaline solution of mitomycin A, mitomycin C and porfiromycin is the corresponding 7-hydroxymitosane. The isolation and the physico-chemical and analytical properties of these compounds and their derivatized analogues are discussed. Data are presented on the degradation of mitomycin C at extremely high pH values. PMID:16867711

  6. Field screening of cowpea cultivars for alkaline soil tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  7. Yield performance of cowpea genotypes grown in alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  8. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  9. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    PubMed

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  10. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  11. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGESBeta

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  12. Parameters affecting downhole pH

    SciTech Connect

    Garber, J.D.; Jangama, V.R.; Willmon, J.

    1997-09-01

    The presence of acetic and formic acids in the produced water of gas condensate wells has been known for some time by the industry. In traditional water analysis, it has been titrated and reported as alkalinity. The calculation of accurate downhole pH values requires that these ions be analyzed separately in the water and that an organic acid material balance be performed on all three phases in the separator. In this manner, it is then possible to use phase distribution coefficients involving ionic equilibrium to determine how these acids distribute themselves between phases as the pH calculation proceeds downhole. In this paper, the above method of calculation of pH and {Delta}pH is used to examine the effect that various concentrations of these acids have on the downhole pH. Various concentrations of acids are examined, and two cases are calculated in which the effect of condensate on the pH is examined.

  13. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive.

    PubMed

    Kim, Taewan; Mullaney, Edward J; Porres, Jesus M; Roneker, Karl R; Crowe, Sarah; Rice, Sarah; Ko, Taegu; Ullah, Abul H J; Daly, Catherine B; Welch, Ross; Lei, Xin Gen

    2006-06-01

    Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering. PMID:16751556

  14. Shifting the pH Profile of Aspergillus niger PhyA Phytase To Match the Stomach pH Enhances Its Effectiveness as an Animal Feed Additive

    PubMed Central

    Kim, Taewan; Mullaney, Edward J.; Porres, Jesus M.; Roneker, Karl R.; Crowe, Sarah; Rice, Sarah; Ko, Taegu; Ullah, Abul H. J.; Daly, Catherine B.; Welch, Ross; Lei, Xin Gen

    2006-01-01

    Environmental pollution by phosphorus from animal waste is a major problem in agriculture because simple-stomached animals, such as swine, poultry, and fish, cannot digest phosphorus (as phytate) present in plant feeds. To alleviate this problem, a phytase from Aspergillus niger PhyA is widely used as a feed additive to hydrolyze phytate-phosphorus. However, it has the lowest relative activity at the pH of the stomach (3.5), where the hydrolysis occurs. Our objective was to shift the pH optima of PhyA to match the stomach condition by substituting amino acids in the substrate-binding site with different charges and polarities. Based on the crystal structure of PhyA, we prepared 21 single or multiple mutants at Q50, K91, K94, E228, D262, K300, and K301 and expressed them in Pichia pastoris yeast. The wild-type (WT) PhyA showed the unique bihump, two-pH-optima profile, whereas 17 mutants lost one pH optimum or shifted the pH optimum from pH 5.5 to the more acidic side. The mutant E228K exhibited the best overall changes, with a shift of pH optimum to 3.8 and 266% greater (P < 0.05) hydrolysis of soy phytate at pH 3.5 than the WT enzyme. The improved efficacy of the enzyme was confirmed in an animal feed trial and was characterized by biochemical analysis of the purified mutant enzymes. In conclusion, it is feasible to improve the function of PhyA phytase under stomach pH conditions by rational protein engineering. PMID:16751556

  15. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  16. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  17. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  18. Computing Molecular Signatures as Optima of a Bi-Objective Function: Method and Application to Prediction in Oncogenomics

    PubMed Central

    Gardeux, Vincent; Chelouah, Rachid; Wanderley, Maria F Barbosa; Siarry, Patrick; Braga, Antônio P; Reyal, Fabien; Rouzier, Roman; Pusztai, Lajos; Natowicz, René

    2015-01-01

    BACKGROUND Filter feature selection methods compute molecular signatures by selecting subsets of genes in the ranking of a valuation function. The motivations of the valuation functions choice are almost always clearly stated, but those for selecting the genes according to their ranking are hardly ever explicit. METHOD We addressed the computation of molecular signatures by searching the optima of a bi-objective function whose solution space was the set of all possible molecular signatures, ie, the set of subsets of genes. The two objectives were the size of the signature–to be minimized–and the interclass distance induced by the signature–to be maximized–. RESULTS We showed that: 1) the convex combination of the two objectives had exactly n optimal non empty signatures where n was the number of genes, 2) the n optimal signatures were nested, and 3) the optimal signature of size k was the subset of k top ranked genes that contributed the most to the interclass distance. We applied our feature selection method on five public datasets in oncology, and assessed the prediction performances of the optimal signatures as input to the diagonal linear discriminant analysis (DLDA) classifier. They were at the same level or better than the best-reported ones. The predictions were robust, and the signatures were almost always significantly smaller. We studied in more details the performances of our predictive modeling on two breast cancer datasets to predict the response to a preoperative chemotherapy: the performances were higher than the previously reported ones, the signatures were three times smaller (11 versus 30 gene signatures), and the genes member of the signature were known to be involved in the response to chemotherapy. CONCLUSIONS Defining molecular signatures as the optima of a bi-objective function that combined the signature size and the interclass distance was well founded and efficient for prediction in oncogenomics. The complexity of the computation

  19. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  20. Sensing pH with TMCs.

    PubMed

    Spalthoff, Christian; Göpfert, Martin C

    2016-07-01

    Transmembrane channel-like (TMC) proteins have been implicated in hair cell mechanotransduction, Drosophila proprioception, and sodium sensing in the nematode C. elegans. In this issue of Neuron, Wang et al. (2016) report that C. elegans TMC-1 mediates nociceptor responses to high pH, not sodium, allowing the nematode to avoid strongly alkaline environments in which most animals cannot survive. PMID:27387645

  1. Modulators of intestinal alkaline phosphatase.

    PubMed

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  2. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    PubMed

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture. PMID:24195353

  3. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  4. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  5. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids. PMID:25796392

  7. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  8. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

    PubMed Central

    Watts, Mathew P.; Khijniak, Tatiana V.; Boothman, Christopher

    2015-01-01

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  9. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  10. Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism

    PubMed Central

    Iserbyt, Arne; Van Gossum, Hans; Stoks, Robby

    2012-01-01

    The contribution of adaptive mechanisms in maintaining genetic polymorphisms is still debated in many systems. To understand the contribution of selective factors in maintaining polymorphism, we investigated large-scale (>1000 km) geographic variation in morph frequencies and fitness-related physiological traits in the damselfly Nehalennia irene. As fitness-related physiological traits, we investigated investment in immune function (phenoloxidase activity), energy storage and fecundity (abdomen protein and lipid content), and flight muscles (thorax protein content). In the first part of the study, our aim was to identify selective agents maintaining the large-scale spatial variation in morph frequencies. Morph frequencies varied considerably among populations, but, in contrast to expectation, in a geographically unstructured way. Furthermore, frequencies co-varied only weakly with the numerous investigated ecological parameters. This suggests that spatial frequency patterns are driven by stochastic processes, or alternatively, are consequence of highly variable and currently unidentified ecological conditions. In line with this, the investigated ecological parameters did not affect the fitness-related physiological traits differently in both morphs. In the second part of the study, we aimed at identifying trade-offs between fitness-related physiological traits that may contribute to the local maintenance of both colour morphs by defining alternative phenotypic optima, and test the spatial consistency of such trade-off patterns. The female morph with higher levels of phenoloxidase activity had a lower thorax protein content, and vice versa, suggesting a trade-off between investments in immune function and in flight muscles. This physiological trade-off was consistent across the geographical scale studied and supports widespread correlational selection, possibly driven by male harassment, favouring alternative trait combinations in both female morphs. PMID:22384278

  11. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  12. Investigating mechanisms of alkalinization for reducing primary breast tumor invasion.

    PubMed

    Robey, Ian F; Nesbit, Lance A

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P < 0.01). Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs). To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (P ≤ 0.003). Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX). The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion. PMID:23936808

  13. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells

    PubMed Central

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.

    2012-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847

  14. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. PMID:25780993

  15. Microbial thiocyanate utilization under highly alkaline conditions.

    PubMed

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  16. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  17. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  18. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  19. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  20. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash.

    PubMed

    Hijikata, Nowaki; Tezuka, Rui; Kazama, Shinobu; Otaki, Masahiro; Ushijima, Ken; Ito, Ryusei; Okabe, Satoshi; Sano, Daisuke; Funamizu, Naoyuki

    2016-10-01

    In the present study, the bactericidal and virucidal mechanisms in the alkaline disinfection of compost with calcium lime and ash were investigated. Two indicator microorganisms, Escherichia coli and MS2 coliphage, were used as surrogates for enteric pathogens. The alkaline-treated compost with calcium oxide (CaO) or ash resulted primarily in damage to the outer membrane and enzyme activities of E. coli. The alkaline treatment of compost also led to the infectivity loss of the coliphage because of the partial capsid damage and RNA exteriorization due to a raised pH, which is proportional to the amount of alkaline agents added. These results indicate that the alkaline treatment of compost using calcium oxide and ash is effective and can contribute to the safe usage of compost from a mixing type dry toilet. PMID:27562698

  1. Simplified seawater alkalinity analysis: Use of linear array spectrometers

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Byrne, Robert H.

    1998-08-01

    Modified spectrophotometric procedures are presented for the determination of seawater total alkalinity using rapid scan linear array spectrometers. Continuous monitoring of solution pH allows titrations to be terminated at relatively high pH, whereby excess acid terms are very small. Excess acid concentrations are quantified using the sulfonephthalein indicators, bromocresol green and bromocresol purple. The outlined spectrophotometric procedures require no thermal equilibration of samples. Using bromocresol green, solution pH T ([H +] T in moles per kg of solution) is given as: pHT=4.2699+0.002578(35- S)+ log((R(25)-0.00131)/(2.3148-0.1299 R(25))) - log(1-0.001005S) and R(25)= R( t){1+0.00909(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t) is the absorbance ratio ( A616/ A444) at temperature t and salinity S. Using bromocresol purple, the solution pH T is given as pH T=5.8182+0.00129(35- S)+log(( R(25)-0.00381)/(2.8729-0.05104 R(25))) and R(25)= R( t){1+0.01869(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t)= A589/ A432. Alkalinity measurements using bromocresol purple had a precision on the order of 0.3 μmol kg -1 and were within 0.3-0.9 μmol kg -1 of the alkalinities of certified seawater reference materials.

  2. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    NASA Astrophysics Data System (ADS)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  3. Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge.

    PubMed

    Zhao, Yanyu; Meng, Kun; Luo, Huiying; Huang, Huoqing; Yuan, Tiezheng; Yang, Peilong; Yao, Bin

    2013-02-01

    A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K (m) and V (max) values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone. PMID:23117673

  4. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  5. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  6. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  7. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  8. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J. R.

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  9. Metal bioavailability and toxicity to fish in low-alkalinity lakes - a critical-review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, J.G.

    1991-01-01

    Fish in low-alkalinity lakes having ph of 6.0-6.5 Or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher ph. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (ch3hg+, cd2+, and pb2+) at low ph. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-ph water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  10. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed. PMID:19164

  11. Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Munz, Giulio; Oleszkiewicz, Jan A

    2016-01-01

    The impact of pH variation on aerobic granular sludge stability and performance was investigated. A 9-day alkaline (pH=9) and acidic (pH=6) pH shocks were imposed on mature granules with simultaneous chemical oxygen demand (COD), nitrogen and phosphorus removal. The imposed alkaline pH shock (pH 9) reduced nitrogen and phosphorus removal efficiency from 88% and 98% to 66% and 50%, respectively, with no further recovery. However, acidic pH shock (pH 6) did not have a major impact on nutrient removal and the removal efficiencies recovered to their initial values after 3 days of operation under the new pH condition. Operating the reactors under alkaline pH induced granules breakage and resulted in an increased solids concentration in the effluent and a significant decrease in the size of the bio-particles, while acidic pH did not have significant impacts on granules stability. Changes in chemical structure and composition of extracellular polymeric substances (EPS) matrix were suggested as the main factors inducing granules instability under high pH. PMID:26744935

  12. Effects of pH adjustment with phosphates on attributes and functionalities of normal and high pH beef.

    PubMed

    Young, O A; Zhang, S X; Farouk, M M; Podmore, C

    2005-05-01

    Longissimus dorsi muscles from six normal- and six high-ultimate pH bulls were selected for fine mincing and subsequent pH adjustment with acid and alkaline pyrophosphate. Four pH treatments were prepared: initially high remains high (mean of pH 6.37), high becomes normal (5.62); initially normal remains normal (5.65), and normal becomes high (6.21). The addition level of phosphate as P(2)O(5) was the same in all replicates. Before pH adjustment, colour and water holding capacity (WHC) values were strongly affected by higher (initial) pH in expected ways: darker, lower chroma, higher capacity. After pH adjustment, these values were affected only by the final pH, not the initial pH (the pH history). Total protein solubility was likewise affected by final pH but not initial pH. In contrast, the combination high initial pH-high final pH improved sarcoplasmic protein solubility by 20% over the combination normal initial pH-high final pH. Sarcoplasmic protein solubility is an indicator of strain required to fracture cooked batters made from the minced meats; in the event, the rank order of the four treatments for strain-to-fracture matched that of sarcoplasmic protein solubility. Statistically, sarcoplasmic protein solubility and strain-to-fracture were both affected by initial pH (P<0.01) and final pH (P<0.001). However, stress required to fracture cooked batters was entirely controlled by initial pH (P<0.01). In other words, the stress-to-fracture advantage of initially high pH meat was not matched by upward pH adjustment of initially normal pH meat. Emulsion stability, which is better with higher pH meat, was affected by initial and final pH (both P<0.01). Cook yield, like WHC of pH-adjusted raw meat, was more due to final pH than initial pH, similarly cooked batter colour, whereas final pH had a significant effect on quality attributes (generally better when higher). An initially high pH history conferred an enduring advantage on three important batter attributes

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  14. Photoreversible changes in pH of pea phytochrome solutions

    SciTech Connect

    Tokutomi, S.; Yamamoto, K.T.; Miyoshi, Y.; Furuya, M.

    1982-02-01

    Phytochrome is a chromoprotein that serves as the photoreceptor for a variety of photomorphogenic responses in plants. Phytochrome was isolated from etiolated pea seedlings. Photoinduced pH changes of an unbuffered solution of the phytochrome were monitored with a semimicrocombination pH electrode at pH 6.5. Red-light irradiation increased the pH of the medium. This alkalinization was reversed by a subsequent far-red-light irradiation. The magnitude and direction of the red-light-induced pH changes was dependent on the pH of the photocrome solution, and the maximum alkalinization was observed at pH 6.0, where the number of protons taken up per phytochrome monomer was 0.18. These results suggest that phytochrome is a multifunctional protein composed of a chromophoric domain and a hydrophobic domain. It is probable that the hydrophobic domain is responsible for the photoinduced change of hydrophobicity of phytochrome and that the ionizable groups responsible for the photoinduced pH changes are localized in the chromophoric domain. (JMT)

  15. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    PubMed Central

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. Findings Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. Conclusions/Significance Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment

  16. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  17. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation].

    PubMed

    Jia, Ke-Li; Zhang, Jun-Hua

    2014-03-01

    The relationship between alkalinity and pH of the soil, reflectance spectra and red-edge parameters of the sunflower canopy in different growth periods under different alkalinity soil were analyzed, respectively. The results showed that the spectral reflectance of the sunflower canopy in different stage under different alkalinity soil is the same as the spectral reflectance characters of the other greenery canopy. Along with the advancement of the sunflower growth period, sunflower canopy spectral reflectance increases gradually at different stages, the spectral reflectance is higher at flowering stage than 7-leaf stage and budding stage, and there exists a high reflection peak at 809nm at flowering period. At the same time, the spectral reflectance is affected by salinity-alkalinity stress at different stages, in the near infrared shortwave band, the spectral reflectance of the sunflower canopy in different stage increases with the decreases in soil alkalinity. When the derivatives are applied to determine the wavelength of the red-edge, there is a shift phenomenon of the red edge. The red edges were at 702-720 nm during every growth period of the sunflower. The "blue shift" phenomenon is also emerged for red edge position and red edge sloped with the increase in the soil alkalinity. Conversely, at the same growth periods, the red edge positions and red edge slope move to longer wave bands with the decrease in soil alkalinity. There is a "red shift" phenomenon before flowering period and "blue shift" phenomenon after flowering period for the red edge position and red edge slope of canopy spectrum at the same soil alkalinity. Respectively. The red edges at different growth stages of the sunflower show very significant positive correlation and quadratic polynomial to alkalinity and pH of the soil. Therefore, we thought used the red edge features of greenery could indicate the soil alkalization degree, it providing scientific basis for monitoring soil alkalization

  18. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  19. Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel.

    PubMed

    Zhao, Yan; Tu, Yonggang; Li, Jianke; Xu, Mingsheng; Yang, Youxian; Nie, Xuliang; Yao, Yao; Du, Huaying

    2014-10-01

    Egg whites can undergo gelation at extreme pH. In this paper, the effects of NaOH concentration (1.5, 2, 2.5, and 3%), temperature (10, 20, 30, and 40°C), and additives (metallic compounds, carbohydrates, stabilizers, and coagulants) on the strength of alkaline-induced egg white gel were investigated. Results showed that NaOH concentration and induced temperature significantly affected the rate of formation and peak strength of the egg white gel. Of the 6 metallic compounds used in this experiment, CuSO₄exhibited the optimal effect on the strength of alkaline-induced egg white gel, followed by MgCl₂, ZnSO4, PbO, and CaCl₂. When CuSO₄concentration was 0.2%, the gel strength increased by 31.92%. The effect of Fe₂(SO₄)₃was negligible. Of the 5 carbohydrate additives, xanthan gum (0.2%) caused the highest increase (54.31%) in the strength of alkaline-induced egg white gel, followed by sodium alginate, glucose, starch, and sucrose. Meanwhile, propylene glycol (0.25%) caused the highest improvement (15.78%) in the strength of alkaline-induced egg white gel among the 3 stabilizing agents and coagulants used, followed by Na₂HPO₄and glucono-δ-lactone. PMID:25125561

  20. Isolation of alkaline mutagens from complex mixtures

    SciTech Connect

    Ho, C.H.; Guerin, M.R.; Clark, B.R.; Rao, T.K.; Epler, J.L.

    1981-05-01

    A method for the preparative-scale enrichment of alkaline mutagens from complex natural and anthropogenic mixtures is described. Mutagenic alkaline fractions were isolated from cigarette smoke, crude petroleum, and petroleum substitutes derived from coal and shale.

  1. Intracellular pH and the Control of Multidrug Resistance

    NASA Astrophysics Data System (ADS)

    Simon, Sanford; Roy, Deborshi; Schindler, Melvin

    1994-02-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments-e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux.

  2. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. PMID:24681408

  3. [Ultrasonic study of nucleic acids. Effect of pH].

    PubMed

    Braginskaia, F I; Sadykhova, S Kh

    1979-01-01

    The ultrasonic absorption of nucleic acids in water solutions was studied by the pulse ultrasonic technique depending on pH, at frequency 12 mHz T = 20 dedrees C. The obtained data show the occurrence of structural relaxation in DNA solutions caused by the proton exchange and transfer reactions with the extremal pH at 2.5 and 11.7. Possible mechanisms of the excess ultrasonic absorption were discussed concerning the protolytic processes with the charged DNA groups (N--P1 exchange and the hydrolysis of lactam groups at acid and alkaline pH correspondingly). PMID:36177

  4. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence.

    PubMed

    Prusky, D; McEvoy, J L; Leverentz, B; Conway, W S

    2001-09-01

    The phytopathogenic fungus Colletotrichum gloeosporioides produces one pectate lyase (PL) that is a key virulence factor in disease development. During growth of C. gloeosporioides, Colletotrichum acutatum, and Colletotrichum coccodes in acidified yeast extract medium, the fungus secreted ammonia and increased the medium pH. Ammonia accumulation and the consequent pH change increased as a function of initial pH and buffer capacity of the medium. PL secretion by C. gloeosporioides correspondingly increased as the pH of the medium increased. The C. gloeosporioides pelB gene-disrupted mutant was able to increase ammonia accumulation and pH of the media similarly to the wild-type isolate. C. gloeosporioides in avocado, C. coccodes in tomato, and C. acutatum in apple showed ammonia accumulation in the infected area where pH increased to 7.5 to 8 and PL activity is optima. In nonhost interactions where C. gloeosporioides was inoculated in apples, the addition of ammonia-releasing compounds significantly enhanced pathogenicity to levels similar to those caused by the compatible C. acutatum-apple interaction. The results therefore suggest the importance of ammonia secretion as a virulence factor, enhancing environmental pH and pathogenicity of the Colletotrichum species. PMID:11551075

  5. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  6. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  7. Neutralisation of an acidic pit lake by alkaline waste products.

