Science.gov

Sample records for alkaline ph stress

  1. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  2. Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach

    PubMed Central

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5–8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0±0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars. PMID:25402470

  3. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  4. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  5. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress.

    PubMed

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  6. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  7. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  8. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  9. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress.

    PubMed

    Zhang, Xia; Wei, Liqin; Wang, Zizhang; Wang, Tai

    2013-03-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  10. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses.

    PubMed

    Peng, Yong-Lin; Gao, Zhan-Wu; Gao, Ying; Liu, Guo-Fang; Sheng, Lian-Xi; Wang, De-Li

    2008-01-01

    Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na(2)SO(4), NaHCO(3) and Na(2)CO(3)) and 30 salt-alkaline combinations (salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (Palkalinity stresses led to changes in the root activity along the salinity gradient (Palkalinity on seedling survival rate were more significant than those of salinity, and the seedlings demonstrated some physiological responses (leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants. PMID:18666949

  11. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  12. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. PMID:25780993

  13. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  14. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  15. Relationship of alkaline stress and acute copper toxicity in the snail Goniobasis livescens (Menke)

    SciTech Connect

    Paulson, P.C.; Pratt, J.R.; Cairns J. Jr.

    1983-12-01

    Organism response to toxic compounds is routinely tested in highly controlled laboratory tests conducted under rigorous standards. Toxicants are rarely present in nature in singular doses, and stresses on particular organisms may come from a variety of natural and anthropogenic sources. A number of studies have shown alteration of responses to toxicants as a result of multiple assaults or prior stress. The purpose of this study was to evaluate the effect of prior sublethal stress (in this case, alkaline pH) on the subsequent toxicity of copper. The initial hypothesis was that elevated pH stress would increase susceptibility of test organisms to copper toxicity. Although pH excursions into acid ranges have normally attracted attention, industrial process waters commonly range to pH 11.7. Excursions to pH above 7 may also increase the relative toxicity of other compounds.

  16. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  17. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  18. Alkaline oesophageal reflux--an artefact due to oxygen corrosion of antimony pH electrodes.

    PubMed

    Sjöberg, F; Gustafsson, U; Tibbling, L

    1992-12-01

    Antimony electrodes are widely used for gastro-oesophageal pH monitoring. They are also sensitive to oxygen, however, especially at low PO2 levels, which are known to shift recorded values in the alkaline direction. This study, which compares antimony and glass electrodes for oesophageal pH monitoring in six adults, shows that values recorded by antimony electrodes are 2.1 +/- 0.8 pH units (mean +/- SD) higher than by glass electrodes (p < 0.001; n = 7642). A further 52 patients with suspected gastro-oesophageal reflux were investigated by 24-h pH monitoring by means of antimony electrodes. In these patients the oesophageal pH was higher than 8.0 for 7% of the time (range, 0-60%). The alkaline periods recorded with antimony electrodes were all protracted in time, smoothly increasing from a neutral pH, and did not correspond to a sudden increase in pH, which would be expected if alkaline reflux had occurred. It is concluded that high pH values obtained by antimony electrodes are due to the oxygen sensitivity of the electrodes. The diagnosis of alkaline reflux seems to be valid only when pH monitoring is performed with glass electrodes or when values obtained with antimony electrodes are adjusted for the influence of the oxygen tension in the oesophagus. PMID:1475627

  19. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  20. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  1. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress.

  2. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  3. Simple Experiments To Demonstrate Proton Flux in Pseudomonas after Alkaline or Acidic Stress

    NASA Astrophysics Data System (ADS)

    Previtali, Gabriela; Giordano, Walter; Domenech, Carlos E.

    2003-12-01

    This laboratory introduces chemistry students to the ability of microorganisms to adapt to acidic or alkaline environmental conditions. A laboratory experiment to ascertain the bacterial response to the stress produced by suspension in different pH solutions has been developed. The experiment may be performed in several versions depending on the availability of lab equipment and the chemistry level of the students. This laboratory experiment has the pedagogical advantage of giving chemistry students experience with the application of various pH levels to a biological system and enables the students to expand their understanding of pH to mean more than a strictly chemical concept.

  4. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  5. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.

    PubMed

    Paz, R C; Reinoso, H; Espasandin, F D; González Antivilo, F A; Sansberro, P A; Rocco, R A; Ruiz, O A; Menéndez, A B

    2014-11-01

    Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3.

  6. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.

    PubMed

    Paz, R C; Reinoso, H; Espasandin, F D; González Antivilo, F A; Sansberro, P A; Rocco, R A; Ruiz, O A; Menéndez, A B

    2014-11-01

    Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3. PMID:24597843

  7. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  8. Detection of Baking Soda in Flat Bread by Direct pH Metery and Alkalinity Measurement

    NASA Astrophysics Data System (ADS)

    Jahed Khaniki, G. H. R.; Vaezi, F.; Yunesian, M.; Nabizadeh, R.; Paseban, G. H. A.

    The objective of this study is evaluation of direct pH metery and alkalinity measurement methods for determination of baking soda in lavash bread (a kind of flat bread) in order to introduce and recommend a good practice of control. For running the experiments, various samples of lavash bread having different concentrations of baking soda were prepared. Ten grams of each sample were mixed with distilled water and then the prepared solutions were filtrated. The filtrates were then analyzed for pH and total alkalinity according to the distractions described in Standard Methods. Results show a significant correlation between the pH values of bread samples and the amount of baking soda. Also, a positive correlation has been observed between the alkalinity of bread samples and used baking soda. By comparing the R2-values specified for these two methods it could be concluded that the direct pH metery method is more reasonable. Furthermore, by this simple method it is possible to accelerate the detection of minute amounts of this chemical in bread.

  9. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  10. Use of pH as fuzzy control parameter for nitrification under different alkalinity in SBR process.

    PubMed

    Peng, Y Z; Gao, J F; Wang, S Y; Sui, M H

    2003-01-01

    In order to achieve fuzzy control of nitrification in a Sequencing Batch Reactor (SBR) brewery wastewater was used as the substrate. The effect of alkalinity on pH variation during nitrification was systematically studied, at the same time the variations of DO and ORP were investigated. Alkalinity and pH of the wastewater were adjusted by adding sodium bicarbonate at five levels and sodium hydroxide at two levels. Unadjusted wastewater was also studied. According to the results, variation of pH could be divided into rising type and descending type. When bicarbonate alkalinity was deficient or sufficient, the descending type happened. If alkalinity was deficient, the pH decreasing rate got slower when nitrification nearly stopped; if alkalinity was sufficient, at the end of nitrification pH turned from decrease to increase. This was the most common situation and pH could be used to control the end of nitrification. When alkalinity was excessive, the rising type happened, pH was increasing at nearly a constant rate during and after nitrification and could not be used to control the nitrification time, but if the aeration rate was moderate DO could be used to control the nitrification time. This situation seldom happened. Therefore the variation of pH could not only be used to control the nitrification time but also to judge whether the alkalinity was enough or not. On the basis of this, the fuzzy controller of nitrification in SBR was constructed. When discussing the influence of pH on nitrification rate the composition and concentration of alkalinity must be considered or else the results may be incomprehensive. And to some extent the influence of alkalinity on nitrification rate was more important than pH.

  11. Preparation of acidic and alkaline macrocapsules for pH control.

    PubMed

    Flora, Joseph R V; Baker, Benjamin; Wybenga, Daniel; Zhu, Huiying; Aelion, C Marjorie

    2008-01-01

    A series of experiments was performed to prepare acidic macroencapsulated buffers composed of 20% Ca(H2PO4)(2) and 80% Eudragit S 100 polymer and alkaline macrocapsules composed of 65% K2HPO4 and 35% Eudragit E PO polymer (the powdered form of Eudragit E 100). Eudragit S 100 was shown to be soluble at a pH greater than 7.0, while Eudragit E 100 was soluble at a pH less than 7.0. Both polymers did not impart significant biochemical oxygen demand. The Eudragit E PO polymer solution showed low toxicity (EC50=91%) based on the Microtox Acute Toxicity Test compared to the 0.1mM background phosphate buffer solution (EC50=100%) while the Eudragit S 100 polymer solution showed higher toxicity (EC50=53%). Batch tests showed that the acidic macrocapsules reduced the pH of a 0.1mM phosphate solution from 11 to neutral, while the alkaline macrocapsules increased the pH of a 0.1mM phosphate solution from 3 to neutral. The macrocapsules could potentially be used as an in situ proportional pH controller for groundwater remediation.