    PubMed

    Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja

    2014-01-01

    A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress. PMID:23913161

  8. The Buffering Balance: Modeling Arctic river total-, inorganic-, and organic-alkalinity fluxes

    NASA Astrophysics Data System (ADS)

    Hunt, C. W.; Salisbury, J.; Wollheim, W. M.; Mineau, M.; Stewart, R. J.

    2014-12-01

    River-borne inputs of alkalinity influence the pH and pCO2 of coastal ocean waters, and changes in alkalinity inputs also have implications for responses to climate-driven ocean acidification. Recent work has shown that alkalinity fluxes from rivers are not always dominated by inorganic carbon species, and can instead be composed somewhat or mostly of non-carbonate, presumably organic species. Concentrations and proportions of organic alkalinity (O-Alk) are correlated to dissolved organic carbon (DOC) concentrations and fluxes, which are predicted to rise as Arctic permafrost thaws and the hydrologic cycle intensifies. We have scaled results from watershed studies to develop a process-based model to simulate and aggregate Arctic river exports of total alkalinity, DOC, and O-Alk to the coastal sea. Total alkalinity, DOC, and O-Alk were loaded to a river network and routed through a 6-minute hydrologic model (FrAMES). We present results contrasting poorly buffered (e.g. the Kolyma river) and highly buffered (e.g. the Yukon river) systems, the impact of O-Alk on river pH and pCO2, and examine the seasonalities of inorganic and organic influences on coastal ocean carbonate chemistry.

  9. MudPIT analysis of alkaline tolerance by Listeria monocytogenes strains recovered as persistent food factory contaminants.

    PubMed

    Nilsson, Rolf E; Latham, Roger; Mellefont, Lyndal; Ross, Tom; Bowman, John P

    2012-05-01

    Alkaline solutions are used to clean food production environments but the role of alkaline resistance in persistent food factory contamination by Listeria monocytogenes is unknown. We used shotgun proteomics to characterise alkaline adapted L. monocytogenes recovered as persistent and transient food factory contaminants. Three unrelated strains were studied including two persistent and a transient food factory contaminant determined using multilocus sequence typing (MLST). The strains were adapted to growth at pH 8.5 and harvested in exponential phase. Protein extracts were analysed using multidimensional protein identification technology (MudPIT) and protein abundance compared by spectra counting. The strains elicited core responses to alkaline growth including modulation of intracellular pH, stabilisation of cellular processes and reduced cell-division, independent to lineage, MLST or whether the strains were transient or persistent contaminants. Alkaline adaptation by all strains corresponded to that expected in stringent-response induced cells, with protein expression supporting metabolic shifts concordant with elevated alarmone production and indicating that the alkaline-stringent response results from energy rather than nutrient limitation. We believe this is the first report describing induction of a stringent response in different L. monocytogenes strains by alkaline pH under non-limiting growth conditions. The work emphasises the need for early intervention to avoid persistent food factory contamination by L. monocytogenes. PMID:22265300

  10. Temperature and pH Changes Associated with the Hydration of Amorphous Silicate Smokes

    NASA Astrophysics Data System (ADS)

    Chizmadia, L. J.; Lebrón-Rivera, S. A.

    2010-03-01

    The hydration of Fe-Si smokes results in acidic pH levels and negligible change in temperature. When mixed with Mg-Si smokes, pH becomes alkaline and temperature increases slightly. Water-rock ratio is a minor variable relative to composition.

  11. Ammonia volatilization from soils amended with biochars of different pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant amount of nitrogen fertilizer applied to agricultural land is in the form of ammonium. Ammonium nitrogen can be lost through volatilization if applied under certain conditions, mainly to soils with a pH greater than 8. The pH of biochar varies from slightly acidic to highly alkaline ...

  12. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism. PMID:27557053

  13. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor

    PubMed Central

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism. PMID:27557053

  14. [DNA degradation during standard alkaline of thermal denaturation].

    PubMed

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account. PMID:999984

  15. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  16. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    PubMed

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  17. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  18. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  19. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  20. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  1. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation

    PubMed Central

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications. PMID:26161643

  2. Proteomic analysis of protein expression in Lactobacillus plantarum in response to alkaline stress.

    PubMed

    Lee, KiBeom; Rho, Beom-Seop; Pi, KyungBae; Kim, Ho-Jin; Choi, Yun-Jaie

    2011-04-20

    Lactobacillus plantarum, a probiotic organism that plays an important role in the microbial fermentation of alkaline materials in fermenting foods, faces alkaline stress during the fermentation process. Here, we report the patterns of protein expression in L. plantarum subjected to transient (1h) alkaline stress at pH 7.7, 8.7 or 9.7. Thirty-three alkaline-responsive proteins were identified by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). Identification of proteins showing differential expression in response to alkaline stress revealed that the alkaline stress response of L. plantarum is a complex process. Some proteins appear to be induced, others repressed. These proteins could be clustered into nine groups based on their probable functions: energy metabolism, transport system, purine/pyrimidine metabolism, amino acid metabolism, proteolytic activity, transcription-translation, stress-related, general function, and unknown functions. These proteomic analyses are expected to prove useful in understanding the adaptive response of L. plantarum strains to alkaline stress and may facilitate future investigations into the genetic and physiological aspects of this response. PMID:21356255

  3. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  4. Relation of pH to toxicity of lampricide TFM in the laboratory

    USGS Publications Warehouse

    Bills, T.D.; Marking, L.L.; Howe, G.E.; Rach, J.J.

    1988-01-01

    In the control of larval sea lamprey (Petromyzon marinus ) with 3-trifluoromethyl-4-nitrophenol (TFM) in tributaries of the Great Lakes, occasional kills of other fishes have caused concern about the effects of the chemical on non-target organisms. Stream treatment rates have been based on previous application rates, alkalinity measurements, results of on-site toxicity tests, or combinations of these. Laboratory studies in 1987 showed that pH is the primary factor that affects the toxicity of TFM (the lower the pH, the greater the toxicity): even small changes in pH alter the toxicity, whereas substantial changes in alkalinity have little effect. In 12-h exposures, the 96-h LC50 for TFM to rainbow trout (Salmo gairdneri ) ranged from about 0.9 mg/L at pH 6.5 to > 100 mg/L at pH 9.5, but (at pH 7.5) the LC50's differed little at total alkalinities of about 18 mg/L and 207 mg/L. Decreases in pH as small as 0.5 pH unit caused nontoxic solutions to become toxic to rainbow trout. Some kills of non-target fish during stream treatments were reportedly caused by decreases in pH, and (conversely) that some stream treatments for sea lampreys were ineffective because pH increased.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  6. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min. PMID:24880806

  7. Kinetics of the alkaline dehydrochlorination of the alpha-isomer of hexachlorocyclohexane upon micellar catalysis

    SciTech Connect

    Sirovskii, F.S.; Berlin, E.R.; Molodchikov, S.I.; Skibinskaya, M.B.; Stepanova, N.N.; Treger, Yu.A.

    1986-11-01

    A study was carried out on the kinetics of the alkaline dehydrochlorination of the ..cap alpha..-isomer of hexachlorocyclohexane in the pH range from 7 to 10 upon catalysis by benzyldimethylalkylammonium chloride (BDMAC) micelles. The activation parameters and kinetic equation were found.

  8. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible. PMID:26108748

  9. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  10. Studies on alkaline serine protease produced by Bacillus clausii GMBE 22.

    PubMed

    Kazan, Dilek; Bal, Hulya; Denizci, Aziz Akin; Ozturk, Nurcin Celik; Ozturk, Hasan Umit; Dilgimen, Aydan Salman; Ozturk, Dilek Coskuner; Erarslan, Altan

    2009-01-01

    An alkali tolerant Bacillus strain having extracellular serine alkaline protease activity was newly isolated from compost and identified as Bacillus clausii GMBE 22. An alkaline protease (AP22) was 4.66-fold purified in 51.5% yield from Bacillus clausii GMBE 22 by ethanol precipitation and DEAE-cellulose anion exchange chromatography. The purified enzyme was identified as serine protease by LC-ESI-MS analysis. Its complete inhibition by phenylmethanesulfonylfluoride (PMSF) also justified that it is a serine alkaline protease. The molecular weight of the enzyme is 25.4 kDa. Optimal temperature and pH values are 60 degrees C and 12.0, respectively. The enzyme showed highest specificity to N-Suc-Ala-Ala-Pro-Phe-pNA. The K(m) and k(cat) values for hydrolysis of this substrate are 0.347 mM and 1141 min(-1) respectively. The enzyme was affected by surface active agents to varying extents. The enzyme is stable for 2 h at 30 degrees C and pH 10.5. AP22 is also stable for 5 days over the pH range 9.0-11.0 at room temperature. AP22 has good pH stability compared with the alkaline proteases belonging to other strains of Bacillus clausii reported in the literature. PMID:19431045

  11. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  12. Biochemical analysis and investigation on the prospective applications of alkaline protease from a Bacillus cereus strain.

    PubMed

    Saleem, Mahjabeen; Rehman, Atiqa; Yasmin, Riffat; Munir, Bushra

    2012-06-01

    Proteases have prospective financial and environment-friendly applications; hence attention is focused currently on the finding of new protease producing microorganism so as to meet the requirements of industry. A thermophilic bacterial strain producing extracellular protease activity was isolated from soil and identified as Bacillus cereus by analysis of 16S rRNA. Protease production by the microorganism was improved by studying the impact of the type of nitrogen and carbon source, fermentation period, growth temperature and initial pH of the culture medium in cultivation optimization experiments. The enzyme was purified to homogeneity in two step procedure involving Sephadex G-75 and Q-Sepharose chromatography. The molecular weight of purified enzyme was found to be 58 kDa by SDS-PAGE. Protease exhibited a pH and temperature optima of 7.5 and 60°, respectively. The enzyme was active in the pH range of 6.0-9.0 and stable up to 70°C. Histological analysis of protease treated goat and cow skin pelts showed complete removal of non leather forming structures such as hair shaft, hair follicles and glandular structures. The protease showed the stain removing property from blood stained cotton cloth and found to be compatible with six commercially available detergents. The protease could release peptides from natural proteins after digestion of coagulated egg albumin and blood clot. PMID:22528469

  13. pH in atomic scale simulations of electrochemical interfaces.

    PubMed

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan; Tripković, Vladimir; Björketun, Mårten E

    2013-07-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity of electrochemical interfaces. PMID:23703376

  14. Hydrocarbon potential of an alkaline lake basin

    SciTech Connect

    Chen Jian Yu; Wang Gijun ); Ma Wanyi )

    1991-03-01

    The Biyan basin is an oil-rich intermountain basin in the central part of China. It is a half graben with a marginal normal fault in the south and a slope in the north. The thickest Eogene reaches 7 km in the center of the depression. This basin became a typical alkaline lake with specific sedimentary sequences composed of oil shale, trona, dolomite, and dark mudstone during Early Tertiary because of dry climate and peripheral source areas rich in Na-containing minerals. The source rock is characterized by abundant organic matter with a mean TOC of 2.5% and kerogen of good quality with H/C 1.4-1.7, and IH up to 800 mg/g. The study of biomarkers reveals a low Pr/Ph ratio and an abundant gammacerane and {minus}carotane, thus indicating an environment of high salinity and reduction. All geochemical data demonstrate multiple provinces of primary organic matter, of which halophilous prokaryotic organisms are likely contributors. Crude oil in the Biyan oil field contains high wax and low sulfur. The low-mature oil is discovered in dolomite beds. The high hydrocarbon potential of this basin is due to particularly favorable conditions for preservation and transformation of organic matter and high subsidence rates.

  15. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  16. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  17. Experimental validation of CASMO-4E and CASMO-5M for radial fission rate distributions in a westinghouse SVEA-96 Optima2 BWR fuel assembly

    SciTech Connect

    Grimm, P.; Perret, G.

    2012-07-01

    Measured and calculated radial total fission rate distributions are compared for the three axial sections of a Westinghouse SVEA-96 Optima2 BWR fuel assembly, comprising 96, 92 and 84 fuel rods, respectively. The measurements were performed on a full-size fuel assembly in the PROTEUS zero-power experimental facility. The measured fission rates are compared to the results of the CASMO-4E and CASMO-5M fuel assembly codes. Detailed measured geometrical data were used in the models, and effects of the surrounding zones of the reactor were taken into account by correction factors derived from MCNPX calculations. The results of the calculations agree well with those of the experiments, with root-mean-square deviations between 1.2% and 1.5% and maximum deviations of 3-4%. The quality of the predictions by CASMO-4E and CASMO-5M is comparable. (authors)

  18. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. The VACS Index Accurately Predicts Mortality and Treatment Response among Multi-Drug Resistant HIV Infected Patients Participating in the Options in Management with Antiretrovirals (OPTIMA) Study

    PubMed Central

    Brown, Sheldon T.; Tate, Janet P.; Kyriakides, Tassos C.; Kirkwood, Katherine A.; Holodniy, Mark; Goulet, Joseph L.; Angus, Brian J.; Cameron, D. William; Justice, Amy C.

    2014-01-01

    Objectives The VACS Index is highly predictive of all-cause mortality among HIV infected individuals within the first few years of combination antiretroviral therapy (cART). However, its accuracy among highly treatment experienced individuals and its responsiveness to treatment interventions have yet to be evaluated. We compared the accuracy and responsiveness of the VACS Index with a Restricted Index of age and traditional HIV biomarkers among patients enrolled in the OPTIMA study. Methods Using data from 324/339 (96%) patients in OPTIMA, we evaluated associations between indices and mortality using Kaplan-Meier estimates, proportional hazards models, Harrel’s C-statistic and net reclassification improvement (NRI). We also determined the association between study interventions and risk scores over time, and change in score and mortality. Results Both the Restricted Index (c = 0.70) and VACS Index (c = 0.74) predicted mortality from baseline, but discrimination was improved with the VACS Index (NRI = 23%). Change in score from baseline to 48 weeks was more strongly associated with survival for the VACS Index than the Restricted Index with respective hazard ratios of 0.26 (95% CI 0.14–0.49) and 0.39(95% CI 0.22–0.70) among the 25% most improved scores, and 2.08 (95% CI 1.27–3.38) and 1.51 (95%CI 0.90–2.53) for the 25% least improved scores. Conclusions The VACS Index predicts all-cause mortality more accurately among multi-drug resistant, treatment experienced individuals and is more responsive to changes in risk associated with treatment intervention than an index restricted to age and HIV biomarkers. The VACS Index holds promise as an intermediate outcome for intervention research. PMID:24667813

  20. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  1. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  2. Calculation of downhole pH and delta pH in the presence of CO{sub 2} and organic acids

    SciTech Connect

    Garber, J.D.; Perkins, R.S.; Jangama, V.R.; Alapati, R.R.

    1996-08-01

    Acetic and formic acids have been found in the separator water of gas condensate wells containing CO{sub 2} and they are titrated as alkalinity. Traditional pH equations which neglect these acids and calculate pH based on alkalinity greatly over-predict the downhole pH. Since all scale calculations depend on an accurate pH value, a more sophisticated method of calculation has been developed. The methodology can be used to calculate the in-situ bulk pH and the saturation pH at different depths within a well. The difference in the saturation pH and the bulk pH is the delta pH a negative delta pH indicates a potential to scale whereas a positive value indicates a potential to corrode. The saturation pH is discussed with respect to iron carbonate saturation, but can be used for any other scale by making the appropriate changes.

  3. Acidic minespoil reclamation with alkaline biosolids

    SciTech Connect

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-12-31

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter.

  4. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  5. Anode conductor for alkaline cells

    SciTech Connect

    Schrenk, D.J.; Murphy, P.E.

    1988-12-13

    This patent describes an electrochemical cell comprised of an anode comprised of zinc; a cathode; and alkaline electrolyte; and a current collector comprised of a silicon bronze alloy that is comprised of 85-98% by weight copper and 1-5% by weight silicon with the remainder being comprised of at least one of manganese, iron, zinc, aluminum, tin, lead, or mixtures thereof; and a strip of metal tab stock welded to the current collector, the tab stock being a metal other than silicon bronze alloy.

  6. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  7. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  8. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films. PMID:24122212

  9. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  10. Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating.

    PubMed

    Zhao, Wei; Kong, Ming; Feng, Chao; Cheng, Xiaojie; Liu, Ya; Chen, Xiguang

    2016-01-20

    The gelling behaviors of thiolated chitosan (TCS) in alkaline condition were investigated. Thioglycolic acid was conjugated onto chitosan backbone through amide bond formation. The variations of thiol group content were monitored in presence of H2O2 or different pH values (pH 7.0, 8.0, 9.0) in dialysis mode. Different from the decreasing thiol group content upon time in acidic condition, increasing amount of thiol groups was detected in alkaline pH during 120 min dialysis attributed to alkaline hydrolysis of intra-molecular disulfide bonds. The extent of which was larger at higher pH values. Higher degree of thiolation, thiomer concentration or pH values promoted gelation of TCS. Entanglement and coagulation of chitosan molecule chains and re-arrangement of disulfide bonds acted closely and dynamically in the gelation process. Disulfide bonds, especially inter-molecular type, are formed by synergetic effects of thiol/disulfide interchange and thiol/thiol oxidation reactions. TCS coated vascular stent displayed wave-like microstructure of parallel ridges and grooves, which favored HUVECs adhesion and proliferation. The biocompatibility, peculiar morphology and thiol moieties of TCS as stent coating material appear application potential for vascular stent. PMID:26572360

  11. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    SciTech Connect

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  12. Alkaline transition of horse heart cytochrome c in the presence of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Šimšíková, Michaela; Antalík, Marián

    2013-01-01

    The effect of zinc oxide nanoparticles (ZnO NPs) on cytochrome c (cyt c) in alkaline pH was studied with absorption spectroscopy and UV circular dichroism (CD). Spectral data from UV-vis spectroscopy and circular dichroism indicate only small changes in the native structure of the protein at neutral pH after the interaction with ZnO nanoparticles. The stability around the heme crevice of cyt c and therefore the switch of the axial ligand Met80 to Lys which occurs in conditions of higher pH was proven following the interaction of cytochrome c with ZnO nanoparticles. The formation of cyt c-ZnO NPs complex based on electrostatic attraction was accompanied by a significant increase in the apparent pKa constant of the alkaline transition of cyt c.

  13. Polyhydroxyflavones as extractants. Communication 7. Solvent extraction of europrium complexes with morin from alkaline media

    SciTech Connect

    Blank, A.B.

    1985-09-01

    This paper studies the analytical application of europium (III)-morin complex which is formed in alkaline medium and has an intense color. The extent of europium extraction was determined by adding to the extract a morin solution in isoamyl alcohol in a 50-100-fold excess with respect to europium. The dependence of the optical density of the extracts on the ph in the system europium (III)-morin-water-organic solvent for different excesses of the reagent is shown: this indicates formation of two extractable complexes, one being dominant in the pH range 4-7, the other at pH greater than or equal to 8.5. The extraction of the europium (III)-morin complex from alkaline solution is used for direct extraction-photometric determination of europium(III) in compounds of elements having amphoteric properties or forming amines (Zns, Mo0/sub 3/).

  14. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  15. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  16. An extremophile Microbacterium strain and its protease production under alkaline conditions.

    PubMed

    Lü, Jin; Wu, Xiaodan; Jiang, Yali; Cai, Xiaofeng; Huang, Luyao; Yang, Yongbo; Wang, Huili; Zeng, Aibing; Li, Aiying

    2014-05-01

    Extremophiles are potential resources for alkaline protease production. In order to search for alkaline protease producers, we isolated and screened alkaliphilic microorganisms from alkaline saline environments. The microorganism HSL10 was identified as a member of the genus Microbacterium by morphological observation, Gram staining and sequence analysis of the 16S rRNA gene and the 16S-23S rRNA intergenic spacer region. By colony-forming unit counting under alkali or salt stress, it was further identified as an alkaliphilic microbe with mild halotolerance. In addition, it was capable of secreting alkaline proteases, evidenced by larger hydrolyzation zones in the skim milk-containing medium at pH 9.0 than at pH 7.0. Subsequently, we demonstrated that both NaCl and yeast extract significantly promoted protease production by HSL10. Finally, we established a sensitive colorimetric method for the detection of protease production by HSL10 under neutral and alkaline conditions, by using the Bradford reagent for substrate staining to improve the contrast between the hydrolyzation zone and the substrate background on agar plates. HSL10 was the first example of an alkaliphilic protease-producing member in Microbacterium, and its isolation and characterization have both academic and commercial importance. PMID:23686381

  17. Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation.

    PubMed

    Xiao, Yun-Zhu; Wu, Duan-Kai; Zhao, Si-Yang; Lin, Wei-Min; Gao, Xiang-Yang

    2015-01-01

    Proteases from halotolerant and halophilic microorganisms were found in traditional Chinese fish sauce. In this study, 30 fungi were isolated from fermented fish sauce in five growth media based on their morphology. However, only one strain, YL-1, which was identified as Penicillium citrinum by internal transcribed spacer (ITS) sequence analysis, can produce alkaline protease. This study is the first to report that a protease-producing fungus strain was isolated and identified in traditional Chinese fish sauce. Furthermore, the culture conditions of alkaline protease production by P. citrinum YL-1 in solid-state fermentation were optimized by response surface methodology. First, three variables including peptone, initial pH, and moisture content were selected by Plackett-Burman design as the significant variables for alkaline protease production. The Box-Behnken design was then adopted to further investigate the interaction effects between the three variables on alkaline protease production and determine the optimal values of the variables. The maximal production (94.30 U/mL) of alkaline protease by P. citrinum YL-1 took place under the optimal conditions of peptone, initial pH, and moisture content (v/w) of 35.5 g/L, 7.73, and 136%, respectively. PMID:24840211

  18. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  19. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions.

    PubMed

    Ruiz-Bermejo, Marta; Rivas, Luis A; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4). At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life. PMID:21161385

  20. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  1. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  2. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea. PMID:26841066

  3. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  4. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    PubMed

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH. PMID:26171779

  5. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Oh, Sang-Eun

    2013-01-01

    The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)). PMID:22840537

  6. Wetland treatment at extremes of pH: a review.

    PubMed

    Mayes, W M; Batty, L C; Younger, P L; Jarvis, A P; Kõiv, M; Vohla, C; Mander, U

    2009-06-15

    Constructed wetlands are an established treatment technology for a diverse range of polluted effluents. There is a long history of using wetlands as a unit process in treating acid mine drainage, while recent research has highlighted the potential for wetlands to buffer highly alkaline (pH>12) drainage. This paper reviews recent evidence on this topic, looking at wetlands treating acidic mine drainage, and highly alkaline leachates associated with drainage from lime-rich industrial by-products or where such residues are used as filter media in constructed wetlands for wastewater treatment. The limiting factors to the success of wetlands treating highly acidic waters are discussed with regard to design practice for the emerging application of wetlands to treat highly alkaline industrial discharges. While empirically derived guidelines (with area-adjusted contaminant removal rates typically quoted at 10 g Fe m(2)/day for influent waters pH>5.5; and 3.5-7 g acidity/m(2)/day for pH>4 to <5.5) for informing sizing of mine drainage treatment wetlands have generally been proved robust (probably due to conservatism), such data exhibit large variability within and between sites. Key areas highlighted for future research efforts include: (1) wider collation of mine drainage wetland performance data in regionalised datasets to improve empirically-derived design guidelines and (2) obtaining an improved understanding of nature of the extremophile microbial communities, microbially-mediated pollutant attenuation and rhizospheral processes in wetlands at extremes of pH. An enhanced knowledge of these (through multi-scale laboratory and field studies), will inform engineering design of treatment wetlands and assist in the move from the empirically-derived conservative sizing estimates that currently prevail to process-based optimal design guidance that could reduce costs and enhance the performance and longevity of wetlands for treating acidic and highly alkaline drainage waters

  7. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  8. The alkaline pH-adapted skin barrier is disrupted severely by SLS-induced irritation.

    PubMed

    Kim, E; Kim, S; Nam, G W; Lee, H; Moon, S; Chang, I

    2009-08-01

    The pH of the healthy skin is 5.5 and maintained by many regulatory mechanisms. The pH of the skin care product we use on a daily basis can have an influence on the skin properties. To investigate how the physical properties of skin change after the alkaline or acidic pH of the skin care products are applied on the skin for a long term, we adjusted the pH of the skin care products to 3, 5 and 8 (A, B, C), with glycolic acid and triethanolamine. For 5 weeks the skin care products were applied on 20 healthy subjects' ventral forearm and the skin physical properties were measured. After 5 weeks, skin responses to the external stress of 1% (w/v) SLS (sodium lauryl sulphate) irritation and erythema by UV were measured. Skin colour and skin UV response were not altered by the pH. However, on the C-applied site (pH 8) the transepidermal water loss of stratum corneum (SC) increased significantly, the water content increased and desquamation decreased, respectively, and the SLS significantly impaired the skin barrier in comparison with other sites. The alkaline skin care product impaired the skin barrier after repeated application over 5-week period and the skin barrier was disrupted severely by 1% SLS exposure because SC was already impaired by alkaline pH and sensitive to external stress. This suggests that the pH of daily skin care products is very important for skin barrier homeostasis. PMID:19467032

  9. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  10. Seawater neutralization of alkaline bauxite residue and implications for revegetation.

    PubMed

    Menzies, N W; Fulton, I M; Morrell, W J

    2004-01-01

    Reaction of bauxite residue with seawater results in neutralization of alkalinity through precipitation of Mg-, Ca-, and Al-hydroxide and carbonate minerals. In batch studies, the initial pH neutralization reaction was rapid (<5 min), with further reaction continuing to reduce pH for several weeks. Reaction with seawater produced a residue pH of 8 to 8.5. Laboratory leaching column studies were undertaken to provide information on seawater neutralization of the coarse-textured fraction of the waste, residue sand (RS), under conditions comparable with those that might be applied in the field. An 0.80-m-deep column of RS was neutralized by the application of the equivalent of 2-m depth of seawater. In addition to lowering the pH and Na content of the residue, seawater neutralization resulted in the addition of substantial amounts of the plant nutrients Ca, Mg, and K to the profile. Similar results were also obtained from a field-scale assessment of neutralization. However, the accumulation of precipitate, consisting of hydrotalcite, aragonite, and pyroaurite, in the drainage system may preclude the use of in situ seawater neutralization as a routine rehabilitation practice. Following seawater neutralization, RS remains too saline to support plant growth and would require fresh water leaching before revegetation. PMID:15356249

  11. pH regulation of an egg cortex tyrosine kinase.

    PubMed

    Jiang, W P; Veno, P A; Wood, R W; Peaucellier, G; Kinsey, W H

    1991-07-01

    Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer. PMID:2060713

  12. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water.

    PubMed

    Kumai, Yusuke; Harris, Jessica; Al-Rewashdy, Hasanen; Kwong, Raymond W M; Perry, Steve F

    2015-01-01

    Although adult fish excrete their nitrogenous waste primarily as ammonia, larval fish may excrete a higher proportion as urea, an evolutionary strategy that lessens nitrogenous waste toxicity during early development. Previous studies firmly established that ammonia excretion is inhibited in adult fish acutely exposed to alkaline water. This study was designed to test the hypothesis that total nitrogen excretion is maintained in larval zebrafish raised in alkaline water (pH ∼ 10.0) as a result of compensatory adjustments to urea and/or ammonia transport pathways. Raising zebrafish in alkaline water from 0 to 4 d postfertilization (dpf) reduced ammonia excretion at 4 dpf, whereas urea excretion was elevated by 141%. The increase in urea excretion at 4 dpf served to maintain total nitrogen excretion constant, despite the persistent inhibition of ammonia excretion. Whole body ammonia and urea contents were not significantly altered by exposure to alkaline water. Protein and mRNA expression of Rhcg1, an apically expressed ammonia-conducting channel, were significantly elevated after 4-d exposure to alkaline water, whereas the mRNA expression of Rhag, Rhbg, and urea transporter were unaffected. The acute exposure to alkaline water of 4-dpf larvae reared in control water caused a rapid inhibition of ammonia excretion that had partially recovered within 6 h of continued exposure. The partial recovery of ammonia excretion despite continued exposure to alkaline water suggested an increased ammonia excretion capacity. In agreement with an increased capacity to excrete ammonia, the transfer of larvae back to the control (normal pH) water was accompanied by increased rates of ammonia excretion. Urea excretion was not stimulated during 6-h exposure to alkaline water. Following both chronic and acute exposure to alkaline water, the rate of uptake of methylamine (an ammonia analog) was significantly elevated, consistent with increased protein expression of the apical ammonia

  13. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.

    PubMed

    Paz, R C; Reinoso, H; Espasandin, F D; González Antivilo, F A; Sansberro, P A; Rocco, R A; Ruiz, O A; Menéndez, A B

    2014-11-01

    Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3. PMID:24597843

  14. Process for extracting technetium from alkaline solutions

    SciTech Connect

    Moyer, B.A.; Sachleben, R.A.; Bonnesen, P.V.

    1994-12-31

    This invention relates generally to a process for extracting technetium from nuclear wastes and more particularly to a process for extracting technetium from alkaline waste solutions containing technetium and high concentrations of alkali metal nitrates. A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate comprises the steps of: contacting the aqueous alkaline solution with a solvent consisting of a crown ether in a diluent, the diluent being a water-immiscible organic liquid in which the crown ether is soluble, for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution into the solvent; separating the solvent containing the technetium values from the aqueous alkaline solution; and stripping the technetium values from the solvent by contacting the solvent with water.

  15. [Role of Mg2+-dependent alkaline endodnaase of blood serum in tumorigenesis in A/smail mice].

    PubMed

    Kovalenko, G A; Lel'kin, M K; Panin, L E

    2006-01-01

    An enzymoassay of levels of Mg2+-dependent alkaline endoDNAase of protein spectrum of blood serum of noninbred albino mice by SDS-electrophoresis in 10% PAAG established a fairly high heterogeneity of the enzyme. The variety of alkaline endoDNAases must be due to the limited proteolysis of their high-molecular precursor by specific proteases as described in the literature. No alkaline endoDNAase activity was identified by analysis of 10-150 kDa protein spectrum in A/smail line mice without ascites hepatoma. It was detected (pH 8.3) in the 25-45 kDa range on day 10 after tumor transplantation. Considering the gravity of disease (pre-lethal stage), on day 10, it was suggested that the level be accounted for by decay of diseased cells. The lack or extremely low level of endoDNAase activity in original blood serum expressed a mechanism of enhancing sensitivity to tumor cell effects. In mice bearing ascites hepatoma, the enzyme levels (pH 8.3) were much higher on day 10. DNAase activity (pH 7.5) was not induced in response to the heterogenous DNA. Our data point to possible defects in the induction of Mg2+-dependent alkaline endoDNAases (pH 8.3) and DNAses (pH 7.5) as well as their role in raising sensitivity to transplantable ascites hepatoma. PMID:17191709

  16. Strong alkalinization of Chara cell surface in the area of cell wall incision as an early event in mechanoperception.

    PubMed

    Bulychev, Alexander A; Alova, Anna V; Bibikova, Tatiana N

    2013-11-01

    Mechanical wounding of cell walls occurring in plants under the impact of pathogens or herbivores can be mimicked by cell wall incision with a glass micropipette. Measurements of pH at the surface of Chara corallina internodes following microperforation of cell wall revealed a rapid (10-30s) localized alkalinization of the apoplast after a lag period of 10-20s. The pH increase induced by incision could be as large as 3 pH units and relaxed slowly, with a halftime up to 20min. The axial pH profile around the incision zone was bell-shaped and localized to a small area, extending over a distance of about 100μm. The pH response was suppressed by lowering cell turgor upon the replacement of artificial pond water (APW) with APW containing 50mM sorbitol. Stretching of the plasma membrane during its impression into the cell wall defect is likely to activate the Ca(2+) channels, as evidenced from sensitivity of the incision-induced alkalinization to the external calcium concentration and to the addition of Ca(2+)-channel blockers, such as La(3+), Gd(3+), and Zn(2+). The maximal pH values attained at the incision site (~10.0) were close to pH in light-dependent alkaline zones of Chara cells. The involvement of cytoskeleton in the origin of alkaline patch was documented by observations that the incision-induced pH transients were suppressed by the inhibitors of microtubules (oryzalin and taxol) and, to a lesser extent, by the actin inhibitor (cytochalasin B). The results indicate that the localized increase in apoplastic pH is an early event in mechanoperception and depends on light, cytoskeleton, and intracellular calcium. PMID:23850637

  17. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  18. Alkaline extracellular protease produced by Saccharomycopsis lipolytica CX161-1B.

    PubMed

    Ogrydziak, D M; Scharf, S J

    1982-06-01

    Saccharomycopsis lipolytica CX161-1B, a strain suitable for genetic studies, when grown at neutral pH produced a single alkaline extracellular protease, lower levels of acid extracellular protease(s) and no neutral extracellular protease. The alkaline protease was purified to homogeneity (as determined by polyacrylamide gel electrophoresis) by ultrafiltration, gel filtration and DEAE-cellulose chromatography. The molecular weight of the enzyme was estimated by gel filtration to be 27000-30000, and the isoelectric point was pH 5.7. The purified enzyme had an alkaline pH optimum (pH 9-10). It was completely inhibited by phenylmethylsulphonyl fluoride, reversibly inhibited by EDTA, partially inhibited by o-phenanthroline, and not inhibited by dithiothreitol, N-ethylmaleimide or 4-hydroxymercuribenzoic acid, indicating that it is a serine protease. The content of sulphur amino acids was determined, and the purified protease contained no more than 1.8% carbohydrate as determined by the phenol-sulphuric acid method. The N-terminal amino acid sequence (25 residues) was determined; the N-terminal amino acid was alanine. PMID:6750031

  19. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  20. BEHAVIOR OF DDT, KEPONE, AND PERMETHRIN IN SEDIMENT-WATER SYSTEMS UNDER DIFFERENT OXIDATION-REDUCTION AND PH CONDITIONS

    EPA Science Inventory

    A study was conducted to determine the effects of pH and oxidation-reduction (redox) conditions of soil and sediment-water systems on the persistence of three insecticide compounds. Three pH levels, ranging from moderately acid to mildy alkaline, were studied for each compound. F...

  1. Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.

    PubMed

    Hall, Trent D; Chastain, Daryl R; Horn, Patrick J; Chapman, Kent D; Choinski, John S

    2014-03-15

    In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses. PMID:24594393

  2. Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation.

    PubMed

    Zhang, Enren; Zhai, Wenjing; Luo, Yue; Scott, Keith; Wang, Xu; Diao, Guowang

    2016-07-01

    Air-cathode microbial fuel cells (MFCs), obtained by inoculating with an aerobic activated sludge, were activated over a one month period, at pH 10.0, to obtain alkaline MFCs. The alkaline MFCs produced stable power of 118mWm(-2) and a maximum power density of 213mWm(-2) at pH 10.0, using glucose as substrate. The performance of the MFCs was enhanced to produce a stable power of 140mWm(-2) and a maximum power density of 235mWm(-2) by increasing pH to 11.0. This is the highest pH for stably operating MFCs reported in the literature. Power production was found to be suppressed at higher pH (12.0) and lower pH (9.0). Microbial analysis indicated that Firmicutes phylum was largely enriched in the anodic biofilms (88%), within which Eremococcus genus was the dominant group (47%). It is the first time that Eremococcus genus was described in bio-electrochemical systems. PMID:27061261

  3. pH optrode

    DOEpatents

    Northrup, M. Allen; Langry, Kevin C.

    1993-01-01

    A process is provided for forming a long-lasting, stable, pH-sensitive dye-acrylamide copolymer useful as a pH-sensitive material for use in an optrode or other device sensitive to pH. An optrode may be made by mechanically attaching the copolymer to a sensing device such as an optical fiber.

  4. pH Basics

    ERIC Educational Resources Information Center

    Lunelli, Bruno; Scagnolari, Francesco

    2009-01-01

    The exposition of the pervasive concept of pH, of its foundations and implementation as a meaningful quantitative measurement, in nonspecialist university texts is often not easy to follow because too many of its theoretical and operative underpinnings are neglected. To help the inquiring student we provide a concise introduction to the depth just…

  5. Ph.D. shortage

    NASA Astrophysics Data System (ADS)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  6. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma

    PubMed Central

    2009-01-01

    The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH− efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3− symport or OH−/HCO3− antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions. PMID:19820298

  7. Bacterial Diversity in a Nonsaline Alkaline Environment: Heterotrophic Aerobic Populations

    PubMed Central

    Tiago, Igor; Chung, Ana Paula; Veríssimo, António

    2004-01-01

    Heterotrophic populations were isolated and characterized from an alkaline groundwater environment generated by active serpentinization, which results in a Ca(OH)2-enriched, extremely diluted groundwater with pH 11.4. One hundred eighty-five strains were isolated in different media at different pH values during two sampling periods. To assess the degree of diversity present in the environment and to select representative strains for further characterization of the populations, we screened the isolates by using random amplified polymorphic DNA-PCR profiles and grouped them based on similarities determined by fatty acid methyl ester analysis. Phenotypic characterization, determinations of G+C content, phylogenetic analyses by direct sequencing of 16S rRNA genes, and determinations of pH tolerance were performed with the selected isolates. Although 38 different populations were identified and characterized, the vast majority of the isolates were gram positive with high G+C contents and were affiliated with three distinct groups, namely, strains closely related to the species Dietzia natrolimnae (32% of the isolates), to Frigoribacterium/Clavibacter lineages (29% of the isolates), and to the type strain of Microbacterium kitamiense (20% of the isolates). Other isolates were phylogenetically related to strains of the genera Agrococcus, Leifsonia, Kytococcus, Janibacter, Kocuria, Rothia, Nesterenkonia, Citrococcus, Micrococcus, Actinomyces, Rhodococcus, Bacillus, and Staphylococcus. Only five isolates were gram negative: one was related to the Sphingobacteria lineage and the other four were related to the α-Proteobacteria lineage. Despite the pH of the environment, the vast majority of the populations were alkali tolerant, and only two strains were able to grow at pH 11. PMID:15574939

  8. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  9. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  10. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  11. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  12. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wasan, D.T.

    1995-09-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested.

  13. pH in physiological salt solutions: direct measurements.

    PubMed

    Abrahamsen, J; Norrie, B; Andersen, P K; Stokke, D B; Nedergaard, O A

    1990-11-01

    Calculations of pH in modified Krebs solutions by inserting PCO2 and total-CO2 in the Henderson-Hasselbalch (H.-H.) equation are obvious as the equation originally served for this purpose. An exact calculation of the relation between pH and PCO2 is complicated as the concentration of bicarbonate, the dissociation constant and the solubility of CO2 change. Furthermore, the dissociation constant in the H.-H. equation is constant only if activities are used in the equation instead of stoichiometric concentrations. We therefore investigated the influence of different carbon dioxide tensions and bicarbonate concentrations on directly measured pH of organ baths aerated with mass-spectrometric analyzed O2-CO2 gases. For reference precision buffers were used. The measured pH values differed distinctly from calculated pH values in the acidic and alkaline parts of the pH interval investigated (6.57-8.15). Measurements of actual pH with proper calibration standards therefore seem mandatory. PMID:2177306

  14. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. PMID:26013692

  15. Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis.

    PubMed

    Agasthya, Annapurna S; Sharma, Naresh; Mohan, Anand; Mahal, Prabhpreet

    2013-05-01

    Proteases are of particular interest because of their action on insoluble keratin substrates and generally on a broad range of protein substrates. Proteases are one of the most important groups of industrial enzymes used in detergent, protein, brewing, meat, photographic, leather, dairy, pharmaceutical and food industry. In the present study, the organism isolated from the protein rich soil sample was identified by biochemical and molecular characterisation as Bacillus thuringiensis and further optimum conditions for alkaline protease synthesis were determined. The growth conditions for B. thuringiensis was optimised by inoculating into yeast extract casein medium at different pH and incubating at different temperatures. The maximum protease production occurred at pH 8 and at 37 °C. B. thuringiensis showed proteolytic activity at various culture conditions. Optimum conditions for the protease activity were found to be 47 °C and pH 8. In the later stage, the blood removing action of crude and partially purified protease was found to be effective within 25 min in the presence of commercial detergents indicating the possible use of this enzyme in detergent industry. Enzyme also showed good activity against hair substrate keratin and can be used for dehairing. PMID:22826099

  16. Extracellular amylases of starch-fermenting yeast: pH effect on export and residence time in the periplasm

    SciTech Connect

    Calleja, G.B.; Levy-Rick, S.R.; Nasim, A.; Lusena, C.V.

    1987-01-01

    Aerobic cultures of S. alluvius in Wickerham's yeast-nitrogen-base medium with starch as sole carbon source become strongly acidic and contain no detectable extra-cellular amylolytic activity during stationary phase, when the activity in buffered cultures is maximal. The extracellular amylases are irreversibly inactivated at the low pH value (less than 3.5) attained by the cultures. When adequately buffered, the medium yields maximal extracellular amylolytic activity. About 0.2 M phosphate buffer is adequate for substrate concentrations of up to 0.5% starch; higher starch concentrations require more buffer. Unbuffered cultures that are adjusted once with alkali to pH 5.5 also allow maximal extracellular amylolytic activity, provided the adjustment is made prior to the end of exponential growth. Automatic pH control allows use of high starch concentrations of up to 4%. Export is optimal at pH values higher than the optima for enzyme activity and stability and for population growth. The need for pH adjustment prior to the appearance of amylolytic activity in the medium suggests pH dependence of the export process itself and/or acid inactivation of enzymes transiently resident in the periplasm. (Refs. 23).