  12. Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers.

    PubMed

    Roadcap, George S; Kelly, Walton R; Bethke, Craig M

    2005-01-01

    Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.

  13. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs

    PubMed Central

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-01-01

    Statement of the Problem Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Materials and Method Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). Conclusion An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH. PMID:26966703

  14. Alkalinizing the intralysosomal pH inhibits degranulation of human neutrophils.

    PubMed Central

    Klempner, M S; Styrt, B

    1983-01-01

    Degranulation of lysosomes is one of the consequences of neutrophil activation. Regulatory mechanisms of lysosomal secretion are thought to be localized largely in the plasma membrane and cytosol, with the lysosome playing a passive role in secretion. Recent evidence indicates that the intralysosomal pH is highly acidic (pH congruent to 5.5) and is maintained by active transport of H+. We investigated whether changes in the intralysosomal pH altered the availability of lysosomes for exocytosis. Intralysosomal pH in intact neutrophils was monitored with the weakly basic fluorescent probe, 9-aminoacridine (9AA). The weak bases, methylamine, chloroquine, clindamycin, propanolol, and ammonium chloride (0.1-50 mM), caused an alkalinization of the intralysosomal pH as determined by reversal of quenching of 9AA fluorescence. Similarly, each of the weak bases, including ammonium chloride, methylamine, chloroquine, ethylamine, propylamine, propanolol, clindamycin, and dansylcadaverine, inhibited neutrophil degranulation in response to the calcium ionophore A23187, phorbol myristate acetate, or the chemotactic peptide, formyl-methionine-leucine-phenylalanine plus cytochalasin B. These studies indicate that an acid intralysosomal pH is important to the neutrophil secretory response and suggest that the lysosome may play an active part in control of degranulation. PMID:6415117

  15. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    PubMed Central

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  16. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  17. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  18. Stress-life interrelationships associated with alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Martin, Ronald E.; Stedman, James K.

    1987-01-01

    A review is presented concerning the interrelationships between applied stress and the expected service life of alkaline fuel cells. Only the physical, chemical, and electrochemical phenomena that take place within the fuel cell stack portion of an overall fuel cell system will be discussed. A brief review will be given covering the significant improvements in performance and life over the past two decades as well as summarizing the more recent advances in understanding which can be used to predict the performance and life characteristics of fuel cell systems that have yet to be built.

  19. Alkalinity, pH, and copper corrosion by-product release

    SciTech Connect

    Edwards, M.; Meyer, T.E.; Schock, M.R.

    1996-03-01

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water increases linearly with bicarbonate concentration at constant pH. This relationship implicates cupric hydroxide solubility in control of copper release from relatively new (less than a few years old) copper plumbing. Decision-marking guidance from a traditional Larson`s ratio or Langelier index approach can aggravate copper corrosion problems; consequently, their use should be discontinued for copper corrosion mitigation. In contrast, aeration-CO{sub 2} stripping is a particularly attractive strategy because benefits from higher pH are realized without adverse effects from higher alkalinity.

  20. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents.

  1. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  2. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  3. Uranium(VI) Diffusion in Sodium-Montmorillonite at Alkaline pH Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.; Tournassat, C.; Birkholzer, J. T.

    2015-12-01

    Diffusive transport of uranium(VI) in montmorillonite clay and bentonite has important implications for uranium(VI) mobility in engineered barrier systems or host rocks in high level radioactive waste repositories, and clay-rich soils and sediments in the environment. The prediction of uranium(VI) adsorption and diffusion in clay-rich media, however, is complicated by (1) the complexity of the mineralogical structure of montmorillonite, in terms of its pore-size distributions and available surface site types, and (2) the complex uranium(VI) solution speciation, which can include cationic, uncharged, and anionic complexes, depending on solution conditions. For instance, a partial or full exclusion of anions from negatively charged clay interlayer spaces could change the effective 'anion-accessible' porosity and decrease the diffusive flux of these solutes under steady state conditions. In contrast, weak cation exchange reactions can result in 'surface diffusion' of adsorbed cations, such as UO2OH+, in addition to diffusion in the liquid phase, resulting in greater diffusive fluxes at steady state. In order to investigate these complex interactions, we performed two, lab-scale uranium(VI) through-diffusion experiments in lightly compacted Na-montmorillonite at slightly different, alkaline pH conditions (average pH values of 8.69 and 8.87). Observed uranium(VI) diffusive fluxes were decreased by approximately an order of magnitude in comparison to a tritium tracer. This indicates a relevance of 'anion exclusion' effects, the full or partial exclusion of anionic U(VI)-carbonato species from clay interlayer spaces. In addition, uranium(VI) sorption reactions were shown to be relevant in the diffusion experiments, even at alkaline pH values of around 8.7 and 8.9, where uranium(VI) sorption is low compared to other pH conditions. Despite the similarity of pH conditions, different degrees of uranium(VI) retardation were determined for the two systems. Additionally, we

  4. Analyses of optical absorption and circular dichroism spectra of spinach ferredoxin at alkaline pH.

    PubMed

    Hasumi, H

    1982-10-01

    The whole protein structure and the microenvironments of the iron-sulfur cluster and of the side chains of amino acid residues of spinach ferredoxin were studied by optical absorption and circular dichroism (CD) spectroscopy in the alkaline pH range. From the pH-dependence of the optical absorption changes at 245 nm, the four tyrosyl residues of ferredoxin were classified into three groups: one exposed residue with a normal apparent pK value of 10.1, two exposed residues with abnormal apparent pK values of 12.0, and one buried residue showing time-dependent ionization. The absorption in the visible region disappeared gradually with the ionization of the buried residue rather than that of the three exposed residues. The apparent pK value of 10.0 was obtained from the rapid CD changes at 258 nm caused by pH elevation from neutral to alkaline pH. The structural alteration associated with the CD change had no effect on the secondary structure of the protein moiety other than the iron-sulfur cluster and the microenvironment of the cluster. The rate constants obtained from the time courses of the CD changes in the near-ultraviolet and visible regions were in good agreement with those obtained from the time courses of the optical absorption changes. These results lead to the conclusions that (1) the native ferredoxin structure is maintained through the interaction with the iron-sulfur cluster and (2) the protein structure in the neighborhood of the cluster, important for the physiological activity, is not perturbed even though the exposed tyrosyl residues are ionized.

  5. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    PubMed

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH.

  6. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  7. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  8. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  9. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  10. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition.

  11. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA. PMID:27405173

  12. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  13. The Photoprotective Role of Spermidine in Tomato Seedlings under Salinity-Alkalinity Stress

    PubMed Central

    Zhang, Li; Zhou, Xiaoting; Zou, Zhirong; Hu, Xiaohui

    2014-01-01

    Polyamines are small, ubiquitous, nitrogenous compounds that scavenge reactive oxygen species and stabilize the structure and function of the photosynthetic apparatus in response to abiotic stresses. Molecular details underlying polyamine-mediated photoprotective mechanisms are not completely resolved. This study investigated the role of spermidine (Spd) in the structure and function of the photosynthetic apparatus. Tomato seedlings were subjected to salinity-alkalinity stress with and without foliar application of Spd, and photosynthetic and morphological parameters were analyzed. Leaf dry weight and net photosynthetic rate were reduced by salinity-alkalinity stress. Salinity-alkalinity stress reduced photochemical quenching parameters, including maximum photochemistry efficiency of photosystem II, quantum yield of linear electron flux, and coefficient of photochemical quenching (qP). Salinity-alkalinity stress elevated nonphotochemical quenching parameters, including the de-epoxidation state of the xanthophyll cycle and nonphotochemical quenching (NPQ). Microscopic analysis revealed that salinity-alkalinity stress disrupted the internal lamellar system of granal and stromal thylakoids. Exogenous Spd alleviated the stress-induced reduction of leaf dry weight, net photosynthetic rate, and qP parameters. The NPQ parameters increased by salinity-alkalinity stress were also alleviated by Spd. Seedlings treated with exogenous Spd had higher zeaxanthin (Z) contents than those without Spd under salinity-alkalinity stress. The chloroplast ultrastructure had a more ordered arrangement in seedlings treated with exogenous Spd than in those without Spd under salinity-alkalinity stress. These results indicate that exogenous Spd can alleviate the growth inhibition and thylakoid membrane photodamage caused by salinity-alkalinity stress. The Spd-induced accumulation of Z also may have an important role in stabilizing the photosynthetic apparatus. PMID:25340351