  17. Engineering of Phytase for Improved Activity at Low pH

    PubMed Central

    Tomschy, Andrea; Brugger, Roland; Lehmann, Martin; Svendsen, Allan; Vogel, Kurt; Kostrewa, Dirk; Lassen, Søren F.; Burger, Dominique; Kronenberger, Alexandra; van Loon, Adolphus P. G. M.; Pasamontes, Luis; Wyss, Markus

    2002-01-01

    For industrial applications in animal feed, a phytase of interest must be optimally active in the pH range prevalent in the digestive tract. Therefore, the present investigation describes approaches to rationally engineer the pH activity profiles of Aspergillus fumigatus and consensus phytases. Decreasing the negative surface charge of the A. fumigatus Q27L phytase mutant by glycinamidylation of the surface carboxy groups (of Asp and Glu residues) lowered the pH optimum by ca. 0.5 unit but also resulted in 70 to 75% inactivation of the enzyme. Alternatively, detailed inspection of amino acid sequence alignments and of experimentally determined or homology modeled three-dimensional structures led to the identification of active-site amino acids that were considered to correlate with the activity maxima at low pH of A. niger NRRL 3135 phytase, A. niger pH 2.5 acid phosphatase, and Peniophora lycii phytase. Site-directed mutagenesis confirmed that, in A. fumigatus wild-type phytase, replacement of Gly-277 and Tyr-282 with the corresponding residues of A. niger phytase (Lys and His, respectively) gives rise to a second pH optimum at 2.8 to 3.4. In addition, the K68A single mutation (in both A. fumigatus and consensus phytase backbones), as well as the S140Y D141G double mutation (in A. fumigatus phytase backbones), decreased the pH optima with phytic acid as substrate by 0.5 to 1.0 unit, with either no change or even a slight increase in maximum specific activity. These findings significantly extend our tools for rationally designing an optimal phytase for a given purpose. PMID:11916711

  18. [Degradation of the absorbed methyl mercaptan by persulfate in alkaline solution].

    PubMed

    Yang, Shi-Ying; Wang, Lei-Lei; Feng, Lin-Yu; Zhao, La-Juan; Shi, Chao

    2013-11-01

    Methyl mercaptan (CH3SH) is considered to be an important contributor to odors. It is a toxic, corrosive and acid gas. The absorption of CH3SH by alkaline solution is one of the most widely used processes, but the remained solution should be further treated. The degradation of dissolved CH3S- by persulfate (PS) oxidation has not been reported. CH3SH is absorbed in alkaline solution and degraded by PS oxidation using a recycling continuous system for absorption and degradation. The stability of PS under alkaline conditions is discussed. The influence of different reaction conditions on the absorption rate and degradation rate is also studied. It was observed that PS was relatively stability under alkaline conditions and the dissolved CH3S- could be degraded effectively by PS. The absorption rate of CH3SH first increased and then decreased with the increasing concentration of PS. The degradation rate of CH3S- increased with the increasing concentration of PS. It was also observed that the efficiency between absorption and degradation had been significantly increased with the increasing of pH. In the conditions of pH = 12, fixed CH3SH concentration of 80 mg x m(-3) with a fixed gas flow rate of 1.5 L x min(-1), 1.4 g x L(-1) PS, 90% of the dissolved CH3S- can be degraded. PMID:24455922

  19. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    PubMed

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes. PMID:26935968

  20. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  1. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  2. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    PubMed

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  3. Influence of Urinary pH on the Pharmacokinetics of Cinoxacin in Humans and on Antibacterial Activity In Vitro

    PubMed Central

    Barbhaiya, Rashmi H.; Gerber, Andreas U.; Craig, William A.; Welling, Peter G.

    1982-01-01

    The impact of acidification and alkalinization of the urine on the pharmacokinetics of cinoxacin was examined after single 500-mg oral doses were administered to nine healthy male volunteers. Acidic and alkaline conditions were achieved by repeated oral doses of ammonium chloride or sodium bicarbonate, respectively. Plasma cinoxacin levels in all subjects were adequately described in terms of one-compartment-model kinetics with first-order absorption and elimination. Acidification and alkalinization treatment had no effect on cinoxacin absorption or distribution. The mean elimination half-life of cinoxacin in plasma was 1.1, 2.0, and 0.6 h in control subjects and with acidification and alkalinization of urine, respectively. Recovery of intact cinoxacin in samples of urine collected 0 to 36 h after cinoxacin administration represented 65% of the dose in control subjects and urine acidification and 80% of the dose with alkalinization of urine. The mean renal clearance of cinoxacin was 76, 118, and 278 ml/min with acidification, control, and alkalinization, respectively, and renal clearance was highly correlated with urinary pH. Urine concentrations of cinoxacin were significantly higher with alkalinization compared with control values during the first 4 h after drug administration. Urine cinoxacin concentrations were reduced somewhat by acidification, but these tended not to be significantly different from control values. Changes in cinoxacin elimination owing to urine pH are less pronounced in humans than in dogs. The antibacterial activity of cinoxacin against some common urinary tract pathogens was pH dependent. A four- to eightfold reduction in cinoxacin activity was generally observed at pH 8 compared with lower pH values. However, in view of the high levels of cinoxacin which are obtained in both acidic and basic urine, the impact of urine pH on cinoxacin antibacterial efficacy would be of minor clinical importance. PMID:7103450

  4. Association-dissociation and denaturation behaviour of an oligomeric seed protein alpha-globulin of Sesamum indicum L. in acid and alkaline solutions.

    PubMed

    Prakash, V; Nandi, P K

    1977-01-01

    The association-dissociation and denaturation behaviour of the major protein fraction, alpha-globulin of sesame seed (Sesamum indicum L.), in acid and alkaline solutions in the ranges of pH 4.2-1.5 and pH 7-12 have been studied. The results of gel filtration, fluorescence and viscosity measurements indicate dissociation and denaturation of the protein up to pH approximately 3. The difference spectrum in this region arises from a combination of dissociation, denaturation and charge effect on the chromophore. In still stronger acid solution, reassociation of the dissociated fraction takes place by hydrophobic interaction. In alkaline solution dissociation takes place around pH 8, and above pH 10 dissociation and denaturation proceed simultaneously as has been evidenced by sedimentation, fluorescence, spectral change, optical rotation and viscosity measurements. The phenolic group (pKInt=10.6) in the protein is abnormal and denaturation in alkaline solution is irreversible. Above pH 11.5 further dissociation of the protein takes place. Characteristic pH values of transition from 10.6-10.8 indicate that the transition of the protein involves a single step in alkaline solution. PMID:19367

  5. High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development.

    PubMed

    Min, Ki-Ha; Son, Ryeo Gang; Ki, Mi-Ran; Choi, Yoo Seong; Pack, Seung Pil

    2016-01-01

    Carbonic anhydrase (CA) is a biocatalyst for CO2 sequestration because of its distinctive ability to accelerate CO2 hydration. High production and efficient immobilization of alkaline-active CAs are required, because one potential application of CA is its use in the alkaline solvent-based CO2 absorption/desorption process. Here, we designed and applied an α-type CA from Hahella chejuensis (HCA), which was reported as highly active in alkaline conditions, but was mostly expressed as insoluble forms. We found that the signal peptide-removed form of HCA [HCA(SP-)] was successfully expressed in the soluble form [∼70mg of purified HCA(SP-) per L of culture]. HCA(SP-) also displayed high pH stability in alkaline conditions, with maximal activity at pH 10; at this pH, ∼90% activity was maintained for 2h. Then, we prepared HCA(SP-)-encapsulated silica particles [HCA(SP-)@silica] via a spermine-mediated bio-inspired silicification method. HCA(SP-)@silica exhibited high-loading and highly stable CA activity. In addition, HCA(SP-)@silica retained more than 90% of the CA activity even after 10 cycles of use in mild conditions, and ∼80% in pH 10 conditions. These results will be useful for the development of practical CO2 sequestration processes employing CA. PMID:26206748

  6. Purification and characterisation of an alkaline protease used in tannery industry from Bacillus licheniformis.

    PubMed

    Tang, Xue-Ming; Lakay, F M; Shen, Wei; Shao, Wei-Lan; Fang, Hui-Ying; Prior, B A; Wang, Zheng-Xiang; Zhuge, Jian

    2004-09-01

    An extracellular alkaline protease produced by Bacillus licheniformis AP-1 was purified 76-fold, yielding a single 28 kDa band on SDS-PAGE. It was optimally active at pH 11 and at 60 degrees C (assayed over 10 min). The protease was completely inhibited by phenylmethylsulfonyl fluoride and diodopropyl fluorophosphate, with little increase upon Ca2+ and Mg2+ addition. PMID:15604774

  7. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  8. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased. PMID:24846742

  9. Biological impacts of enhanced alkalinity in Carcinus maenas.

    PubMed

    Cripps, Gemma; Widdicombe, Stephen; Spicer, John I; Findlay, Helen S

    2013-06-15

    Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species. PMID:23602261

  10. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  11. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  12. Stabilization of Mercury in High pH Tank Sludges

    SciTech Connect

    Spence, R.; Barton, J.

    2003-02-24

    DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

  13. Purification and characterization of an alkaline protease from Acetes chinensis

    NASA Astrophysics Data System (ADS)

    Xu, Jiachao; Liu, Xin; Li, Zhaojie; Xu, Jie; Xue, Changhu; Gao, Xin

    2005-07-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.

  14. Intramolecular dynamics of structure of alkaline phosphatase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Mazhul, Vladimir M.; Mjakinnik, Igor V.; Volkova, Alena N.

    1995-01-01

    The luminescent analysis with nano- and millisecond time resolution of intramolecular dynamics of Escherichia coli alkaline phosphatase was carried out. The effect of pH within the range 7.2 - 9.0, thermal inactivation, limited proteolysis by trypsin, binding of pyrophosphate, interconversion of enzyme and apoenzyme, the replacement of Zn2+ and Mg2+ in the active site by Cd2+ and Ni2+ on the spectral and kinetic parameters of luminescence was investigated. The essential changes of the level of nano- and millisecond dynamics of protein structure were found to correlate with the shift of enzymatic activity. The importance of small- and large-scale flexibility of protein structure for the act of enzymatic catalysis realization was shown.

  15. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    PubMed

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. PMID:26530809

  16. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  17. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  18. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  19. The rare-metal ore potential of the Proterozoic alkaline ultramafic massifs from eastern part of the Baltic Shield in the Kola alkaline province.

    NASA Astrophysics Data System (ADS)

    Sorokhtina, Natalia; Kogarko, Lia

    2014-05-01

    temperature near 600-650°C (according to isotopic graphite-calcite, biotite-pyroxene and zircon-rutile thermometers). The minerals of latest stages occurred under low-temperature, decrease of pH and high activity of Si, REE, Sr, Ba, Fe and Al. Isotope data obtained for carbonatites and metasomatites of the Gremiakha-Vyrmes massif linked to a mantle source. We suggest that carbonatites were the source of Nb, U, Th, Zr and REE. Metasomatic rocks accumulate rare metals and could be formed during the metasomatism triggered by intrusion of carbonatites into the alkaline and basic-ultrabasic complexes of the massif. The nepheline-feldspathoid-aegirine pegmatoids, carbonatite veins and breccia of Elet'ozero Proterozoic alkaline-ultrabasic massif formed rare-metal ores and showed genetic similarity to final products of differentiation of the Gremyakha-Vyrmes. Research covered by RFBR grant 13-05-12021.

  20. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  1. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  2. The pH of Enceladus' ocean

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.; Baross, John A.; Waite, J. Hunter

    2015-08-01

    Saturn's moon, Enceladus, is a geologically active waterworld. The prevailing paradigm is that there is a subsurface ocean that erupts to the surface, which leads to the formation of a plume of vapor and ice above the south polar region. The chemistry of the ocean is just beginning to be understood, but is of profound geochemical and astrobiological interest. Here, we determine the pH of the ocean using a thermodynamic model of carbonate speciation. Observational data from the Cassini spacecraft are used to make a chemical model of ocean water on Enceladus. The model suggests that Enceladus' ocean is a Na-Cl-CO3 solution with an alkaline pH of ∼11-12. The dominance of aqueous NaCl is a feature that Enceladus' ocean shares with terrestrial seawater, but the ubiquity of dissolved Na2CO3 suggests that soda lakes are more analogous to the Enceladus ocean. The high pH implies that the hydroxide ion should be relatively abundant, while divalent metals should be present at low concentrations owing to buffering by carbonates and phyllosilicates on the ocean floor. Carboxyl groups in dissolved organic species would be negatively charged, while amino groups would exist predominately in the neutral form. Knowledge of the pH improves our understanding of geochemical processes in Enceladus' ocean. The high pH is interpreted to be a key consequence of serpentinization of chondritic rock, as predicted by prior geochemical reaction path models; although degassing of CO2 from the ocean may also play a role depending on the efficiency of mixing processes in the ocean. Serpentinization leads to the generation of H2, a geochemical fuel that can support both abiotic and biological synthesis of organic molecules such as those that have been detected in Enceladus' plume. Serpentinization and H2 generation should have occurred on Enceladus, like on the parent bodies of aqueously altered meteorites; but it is unknown whether these critical processes are still taking place, or if

  3. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  4. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  5. 17-4 PH and 15-5 PH

    NASA Technical Reports Server (NTRS)

    Johnson, Howard T.

    1995-01-01

    17-4 PH and 15-5 PH are extremely useful and versatile precipitation-hardening stainless steels. Armco 17-4 PH is well suited for the magnetic particle inspection requirements of Aerospace Material Specification. Armco 15-5 PH and 17-4 PH are produced in billet, plate, bar, and wire. Also, 15-5 PH is able to meet the stringent mechanical properties required in the aerospace and nuclear industries. Both products are easy to heat treat and machine, making them very useful in many applications.

  6. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  7. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  8. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  9. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  10. Soil carbon cycle of different saline and alkaline soils under cotton fields in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Zhao, Chengyi; Stahr, Karl; Kuzyakov, Yakov

    2015-04-01

    Calcium carbonate is the most common form of carbon (C) in semiarid and arid soils. Depending on pH and salinity changes, soils can act as sink or source of atmospheric CO2 as well as contribute to C exchange between CO2 and CaCO3 leading to formation of pedogenic carbonates. However, the rates of these processes and the effects of environmental factors remains unknown. 14CO2 was used to assess carbonate recrystallization in 4 saline and alkaline soils (Aksu alkaline, Aksu saline, Yingbazar alkaline, Yingbazar saline) (EC = 0.32, 1.35, 1.72, 3.67 (1:20) mS cm-1, pH = 8.5, 8.2, 8.9, 7.9 respectively) and to trace the C exchange in the soils of the Tarim River basin depending on CO2 concentrations in soils (0.02%, 0.04%, 0.2%, 0.4% and 4%). 14C was traced in soil water and air as well as in carbonates. The highest 14C in 14CO2 (95% of the 14C input) was observed in Aksu alkaline soil and the highest 14C incorporation in CaCO3 (54%) was observed in Yingbazar saline soil. There were close negative linear relationships between initial CO2 concentrations (0.04%, 0.4% and 4%) and the 14C in Ca14CO3 and in 14CO2. The carbonate recrystallization rate increased with the CO2 concentration and were depended on the recrystalliztion period. The average carbonate recrystallization rate was highest at 4% CO2 concentration for Yingbazar saline soil (6.59×10-4 % per day) and the lowest at 0.04% CO2 concentration for Aksu alkaline soil (0.03×10-4 % per day). The carbonate recrystallization rate linearly increased with the soil EC and with 0.04% and 0.4% CO2 concentration , whereas the carbonate recrystallization rate decreased with pH. The highest CO2 concentration of 4% can 10 to 100 times shorten the full carbonate recrystallization of the remaining primary carbonates compared to lower CO2 concentrations 0.4% and 0.04% for complete (95%) recrystallization of soil carbonate. We conclude that microbial and root respiration affecting CO2 concentration in soil is the most important

  11. Biogeochemical Influences on the Determination of Water Chemistry in a Temperate Forest Basin: Factors Determining the pH value

    NASA Astrophysics Data System (ADS)

    Ohte, Nobuhito; Tokuchi, Naoko; Suzuki, Masakazu

    1995-01-01

    In order to clarify the mechanism of pH determination in a temperate forest watershed in Japan, intensive hydrochemical observations that included in situ measurement of dissolved pCO2 were carried out in 1991 and 1992. From the variations of observed pCO2 and pH and estimated alkalinity associated with the hydrological process, the factors determining pH were described. There were two hydrological processes which have different determining hydrochemical processes: (1) rainfall and throughfall to infiltration in the soil layer to stable groundwater and (2) stable groundwater to spring water to stream water. In the first process, pH is influenced by infiltration from the low pCO2 layer to the high CO2 layer and by an increase of alkalinity, which is mainly caused by an exchange reaction and chemical weathering. In the shallow soil layer the protons for alkalinity generation are supplied by acid deposits from rainfall and throughfall, microbial acid production, and CO2 dissolution reaction. In the deeper layer an increase of alkalinity caused by Na+ generation becomes remarkable as depth increases. This process is strongly controlled by chemical weathering. In the second process, pH increases with CO2 degassing around the spring point. The alkalinity is kept at the same level as that of the stable groundwater. These results suggests that the biochemically supplied CO2 in soil not only directly controls the pH determination, but also has influences on the alkalinity generation as another determining factor of pH.

  12. Acid stability of the kinetically stable alkaline serine protease possessing polyproline II fold.

    PubMed

    Rohamare, Sonali; Javdekar, Vaishali; Dalal, Sayli; Nareddy, Pavan Kumar; Swamy, Musti J; Gaikwad, Sushama M

    2015-02-01

    The kinetically stable alkaline serine protease from Nocardiopsis sp.; NprotI, possessing polyproline II fold (PPII) was characterized for its pH stability using proteolytic assay, fluorescence and Circular Dichroism (CD) spectroscopy, and Differential Scanning Calorimetry (DSC). NprotI was found to be functionally stable when incubated at pH 1.0, even after 24 h, while after incubation at pH 10.0, drastic loss in the activity was observed. The enzyme showed enhanced activity after incubation at pH 1.0 and 3.0, at higher temperature (50-60 °C). NprotI maintained the overall PPII fold in broad pH range as seen using far UV CD spectroscopy. The PPII fold of NprotI incubated at pH 1.0 remained fairly intact up to 70 °C. Based on the isodichroic point and Tm values revealed by secondary structural transitions, different modes of thermal denaturation at pH 1.0, 5.0 and 10.0 were observed. DSC studies of NprotI incubated at acidic pH (pH 1.0-5.0) showed Tm values in the range of 74-76 °C while significant decrease in Tm (63.8 °C) was observed at pH 10.0. NprotI could be chemically denatured at pH 5.0 (stability pH) only with guanidine thiocynate. NprotI can be classified as type III protein among the three acid denatured states. Acid tolerant and thermostable NprotI can serve as a potential candidate for biotechnological applications. PMID:25576306

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  14. Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  15. Effect of salinity induced pH/alkalinity changes on benthic foraminifera: A laboratory culture experiment

    NASA Astrophysics Data System (ADS)

    Saraswat, Rajeev; Kouthanker, Mamata; Kurtarkar, Sujata R.; Nigam, Rajiv; Naqvi, S. W. A.; Linshy, V. N.

    2015-02-01

    The salinity of coastal waters in the vicinity of seasonally fresh water fed estuaries changes tremendously and reportedly affects the living calcite secreting organisms like foraminifera, as well as their dead remains. The precise mechanism of adverse effect of such seasonal salinity changes on calcite secreting organisms is, however not clear. The seasonal fresh water influx from the estuaries also affects the pH and alkalinity of the coastal seawater. Therefore, to understand the effect of salinity induced pH/alkalinity variations on benthic foraminifera, living specimens of Rosalina globularis were subjected to different salinity. Additionally, water samples were collected from an estuary during both monsoon and post monsoon season to understand the relationship between salinity, pH and total alkalinity (TA). The pH decreased with decreasing salinity during both the seasons. A similar decrease in TA with decreasing salinity was also observed but only till 20 psu salinity, below which the TA increased with decreasing salinity. Even though the maximum growth was reported in specimens kept at 35 psu salinity, growth of specimens maintained at >25 psu salinity, was same. Specimens kept at 10 psu and 15 psu salinity, however were much smaller and turned opaque within two days of lowering the salinity and later on their tests dissolved within 24 and 43 days, respectively. No specimen reproduced at 10 psu and 15 psu salinity, while only a few specimens (3%) reproduced at 20 psu salinity. As compared to 10-20 psu salinity, ∼60% reproduction was observed in specimens subjected to 25-40 salinity. The specimens maintained at 20 psu salinity took twice the time to reach maturity than those subjected to 25-40 psu salinity. Since a big drop in pH was observed at 10-15 psu salinity (pH 7.2 and 7.5, respectively), while the alkalinity was still higher, we suggest that fresh water influx induced drop in pH adversely affects calcification and reproduction in benthic

  16. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, January 1--March 31, 1994

    SciTech Connect

    Wasan, D.T.

    1994-06-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we investigated the phase behavior and the regions where in the middle phase occurs. The optimum phase was found to go through a maximum with pH, sodium concentration and surfactant concentration. The optimum pH is about 12.0 to 13.5, the optimum sodium concentration is about 0.513 mol/liter, and the optimum surfactant concentration is about 0.2%. The effect of surfactant type was also investigated. Petrostep B-105 was found to give the most middle phase production. This quarter, we investigated the contact angle of Long Beach oil, Adena oil, and a model oil on a solid glass surface in contact with an aqueous alkaline solution both with and without added preformed surfactant. The contact angle with Long Beach and Adena oils showed oil-wet conditions, whereas the model oil showed both oil-wet and water-wet conditions depending on the pH of the aqueous phase. The addition of surfactant to the alkaline solution resulted in making the system less oil-wet. Spreading of the oil on the glass surface was observed in all three systems investigated.

  17. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Yang, Yueting; Yi, Huqiang; Fang, Shengtao; Zhang, Pengfei; Sheng, Zonghai; Gao, Guanhui; Gao, Duyang; Cai, Lintao

    2014-04-01

    pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence in an alkaline environment. Hence, DPNs exhibited a dual response signal with strong red fluorescence and weak green fluorescence under acidic conditions; in contrast, they showed strong green fluorescence and almost no red fluorescence under alkaline and neutral conditions. The favorable inverse pH responses of the two fluorescent dyes resulted in ratiometric pH determination for DPNs with an optimized pH-sensitive range of pH 4.5-7.5. Quantitative analysis of the intracellular pH of intact MCF-7 cells has been successfully demonstrated with our nanosensor. Moreover, single acid activatable fluorescent dye doped polypeptide nanoparticles that only contained RBLC can distinguish tumor tissue from normal tissue by monitoring the acidic extracellular environment.pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence

  18. Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2013-04-01

    Plasma immersion ion implantation (PIII) treatment is a novel method for immobilizing yeast on polymer surfaces by covalent linkage. This study of the immobilization of Saccharomyces cerevisiae in both rehydrated and cultured forms showed that the density of cell attachment on PIII treated polystyrene (PS) was strongly dependent on the pH of the incubation medium and was higher for rehydrated yeast. A study of the surface charge was undertaken to explain this result. A high density of cell attachment occurs in acidic conditions (pH 3-5) and a significantly reduced cell density occurs in neutral and alkaline buffers (pH 6-10) for both types of yeast. Force measurements using atomic force microscopy show that a negative charge is present on polystyrene after PIII treatment. The charge is close to zero at pH 3 to pH 5 and increasingly negative from pH 6 to pH 10. Both rehydrated yeast and cultured yeast have negative electrophoretic mobility in the pH range studied. The repulsive forces are weak in acidic buffers and stronger in neutral and alkaline buffers, in good agreement with the cell densities observed. Rehydrated yeast cells are found to be more hydrophobic than cultured yeasts in the same buffer. The higher hydrophobicity explains the higher attachment of rehydrated yeast compared to cultured yeast. PMID:23298600

  19. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor.

    PubMed

    Lee, Kuan-Chun; Rittmann, Bruce E

    2003-04-01

    Experiments carried out in a hollow-fiber, membrane-biofilm reactor (HFMBR) showed that the optimum pH for autotrophic denitrification was in the range 7.7-8.6, with the maximum efficiency at 8.4. Increasing the pH above 8.6 caused a significant decrease in nitrate removal rate and a dramatic increase in nitrite accumulation. The pH rose by 1.2 units when a large buffer was not added, suggesting that some field applications may require pH control. Precipitation of Ca(2+) occurred in every experiment. Precipitation was the largest sink for carbonate, and it also offset alkalinity production by denitrification. Although the alkalinity increased in most cases, systems with a high carbonate buffer and high pH accentuated precipitation, and the net change in alkalinity was negative. The long-term success of field applications of the HFMBR may depend upon the interactions among calcium concentration, total carbonate concentration, pH, and alkalinity changes. PMID:12600383

  20. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    PubMed

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  1. Defluoridation of drinking water by combined electrocoagulation: effects of the molar ratio of alkalinity and fluoride to Al(III).

    PubMed

    Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren

    2009-03-01

    The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process. PMID:19128818

  2. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts

    PubMed Central

    Chauvigné, François; Zapater, Cinta; Stavang, Jon Anders; Taranger, Geir Lasse; Cerdà, Joan; Finn, Roderick Nigel

    2015-01-01

    Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, -0a2, -0b1, and -0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, -0a2, and -0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser38, His39, and His40 residues in the extracellular transmembrane domain of α-helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and -0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N-terminal allelic variant (Ser19) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a-type channels, whereas mammalian AQP0 and some teleost Aqp0 b-type channels display an acidic pH permeation preference.—Chauvigné, F., Zapater, C., Stavang, J. A., Taranger, G. L., Cerdà, J., Finn, R. N. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. PMID:25667219

  3. Effect of Different pH Values on the Compressive Strength of Calcium-Enriched Mixture Cement

    PubMed Central

    Sobhnamayan, Fereshte; Sahebi, Safoora; Alborzi, Ali; Ghorbani, Saeed; Shojaee, Nooshin Sadat

    2015-01-01

    Introduction: The aim of this study was to evaluate the compressive strength of calcium-enriched mixture (CEM) cement in contact with acidic, neutral and alkaline pH values. Methods and Materials: The cement was mixed according to the manufacturer’s instructions, it was then condensed into fourteen split molds with five 4×6 mm holes. The specimens were randomly divided into 7 groups (n=10) and were then exposed to environments with pH values of 4.4, 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4 in an incubator at 37° C for 4 days. After removing the samples from the molds, cement pellets were compressed in a universal testing machine. The exact forces required for breaking of the samples were recorded. The data were analyzed with the Kruskal-Wallis and Dunn tests for individual and pairwise comparisons, respectively. The level of significance was set at 0.05. Results: The greatest (48.59±10.36) and the lowest (9.67±3.16) mean compressive strength values were observed after exposure to pH value of 9.4 and 7.4, respectively. Alkaline environment significantly increased the compressive strength of CEM cement compared to the control group. There was no significant difference between the pH values of 9.4 and 10.4 but significant differences were found between pH values of 9.4, 8.4 and 7.4. The acidic environment showed better results than the neutral environment, although the difference was not significant for the pH value of 6.4. Alkaline pH also showed significantly better results than acidic and neutral pH. Conclusion: The compressive strength of CEM cement improved in the presence of acidic and alkaline environments but alkaline environment showed the best results. PMID:25598805

  4. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    PubMed

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C. PMID:15293947

  5. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. PMID:24681363

  6. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  7. Decolorization of alkaline TNT hydrolysis effluents using UV/H(2)O(2).

    PubMed

    Hwang, Sangchul; Bouwer, Edward J; Larson, Steven L; Davis, Jeffrey L

    2004-04-30

    Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step. PMID:15081163

  8. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  9. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  10. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  11. Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud.

    PubMed

    Zhu, Mao-Xu; Lee, Li; Wang, Hai-Hua; Wang, Zheng

    2007-11-19

    Alkaline white mud (AWM) has been investigated as a low-cost material for removal of an anionic dye, acid blue 80. The effects of contact time, initial pH of dye solution, AWM dosage, and the presence of inorganic anion sulphate or phosphate ion on removal of the dye were evaluated. The results show that AWM could be used as an effective material for removal of acid blue 80 in a pre or main process, particularly at high dye concentration (>300 mgL(-1)), reaching maximum removal efficiency of 95%. At low dye concentration, surface adsorption is mainly responsible for the dye removal, while chemical precipitation of the dye anions with soluble Ca(2+) and Mg(2+) may play a dominant role for the dye removal at high concentration, producing much less sludge than conventional adsorption method. Solution pH has only a limited effect on the dye removal due to high alkalinity and large pH buffer capacity of AWM suspension and thereby pH is not a limiting factor in pursuing high dye removal. The presence of SO(4)(2-) could reduce the dye removal by AWM only when SO(4)(2-) concentration is beyond 0.7 mmolL(-1). The dye removal may be significantly suppressed by the presence of phosphate with increasing concentration, and the reduction in the dye removal is much larger at high dye concentrations than at low ones. PMID:17532132

  12. Degradation of halogenated carbons in alkaline alcohol

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko; Shimokawa, Toshinari

    2002-02-01

    1,1,2-Trichloro-trifluoroethane, 1,2-dibromo-tetrafluoroethane, 2,3,4,6-tetrachlorophenol, 1,2,4-trichlorobenzene, and 2,4,6-trichloroanisole were dissolved in alkaline isopropyl alcohol and irradiated with 60Co gamma rays after purged with pure nitrogen gas. The concentration of the hydroxide ions and the parent molecules decreased with the dose, while that of the halide ions and the organic products, with less halogen atoms than the parent, increased. Chain degradation will occur in alkaline isopropyl alcohol.

  13. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  14. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  15. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  16. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  17. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  18. A rapid automated procedure for laboratory and shipboard spectrophotometric measurements of seawater alkalinity: continuously monitored single-step acid additions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Byrne, R. H.; Lindemuth, M.; Easley, R. A.; Patsavas, M. C.

    2012-12-01

    An automated system for shipboard and laboratory alkalinity measurements is presented. The simple system, which consists of a Dosimat titrator to deliver acid volumetrically and a USB 4000 spectrophotometer to monitor the titration progress, provides fast, precise and accurate measurements of total alkalinity for oceanographic research. The analytical method is based on single-point HCl titrations of seawater samples of a known volume; bromol cresol purple is used as an indicator to determine the final pH. Field data from an Arctic cruise demonstrates accuracy and precision around 1 micro mol/kg and a sample processing rate of 6 min per sample.

  19. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  20. Dephosphorylation of endotoxin by alkaline phosphatase in vivo.

    PubMed Central

    Poelstra, K.; Bakker, W. W.; Klok, P. A.; Kamps, J. A.; Hardonk, M. J.; Meijer, D. K.

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin is a substance that contains phosphate groups and is usually present in the extracellular space, we studied whether AP is able to dephosphorylate this bacterial product at physiological pH levels. We tested this in intestinal cryostat sections using histochemical methods with endotoxin from Escherichia coli and Salmonella minnesota R595 as substrate. Results show that dephosphorylation of both preparations occurs at pH 7.5 by AP activity. As phosphate residues in the lipid A moiety determine the toxicity of the molecule, we examined the effect of the AP inhibitor levamisole in vivo using a septicemia model in the rat. The results show that inhibition of endogenous AP by levamisole significantly reduces survival of rats intraperitoneally injected with E. coli bacteria, whereas this drug does not influence survival of rats receiving a sublethal dose of the gram-positive bacteria Staphylococcus aureus. In view of the endotoxin-dephosphorylating properties of AP demonstrated in vitro, we propose a crucial role for this enzyme in host defense. The effects of levamisole during gram-negative bacterial infections and the localization of AP as an ecto-enzyme in most organs as well as the induction of enzyme activity during inflammatory reactions and cholestasis is in accordance with such a protective role. Images Figure 1 Figure 5 PMID:9327750

  1. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    PubMed Central

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  2. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    PubMed

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  3. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  4. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1

    PubMed Central

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6–12, temperatures of 28–50 °C, and NaCl concentrations of 0–16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  5. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand

    PubMed Central

    Goloran, Johnvie B.; Chen, Chengrong; Phillips, Ian R.; Elser, James J.

    2015-01-01

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance. PMID:26443331

  6. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  7. Capturing molten globule state of α-lactalbumin through constant pH molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Nicholus; Rani, Pooja; Biswas, Parbati

    2013-03-01

    The recently developed methods of constant pH molecular dynamics directly captures the correlation between protonation and conformation to probe protein structure, function, and dynamics. In this work, we investigate the effect of pH on the conformational properties of the protein human α-lactalbumin. Constant pH simulations at both acidic and alkaline medium indicate the formation of the molten globule state, which is in accordance with the previous experimental observations (especially, in acidic medium). The size of the protein measured by its radius of gyration (RG) exhibits a marked increase in both acidic and alkaline medium, which matches with the corresponding experimentally observed value of RG found in the molten globule. The probability of native contacts is also considerably reduced at acidic and basic pH as compared to that of native structure crystallized at neutral pH. The mean fractal dimension D2 of the protein records a sharp increase in basic medium as compared to those in neutral and acidic solutions implying a significant pH induced conformational change. The mean square fluctuations of all residues of the entire protein are found to increase by several folds in both acidic and basic medium, which may be correlated with the normalized solvent accessibility of the residues indicating role of solvent accessible surface area on protein internal dynamics. The helices comprising the α-domain of the protein are moderately preserved in the acidic and alkaline pH. However, the β-sheet structures present in the β-domain are completely disrupted in both acidic as well as basic pH.

  8. Enhancing Production of Alkaline Polygalacturonate Lyase from Bacillus subtilis by Fed-Batch Fermentation

    PubMed Central

    Zou, Mouyong; Guo, Fenfen; Li, Xuezhi; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Alkaline polygalacturonate lyase (PGL, EC 4.2.2.2) is an enzyme used in many industries. We developed a fed-batch fermentation process that combines the enzymatic pretreatment of the carbon source with controlling the pH of the fermentative broth to enhance the PGL production from Bacillus subtilis 7-3-3 to decrease the production cost. Maintaining the fermentation broth at pH 6.5 prior to feeding with ammonia and at pH 6.0 after feeding significantly improved PGL activity (743.5 U mL−1) compared with the control (202.5 U mL−1). The average PGL productivity reached 19.6 U mL−1 h−1 after 38 h of fermentation. The crude PGL was suitable for environmentally friendly ramie enzymatic degumming. PMID:24603713

  9. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  10. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  11. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems. PMID:11563378

  12. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  13. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  14. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  15. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    PubMed

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  16. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions. PMID:26594871

  17. The Effect of River Alkalinity on Coastal Aragonite Saturation

    NASA Astrophysics Data System (ADS)

    de Meo, O.; Salisbury, J.

    2008-12-01

    As atmospheric carbon dioxide levels increase, concern about ocean acidification is rising. Although a great deal of recent research has been focused on this topic, little has been done to explore how land and ocean interactions are affecting coastal acidification. This study addresses the regional variability of total alkalinity (TA) in rivers and its effect on the aragonite saturation state (Ω) at river mouths. The TA concentration of river water is its ability to buffer changes in pH, while Ω is an index that expresses the availability of calcium and carbonate ions (e.g. for shell formation). Local river sampling in New England (USA) and New Brunswick (CAN) showed regional differences in TA concentrations (203-2155 μmol/L), which are likely related to bedrock and land use patterns. USGS alkalinity data for rivers entering the East and Gulf Coasts (USA) ranged from 181-3598 μmol/L and showed a regional pattern of low TA in northern rivers and higher TA in the southern and Gulf rivers. Estimated aragonite saturation states (0.0- 5.6) revealed that most rivers were under-saturated (Ω < 1) and only a few rivers (mainly entering the Gulf) were super-saturated (Ω > 1). This widespread under-saturation near the coast may have detrimental effects for calcifying organisms that rely on aragonite to build their shells. Further study is needed to determine the spatial extent of river influence on acidification of coastal waters and to elucidate the ways in which anticipated climate change will alter the chemistry of river water entering the ocean.

  18. Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor.

    PubMed

    Andrade, Denis V; De Toledo, Luis Felipe; Abe, Augusto S; Wang, Tobias

    2004-03-01

    The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not PCO2 during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol l(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial PCO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial PCO2. The increased arterial PCO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial PCO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than PCO2 normally affects chemoreceptor activity and ventilatory drive. PMID:15010489

  19. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils

    SciTech Connect

    Emmrich, M.

    1999-11-01

    During the two World Wars, large amounts of TNT were released into the environment. Until today, high concentrations of TNT can be found in the soil of former ammunition plants. To obtain basic data for a novel treatment process for highly contaminated soils, the homogeneous aqueous hydrolysis of TNT in the pH range from 10 to 12 and the alkaline treatment of two contaminated soils at pH 11 and pH 12 were investigated. The experimental data were described for their respective pH values using a pseudo-first-order model. In the homogeneous experiments, 95--97% of the TNT was hydrolyzed. During alkaline hydrolysis, up to two nitrogroups per TNT molecule were released, indicating the irreversible destruction of TNT. Except for the formation of small traces of amino dinitrotoluenes and trinitrobenzenes, no nitroaromatic benzenes or toluenes were detected during GC analysis. For the less contaminated soil, ELBP2, with an initial TNT concentration of 116 mg/kg, a destruction of 99% was achieved. The highly contaminated soil, HTNT2 (16.1 g of TNT/kg), showed a hydrolyzation level of 90-94%. The results show that the alkaline treatment of highly contaminated soils may prove to be effective as an alternative treatment technology.

  20. Interacting effects of pH acclimation, and pH and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia (Cladocera)

    SciTech Connect

    Belanger, S.E.; Cherry, D.S. )

    1990-05-01

    Understanding the factors that modify the sensitivity of the zooplankton Ceriodaphnia dubia to toxicants is important to the interpretation of chronic toxicity data generated for granting industrial permits. Early reports of high sensitivity of Ceriodaphnia to brief pH excursions led toxicologists to question the use of C. dubia as a test organism. Acute and chronic toxicity of pH and heavy metals, pH acclimation to acidic and alkaline conditions and the role of pH in modifying heavy metal (copper and zinc) toxicities were investigated. Ceriodaphnia dubia acclimated near neutral pH had acute (48-hr) lethal concentrations of 4.6 and 10.3 SU. Reproduction and mortality were not impaired between pH 6.14-8.99 regardless of pH acclimation history. Reproduction was significantly impaired beyond these extremes. Acute exposures to both heavy metals at pH 6, 8 and 9 and in water hardness of 180, 110 and 100 mg/L showed C dubia was consistently most sensitive in low pH and low hardness waters. Reproduction and mortality were not so affected by pH in chronic exposures. Similar concentrations of metals at all pH levels resulted in equivalent reductions in offspring per female. The results strongly suggest that effluent guidelines for pH at 6-9 are sound, and that toxicant activity in chronic time frames is directed primarily by concentration and water hardness, not by pH. 34 refs., 2 figs., 8 tabs.

  1. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  2. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  3. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. PMID:27575336

  4. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone. PMID:15093505

  5. Surfactant-enhanced alkaline flooding for light oil recovery. [Annual report], 1993--1994

    SciTech Connect

    Wasan, D.T.

    1995-03-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (2) investigated the kinetics of oil removal from a silica surface, and (3) developed a theoretical interfacial activity model for determining equilibrium interfacial tension. The results of the studies conducted during the course of this project are presented.

  6. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  7. Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay.

    PubMed

    da Silva, Cassia Maria Lins; Spinelli, Eliani; Rodrigues, Silvana Vianna

    2015-04-15

    A preparative protein alkaline hydrolysis procedure, as part of a spectrophotometric collagen quantification method, is presented. The procedure is suitable for small amounts of fresh solid or liquid samples. Various aspects of the procedure, such as the NaOH concentration, time needed to hydrolyse different collagen contents, buffer strength of the reagent solution, pH control of the hydrolysate and spectrophotometric conditions, were evaluated. Compared to other procedures that use alkaline hydrolysis, the sensitivity of this procedure was increased by a factor of 5. Compared to the conventionally used Association of Official Analytical Chemists (AOAC) acid hydrolysis method, the reaction time was reduced from 16 h to 40 min and the amount of sample from 4 g to 3-20 mg, producing equivalent results when applied to porcine liver and sausage samples. PMID:25466067

  8. Effects of bryophytes on succession from alkaline marsh to Sphagnum bog

    SciTech Connect

    Glime, J.M.; Wetzel, R.G.; Kennedy, B.J.

    1982-10-01

    The alkaline eastern marsh of Lawrence Lake, a marl lake in southwestern Michigan, was sampled by randomly placed line transects to determine the bryophyte cover and corresponding vascular plant zones. Cluster analysis indicated three distinct bryophyte zones which correspond with the recognized vascular plant zones. Mosses occupied over 50% of the surface in some areas. Invasion of Sphagnum, vertical zonation of the mosses on hummocks, zonation with distance from the lake, the abundance of non-Sphagnum moss hummocks, and the ability of the non-Sphagnum species to lower the pH of marsh water during laboratory incubations are evidence that non-Sphagnum mosses facilitate succession from alkaline marsh to Sphagnum bog.

  9. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome.

    PubMed

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na(+)). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L(-1) day(-1) organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the "ML635J-40 aquatic group" while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  10. Basalt as a solid source of calcium and alkalinity for the sequestration of carbon dioxide in building materials

    NASA Astrophysics Data System (ADS)

    Johnson, N. C.; Westfield, I.; Lu, P.; Bourcier, W. L.; Kendall, T.; Constantz, B. R.