  14. The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress.

    PubMed

    Hu, Lipan; Xiang, Lixia; Zhang, Li; Zhou, Xiaoting; Zou, Zhirong; Hu, Xiaohui

    2014-01-01

    Polyamines are small, ubiquitous, nitrogenous compounds that scavenge reactive oxygen species and stabilize the structure and function of the photosynthetic apparatus in response to abiotic stresses. Molecular details underlying polyamine-mediated photoprotective mechanisms are not completely resolved. This study investigated the role of spermidine (Spd) in the structure and function of the photosynthetic apparatus. Tomato seedlings were subjected to salinity-alkalinity stress with and without foliar application of Spd, and photosynthetic and morphological parameters were analyzed. Leaf dry weight and net photosynthetic rate were reduced by salinity-alkalinity stress. Salinity-alkalinity stress reduced photochemical quenching parameters, including maximum photochemistry efficiency of photosystem II, quantum yield of linear electron flux, and coefficient of photochemical quenching (qP). Salinity-alkalinity stress elevated nonphotochemical quenching parameters, including the de-epoxidation state of the xanthophyll cycle and nonphotochemical quenching (NPQ). Microscopic analysis revealed that salinity-alkalinity stress disrupted the internal lamellar system of granal and stromal thylakoids. Exogenous Spd alleviated the stress-induced reduction of leaf dry weight, net photosynthetic rate, and qP parameters. The NPQ parameters increased by salinity-alkalinity stress were also alleviated by Spd. Seedlings treated with exogenous Spd had higher zeaxanthin (Z) contents than those without Spd under salinity-alkalinity stress. The chloroplast ultrastructure had a more ordered arrangement in seedlings treated with exogenous Spd than in those without Spd under salinity-alkalinity stress. These results indicate that exogenous Spd can alleviate the growth inhibition and thylakoid membrane photodamage caused by salinity-alkalinity stress. The Spd-induced accumulation of Z also may have an important role in stabilizing the photosynthetic apparatus.

  15. The photoprotective role of spermidine in tomato seedlings under salinity-alkalinity stress.

    PubMed

    Hu, Lipan; Xiang, Lixia; Zhang, Li; Zhou, Xiaoting; Zou, Zhirong; Hu, Xiaohui

    2014-01-01

    Polyamines are small, ubiquitous, nitrogenous compounds that scavenge reactive oxygen species and stabilize the structure and function of the photosynthetic apparatus in response to abiotic stresses. Molecular details underlying polyamine-mediated photoprotective mechanisms are not completely resolved. This study investigated the role of spermidine (Spd) in the structure and function of the photosynthetic apparatus. Tomato seedlings were subjected to salinity-alkalinity stress with and without foliar application of Spd, and photosynthetic and morphological parameters were analyzed. Leaf dry weight and net photosynthetic rate were reduced by salinity-alkalinity stress. Salinity-alkalinity stress reduced photochemical quenching parameters, including maximum photochemistry efficiency of photosystem II, quantum yield of linear electron flux, and coefficient of photochemical quenching (qP). Salinity-alkalinity stress elevated nonphotochemical quenching parameters, including the de-epoxidation state of the xanthophyll cycle and nonphotochemical quenching (NPQ). Microscopic analysis revealed that salinity-alkalinity stress disrupted the internal lamellar system of granal and stromal thylakoids. Exogenous Spd alleviated the stress-induced reduction of leaf dry weight, net photosynthetic rate, and qP parameters. The NPQ parameters increased by salinity-alkalinity stress were also alleviated by Spd. Seedlings treated with exogenous Spd had higher zeaxanthin (Z) contents than those without Spd under salinity-alkalinity stress. The chloroplast ultrastructure had a more ordered arrangement in seedlings treated with exogenous Spd than in those without Spd under salinity-alkalinity stress. These results indicate that exogenous Spd can alleviate the growth inhibition and thylakoid membrane photodamage caused by salinity-alkalinity stress. The Spd-induced accumulation of Z also may have an important role in stabilizing the photosynthetic apparatus. PMID:25340351

  16. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. II. THE EFFECT OF TEMPERATURE, PH, ALKALINITY, AND DOM PROPERTIES

    EPA Science Inventory

    The influence of temperature, pH, alkalinity, and type and concentration of the dissolved organic matter (DOM) on the rate of ozone (O3) decomposition, O3-exposure, .OH-exposure and the ratio Rct of the concentrations of .OH and O3 has been studied. For a standardized single ozon...

  17. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  18. Conformational stability of human erythrocyte transglutaminase. Patterns of thermal unfolding at acid and alkaline pH.

    PubMed

    Bergamini, C M; Dean, M; Matteucci, G; Hanau, S; Tanfani, F; Ferrari, C; Boggian, M; Scatturin, A

    1999-12-01

    Tissue-type transglutaminase is irreversibly inactivated during heat treatment. The rate of inactivation is low at pH 7.5; it increases slightly at acid pH (6.1) but much more at alkaline pH (9.0-9.5), suggesting that specific effects take place in the alkaline range, possibly in relation to decreased stability of the transition-state intermediate as pH is raised above 9.0. Differential scanning calorimetry experiments indicate that thermal unfolding of the protein occurs with two separate transitions, involving independent regions of the enzyme. They are assigned to domains 1 and 2 and domains 3 and 4, respectively, by a combination of calorimetric and spectroscopic techniques. When considering the effects of pH, we noted that transglutaminase was unfolded via different pathways at the different pH values considered. At acid pH, the whole structure of the protein was lost irreversibly, with massive aggregation. At neutral and, even more so, at alkaline pH, aggregation was absent (or very limited at high protein concentration) and the loss of secondary structure was dependent on the ionization state of crucial lysine residues. Unfolding at pH 9.5 apparently chiefly involved the N-terminal region, as testified by changes in protein intrinsic fluorescence. In addition, the C-terminal region was destabilized at each pH value tested during thermal unfolding, as shown by digestion with V8 proteinase, which is inactive on the native protein. Evidence was obtained that the N-terminal and C-terminal regions interact with each other in determining the structure of the native protein. PMID:10561600

  19. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  20. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

    PubMed

    Eto, Kazuhiro; Yamashita, Tokuyuki; Hirose, Kenzo; Tsubamoto, Yoshiharu; Ainscow, Edward K; Rutter, Guy A; Kimura, Satoshi; Noda, Mitsuhiko; Iino, Masamitsu; Kadowaki, Takashi

    2003-08-01

    We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

  1. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench.

    PubMed

    Zhao, Yanyun; Lu, Zhaohua; He, Lei

    2014-08-01

    In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (p<0.05). However, under the condition of low-Na+ concentration (100 mM), high pH reduced the mean time of germination and increased the germination rate, without decline in final germination percentage and survival percentage. Therefore, at least in the duration of seed germination to the harvest period in the research, the sweet sorghum was resistant to the pH stress (≥9.04) when the Na+ concentration was below 100 mM. When suffered from the saline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects

  2. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench.

    PubMed

    Zhao, Yanyun; Lu, Zhaohua; He, Lei

    2014-08-01

    In order to study the adaptation ability of sweet sorghum (Sorghum bicolor L. Moench) in the Yellow River Delta, the sweet sorghum variety Mart was used in this study to determine the roles of different saline-alkaline ratio stress treatment during seed germination to seedling stage. The results showed that Na+ concentration had a significant impact on the seed germination, seedling growth, and plant survival of sweet sorghum. Increasing Na+ concentration led to a decline in germination rate, final germination percentage, survival percentage, plant height, and dry weight per plant, a prolonged mean time of germination, as well as loss of improvement effect of low-Na+ concentration. The interaction effect of Na+ concentration and pH on the mean time of germination and germination rate was not significant (p<0.05). However, under the condition of low-Na+ concentration (100 mM), high pH reduced the mean time of germination and increased the germination rate, without decline in final germination percentage and survival percentage. Therefore, at least in the duration of seed germination to the harvest period in the research, the sweet sorghum was resistant to the pH stress (≥9.04) when the Na+ concentration was below 100 mM. When suffered from the saline-alkaline stress, the seedling of sweet sorghum was characterized by ecological adaptive features, such as decreased stem ratio and chlorophyll b content in leaves and increased root ratio and chlorophyll a content, in order to maintain the uptakes of water and nutrient, and carbon assimilation. When the stress intensified, the lipid oxidation products, e.g., malondialdehyde (MDA), increased in sweet sorghum seedlings. However, the increasing of soluble protein content and antioxidant enzyme activity (superoxide dismutase (SOD), guaiacol peroxidase (POD), and gatalase (CAT)) was only founded in neutral low-Na+ concentration treatment (A1), which indicated that high-salt concentration and pH all elicited harmful effects

  3. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii.