    2010-12-01

    Motivated by the idea of converting waste carbon dioxide into usable building products, Calera Corporation has developed a multi-step process that sequesters CO2 as carbonate minerals in cementitious materials. Process inputs include dissolved divalent cations and alkalinity, both of which can be extracted from basalt. In one mode of the Calera process, the electrochemical production of alkalinity generates large volumes of hydrochloric acid as a by-product, which has been shown to effectively leach divalent cations from basalt while being neutralized by the basalt dissolution reaction. Using a 10:1 1M HCl solution to rock ratio, 3500 ppm Ca was extracted while the initial solution was neutralized to a pH of 2.60 in two weeks at a temperature of 80oC in an anoxic batch reactor. In this scenario, mineral carbonation occurs via three steps: electrochemical production of alkalinity, CO2 absorption by the alkaline stream, then precipitation by mixing the basalt-derived divalent cation stream and the CO2-containing alkaline stream. In a second scenario, alkalinity is extracted from basalt using an alkalinity capacitor, a weak acid. This solution may contain a proton source, such as ammonium chloride, or a hydroxyl acceptor, such as boric acid, but the main design constraint is that the pKa of the capacitor be high enough to deprontonate carbonic acid. The weak acid solution is mixed with basalt in an anoxic batch reactor and the dissolving rock consumes protons from the weak acid, generating the conjugate base. The solution rich in conjugate base then absorbs CO2 and the carbonate-rich solution is mixed with a calcium-rich stream to precipitate carbonate minerals. We have extracted up to 1100 mmol alkalinity per kg rock using an alkalinity capacitor, versus no more than 50 mmol alkalinity per kg rock using DI water as a solvent. Again, carbon sequestration occurs via three steps: alkalinity extraction from basalt, CO2 absorption, and finally carbonate precipitation

  11. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  12. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  13. Catalytic actions of alkaline salts in reactions between 1,2,3,4-butanetetracarboxylic acid and cellulose: II. Esterification.

    PubMed

    Ji, Bolin; Tang, Peixin; Yan, Kelu; Sun, Gang

    2015-11-01

    1,2,3,4-Butanetetracarboxylic acid (BTCA) reacts with cellulose in two steps with catalysis of alkaline salts such as sodium hypophosphite: anhydride formation and esterification of anhydride with cellulose. The alkali metal ions were found effective in catalyzing formation of BTCA anhydride in a previous report. In this work, catalytic functions of the alkaline salts in the esterification reaction between BTCA anhydride and cellulose were investigated. Results revealed that acid anions play an important role in the esterification reaction by assisting removal of protons on intermediates and completion of the esterification between cellulose and BTCA. Besides, alkaline salts with lower pKa1 values of the corresponding acids are more effective ones for the reaction since addition of these salts could lead to lower pH values and higher acid anion concentrations in finishing baths. The mechanism explains the results of FTIR and wrinkle recovery angles of the fabrics cured under different temperatures and times. PMID:26256345

  14. A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent

    SciTech Connect

    Filik, H.; Apak, R.

    1998-06-01

    The recently developed method of gallium recovery from alkaline solution by alkanoyl oxine/chloroform extraction has been improved by immobilizing palmitoyl oxine on hydrophobic macroporous styrene-divinylbenzene copolymer Amberlite XAD-2 and passing the GA-containing alkaline solution of pH 13.5 through the synthesized resin column. The developed column showed reasonable efficiency after successive passages, and the selectivity of Ga over Al was very high, suggesting the utilizibility of the method in Ga recovery from the basic aluminate liquor of the Bayer process. The Ga capacity of the oxine-based resin was 3.94 {micro}mol/g. Two mg Ga retained on 10 g resin could be eluted with 25 mL of 2 N HCl at a throughput rate of 2 mL/min. The developed process has prospective use in Ga separation from Al in a strongly alkaline solution.

  15. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    PubMed

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH. PMID:25885273

  16. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  17. pH Regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity.

    PubMed

    Miyara, Itay; Shafran, Hadas; Davidzon, Maayan; Sherman, Amir; Prusky, Dov

    2010-03-01

    Host-tissue alkalinization via ammonia accumulation is key to Colletotrichum spp. colonization. Using macroarrays carrying C. gloeosporioides cDNAs, we monitored gene expression during the alkalinization process. A set of genes involved in synthesis and catabolism of ammonia accumulation were identified. Expression of NAD(+)-specific glutamate dehydrogenase (GDH2, encoding ammonia synthesis) and the ammonia exporter AMET were induced at pH 4.0 to 4.5. Conversely, ammonia uptake and transcript activation of the ammonia and glutamate importers (MEP and GLT, respectively) and glutamine synthase (GS1) were higher at pH 6.0 to 7.0. Accumulated ammonia in the wild-type mycelium decreased during ambient alkalinization, concurrent with increased GS1 expression. Deltapac1 mutants of C. gloeosporioides, which are sensitive to alkaline pH changes, showed upregulation of the acid-expressed GDH2 and downregulation of the alkaline-expressed GS1, resulting in 60% higher ammonia accumulation inside the mycelium. Deltagdh2 strains of C. gloeosporioides, impaired in ammonia production, showed 85% inhibition in appressorium formation followed by reduced colonization on avocado fruit (Persea americana cv. Fuerte) pericarp, while exogenic ammonia addition restored appressoria formation. Thus the modulation of genes involved in ammonia metabolism and catabolism by C. gloeosporioides is ambient pH-dependent. Aside from its contribution to necrotrophic stages, ammonia accumulation by germinating spores regulates appressorium formation and determines the initiation of biotrophic stages of avocado-fruit colonization by Colletotrichum spp. PMID:20121452

  18. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases.

    PubMed

    Bazzone, Andre; Madej, M Gregor; Kaback, H Ronald; Fendler, Klaus

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6-7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  19. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases

    PubMed Central

    Bazzone, Andre; Madej, M. Gregor; Kaback, H. Ronald

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  20. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  1. Subunits of the alkaline phosphatase of Bacillus licheniformis: chemical, physicochemical, and dissociation studies.

    PubMed Central

    Hulett, F M; Schaffel, S D; Campbell, L L

    1976-01-01

    The alkaline phosphatase (orthophosphoric monoester phosphydrolase, EC 3.1.3.1) of Bacillus licheniformis MC14 was studied in an attempt to determine the number of subunits contained in the 120,000-molecular-weight native enzyme. Two moles of arginine was liberated per mole of native enzyme by carboxypeptidases A and B in the presence of sodium dodecyl sulfate. The effect on the native enzyme of progressively lowering the solvent buffer pH was monitored by determining the molecular weight by sedimentation equilibrium analysis, the sedimentation coefficient, the frictional coefficient, and the percent alpha-helix content of the enzyme. The alkaline phosphatase dissociates into two subunits around pH 4. At pH 2.8 a further decrease in S value, but no change in molecular weight, is observed, indicating a change in conformation. The frictional coefficients and percent alpha-helix content agree with this interpretation. A subunit molecular weight of 59,000 was calculated from sodium dodecyl sulfate gels. Images PMID:10280

  2. Subunits of the alkaline phosphatase of Bacillus licheniformis: chemical, physicochemical, and dissociation studies.

    PubMed

    Hulett, F M; Schaffel, S D; Campbell, L L

    1976-11-01

    The alkaline phosphatase (orthophosphoric monoester phosphydrolase, EC 3.1.3.1) of Bacillus licheniformis MC14 was studied in an attempt to determine the number of subunits contained in the 120,000-molecular-weight native enzyme. Two moles of arginine was liberated per mole of native enzyme by carboxypeptidases A and B in the presence of sodium dodecyl sulfate. The effect on the native enzyme of progressively lowering the solvent buffer pH was monitored by determining the molecular weight by sedimentation equilibrium analysis, the sedimentation coefficient, the frictional coefficient, and the percent alpha-helix content of the enzyme. The alkaline phosphatase dissociates into two subunits around pH 4. At pH 2.8 a further decrease in S value, but no change in molecular weight, is observed, indicating a change in conformation. The frictional coefficients and percent alpha-helix content agree with this interpretation. A subunit molecular weight of 59,000 was calculated from sodium dodecyl sulfate gels. PMID:10280

  3. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    NASA Astrophysics Data System (ADS)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal

  4. The effect of pH on the survival of leptospires in water*

    PubMed Central

    Smith, C. E. Gordon; Turner, L. H.

    1961-01-01

    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time. It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken. PMID:20604084

  5. Photolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  6. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  7. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  8. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  9. Alkaline injection for enhanced oil recovery: a status report

    SciTech Connect

    Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

    1983-01-01

    In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

  10. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  11. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  12. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  13. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. PMID:23851265

  14. In situ arsenic removal in an alkaline clastic aquifer

    USGS Publications Warehouse

    Welch, A.H.; Stollenwerk, K.G.; Paul, A.P.; Maurer, D.K.; Halford, K.J.

    2008-01-01

    In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (pH to remove As. Cycles of injection and withdrawal involved varying Fe(II) concentrations in the injectate. The As concentrations in water withdrawn from the two aquifers were as low as 1 and 6 ??g/L, with greater As removal from the aquifer containing As(V). However, Fe and Mn concentrations increased to levels greater than US drinking water standards during some of the withdrawal periods. A balance between As removal and maintenance of low Fe and Mn concentrations may be a design consideration if this approach is used for public-supply systems. The ability to lower As concentrations in situ in high-pH ground water should have broad applicability because similar high-As ground water is present in many parts of the world. ?? 2008.

  15. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  16. pH gradients are not associated with tip growth in pollen tubes of Lilium longiflorum.

    PubMed

    Fricker, M D; White, N S; Obermeyer, G

    1997-08-01

    The cytoplasmic pH of growing pollen tubes of Lilium longiflorum Thunb. was measured using the pH-sensitive fluorescent dye 2',7'-bis-(carboxyethyl)-5(6')-carboxyfl uorescein and confocal fluorescence ratio imaging. The average cytoplasmic pH in the clear zone of the pollen tube tip was pH 7.11, and no consistent pH gradients were detected in the clear zone, averaging around -1.00 milli pH unit microm(-1), or along the first 50 microm of the tube (3.62 milli pH units microm[-1]). In addition, no correlation was observed between the absolute tip cytoplasmic pH or the pH gradient and the pollen tube growth rates. Shifts of external pH to more acidic pH values (pH 4.5) caused a relatively small acidification by 0.18 pH units, whereas a more alkaline external pH >7.0 caused a dramatic increase in cytoplasmic pH and growth stopped immediately. Stimulation of the plasma membrane H+-ATPase by fusicoccin, resulted in an increase of tube growth but no change in cytoplasmic pH. On the other hand, vanadate (250-500 microM), a putative inhibitor of the pump, stopped tube growth and a slight cytoplasmic alkalinisation of 0.1 pH units was observed. Vanadate also arrested fusicoccin-stimulated growth and stimulated an increased alkalinisation of around 0.2 pH units. External application of CaCl2 (10 mM) caused a small acidification of less than 0.1 pH units in the clear zone, whilst LaCl3 (250 microM) caused slight and rather variable perturbations in cytoplasmic pH of no more than 0.1 pH units. Both treatments stopped growth. It was inferred from these data that tip-acid cytoplasmic pH gradients do not play a central role in the organisation or maintenance of pollen tube tip growth. PMID:9264460

  17. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  18. Molecular level mechanisms of quartz dissolution at neutral and alkaline conditions with the presence of electrolytes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, S.

    2012-12-01

    The mechanisms of quartz dissolution are intricately affected by pH and electrolyte types. While most of previous studies have focused on mechanisms of quartz dissolution under a single specific condition (e.g., temperature, pH, saturation, or electrolyte type), this study investigates the molecular level mechanisms at combinations of electrolyte and pH conditions, which are more complicated but closer to the reality. Under neutral and alkaline pH conditions, with one of the Ca2+, Mg2+ or Na+ electrolytes in the solution, the dissolution of Q1(Si) and Q2(Si) sites on quartz surface, which represents the most important part of the quartz dissolution story, were investigated by first-principles quantum chemistry calculation methods. Also, large cluster models were used to represent the surface structures of quartz. The M05-2X/6-311+G** level DFT (Density Functional Theory) calculations and the STQN (Synchronous Transit-Guided Quasi-Newton) method (i.e., the QST3 method in Gaussian 03) were used to search transition-state structures and calculate energy barriers of the elementary Si-O bond breaking steps. Our results confirm that the dissolution of quartz can be significantly enhanced with the presence of electrolytes under neutral pH conditions, while under alkaline pH conditions, the behaviors of electrolytes are complicated, depending on where and how the electrolytes bond to quartz surfaces. Under neutral conditions, almost all types of electrolytes can directly bond to the bridging oxygen (BO) sites, leading to a weakened Si-Obr bonding and an increase of quartz dissolution. At alkaline conditions, however, electrolytes can no longer link to BO sites but rather link to terminal oxygen sites, leading to different dissolution mechanisms of quartz. The behaviors of specific electrolytes Na+, Ca2+, and Mg2+ on Q1(Si) and Q2 (Si) sites are also different, leading to more complicated dissolution mechanisms. Finally, the calculated energy barriers of possible hydrolysis

  19. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-01-01

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3− transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs. PMID:26051042

  20. Agonist-mediated changes in intracellular pH: role in vascular smooth muscle cell function

    SciTech Connect

    Berk, B.C.; Canessa, M.; Vallega, G.; Alexander, R.W.

    1988-01-01

    Changes in intracellular pH (pHi) are likely to play an important role in regulation of vascular smooth muscle cell (VSMC) function. In most blood vessels, acidification is associated with decreased contractile tone and alkalinization with increased tone. However, the nature of agonist-mediated alterations in pHi and the role of pHi in other VSMC responses has been little studied. We have used the pH sensitive dye, BCECF, to study pHi in cultured rat aortic VSMC. Basal pHi at 37 degrees C in physiologic saline buffer (pH 7.3) was 7.08 in suspended VSMC and 7.26 in substrate-attached VSMC. An amiloride-sensitive Na+/H+ exchanger mediated pHi recovery following an acid load. Angiotensin II- and platelet-derived growth factor typified one class of VSMC agonists, causing an initial transient (less than 5 min) acidification followed by a sustained (greater than 20 min) alkalinization. The acidification phase was associated with increased Ca2+ mobilization as demonstrated by increases in intracellular Ca2+ and 45Ca2+ efflux. The alkalinization was associated with Na+ influx and H+ efflux consistent with Na+/H+ exchange. Epidermal growth factor and phorbol esters typified another class of agonists which stimulated only a sustained alkalinization. Alterations in regulation of VSMC pHi may play an important role in VSMC hypertrophy and/or proliferation as suggested by the finding of increased cell growth and Na+/H+ exchange in spontaneously hypertensive rat VSMC compared to Wistar-Kyoto VSMC. Although no functional correlate for initial acidification has been identified, cytoplasmic alkalinization appears to be required for the sustained formation of diacylglycerol following angiotensin II stimulation. These findings suggest that alterations in pHi may regulate several VSMC functions such as agonist-mediated signal transduction, excitation-response coupling, and growth.

  1. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  2. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  3. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  4. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  5. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  6. Belliella kenyensis sp. nov., isolated from an alkaline lake.

    PubMed

    Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Klenk, Hans-Peter; Boga, Hamadi Iddi

    2015-02-01

    A red-pigmented, Gram-reaction-negative, aerobic bacterial strain, designated No.164(T), was isolated from sediment sample from the alkaline Lake Elmenteita located in the Kenyan Rift Valley. Results of 16S rRNA gene sequence analysis indicated that the isolate represented a member of the genus Belliella, with the highest sequence similarity (97 %) to Belliella pelovolcani DSM 46698(T). Optimal growth temperature was 30-35 °C, at pH 7.0-12.0 in the presence of 0-4 % (w/v) NaCl. Flexirubins were absent. The respiratory menaquinone (MK-7), predominant cellular fatty acids (iso-C15 : 0, anteiso-C15 : 0 and a mixture of C16 : 1ω7c and/or iso-C15 : 0 2-OH) and DNA G+C content (38.1 mol%) of strain No.164(T) were consistent with those of other members of the genus Belliella. The polar lipids consisted of phosphatidylethanolamine, eight unspecified lipids and one unspecified phospholipid. Several phenotypic characteristics can be used to differentiate this isolate from those of other species of the genus Belliella. The results of polyphasic analyses presented in this study indicated that this isolate should be classified as representing a novel species of the genus Belliella. The name Belliella kenyensis sp. nov. is therefore proposed; the type strain is strain No.164(T) ( = DSM 46651(T) = CECT 8551(T)). PMID:25385994

  7. The Spinal Cord Has an Intrinsic System for the Control of pH.

    PubMed

    Jalalvand, Elham; Robertson, Brita; Tostivint, Hervé; Wallén, Peter; Grillner, Sten

    2016-05-23

    For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity. This pH sensor consists of somatostatin-expressing cerebrospinal fluid-contacting (CSF-c) neurons, which target the locomotor network. They have a low level of activity at pH 7.4. However, at both alkaline and acidic pH, the activity of the individual CSF-c neuron is markedly enhanced through the action of two separate channel subtypes. The alkaline response depends on PKD2L1 channels that have a large conductance and an equilibrium potential around 0 mV, both characteristics of mouse PKD2L1 channels [3-5]. The acidic response is due to an activation of ASIC3 [6]. The discharge pattern of the CSF-c neurons is U-shaped with a minimum frequency around pH 7.4 and a marked increase already at slightly lower and higher pH. During ongoing locomotor activity in the isolated spinal cord, both an increase and as a decrease of pH will reduce the locomotor burst rate. A somatostatin antagonist blocks these effects, suggesting that CSF-c neurons are responsible for the suppression of locomotor activity. CSF-c neurons thus represent a novel innate homeostatic mechanism, designed to sense any deviation from physiological pH and to respond by causing a depression of the motor activity. Because CSF-c neurons are found in all vertebrates, their pH-sensing function is most likely conserved. PMID:27133867

  8. Effect of pH on phosphorus, copper, and zinc elution from swine wastewater activated sludge.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Suzuki, Kazuyoshi

    2014-01-01

    With the goal of reducing the amounts of phosphorus (P), copper (Cu), and zinc (Zn) discharged from swine wastewater activated sludge treatment facilities, we studied the elution of these elements from activated sludge at various pH values. Sludge samples with neutral pH collected from three farms were incubated at pH values ranging from 3 to 10. The soluble concentrations of these elements changed dramatically with pH and were highest at pH 3. We assumed that P present in the sludge under neutral and alkaline conditions was in insoluble form bound up with magnesium (Mg) and calcium (Ca), because Ca and Mg also eluted from the sludge at low pH. To clarify forms of Zn and Cu in the sludge, we performed a sequential extraction analysis. Zinc in adsorbed, organically bound, and sulfide fractions made up a large proportion of the total Zn. Copper in organically bound, carbonate, and sulfide fractions made up a large proportion of the total Cu. The soluble P concentrations were lowest at pH 9 or 10 (11-36 mg/L), the soluble Zn concentrations were lowest at pH 8 or 9 (0.07-0.15 mg/L), and the soluble Cu concentrations were lowest at pH 6-9 (0.2 mg/L, the detection limit). PMID:25116486

  9. Molecular and biochemical characterization of a new alkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115.

    PubMed

    Zhang, Rui; Yang, Peilong; Huang, Huoqing; Yuan, Tiezheng; Shi, Pengjun; Meng, Kun; Yao, Bin

    2011-10-01

    A phytase-encoding gene (phyA115) was cloned from Janthinobacterium sp. TN115, a symbiotic bacterial strain isolated from the gut contents of Batocera horsfieldi larvae (Coleoptera: Cerambycidae), and expressed in Escherichia coli. The 1,884-bp full-length gene encodes a 28-residue putative signal peptide and a 599-residue mature protein with a calculated mass of 64 kDa. The deduced PhyA115 shares low identity with known sequences (47% at most) and contains an N-terminal incomplete domain (residues 29-297; domain N) and a typical β-propeller phytase domain at the C terminus (residues 298-627; domain C). Distinct from other β-propeller phytases that have neutral pH optima (pH 6.0-7.5), purified recombinant PhyA115 exhibits maximal activity at pH 8.5 and 45°C in the presence of 1 mM Ca(2+) and is highly active over a wider pH range (pH 6.0-9.0). These results indicate that PhyA115 is a β-propeller phytase that has application potential in aquaculture feed. To our knowledge, this is the first report of cloning of a phytase gene from the symbiotic microbes of an insect digestive tract and from the genus Janthinobacterium. The N-terminal incomplete domain is found to have no phytase activity but can influence the pH property of PhyA115. PMID:21562981

  10. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1). PMID:17933343

  11. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. PMID:25323045

  12. Esophageal pH monitoring

    MedlinePlus

    pH monitoring - esophageal; Esophageal acidity test ... esophagitis You may need to have the following tests if your doctor suspects esophagitis : Barium swallow Esophagogastroduodenoscopy (also called upper GI endoscopy)

  13. Modeling CO2 degassing and pH in a stream-aquifer system

    USGS Publications Warehouse

    Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.

    1998-01-01

    Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and

  14. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  15. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    SciTech Connect

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  16. PhEDEx Data Service

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-04-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the "SiteDB" service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  17. Voltammetric pH Nanosensor.

    PubMed

    Michalak, Magdalena; Kurel, Malgorzata; Jedraszko, Justyna; Toczydlowska, Diana; Wittstock, Gunther; Opallo, Marcin; Nogala, Wojciech

    2015-12-01

    Nanoscale pH evaluation is a prerequisite for understanding the processes and phenomena occurring at solid-liquid, liquid-liquid, and liquid-gas interfaces, e.g., heterogeneous catalysis, extraction, partitioning, and corrosion. Research on the homogeneous processes within small volumes such as intracellular fluids, microdroplets, and microfluidic chips also requires nanometer scale pH assessment. Due to the opacity of numerous systems, optical methods are useless and, if applicable, require addition of a pH-sensitive dye. Potentiometric probes suffer from many drawbacks such as potential drift and lack of selectivity. Here, we present a voltammetric nanosensor for reliable pH assessment between pH 2 and 12 with high spatial resolution. It consists of a pyrolytic carbon nanoelectrode obtained by chemical vapor deposition (CVD) inside a quartz nanopipette. The carbon is modified by adsorption of syringaldazine from its ethanolic solution. It exhibits a stable quasi-reversible cyclic voltammogram with nearly Nernstian dependency of midpeak potentials (-54 mV/pH). This sensor was applied as a probe for scanning electrochemical microscopy (SECM) in order to map pH over a platinum ultramicroelectrode (UME), generating hydroxide ions (OH(-)) by the oxygen reduction reaction (ORR) at a diffusion-controlled rate in aerated phosphate buffered saline (PBS). The results reveal the alkalization of the electrolyte close to the oxygen reducing electrode, showing the insufficient buffer capacity of PBS to maintain a stable pH at the given conditions. PMID:26516786

  18. Influence of ph in the Uptake and Accumulation of Mineral Elements on Vine Leaf (Vitis vinifera L.) from Castilla-La Mancha (SPAIN.)

    NASA Astrophysics Data System (ADS)

    Bravo, Sandra; Amorós, José Angel; Pérez-de-los-Reyes, Caridad; García-Navarro, Francisco J.; Higueras, Pablo; Sanchez-Ormeño, Mónica

    2015-04-01

    Each soil-plant system has specific parameters on the uptake of different minerals in the soil, depending on several factors. One of these factors, perhaps the most important, is the pH. 101 Vineyard plots have been selected in Castilla-La Mancha (Spain) and have been analysed (pH among other parameters) by the methods described by FAO. Leaf samples have also been taken in each plot. We analysed the content of 25 mineral elements in both soil and leaf through FRX technique. In addition, we calculated the BAC (bioaccumulation coefficient, calculated as the ratio between the concentration of element in the plant and soil) to stablish if the soil pH influences the accumulation of mineral elements for the plant. As a result we have observed a different behavior of groups of elements for acids or alkaline soils. Thus, the alkaline elements (Na, K, Rb) have a higher BAC value in alkaline soils except cesium (Cs) that has a similar value; while the alkaline-earth elements (Ca, Mg, Sr) present lower BAC in alkaline soils except for barium (Ba) that shows similar value in both cases. Rare Earths (Y, La, Ce, Th and Nd) have very similar values in bioaccumulation for acidic and alkaline soils, while metals (Fe, Al, V, Cr, Co, Cu, Rb and Pb) show a higher bioaccumulation in alkaline soils. Instead Mn, Zn and Ga are preferently bioaccumulated in acid soils. The values obtained for the sulfur (S) are superior in acid soils. We conclude that certain mineral elements accumulate in the leaves of vines depending on the soil pH. The pH will influence the ionic form in which the element is present in the soil and plants preferentially uptake mineral elements in certain ionic forms.

  19. Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values.

    PubMed

    Hedayati, Sara; Shahidi, Fakhri; Koocheki, Arash; Farahnaky, Asgar; Majzoobi, Mahsa

    2016-10-01

    The aim of this study was to investigate the influence of pH changes (3, 5, 7 and 9) on physical properties of pregelatinized (PG) and granular cold water swelling (GCWS) maize starches. In acidic pH, PG starches were fragmented; however, GCWS starches mainly reserved their granular integrity but were shriveled. For both modified starches the water absorption, cold water viscosity, textural parameters, turbidity and freeze-thaw stability of the samples decreased whereas water solubility increased at pH 3 and 5. On the other hand, alkaline pH did not bring about evident changes on morphology of PG starch but the surface of GCWS starch became smoother. Water absorption, solubility, rheological and mechanical properties, freeze-thaw stability and turbidity of the starch pastes increased at high pH values. Overall, both starches were more stable at alkaline pH compared to acidic pH values and GCWS starch was more resistance to pH changes than PG starch. PMID:27288699

  20. Influence of substrate and pH on the diversity of the aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptophyta): a potentially important factor for sympatric speciation

    PubMed Central

    Ryšánek, David; Holzinger, Andreas; Škaloud, Pavel

    2016-01-01

    Our knowledge of the processes involved in speciation of microalgae remains highly limited. In the present study, we investigated a potential role of ecological speciation processes in diversification of the filamentous green alga Klebsormidium. We examined 12 strains representing four different genotypes. The strains were collected from sandstone and limestone rocks and were cultivated at five different pH levels ranging from pH 4 to pH 8. We determined the responses of the 12 strains to the experimental pH conditions by (1) measuring the effective quantum yield of photosystem II, and (2) determining the growth rates after cultivation at different pH levels. Strong differences were found between the results obtained by these two methods. Direct counting of cells revealed a strong ecological differentiation of strains of Klebsormidium isolated from different substrate types. Strains isolated from limestone showed the highest growth rates at higher pH levels; whereas, the strains isolated from sandstone exhibited two distinct growth responses with optima at pH 5 and 6, respectively. In contrast, the effective quantum yield of photosystem II was always down-regulated at lower pH values, probably due to dissolved inorganic carbon limitation. In general, we determined distinct ecophysiological differentiation among distantly and closely related lineages, thereby corroborating our hypothesis that the sympatric speciation of terrestrial algae is driven by ecological divergence. We clearly showed that pH is a critical ecological factor that influences the diversity of autotrophic protists in terrestrial habitats. PMID:27293301

  1. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  2. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  3. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  4. Canonical correlation of waste glass compositions and durability, including pH

    SciTech Connect

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-05-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  5. Canonical correlation of waste glass compositions and durability, including pH

    SciTech Connect

    Oeksoy, D.; Pye, L.D. ); Bickford, D.F.; Ramsey, W.G. )

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  6. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.

    PubMed

    Yuan, Yong; Zhao, Bo; Zhou, Shungui; Zhong, Shengkui; Zhuang, Li

    2011-07-01

    This study investigates the effects of anodic pH on electricity generation in microbial fuel cells (MFCs) and the intrinsic reasons behind them. In a two-chamber MFC, the maximum power density is 1170 ± 58 mW m(-2) at pH 9.0, which is 29% and 89% higher than those working at pH 7.0 and 5.0, respectively. Electrochemical measurements reveal that pH affects the electron transfer kinetics of anodic biofilms. The apparent electron transfer rate constant (k(app)) and exchange current density (i(0)) are greater whereas the charge transfer resistance (R(ct)) is smaller at pH 9.0 than at other conditions. Scanning electron microscopy verifies that alkaline conditions benefit biofilm formation in MFCs. These results demonstrate that electrochemical interactions between bacteria and electrodes in MFCs are greatly enhanced under alkaline conditions, which can be one of the important reasons for the improved MFC output. PMID:21530241

  7. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance). PMID:26780356

  8. Dynamics of the His79-heme Alkaline Transition of Yeast Iso-1-cytochrome c Probed by Conformationally-gated Electron Transfer with Co(II)bis(terpyridine)†

    PubMed Central

    Cherney, Melisa M.; Junior, Carolyn C.; Bergquist, Bryan B.; Bowler, Bruce E.

    2013-01-01

    Alkaline conformers of cytochrome c may be involved in both its electron transport and apoptotic functions. We use cobalt(II)bis(terpyridine), Co(terpy)22+, as a reagent for conformationally-gated electron transfer (gated ET) experiments to study the alkaline conformational transition of K79H variants of yeast iso-1-cytochrome c expressed in Escherichia coli, WT*K79H, with alanine at position 72, and Saccharomyces cerevisiae, yK79H, with trimethyllysine (Tml) at position 72. Co(terpy)22+ is well-suited to the 100 ms to 1 s time scale of the His79-mediated alkaline conformational transition of these variants. Reduction of the His79-heme alkaline conformer by Co(terpy)22+ occurs primarily by gated ET, which involves conversion to the native state followed by reduction, with a small fraction of the His79- heme alkaline conformer directly reduced by Co(terpy)22+. The gated ET experiments show that the mechanism of formation of the His79-heme alkaline conformer involves only two ionizable groups. In previous work, we showed that the mechanism of the His73-mediated alkaline conformational transition requires three ionizable groups. Thus, the mechanism of heme crevice opening depends upon the position of the ligand mediating the process. The microscopic rate constants provided by gated ET studies show that mutation of Tml72 (yK79H variant) in the heme crevice loop to Ala72 (WT*K79H variant) affects the dynamics of heme crevice opening through a small destabilization of both the native conformer and the transition state relative to the His79-heme alkaline conformer. Previous pH jump data had indicated that the Tml72→Ala mutation primarily stabilized the transition state for the His79-mediated alkaline conformational transition. PMID:23899348

  9. CONSTRUCTION OF NATURAL NEUTRALIZATION FACILITIES FOR ALKALINE TUNNEL SEEPAGE USING ATMOSPHERIC CARBON DIOXIDE

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshinobu; Igarashi, Toshihumi; Matsumoto, Takayuki; Okawa, Ryo

    Neutralization with liquefied carbon dioxide for alkaline tunnel seepage after construction is one of the issues to be solved by considering the costs of gas and neutralization units and management in the long run. One promising method is to neutralize it by natural processes using atmospheric carbon dioxide. In this study, the hydrological survey and dissolution experiments of atmospheric carbon dioxide in the laboratory and in situ conditions were conducted. Based on the results, natural neutralization facilities using atmospheric carbon dioxide were constructed. The pH of the effluent from the facilities was reduced by 0.13 to 0.18, indicating that the double film theory was effective in predicting the reduction of pH.

  10. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  11. Alkaline Hypersaline Lakes as Analogs for Ancient Microbial Habitats on Mars

    NASA Technical Reports Server (NTRS)

    McDonald, G. D.; Tsapin, A. I.; Storrie-Lombardi, M. C.; Nealson, K. H.; Brinton, K. L. F.; Sun, H.; Venkateswaren, K.; Tsapin, I.; Melack, J.; Jellison, R.

    1999-01-01

    As the climate of ancient Mars became colder and drier with time, open bodies of water would have entered a regime in which evaporation exceeded input from precipitation or runoff. This would have resulted in increases in salinity and perhaps pH. The last open water on Mars was most likely found in alkaline hypersaline lakes, and these lakes would have been the last surface aquatic habitats for life on Mars. It follows, then, that the biomarkers most likely to be found in ancient sedimentary basins on Mars are those left by organisms adapted to high salt and high pH environments. We have begun to investigate the nature of biological diversity and adaptation to these environments, and the potential for biomarker preservation in them, using Mono Lake as a terrestrial analog environment. Additional information is contained in the original extended abstract.

  12. Cyanide Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated from Contaminated Soils

    PubMed Central

    Dumestre, A.; Chone, T.; Portal, J.; Gerard, M.; Berthelin, J.

    1997-01-01

    Several cyanide-tolerant microorganisms have been selected from alkaline wastes and soils contaminated with cyanide. Among them, a fungus identified as Fusarium solani IHEM 8026 shows a good potential for cyanide biodegradation under alkaline conditions (pH 9.2 to 10.7). Results of K(sup14)CN biodegradation studies show that fungal metabolism seems to proceed by a two-step hydrolytic mechanism: (i) the first reaction involves the conversion of cyanide to formamide by a cyanide-hydrolyzing enzyme, cyanide hydratase (EC 4.2.1.66); and (ii) the second reaction consists of the conversion of formamide to formate, which is associated with fungal growth. No growth occurred during the first step of cyanide degradation, suggesting that cyanide is toxic to some degree even in cyanide-degrading microorganisms, such as F. solani. The presence of organic nutrients in the medium has a major influence on the occurrence of the second step. Addition of small amounts of yeast extract led to fungal growth, whereas no growth was observed in media containing cyanide as the sole source of carbon and nitrogen. The simple hydrolytic detoxification pathway identified in the present study could be used for the treatment of many industrial alkaline effluents and wastes containing free cyanide without a prior acidification step, thus limiting the risk of cyanhydric acid volatilization; this should be of great interest from an environmental and health point of view. PMID:16535647

  13. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    SciTech Connect

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  14. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    SciTech Connect

    Mellas, J.; Hammerman, M.R.

    1986-03-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na/sup +/-H/sup +/ exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using (/sup 14/C)-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 ..gamma.. phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular (Na/sup +/) > intracellular (Na/sup +/), was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na/sup +/-H/sup +/ exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells.

  15. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  16. Sorption Behavior of Iodine on Allophane under Acid and Alkaline Conditions - 12203

    SciTech Connect

    Amemiya, Kiyoshi; Nakano, Masashi

    2012-07-01

    In the safety assessment of TRU geological disposal, Iodine-129 (I-129) is considered a key radionuclide. In Japan the reference buffer material within the repository is a bentonite based sand mixture, which is lacking in iodine adsorbent capacity. Additives or alternative buffer materials that can enhance iodine adsorption are desired. Allophane, a common soil material in Japan, is a potential candidate to aid in iodine retention. In order to assess the potential for improvement of buffer and backfill material to limit release of I-129, the sorption behavior of iodine (IO{sub 3}{sup -} and I{sup -}) on allophane was examined in this research. The sorption behavior of IO{sub 3}{sup -} by allophane is strong in acidic conditions, and markedly reduced in alkaline conditions. The K{sub d} values of IO{sub 3}{sup -} are approximately 0.4 m{sup 3}/kg (pH=5), 0.03 m{sup 3}/kg (pH=8), 0.011 m{sup 3}/kg (pH=9), 0.005 m{sup 3}/kg (pH=10). Conversely, the K{sub d} value of I{sup -} is as small as 0.01 m{sup 3}/kg in acidic conditions, and much smaller in alkaline conditions. The numerical analysis shows that a maximum release rate of I-129 from the engineered barrier in the geological disposal system decreased approximately one order of magnitude and the K{sub d} of the buffer increased up to 0.1 m{sup 3}/kg by applying allophane soils to engineered barriers. (authors)

  17. The Cryptococcus neoformans Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator

    PubMed Central

    Ost, Kyla S.; O’Meara, Teresa R.; Huda, Naureen; Esher, Shannon K.; Alspaugh, J. Andrew

    2015-01-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels. PMID:25859664

  18. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    PubMed

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p < 9). Results demonstrate that significant reductions in solution pH can be achieved depending on the diluting water quality. Levels achieved may not always be suitable for direct discharge (i.e. pH ≤ 9), but further reductions occur with carbonation and soil contact. The extent of pH decrease and the timeframe required are influenced by soil quality, with greater efficiency observed in soils with higher organic matter content. Decrease in solution pH to discharge permit values are possible through a combination of the mechanisms occurring in a constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to <9 through mechanisms supporting the precipitation of sodium carbonate from solution. Further trials should investigate the activity under biological conditions representative of an operating constructed wetland. PMID:27048325

  19. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  20. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  1. Nitrification enhancement through pH control with rotating biological contractors

    SciTech Connect

    Long, D.A.; Stratta, J.M.; Doherty, M.C.

    1982-04-01

    The need to achieve compliance with ammonia-nitrogen discharge limitations and the current emphasis on energy conservation have resulted in the utilization of RBC (Rotating Biological Contractors) technology for the nitrification of secondary wastewater effluents. The objectives of this research were to: establish the relative rates of nitrification for domestic wastewater treatment within an acclimated RBC fixed-film system as a function of pH; observe and characterize the relative changes in the RBC biofilm as a function of pH; evaluate the efficacy of chemical addition to improve nitrification within an RBC fixed film system through the maintenance of an optimum pH; evaluate alternative alkaline chemicals for pH-controlled nitrification for the RBC; and develop design criteria, as appropriate, for pH controlled nitrification for the RBC. This research examined the short and long-term effect of pH upon the nitrification of wastewater within RBC fixed-film systems. In the long-term, the rate of nitrification within an RBC fixed-film system was dependent upon pH. The rate of nitrification increased with increasing pH up to a maximum at pH 8.5. Approximately five weeks of operation were required to clearly observe these differences. The response of a nitrifying RBC system to short-term changes in pH was relatively constant from pH 7.0 to pH 8.5, the adverse effect of pH becomes more pronounced.

  2. The Effect of pH on the Extracellular Matrix and Biofilms

    PubMed Central

    Jones, Eleri M.; Cochrane, Christine A.; Percival, Steven L.

    2015-01-01

    Significance: Chronic wounds become caught in a state of inflammation causing an increase in levels of degrading proteases, which destroy components of the extracellular matrix (ECM) that are essential for the wound healing process. This review aims to highlight and provide readers with an overview of what is currently known about the role of pH and its effect on the ECM and biofilms within healing and nonhealing wounds. Recent Advances: The pH profiles of healthy skin, acute wounds, and chronic wounds differ significantly. Chronic wounds have an alkaline pH whereas healthy skin has a slightly acidic pH. Although there is evidence on the effect of pH on protease production and bacterial proliferation in wounds, there is little evidence to show its effect on ECM synthesis and degradation. Critical Issues: The implications for the complex nature of chronic wounds are that no single treatment is relevant for all wounds, but rather a combination of methodologies must be adopted. It is known that pH of a wound reduces throughout the stages of healing, suggesting that wound pH measurements could be beneficial to identify nonhealing wounds earlier and decide on the most appropriate course of treatment. Future Direction: Wound healing is a very complex process with multiple factors known to play a role. All aspects of the nonhealing wound (defective ECM, pH, microbial invasion, and excess proteases) need to be taken into account when investigating or clinically treating a chronic wound. PMID:26155386

  3. Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH.

    PubMed

    Han, Binghong; Risch, Marcel; Lee, Yueh-Lin; Ling, Chen; Jia, Hongfei; Shao-Horn, Yang

    2015-09-21

    Perovskite oxides (ABO3) have been studied extensively to promote the kinetics of the oxygen evolution reaction (OER) in alkaline electrolytes. However, developing highly active catalysts for OER at near-neutral pH is desirable for many photoelectrochemical/electrochemical devices. In this paper, we systematically studied the activity and stability of well-known perovskite oxides for OER at pH 7. Previous activity descriptors established for perovskite oxides at pH 13, such as having an eg occupancy close to unity or having an O p-band center close to Fermi level, were shown to scale with OER activity at pH 7. Stability was a greater challenge at pH 7 than at pH 13, where two different modes of instability were identified from combined transmission electron microscopy and density functional theory analyses. Perovskites with O p-band close to Fermi level showed leaching of A-site atoms and surface amorphization under all overpotentials examined at pH 7, while those with O p-band far from Fermi level were stable under low OER current/potential but became unstable at high current/potential accompanied by leaching of B-site atoms. Therefore, efforts are needed to enhance the activity and stability of perovskites against A-site or B-site loss if used at neutral pH. PMID:26271910

  4. Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.

    PubMed

    Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa

    2015-12-01

    The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies. PMID:26652117

  5. pH control in biological systems using calcium carbonate.