    PubMed

    Al-Nabulsi, Anas A; Osaili, Tareq M; Elabedeen, Noor A Zain; Jaradat, Ziad W; Shaker, Reyad R; Kheirallah, Khalid A; Tarazi, Yaser H; Holley, Richard A

    2011-03-30

    Cronobacter sakazakii is an emerging foodborne pathogen that has been implicated in severe forms of meningitis, septicemia or necrotizing colitis in pre-term neonates. Although illness outbreaks (primarily associated with powdered infant formula, PIF) caused by this pathogen are rare, the case-fatality rate may reach 50%. Successful treatment of C. sakazakii infection is reliant upon clinical use of antibiotics (AB) such as ampicillin. Recent reports showed increased resistance of C. sakazakii to broad-spectrum antibiotics. The objective of this study was to evaluate the effect of extreme pH (3.5 for 30 min or 11.25 for 5 min), cold (4°C for 24h), heat (55°C for 5 min), and desiccation (cells were dried at 40°C for 2h and held at 21°C for 4 d) stresses on susceptibility of five isolated strains of C. sakazakii to streptomycin, gentamicin, kanamycin, neomycin, tetracycline, doxycycline, tilmicosin, florfenicol, ampicillin, amoxicillin, vancomycin, ciprofloxacin and enrofloxacin. All unstressed strains of C. sakazakii were sensitive to streptomycin, gentamycin, kanamycin, ciprofloxacin, enrofloxacin, ampicillin and amoxicillin, but were moderately resistant or resistant to the rest. Exposing cells to alkaline or acidic stress did not change their sensitivity toward streptomycin, gentamycin, kanamycin or ciprofloxacin, but their resistance toward the other AB was increased. Cells stressed by desiccation showed increased sensitivity toward streptomycin, gentamicin, kanamycin, ciprofloxacin, enrofloxacin, ampicillin and doxycycline, but showed resistance toward the others. Cold-stressed cells were more sensitive to streptomycin, gentamicin, kanamycin, and ciprofloxacin compared with heat-stressed cells, but both heat and cold-stressed cells showed increased resistance toward all the other AB. Results obtained will help in understanding the effect of environmental stresses during processing on C. sakazakii susceptibility to AB. PMID:21402424

  4. Survival and stress responses of E. coli exposed to alkaline cleaners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were undertaken to evaluate the effects of alkaline cleaners commonly used in food processing environments on survival and stress responses of the foodborne pathogen Escherichia coli O157:H7. Alkaline cleaners containing either sodium hydroxide or potassium hydroxide and hypochlorite had gre...

  5. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  6. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  7. Transitions from alkaline spots to regular bands during pH pattern formation at the plasmalemma of Chara cells.

    PubMed

    Bulychev, A A; Zykov, S V; Rubin, A B; Müller, S C

    2003-05-01

    A scanning pH-microprobe was used to study pH patterns near the surface of Chara corallina cells at various light intensities and during light-induced transitions from homogeneous pH distribution to alternating pH bands. In the irradiance (PAR) range 4-400 micromol quanta m(-2) s(-1), the sustained pH profiles consisted of alternating acid and alkaline bands with a characteristic length of 7-10 mm and pH shifts as large as 2-3 units. At lower irradiance, the number of alkaline bands decreased while the amplitude of remaining peaks stayed high. On cyclic changes in light intensity, a hysteresis of pH banding was observed: the pH bands tolerated low irradiance in weakening light, but higher irradiance was required for their emergence after dark adaptation of the cell. The pH profiles measured for different paths of electrode scanning suggest that the pH pattern at low light level represents patches coexisting with bands. The exposure of the cell to high-intensity light led to formation of radially symmetrical bands. Transformations of the pH pattern induced by lowering the light intensity were similar to those induced by transcellular electric current (1.5-3 microA). The data suggest that band formation at the plasmalemma of Chara cells proceeds through the initial appearance of multiple patches with a localized H(+)-transporting activity and subsequent spot rearrangements (fusion, deletions, widening), leading to establishment of alternating bands.

  8. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  9. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    PubMed

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'.

  10. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  11. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate.

    PubMed

    Campos, Juacyara Carbonelli; Moura, Denise; Costa, Ana Paula; Yokoyama, Lidia; Araujo, Fabiana Valeria da Fonseca; Cammarota, Magali Christe; Cardillo, Luigi

    2013-01-01

    The objective of this research was to evaluate the air stripping technology for the removal of ammonia from landfill leachates. In this process, pH, temperature, airflow rate and operation time were investigated. Furthermore, the relationship between the leachate alkalinity and the ammonia removal efficiency during the process was studied. The leachate used in the tests was generated in the Gramacho Municipal Solid Waste Landfill (Rio de Janeiro State, Brazil). The best results were obtained with a temperature of 60(o)C, and they were independent of the pH value for 7 h of operation (the ammonia nitrogen removal was greater than 95%). A strong influence of the leachate alkalinity on the ammonia nitrogen removal was observed; as the alkalinity decreased, the ammonia concentration also decreased because of prior CO2 removal, which increased the pH and consequently favored the NH3 stripping. The air flow rate, in the values evaluated (73, 96 and 120 L air.h(-1).L(-1) of leachate), did not influence the results.

  12. Alkaline unfolding and salt-induced folding of yeast alcohol dehydrogenase under high pH conditions.

    PubMed

    Le, W P; Yan, S X; Li, S; Zhong, H N; Zhou, H M

    1996-06-01

    The conformational changes of yeast alcohol dehydrogenase during unfolding at alkaline pH have been followed by fluorescence emission and circular dichroism spectra. A result of comparison of inactivation and conformational changes shows that much lower values of alkaline pH are required to bring about inactivation than significant conformational change of the enzyme molecule. At pH 9.5, although the enzyme has been completely inactivated, no marked conformational changes can be observed. Even at pH 12, the apparently fully unfolded enzyme retains some ordered secondary structure. After removal of Zn2+ from the enzyme molecule, the conformational stability decreased. At pH 12 by adding the salt, the relatively unfolded state of denatured enzyme changes into a compact conformational state by hydrophobic collapsing. Folded states induced by salt bound ANS strongly, indicating the existence of increased hydrophobic surface. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-enzyme was lower than that of holo-enzyme. The above results suggest that the zinc ion plays an important role in helping the folding of YADH and in stabilizing its native conformation.

  13. On the Mechanism by which Alkaline pH Prevents Expression of an Acid-Expressed Gene

    PubMed Central

    Espeso, Eduardo A.; Arst, Herbert N.

    2000-01-01

    Previous work has shown that zinc finger transcription factor PacC mediates the regulation of gene expression by ambient pH in the fungus Aspergillus nidulans. This regulation ensures that the syntheses of molecules functioning in the external environment, such as permeases, secreted enzymes, and exported metabolites, are tailored to the pH of the growth environment. A direct role for PacC in activating the expression of an alkaline-expressed gene has previously been demonstrated, but the mechanism by which alkaline ambient pH prevents the expression of any eukaryotic acid-expressed gene has never been reported. Here we show that a double PacC binding site in the promoter of the acid-expressed gabA gene, encoding γ-aminobutyrate (GABA) permease, overlaps the binding site for the transcriptional activator IntA, which mediates ω-amino acid induction. Using bacterially expressed fusion proteins, we have shown that PacC competes with IntA for DNA binding in vitro at this site. Thus, PacC repression of GABA permease synthesis is direct and occurs by blocking induction. A swap of IntA sites between promoters for gabA and amdS, a gene not subject to pH regulation, makes gabA expression pH independent and amdS acid expressed. PMID:10779325

  14. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis.