    PubMed

    Salek, S S; van Turnhout, A G; Kleerebezem, R; van Loosdrecht, M C M

    2015-05-01

    Due to its abundance, calcium carbonate (CaCO3) has high potentials as a source of alkalinity for biotechnological applications. The application of CaCO3 in biological systems as neutralizing agent is, however, limited due to potential difficulties in controlling the pH. The objective of the present study was to determine the dominant processes that control the pH in an acid-forming microbial process in the presence of CaCO3. To achieve that, a mathematical model was made with a minimum set of kinetically controlled and equilibrium reactions that was able to reproduce the experimental data of a batch fermentation experiment using finely powdered CaCO3. In the model, thermodynamic equilibrium was assumed for all speciation, complexation and precipitation reactions whereas, rate limited reactions were included for the biological fatty acid production, the mass transfer of CO2 from the liquid phase to the gas phase and the convective transport of CO2 out of the gas phase. The estimated pH-pattern strongly resembled the measured pH, suggesting that the chosen set of kinetically controlled and equilibrium reactions were establishing the experimental pH. A detailed analysis of the reaction system with the aid of the model revealed that the pH establishment was most sensitive to four factors: the mass transfer rate of CO2 to the gas phase, the biological acid production rate, the partial pressure of CO2 and the Ca(+2) concentration in the solution. Individual influences of these factors on the pH were investigated by extrapolating the model to a continuously stirred-tank reactor (CSTR) case. This case study indicates how the pH of a commonly used continuous biotechnological process could be manipulated and adjusted by altering these four factors. Achieving a better insight of the processes controlling the pH of a biological system using CaCO3 as its neutralizing agent can result in broader applications of CaCO3 in biotechnological industries. PMID:25425281

  6. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  7. Solubility of uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1994-03-29

    The solubility of uranium in alkaline salt solutions was investigated to screen for significant factors and interactions among the major salt components and temperature. The components included in the study were the sodium salts of hydroxide, nitrate, nitrite, aluminate, sulfate, and carbonate. General findings from the study included: (1) uranium solubilities are very low (1-20 mg/L) for all solution compositions at hydroxide concentrations from 0.1 to 17 molar (2) carbonate, sulfate, and aluminate are not effective complexants for uranium at high hydroxide concentration, (3) uranium solubility decreases with increasing temperature for most alkaline salt solutions, and (4) uranium solubility increases with changes in solution chemistry that reflect aging of high level waste (increase in nitrite and carbonate concentrations, decrease in nitrate and hydroxide concentrations). A predictive model for the concentration of uranium as a function of component concentrations and temperature was fitted to the data. All of the solution components and temperature were found to be significant. There is a significant lack of fit for the model, which suggests that the dependence on the uranium solubility over the wide range of solution compositions is non-linear and/or that there are other uncontrolled parameters which are important to the uranium solubility.

  8. Molecular modeling of human alkaline sphingomyelinase.

    PubMed

    Suresh, Panneer Selvam; Olubiyi, Olujide; Thirunavukkarasu, Chinnasamy; Strodel, Birgit; Kumar, Muthuvel Suresh

    2011-01-01

    Alkaline sphingomyelinase, which is expressed in the human intestine and hydrolyses sphingomyelin, is a component of the plasma and the lysosomal membranes. Hydrolase of sphingomyelin generates ceramide, sphingosine, and sphingosine 1-phosphate that have regulatory effects on vital cellular functions such as proliferation, differentiation, and apoptosis. The enzyme belongs to the Nucleotide Pyrophosphatase/Phosphodiesterase family and it differs in structural similarity with acidic and neutral sphingomyelinase. In the present study we modeled alkaline sphingomyelinase using homology modeling based on the structure of Nucleotide Pyrophosphatase/Phosphodiesterase from Xanthomonas axonopodis with which it shares 34% identity. Homology modeling was performed using Modeller9v7. We found that Cys78 and Cys394 form a disulphide bond. Further analysis shows that Ser76 may be important for the function of this enzyme, which is supported by the findings of Wu et al. (2005), that S76F abolishes the activity completely. We found that the residues bound to Zn(2+) are conserved and geometrically similar with the template. Molecular Dynamics simulations were carried out for the modeled protein to observe the effect of Zinc metal ions. It was observed that the metal ion has little effect with regard to the stability but induces increased fluctuations in the protein. These analyses showed that Zinc ions play an important role in stabilizing the secondary structure and in maintaining the compactness of the active site. PMID:21544170

  9. Bone alkaline phosphatase in rheumatic diseases.

    PubMed

    Beyeler, C; Banks, R E; Thompson, D; Forbes, M A; Cooper, E H; Bird, H

    1995-07-01

    A double monoclonal immunoradiometric assay specific for bone alkaline phosphatase (BAP) was used to determine whether the raised total alkaline phosphatase (TAP) often found in patients with active rheumatoid arthritis (RA) and ankylosing spondylitis (AS) is derived from bone or liver. Fifty-eight patients with RA were compared to 14 with AS and 14 with non-inflammatory rheumatic diseases (NI). None had clinical liver disease and only one had a slightly elevated aspartate transaminase activity. Elevated BAP concentrations were found in seven patients (5 RA, 1 AS, 1 NI), only two of whom also had abnormal TAP. Abnormal TAP activities were found in only three patients (all RA). BAP did not correlate with disease activity in RA or AS. In contrast, TAP correlated with disease activity (assessed by plasma viscosity) in RA (P < 0.002) and gamma-glutamyl transferase (GGT) also correlated with plasma viscosity in RA (P < 0.01). Both TAP and BAP were significantly correlated with GGT in RA (P < 0.001 and P < 0.02, respectively). These findings are discussed, together with possible reasons for the conflicting nature of some of the observations. PMID:7486797

  10. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  11. Sources of alkalinity and acidity along an acid mine drainage remediated stream in SE Ohio: Hewett Fork

    NASA Astrophysics Data System (ADS)

    Schleich, K. L.; Lopez, D. A.; Bowman, J. R.; Kruse, N. A.; Mackey, A. L.; VanDervort, D.; Korenowsky, R.

    2013-12-01

    In the remediation of acid mine drainage impacted streams, it is important to locate and quantify the sources of acidity and alkalinity inputs. These parameters affect the long-term recovery of the stream habitat. Previous studies have focused on treating the remediation of AMD as point source pollution, targeting the main acid seep for remediation. However, in the interest of biological and chemical recovery, it is important to understand how sources of alkalinity and acidity, throughout the stream, affect water and sediment quality. The Hewett Fork watershed in Southeastern Ohio is impacted by AMD from the AS-14 mine complex in Carbondale, Ohio. In attempts to remediate the stream, the water is being treated with a continuous alkaline input from a calcium oxide doser. While the section of watershed furthest downstream from the doser is showing signs of recovery, the water chemistry and aquatic life near the doser are still impacted. The objective of this study is to examine and model the chemistry of the tributaries of Hewett Fork to see how they contribute to the alkalinity and acidity budgets of the main stem of the stream. By examining the inputs of tributaries into the main stem, this project aims to understand processes occurring during remediation throughout the entire stream. Discharge was measured during a dry period in October, 2012 and at a high flow in May, 2013. Field parameters such as pH, TDS, DO, alkalinity and acidity were also determined. Low flow data collected during fall sampling shows variable flow along the stream path, the stream gains water from ground water at some points while it loses water at others, potentially due to variable elevation of the water table. Flow data collected during spring sampling shows that Hewett Fork is a gaining stream during that period with inputs from groundwater contributing to increasing flow downstream. When using this data to calculate the net alkalinity load along the stream, there are areas with alkaline

  12. The corrosion resistance of thermoset composites in alkaline environments

    SciTech Connect

    Kelley, D.H.; Thompson, M.J.

    1998-12-31

    Corrosion engineers need guidelines for selecting thermoset resins for aggressive applications such as hot alkali and alkaline peroxide. The suitability of fiberglass-reinforced plastic (FRP) for alkaline service depends on factors such as the ester content of the resin, the unsaturated monomer composition, and the cure system. The purpose of the present paper is to show the effect of these factors on the alkaline corrosion resistance of FRP and provide corrosion engineers with the guidance needed for selecting the best epoxy vinyl ester resins for alkaline environments.

  13. Rechargeable Zn-MnO sub 2 alkaline batteries

    SciTech Connect

    Wruck, W.J.; Reichman, B.; Bullock, K.R.; Kao, W.H. )

    1991-12-01

    In this paper progress in the development of rechargeable alkaline zinc-manganese dioxide cells is described. The advantages and limitations of the system are evaluated. Laboratory tests run on commercial primary alkaline cells as well as model simulations of a bipolar MnO{sub 2} electrode show that the rechargeable alkaline battery may be able to compete with lead-acid, nickel-cadmium, and secondary lithium cells for low- to moderate-rate applications. However, because of this poor performance at high rates and low temperatures, the alkaline MnO{sub 2} battery is not suitable for present automotive starting applications.

  14. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  15. Non-specific alkaline phosphomonoesterases of eight species of digenetic trematodes.

    PubMed

    Nizami, W A; Siddiqi, A H; Yusufi, A N

    1975-12-01

    Alkaline phosphatases from different trematodes occupying the same habitat have identical pH otima but different levels of enzyme activities. Isoparorchis hypselobagri, from the fish Wallago attu, shows four to six times more enzyme activity than Fasciolopsis buski, Gastrodiscoides hominis and Echinostoma malayanum, from the pig Sus scrofa, and Fasciola gigantica, Gigantocotyle explanatum, Cotylophoron cotylophorum and Gastrothylax crumenifer, from the buffalo Bubalus bubalis. At least two peaks of activity at different levels of pH were obtained for each trematode examined. Both Gastrodiscoides hominis and Isoparorchis hypselobagri enzymes had three peaks of alkaline phosphatase activity. The optimum temperature for maximum enzyme activity was 40 degrees C, above which rapid inactivation occurred. At temperatures below 40 degrees C, the enzymes of fish and mammalian trematodes did not behave similarly; I. hypselobagri enzyme being active over a wider range of temperature (20 degrees-40 degrees C. Various concentrations of KCN and arsenate proportionately inhibited enzyme activity. NaF Did not significantly influence enzyme activity, while Mg++ and Co++ acted as activators. The extent of inhibition or activation of enzyme activity of different trematodes varied, probably due to species differences. Both inhibition and activation of I. hypselobagri enzyme was higher than in the case of other trematodes. PMID:1442

  16. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces

    PubMed Central

    Nakano, Yuichiro; Akamatsu, Norihiko; Mori, Tsuyoshi; Sano, Kazunori; Satoh, Katsuya; Nagayasu, Takeshi; Miyoshi, Yoshiaki; Sugio, Tomomi; Sakai, Hideyuki; Sakae, Eiji; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Fujita, Yuhzo; Yanagihara, Katsunori; Nishida, Noriyuki

    2016-01-01

    Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9) with sonication, and then with acidic water (pH 2.7) without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and a fungus (Candida albicans) were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound. PMID:27223116

  17. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  18. Sequential Washing with Electrolyzed Alkaline and Acidic Water Effectively Removes Pathogens from Metal Surfaces.

    PubMed

    Nakano, Yuichiro; Akamatsu, Norihiko; Mori, Tsuyoshi; Sano, Kazunori; Satoh, Katsuya; Nagayasu, Takeshi; Miyoshi, Yoshiaki; Sugio, Tomomi; Sakai, Hideyuki; Sakae, Eiji; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Fujita, Yuhzo; Yanagihara, Katsunori; Nishida, Noriyuki

    2016-01-01

    Removal of pathogenic organisms from reprocessed surgical instruments is essential to prevent iatrogenic infections. Some bacteria can make persistent biofilms on medical devices. Contamination of non-disposable equipment with prions also represents a serious risk to surgical patients. Efficient disinfection of prions from endoscopes and other instruments such as high-resolution cameras remains problematic because these instruments do not tolerate aggressive chemical or heat treatments. Herein, we develop a new washing system that uses both the alkaline and acidic water produced by electrolysis. Electrolyzed acidic water, containing HCl and HOCl as active substances, has been reported to be an effective disinfectant. A 0.15% NaCl solution was electrolyzed and used immediately to wash bio-contaminated stainless steel model systems with alkaline water (pH 11.9) with sonication, and then with acidic water (pH 2.7) without sonication. Two bacterial species (Staphylococcus aureus and Pseudomonas aeruginosa) and a fungus (Candida albicans) were effectively removed or inactivated by the washing process. In addition, this process effectively removed or inactivated prions from the stainless steel surfaces. This washing system will be potentially useful for the disinfection of clinical devices such as neuroendoscopes because electrolyzed water is gentle to both patients and equipment and is environmentally sound. PMID:27223116

  19. Uricase from Bacillus fastidious loaded in alkaline enzymosomes: enhanced biochemical and pharmacological characteristics in hypouricemic rats.

    PubMed

    Tan, Qunyou; Zhang, Jingqing; Wang, Na; Li, Xiaoling; Xiong, Huarong; Teng, Yongzhen; He, Dan; Wu, Jianyong; Zhao, Chunjing; Yin, Huafeng; Zhang, Liangke

    2012-09-01

    The aim of this study was to assess the potential of a novel alkaline enzymosome to deliver uricase from Bacillus fastidious (UBF) and enhance its biochemical and pharmacological characteristics. The in vitro catalytic activity of the UBF loaded in the novel alkaline enzymosomes (ESUBFs) was almost 3.8 times that of free UBF at the optimum pH or 1.5 times that of free UBF at the physiological pH. Following intravenous (i.v.) administration (2000 mU/kg) in rats, ESUBFs provided significantly higher (22.5-fold) area under the plasma concentration (AUC) and longer (8.2-fold) circulation half-life (t(1/2)) compared with free UBF, respectively. Further, it took only 4.5h (or 1.1h) for ESUBFs to lower the plasma uric acid concentration from a high level to the normal level of rat (or human beings), compared with 7.6h (or 5.4h) for free UBF. Our results showed that ESUBFs could efficiently deliver UBF and favorably modify its biochemical and pharmacological characteristics by increasing the AUC, t(1/2), and catalytic activity. Therefore, ESUBFs might be a preferred alternative to cure hyperuricemia and gout. PMID:22705639

  20. Capillary electrophoresis of alkali and alkaline-earth cations with imidazole or benzylamine buffers

    SciTech Connect

    Morin, P.; Francois, C.; Dreux, M. . Lab. de Chimie Bioorganique et Analytique)

    1994-01-01

    The separation of alkali, alkaline earth, and ammonium cations in several samples of water was achieved by capillary electrophoresis with indirect UV detection. A solution of imidazole (10[sup [minus]2] M, pH 4.5) was used as a buffer to resolve a mixture of six cations (K[sup +], Na[sup +], Ca[sup 2+], Ba[sup 2+], Li[sup +] and Mg[sup 2+]) by capillary electrophoresis at 214 nm in less than 10 min. The addition of potassium cation to the running buffer has an influence on the resolution of Ca[sup 2+]/Na[sup +] and Na[sup +]/Mg[sup 2+] peaks. A linear relationship between the corrected peak area and concentration was obtained in the 1--10 ppm range for these cations using a hydrodynamic injector. This electrophoretic system permitted the separation of these inorganic cations at a 50 ppb-level concentration with a hydrodynamic injection, thus making it possible to quantitatively determine their presence in mineral waters by capillary electrophoresis. At pH 4.5, potassium and ammonium unfortunately have identical ionic mobilities causing them to comigrate in an imidazole buffer. Using an alkaline solution of benzylamine as carrier electrolyte, their separation can be successfully achieved with excellent resolution at 204 nm. The analyses of tap water and several mineral waters have been achieved by capillary electrophoresis.

  1. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    PubMed

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. PMID:26849962

  2. Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51

    PubMed Central

    Kuzu, Secil Berna; Güvenmez, Hatice Korkmaz; Denizci, Aziz Akin

    2012-01-01

    This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni2+ (32%), K+ (44%), and Cu2+ (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg2+ (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer. PMID:23304523

  3. Biophysicochemical characterization of an alkaline protease from Beauveria sp. MTCC 5184 with multiple applications.

    PubMed

    Shankar, Shiv; Laxman, Ryali Seeta

    2015-01-01

    This study illustrates the biophysicochemical properties of an alkaline protease, BAP (Beauveria sp. alkaline protease) from Beauveria sp. MTCC 5184. This protease exhibited maximum activity at 50 °C, pH 9.0, and stability in a broad pH range, in the presence of organic solvents, denaturants, as well as detergents. Wash performance studies revealed that BAP was able to remove blood clots/stains from blood-soaked cloth. Peptide mass fingerprinting results demonstrated partial homology of BAP with subtilisin-like proteinase. BAP showed catalytic activity against natural as well as synthetic substrates. Active site characterization of BAP confirmed the involvement of serine, tryptophan, and aspartic acid in catalytic activity. Detailed kinetic and thermodynamic studies of BAP demonstrated that the activation energy (Ea) for casein hydrolysis was 82.55 kJ/M, the specificity constant (Kcat/K m), and the values of ∆G (change in Gibbs free energy) decreased with increase in temperature, whereas ∆H (change in enthalapy) and ∆S (change in entropy) were constant. The results of the present study indicate that BAP has potential for applications as detergent additive, in peptide synthesis, and in basic research. PMID:25338115

  4. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.

    PubMed

    Ramanathan, Thulasya; Ting, Yen-Peng

    2016-10-01

    The increasing demand for energy and the generation of solid waste have caused an alarming rise in fly ash production globally. Since heavy metals continue to be in demand for the production of materials, resource recovery from the recycling of these wastes has the potential to delay the depletion of natural ores. The use of microorganisms for the leaching of metals, in a process called bioleaching, is an eco-friendly and economical way to treat the metal-laden wastes. Bioleaching of fly ash is challenging due largely to the alkaline nature and toxic levels of heavy metals which are detrimental to microbial growth and bioleaching activity. The present work reports the isolation of indigenous bacteria from a local fly ash landfill site and their bioleaching performance. 38 autochthonous strains of bacteria were isolated from eight samples collected and plated on five different media. 18 of the isolates showed bioleaching potential, with significant alkaline pH or fly ash tolerance. Genetic characterization of the strains revealed a dominance of Firmicutes, with Alkalibacterium sp. TRTYP6 showing highest fly ash tolerance of up to 20% w/v fly ash, and growth over a pH range 8-12.5. The organism selectively recovered about 52% Cu from the waste. To the best of our knowledge, this is the first time a study on bioleaching with extreme alkaliphiles is reported. PMID:27362528

  5. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere. PMID:25231875

  6. Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions.

    PubMed

    Song, Dan; Li, Baoman; Yan, Enzhi; Man, Yi; Wolfson, Marina; Chen, Ye; Peng, Liang

    2012-11-01

    Bipolar disorder I and II are affective disorders with mood changes between depressive and manic (bipolar I) or hypomanic (bipolar II) periods. Current therapy of these conditions is chronic treatment with one or more of the anti-bipolar drugs, Li(+) ('lithium'), carbamazepine and valproic acid. The pathophysiology of bipolar disorder is multifactorial and far from clear. Recent data on the dependence of normal brain function on neuronal-astrocytic interactions raise the possibility of astrocytic involvement. We will discuss our previously published and new results on effects of chronic treatment of primary cultures of normal mouse astrocytes with any of three conventional anti-bipolar drugs. The focus will be on several drug-induced events in relation to therapeutic effects of the drugs, such as myo-inositol uptake, intracellular pH and alkalinization, drug-induced modulation of glutamatergic activity in astrocytes and release of astrocytic 'gliotransmitters'. Finally, we will discuss the importance of phospholipase A2 (PLA(2)) and arachidonic acid cascade in drug-treated astrocytes, partly based on Dr. Barneda Cuirana's published thesis. All three drugs cause gradual intracellular alkalinization through different mechanisms. Alkalinization inhibit myo-inositol uptake, resulting in reduced inositolphosphate/phospholipid signaling. Accordingly, transmitter-induced increase in free intracellular Ca(2+) ([Ca(2+)](i)) becomes inhibited, aborting release of astrocytic 'gliotransmitters'. The reduction of "gliotransmitter" effects on neurons may have therapeutic effects in mania. Alkalinization also up-regulates expression of cPLA(2), an enzyme releasing arachidonic acid, and triggered arachidonic acid cascade and production, but perhaps not release, of prostaglandins. Whenever tested, identical effects were observed in freshly isolated astrocytes, but not neurons, from carbamazepine-treated healthy animals. PMID:22965852

  7. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. PMID:24703958

  8. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  9. Next generation barrier CMP slurry with novel weakly alkaline chelating agent

    NASA Astrophysics Data System (ADS)

    Shiyan, Fan; Yuling, Liu; Ming, Sun; Jiying, Tang; Chenqi, Yan; Hailong, Li; Shengli, Wang

    2015-01-01

    To strengthen the device performance with the pattern wafer by enhancing the Cu polishing rate and improve the surface roughness with the Cu lines, a new weakly alkaline chelating agent with a barrier slurry is developed to meet the process demand of the advanced barrier chemical mechanical planarization (CMP). This new chelating agent has a stronger chelating ability and a lower pH value than the previous generation-FA/O I chelating agent researched before. Without an unstable oxidant agent added in the polishing slurry, it is difficult to enhance the copper polishing rate during the barrier CMP. The stronger chelating ability of the new chelating agent could increase the copper polishing rate along with controlling the Cu/Ta/TEOS removal rate selectivity to meet the requirements of the IC fabrication process. Thus it has solved the problem of excessive roughness due to the lower polishing rate, avoiding reducing the device performance with the pattern wafer. The new chelating agent with its lower pH value could make it possible to protect the low-k dielectric under the barrier layer from structurally breaking. The CMP experiment was performed on the 12 inch MIT 854 pattern wafers with the barrier slurry containing the new weakly alkaline chelating agent. By the DOE optimization, the results indicate that as the new chelating agent concentration in the slurry was up to 2.5 mL/L, the copper polishing rate is about 31.082 nm/min. Meanwhile, the wafer surface has a rather low roughness value of 0.693 nm (10 × 10 μm), the correction ability with the above slurry is adapted to the next generation barrier CMP and the k value of the low-k dielectric seems to have no k-shift. All the results presented show that the new weakly alkaline chelating agent with its superior performance can be used for the advanced barrier CMP.

  10. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase

    PubMed Central

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14)