    PubMed

    Shanahan, John W; Semmens, Michael J

    2015-05-01

    A nitrifying biofilm was grown in a laboratory-scale membrane aerated bioreactor (MABR) to calibrate and test a one-dimensional biofilm model incorporating chemical equilibria to calculate local pH values. A previously developed model (Shanahan and Semmens, 2004) based upon AQUASIM was modified to incorporate the impact of local pH changes within the biofilm on the kinetics of nitrification. Shielded microelectrodes were used to measure the concentration profiles of dissolved oxygen, ammonium, nitrate, and pH within the biofilm and the overlying boundary layer under actual operating conditions. Operating conditions were varied to assess the impact of bicarbonate loading (alkalinity), ammonium loading, and intra-membrane oxygen partial pressure on biofilm performance. Nitrification performance improved with increased ammonium and bicarbonate loadings over the range of operating conditions tested, but declined when the intra-membrane oxygen partial pressure was increased. Minor discrepancies between the measured and predicted concentration profiles within the biofilm were attributed to changes in biofilm density and vertical heterogeneities in biofilm structure not accounted for by the model. Nevertheless, predicted concentration profiles within the biofilm agreed well with experimental results over the range of conditions studied and highlight the fact that pH changes in the biofilm are significant especially in low alkalinity waters. The influent pH and buffer capacity of a wastewater may therefore have a significant impact on the performance of a membrane-aerated bioreactor with respect to nitrification, and nitrogen removal.

  15. Upper ocean carbon cycling inferred from direct pH observations made by profiling floats and estimated alkalinity

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.; Sakamoto, C.; Riser, S.

    2015-12-01

    The annual cycle of dissolved inorganic carbon (DIC) is a key tracer of net community production and carbon export in the upper ocean. In particular, the DIC concentration is much less sensitive to air-sea gas exchange, when compared to oxygen, another key tracer of upper ocean metabolism. However, the annual DIC cycle is observed with a seasonal resolution at only a few time-series stations in the open ocean. Here, we consider the annual carbon cycle that has been observed using profiling floats equipped with pH sensors. Deep-Sea DuraFET pH sensors have been deployed on profiling floats for over three years and they can provide temporal and spatial resolution of 5 to 10 days and 5 to 10 m in the upper ocean over multi-year periods. In addition to pH, a second carbon system parameter is required to compute DIC. Total alkalinity can be derived from the float observations of temperature, salinity and oxygen using equations in these variables that are fitted to shipboard observations of alkalinity obtained in the global repeat hydrography programs (e.g., Juranek et al., GRL, doi:10.1029/2011GL048580, 2011), as the relationships should be stable in time in the open ocean. Profiling floats with pH have been deployed from Hawaii Ocean Time-series (HOT) cruises since late 2012 and an array of floats with pH have been deployed since early 2014 in the Southern Ocean as part of the SOCCOM program. The SOCCOM array should grow to nearly 200 floats over the next 5 years. The sensor data was quality controlled and adjusted by comparing observations at 1500 m depth to the deep climatology of pH (derived from DIC and alkalinity) computed with the GLODAP data set. After adjustment, the surface DIC concentrations were calculated from pH and alkalinity. This yields a data set that is used to examine annual net community production in the oligotrophic North Pacific and in the South Pacific near 150 West from 40 South to 65 South.

  16. The immobilization of all spermatozoa in vitro by bitter lemon drink and the effect of alkaline pH.

    PubMed

    Nwoha, P U

    1992-12-01

    Researchers at Obafemi Awolowo University in Ile-Ife, Nigeria, collected semen samples from 7 healthy men 25-30 years old who had abstained from sex for at least 5 days in order to examine the spermicidal action of 4 soft drinks (Krest bitter lemon, Afri-Cola, Coca-Cola, and Pepsi-Cola), the effect of increased temperature of the drinks on spermicidal action, and the effect of changing the soft drinks from an acid, as it comes from the factory, (ph 2.4) to an alkaline (pH 7.5). Increasing the temperature of the soft drinks from room temperature (22 degrees Celsius) to body temperatures (37 degrees Celsius) did not significantly change the spermicidal action any of the soft drinks. All soft drinks with an acid pH, except Coca-Cola, had a significantly lower percent of sperm motility than those with an alkaline pH (0-42.3% vs. 20-52.1%; p .001). In fact, Krest bitter lemon in its factory form (acid pH) completely immobilized all spermatozoa within 1 minute after the researchers diluted the semen with the soft drink. Alkaline Coca-Cola had a significantly lower percent of sperm motility than did acid Coca-Cola (35.8% vs. 46.5%; p .001). Other than Krest bitter lemon, the significant decreases in sperm motility were not enough to prevent pregnancy. These findings indicated that researchers should test Krest bitter lemon for effectiveness as a postcoital contraceptive. If indeed it proves effective, it has great potential as such a contraceptive among the poor in the densely population developed countries since it is readily available and inexpensive.

  17. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  18. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  19. Clonal integration enhances the performance of a clonal plant species under soil alkalinity stress.

    PubMed

    Zhang, Wenjun; Yang, Gaowen; Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  20. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.

    PubMed

    Abdel Latef, Arafat A; Tran, Lam-Son P

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress. PMID:27014283

  1. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress

    PubMed Central

    Abdel Latef, Arafat A.; Tran, Lam-Son P.

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K+), as well as potassium/sodium ion (K+/Na+) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na+ and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K+, as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na+, which together with enhanced K+ level led to a favorable adjustment of K+/Na+ ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K+/Na+ ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress. PMID:27014283

  2. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.

    PubMed

    Abdel Latef, Arafat A; Tran, Lam-Son P

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  3. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  4. The respiratory burst activity and expression of catalase in white shrimp, Litopenaeus vannamei, during long-term exposure to pH stress.

    PubMed

    Wang, Wei-Na; Li, Bao-Sheng; Liu, Jin-Jian; Shi, Lei; Alam, M J; Su, Shi-Juan; Wu, Juan; Wang, Lei; Wang, An-Li

    2012-08-01

    In this study, changes of reactive oxygen species (ROS) and the mRNA expression of catalase of the Pacific white shrimp, Litopenaeus vannamei, exposed to pH (5.4, 6.7, 8.0, and 9.3) stress was investigated at different stress time (24, 48, 72, 96, and 120 h). Level of malondialdehyde (MDA) in shrimp also were assessed. The results revealed that acidic (pH 5.4 and 6.7) or alkaline exposure (pH 9.3) induced production of ROS hemocytes and increase of MDA level in shrimp. Moreover, the catalase mRNA expression in hepatopancreas of L. vannamei was up-regulated in 24 h at pH 5.4, in 72 h at pH 6.7 and in 48 h at pH 9.3, whereas was down-regulated significantly after 72 h acidic (pH 5.4 and 6.7) or alkaline (pH 9.4) exposure. In the present study, there was the relationship between ROS and catalase mRNA expression under normal acidic and alkaline conditions. At pH 8, the increase of catalase transcripts due to up-regulation by ROS, whereas MDA level did not significantly change, suggesting activation of corresponding protective mechanisms of detoxifying ROS is essential for the proper functioning of cells and the survival of shrimps.

  5. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins. PMID:15982915

  6. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.

  7. Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids.

    PubMed

    Yu, Jianfeng; Wang, Dongsheng; Yan, Mingquan; Ye, Changqing; Yang, Min; Ge, Xiaopeng

    2007-08-01

    The Yellow River in winter as source water is characterized as high alkalinity, low temperature and low particle concentrations, which have brought many difficulties to water treatment plants. This study fully examines the optimized coagulation process of the Yellow River by conventional and pre-polymerized metal coagulants, pH adjustment and polyelectrolytes as the primary coagulants or coagulant aids. For all the metal coagulants, polyaluminum chlorides are superior to traditional metal coagulants due to their stable polymeric species and low consumption of alkalinity. The removal of natural organic matter by monomeric metal coagulants can be improved through pH adjustment, which is in accordance with the higher concentration of polymeric species formed at corresponding pH value. With the addition of polyelectrolytes as coagulant aids, the coagulation performance is significantly improved. The effective removal of dissolved organic matter is consistent with high charge density, while molecular weight is relatively important for removing particles, which is consistent with polyelectrolytes as primary coagulants. These results suggest that the coagulation mechanisms in the removal of dissolved organic matter and particles are different, which may be exploited for optimized coagulation for the typical source water in practice.

  8. Geochemical Modeling of pH Neutralization of High Alkaline-Saline Waste Fluids in Unsaturated Sediments

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, Z.

    2004-12-01

    Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.

  9. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  10. Functional characterization of a Glycine soja Ca(2+)ATPase in salt-alkaline stress responses.

    PubMed

    Sun, Mingzhe; Jia, Bowei; Cui, Na; Wen, Yidong; Duanmu, Huizi; Yu, Qingyue; Xiao, Jialei; Sun, Xiaoli; Zhu, Yanming

    2016-03-01

    It is widely accepted that Ca(2+)ATPase family proteins play important roles in plant environmental stress responses. However, up to now, most researches are limited in the reference plants Arabidopsis and rice. The function of Ca(2+)ATPases from non-reference plants was rarely reported, especially its regulatory role in carbonate alkaline stress responses. Hence, in this study, we identified the P-type II Ca(2+)ATPase family genes in soybean genome, determined their chromosomal location and gene architecture, and analyzed their amino acid sequence and evolutionary relationship. Based on above results, we pointed out the existence of gene duplication for soybean Ca(2+)ATPases. Then, we investigated the expression profiles of the ACA subfamily genes in wild soybean (Glycine soja) under carbonate alkaline stress, and functionally characterized one representative gene GsACA1 by using transgenic alfalfa. Our results suggested that GsACA1 overexpression in alfalfa obviously increased plant tolerance to both carbonate alkaline and neutral salt stresses, as evidenced by lower levels of membrane permeability and MDA content, but higher levels of SOD activity, proline concentration and chlorophyll content under stress conditions. Taken together, for the first time, we reported a P-type II Ca(2+)ATPase from wild soybean, GsACA1, which could positively regulate plant tolerance to both carbonate alkaline and neutral salt stresses.

  11. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    PubMed

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'. PMID:27396122

  12. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  13. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W. T.; Nelson, P. N.; Li, M.-H.; Cai, J. P.; Zhang, Y. Y.; Zhang, Y. G.; Yang, S.; Wang, R. Z.; Wang, Z. W.; Wu, Y. N.; Han, X. G.; Jiang, Y.

    2015-12-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate-containing soils and 1700 km sub-transect with non-carbonate-containing soils) across northern China. Soil pHBC was greater in the carbonate-containing soils than in the non-carbonate-containing soils. Acid addition decreased soil pH in the non-carbonate-containing soils more markedly than in the carbonate-containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate-containing soils and CEC was the main determinant of buffering capacity in the non-carbonate-containing soils. Along the transect, soil pHBC was different in regions with different aridity index. Soil pHBC was positively related to aridity index and carbonate content across the carbonate-containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate- and non-carbonate-containing soils. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  14. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  15. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  16. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  17. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  18. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  19. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components.

  20. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  1. PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion.

    PubMed

    Xu, Weifeng; Jia, Liguo; Baluška, František; Ding, Guochang; Shi, Weiming; Ye, Nenghui; Zhang, Jianhua

    2012-10-01

    Soil alkalinity is a widespread environmental problem that limits agricultural productivity. The hypothesis that an auxin-regulated proton secretion by plasma membrane H(+)-ATPase plays an important role in root adaption to alkaline stress was studied. It was found that alkaline stress increased auxin transport and PIN2 (an auxin efflux transporter) abundance in the root tip of wild-type Arabidopsis plants (WT). Compared with WT roots, the pin2 mutant roots exhibited much reduced plasma membrane H(+)-ATPase activity, root elongation, auxin transport, and proton secretion under alkaline stress. More importantly, roots of the pks5 mutant (PKS5, a protein kinase) lacking PIN2 (a pks5/pin2 double mutant) lost the previous higher proton-secretion capacity and higher elongation rate of primary roots under alkaline stress. By using Arabidopsis natural accessions with a high proton-secretion capacity, it was found that their PIN2 transcription abundance is positively related to the elongation rate of the primary root and proton-secretion capacity under alkaline stress. Taken together, our results confirm that PIN2 is involved in the PKS5-mediated signalling cascade under alkaline-stress and suggest that PIN2 is required for the adaptation of roots to alkaline stress by modulating proton secretion in the root tip to maintain primary root elongation. PMID:23002434

  2. Effects of pH on nicotine-induced DNA damage and oxidative stress.

    PubMed

    Wu, Hui-Ju; Chi, Chin-Wen; Liu, Tsung-Yun

    2005-09-01

    Epidemiological evidence suggests that chewing betel quid and smoking have synergistic potential in the development of oral squamous-cell carcinoma in Taiwan. Chewing betel quid produces alkalization of saliva. This study investigated the response of human oral cancer OEC-M1 cells to nicotine in different pH environments (6.5 and 8) by examining its effects on DNA damage as evidenced by single-cell gel electrophoresis. Nicotine (1 and 10 muM) significantly induced DNA strand breakage when cultured at pH 8 for 6 h but did not induce DNA damage at pH 6.5. Nicotine-induced DNA damage was also time dependent. When cells were pretreated with catalase or N-acetylcysteine, a significant reduction in nicotine-induced DNA damage was observed. Flow cytometric analyses showed that the production of 8-oxoguanine was significantly increased following nicotine (10 muM) treatment. Posttreatment of nicotine-damaged DNA by endonuclease III and formamidopyrimidine-DNA glycosylase, recognizing oxidized DNA bases, increased the extent of DNA damage. These results suggest that nicotine-induced DNA strand breakage is pH dependent, and oxidative stress might be involved in nicotine-induced DNA damage. Finally, cigarette smoke condensate (equivalent to 8 muM nicotine) induced significant DNA strand breaks in OEC-M1 cells at pH 8 and correlated with the generation of oxidative DNA damage. Thus, alkaline saliva generated by chewing betel quid plays an important role in cigarette-related nicotine-induced DNA damage, and reactive oxygen species may be involved in generating this DNA damage. PMID:16076763

  3. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  4. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.

  5. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  6. Aerobic granulation utilizing fermented municipal wastewater under low pH and alkalinity conditions in a sequencing batch reactor.

    PubMed

    Leong, Jason; Rezania, Babak; Mavinic, Don S

    2016-01-01

    The aim of this study was to achieve aerobic granulation utilizing fermented municipal wastewater under low pH, and alkalinity conditions. Stable granulation was achieved after a 166-day start-up period. Due to low influent strength, supplemental carbon addition, in the form of sucrose, was added to the feed storage tank on the 82nd day of start-up to facilitate granulation. This increased the system's organic loading rate from 1.43 ± 0.14 to 2.53 ± 0.18 kg COD/m(3)/d, and reduced the influent pH due to fermentation of the added sucrose. Although granulation was successful, the nutrient removal was limited. Removal rates at an influent pH of 6.23 ± 0.06 were 54.4% ± 8.3% for phosphorus, 21.9% ± 4.1% for ammonium, and 84.0% ± 3.0% for total chemical oxygen demand (COD). During the second phase of experimentation, increased amounts of sucrose were added to the feed, which resulted in increased volatile fatty acid concentrations and pH reduction to 5.62 ± 0.12 due to fermentation. Under further reduced pH conditions, phosphorus, ammonium, and total COD removal were found to be 58.9% ± 4.7%, 37.9% ± 4.7%, and 87.1% ± 0.9%, respectively. Settling volume indexes, SVI10 and SVI30, were found to be 148.8 ± 28.9 mL/g, for the influent pH of 6.23 ± 0.06, and 157.5 ± 40.6 mL/g, for the influent pH of 5.62 ± 0.12. This high SVI is indicative of the formation of lower-density granules in comparison to high-ash-content granules. The absence of denitrification-induced chemical phosphorus precipitation within the granule was likely a contributing factor to the low granule density observed in the system.

  7. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.

    PubMed

    Tam, Y S; Elefsiniotis, P

    2009-10-01

    This study explored the potential of lead and copper leaching from brass plumbing in the Auckland region of New Zealand. A five-month field investigation, at six representative locations, indicated that Auckland's water can be characterized as soft and potentially corrosive, having low alkalinity and hardness levels and a moderately alkaline pH. More than 90% of the unflushed samples contained lead above the maximum acceptable value (MAV) of 10 microg/L (New Zealand Standards). In contrast, the copper level of unflushed samples remained consistently below the corresponding MAV of 2 mg/L. Flushing however reduced sharply metal concentrations, with lead values well below the MAV limit. Generally, metal leaching patterns showed a limited degree of correlation with the variations in temperature, dissolved oxygen and free chlorine residual at all sampling locations. Furthermore, a series of bench-scale experiments was conducted to evaluate the effectiveness of pH and alkalinity adjustment, as well as orthophosphate addition as corrosion control tools regarding lead and copper dissolution. Results demonstrated that lead and copper leaching was predominant during the first 24 hr of stagnation, but reached an equilibrium state afterwards. Since the soluble fraction of both metals was small (12% for lead, 29% for copper), it is apparent that the non-soluble compounds play a predominant role in the dissolution process. The degree of leaching however was largely affected by the variations in pH and alkalinity. At pH around neutrality, an increase in alkalinity promoted metal dissolution, while at pH 9.0 the effect of alkalinity on leaching was marginal. Lastly, addition of orthophosphate as a corrosion inhibitor was more effective at pH 7.5 or higher, resulting in approximately 70% reduction in both lead and copper concentrations.

  8. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.

    PubMed

    Tam, Y S; Elefsiniotis, P

    2009-10-01

    This study explored the potential of lead and copper leaching from brass plumbing in the Auckland region of New Zealand. A five-month field investigation, at six representative locations, indicated that Auckland's water can be characterized as soft and potentially corrosive, having low alkalinity and hardness levels and a moderately alkaline pH. More than 90% of the unflushed samples contained lead above the maximum acceptable value (MAV) of 10 microg/L (New Zealand Standards). In contrast, the copper level of unflushed samples remained consistently below the corresponding MAV of 2 mg/L. Flushing however reduced sharply metal concentrations, with lead values well below the MAV limit. Generally, metal leaching patterns showed a limited degree of correlation with the variations in temperature, dissolved oxygen and free chlorine residual at all sampling locations. Furthermore, a series of bench-scale experiments was conducted to evaluate the effectiveness of pH and alkalinity adjustment, as well as orthophosphate addition as corrosion control tools regarding lead and copper dissolution. Results demonstrated that lead and copper leaching was predominant during the first 24 hr of stagnation, but reached an equilibrium state afterwards. Since the soluble fraction of both metals was small (12% for lead, 29% for copper), it is apparent that the non-soluble compounds play a predominant role in the dissolution process. The degree of leaching however was largely affected by the variations in pH and alkalinity. At pH around neutrality, an increase in alkalinity promoted metal dissolution, while at pH 9.0 the effect of alkalinity on leaching was marginal. Lastly, addition of orthophosphate as a corrosion inhibitor was more effective at pH 7.5 or higher, resulting in approximately 70% reduction in both lead and copper concentrations. PMID:19847713

  9. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  10. Action potentials occur spontaneously in squid giant axons with moderately alkaline intracellular pH.

    PubMed

    Clay, J R; Shrier, A

    2001-10-01

    This report demonstrates a novel finding from the classic giant axon preparation of the squid. Namely, the axon can be made to fire autonomously (spontaneously occurring action potentials) when the intracellular pH (pH(i)) was increased to about 7.7, or higher. (Physiological pH(i) is 7.3.) The frequency of firing was 33 Hz (T = 5 degrees ). No changes in frequency or in the voltage waveform itself were observed when pH(i) was increased from 7.7 up to 8.5. In other words, the effect has a threshold at a pH(i) of about 7.7. A mathematical model that is sufficient to mimic these results is provided using a modified version of the Clay (1998) description of the axonal ionic currents.

  11. Temperature dependence of bistability in squid giant axons with alkaline intracellular pH.

    PubMed

    Clay, J R; Shrier, A

    2002-06-01

    Raising the intracellular pH (pHi) above 7.7 in intracellularly perfused squid giant axons causes spontaneous firing of action potentials. The firing frequency ranged from 20 Hz at 0 degrees C to 200 Hz at 23 degrees C. Above 23 degrees C, the axons were quiescent. They were bistable for 13

  12. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Song, Ren-guo; Sun, Bin; Lu, Hai; Wang, Chao

    2016-07-01

    Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials ( E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than -1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to -1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

  13. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  14. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health. PMID:27630955

  15. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  16. [Determination of physiological indices in Albizzia julibrissin Durazz seedlings under alkaline stress with visible spectrophotometry].

    PubMed

    Zhou, Jian; Zhang, Lin; Yuan, De-Yi; Qi, An-Guo

    2008-02-01

    There is a large area of saline-alkali soil in our country, and soil alkalization is always a problem affecting urban gardening. To examine the capacity of alkaline resistance of Albizzia julibrissin Durazz seedlings, the contents of MDA, soluble sugar and proline, and the activity of POD and SOD in Albizzia julibrissin durazz tree body were measured by means of visible spectrophotometry. Also, the change patterns of the five indexes with different treatment concentration and time were analyzed. Attempts were then made to elucidate the physiological mechanism of how alkaline stress affects the growth of the Albizzia julibrissin durazz tree, which could provide theoretical foundation for planting and gardening and an approach to dealing with the difficulties in planting and gardening in saline and alkaline area. The results showed that with the increase in Na2 CO3 concentration, the contents of MDA and soluble sugar in the leaves slowly ascended when the treatment concentration was lower than 75 mmol x L(-1), and then rapidly increased when the treatment concentration was higher than 75 mmol x L(-1); There were significant differences between different treatments. Proline content exhibited the same change pattern with MDA and soluble sugar. It slowly ascended when the treatment concentration was lower than 100 mmol x L(-1), whereas it sharply increased when the treatment concentration was above 100 mmol x L(-1); The changes in SOD and POD were similar, showing a unimodal pattern. However, the treatment concentration corresponding to the maximum of SOD and POD was 50 and 75 mmol x L(-1), respectively. With the changes in stress time, in addition, the contents of MDA treated with the same concentration increased gradually. However, praline, soluble sugar, SOD and POD changed irregularly. These results indicated that Albizzia julibrissin Durazz could resist the alkaline stress by modulating values of physical indexes such as the contents of MDA, soluble sugar and

  17. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    PubMed

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  18. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    PubMed

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  19. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  20. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    PubMed

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-20

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  1. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  2. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications.

  3. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  4. Effects of saline-alkaline stress on benzo[a]pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM46.

    PubMed

    Andriani, Ade; Tachibana, Sanro; Itoh, Kazutaka

    2016-03-01

    Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF's ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l(-1). These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l(-1). Fungal growth and enzyme expression were inhibited at a salinity of 35 g l(-1). These inhibitory effects directly decreased the degradation rate (>24%). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38-89% over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions. PMID:26867600

  5. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae).

    PubMed

    Šustr, Vladimír; Stingl, Ulrich; Brune, Andreas

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments. PMID:24971929

  6. Summary of Maryland stream pH and alkalinity data: analysis of its application to assessing the impacts of acidic deposition. Final report

    SciTech Connect

    Janicki, A.; Greening, H.

    1987-09-01

    Stream-chemistry data were gathered from a number of sources to characterize the sensitivity of flowing waters in Maryland to acidification, as well as to provide baseline information for the design of a synoptic survey of stream chemistry conducted in 1987. Overall, 19% of Maryland streams, for which data were collected, exhibit mean alkalinity values of less than 200 micro eq/L, generally considered to be indicative of waters sensitive to acidification. Minimum alkalinity values less than 200 micro eq/l were found in 41% of the data sets examined. Mean pH values less than 6.0 were observed in about 9% of the streams for which data were identified. Minimum pH values less than 6.0 were observed in 24% of the streams.

  7. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  8. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  9. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  10. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    PubMed

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-01

    The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the

  11. Application of iChemExplorer in pharmaceutical pH stress testing.

    PubMed

    Qiu, Fenghe; Du, Lily; Soman, Ashish; Jankovsky, Corinne; Li, Chan

    2013-03-25

    pH stress testing is an integral part of pharmaceutical stress testing and is a regulatory requirement for validating a stability indicating analytical method and elucidating degradation products and degradation pathways. This paper reports the results of an evaluation of iChemExplorer (ICE) for drug substance and drug product pH stress testing in comparison with the conventional (manual) approach. ICE is a simple and inexpensive technology, and through real case studies it was demonstrated that ICE is an efficient and "fit-for-purpose" alternative in conducting pharmaceutical pH stress testing. In addition, when using a non-isothermal ICE protocol, it is feasible to estimate the pH degradation kinetics (e.g., E(a)) using the ICE software. PMID:23339989

  12. Could a strong alkali deproteinization replace the standard lysis step in alkaline single cell gel electrophoresis (comet) assay (pH>13)?

    PubMed

    Vivek Kumar, P R; Cheriyan, V D; Seshadri, M

    2009-08-01

    The alkaline version of single cell gel electrophoresis (comet) assay is widely used for evaluating DNA damage at the individual cell level. The standard alkaline method of the comet assay involves deproteinization of cells embedded in agarose gel using a high salt-detergent lysis buffer, followed by denaturation of DNA and electrophoresis using a strong alkali at pH>13 [N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res. 175 (1988) 184-191]. However, a recent report showed that a strong alkali treatment results in simultaneous deproteinization of cells and denaturation of genomic DNA [P. Sestili, C. Martinelli, V. Stocchi, The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single cell-level, Mutat. Res. 607 (2006) 205-214]. This study was carried out to test whether the strong alkali deproteinization of cells could replace the high salt-detergent lysis step used in the standard method of the alkaline comet assay. Peripheral blood lymphocytes from 3 healthy individuals were irradiated with gamma rays at doses varying between 0 and 10 Gy. Following irradiation, the comet assay was performed according to the standard alkaline method (pH>13) and a modified method. In the modified method, agarose embedded cells were treated with a strong alkali (0.3M NaOH, 0.02 M Trizma and 1mM EDTA, pH>13) for 20 min to allow deproteinization of cells and denaturation of DNA. This was followed by electrophoresis using the same alkali solution to obtain comets. DNA damage expressed in terms of comet tail length, percentage of DNA in comet tail and tail moment obtained by the standard alkaline method and the modified method were compared. In both methods, DNA damage showed a good correlation with the dose of gamma ray. The results indicate a satisfactory sensitivity of the modified method in detecting radiation-induced DNA damage in human peripheral

  13. [Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja].

    PubMed

    Zhu, Dan; Bai, Xi; Zhu, Yan-Ming; Cai, Hua; Li, Yong; Ji, Wei; Chen, Chao; An, Lin; Zhu, Yi

    2012-02-01

    Using homologous cloning and RT-PCR technology, we isolated a novel TIFY family gene, GsTIFY11b, from Glycine soja L. G07256, a species that is tolerant to saline and alkaline environments. Phylogenetic analysis indicated that GsTIFY11b was closely related to AtTIFY11a with 56% similarity in amino acid identity. Protein sequence analysis showed that GsTIFY11b protein also had conserved TIFY domain, N-terminal domain, and a C-terminal Jas motif. Quantitative realtime PCR analysis indicated that the expression of GsTIFY11b was induced by both saline and alkaline stresses. Two homozygous GsTIFY11b over-expressing transgenic Arabidopsis lines were obtained. Phenotypic analysis of the transgenic and wild-type Arabidopsis indicated that over-expressing GsTIFY11b in Arabidopsis did not enhance plant tolerance to saline and alkaline stresses, whereas it showed an increased sensitivity to saline stress during seed germination and seedling development. Expression analysis of saline stress response marker genes in transgenic and wild-type plants under stress condition indicated that GsTIFY11b regulated the expression of RD29B, KIN1, and DREB. The transient expression of a GsTIFY11b-GFP fusion protein in onion epidermal cells showed that GsTIFY11b was localized to the nucleus, suggesting a role as a transcriptional regulator in the saline stress response pathway.

  14. Polyamine stress at high pH in Escherichia coli K-12

    PubMed Central

    Yohannes, Elizabeth; Thurber, Amy E; Wilks, Jessica C; Tate, Daniel P; Slonczewski, Joan L

    2005-01-01

    Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range). At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd) as well as RapA (HepA), and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ) and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA) and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD) show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM) at high pH (pH 8.5). Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and spermidine requires neutral or

  15. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  16. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-09-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5.

  17. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice.

    PubMed

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  18. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only

  19. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  20. Permeability evolution in carbonate fractures: Competing roles of confining stress and fluid pH

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; McGuire, Thomas P.; Watanabe, Noriaki; Tsuchiya, Noriyoshi; Elsworth, Derek

    2013-05-01

    We explore the permeability evolution of fractures in carbonate rock that results from the effects of mechanical stress and nonequilibrium chemistry (pH of fluid). Core plugs of Capitan limestone are saw cut to form a smooth axial fracture that is subsequently roughened to simulate a natural fracture with controlled surface topography. Aqueous solutions of ammonium chloride (pH 5˜7) transit these plugs at confining stresses of 3-10 MPa, with flow rates and mineral mass fluxes measured to constrain competing mechanisms of permeability evolution. The effluent calcium concentrations are always much lower than equilibrium calcium solubility, resulting in the dissolution-dominant permeability evolution in our experiments. Depending on the combination of confining stress and fluid pH, the fracture apertures either gape (permeability increase) or close (permeability reduction). We quantitatively constrain the transition between gaping (pH < 6.1) and closing (pH > 6.5) with this transition independent of confining stress up to 10 MPa. A transitional regime (6.1 < pH < 6.5) of invariant aperture represents a balance between the two mechanisms of free-face dissolution and pressure solution at the bridging asperities. We employ a lumped-parameter model to interpret the dissolution-dominant evolution of permeability. By considering different dissolution rate constants between noncontacting asperities and the stagnant water film at the contacting asperities, this model replicates the principal characteristics of permeability evolution of the fracture. Observed rates of aperture change are ill matched when the influent pH is 5-6, since wormhole formation is not accommodated in the model. These observations offer a promising pathway to index the switch from aperture gaping to aperture closing for reactive flow as reactivity is reduced and stress effects become more important.

  1. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  2. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  3. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  4. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2015-01-01

    Inland waters have been recognized as a significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Currently, direct measurements of water pCO2 remain scarce in freshwaters, and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14 200 μmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were >10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were >100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, which increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. No empirical relationship could be derived from our data set in order to correct calculated pCO2 for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we conclude that regional and global estimates of CO2 outgassing from freshwaters based on pH and TA data only are most likely overestimated, although the magnitude of the overestimation needs further quantitative analysis. Direct measurements of pCO2 are recommended in inland waters in general

  5. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Omengo, F. O.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2014-07-01

    Inland waters have been recognized as a~significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Nowadays, direct measurements of water pCO2 remain scarce in freshwaters and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (Equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14.2 mmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were > 10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were > 100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, that increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. We recommend that regional studies on pCO2 should not be based on pH and TA data only, and that direct measurements of pCO2 should become the primary method in inland waters in general, and in particular in acidic, poorly buffered, freshwaters.

  6. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid.

    PubMed

    Scheibe, R J; Kuehl, H; Krautwald, S; Meissner, J D; Mueller, W H

    2000-01-01

    The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells. PMID:10649440

  7. Management of Stress and Anxiety Among PhD Students During Thesis Writing: A Qualitative Study.

    PubMed

    Bazrafkan, Leila; Shokrpour, Nasrin; Yousefi, Alireza; Yamani, Nikoo

    2016-01-01

    Today, postgraduate students experience a variety of stresses and anxiety in different situations of academic cycle. Stress and anxiety have been defined as a syndrome shown by emotional exhaustion and reduced personal goal achievement. This article addresses the causes and different strategies of coping with this phenomena by PhD students at Iranian Universities of Medical Sciences. The study was conducted by a qualitative method using conventional content analysis approach. Through purposive sampling, 16 postgraduate medical sciences PhD students were selected on the basis of theoretical sampling. Data were gathered through semistructured interviews and field observations. Six hundred fifty-four initial codes were summarized and classified into 4 main categories and 11 subcategories on the thematic coding stage dependent on conceptual similarities and differences. The obtained codes were categorized under 4 themes including "thesis as a major source of stress," "supervisor relationship," "socioeconomic problem," and "coping with stress and anxiety." It was concluded that PhD students experience stress and anxiety from a variety of sources and apply different methods of coping in effective and ineffective ways. Purposeful supervision and guidance can reduce the cause of stress and anxiety; in addition, coping strategy must be in a thoughtful approach, as recommended in this study. PMID:27455365

  8. Management of Stress and Anxiety Among PhD Students During Thesis Writing: A Qualitative Study.

    PubMed

    Bazrafkan, Leila; Shokrpour, Nasrin; Yousefi, Alireza; Yamani, Nikoo

    2016-01-01

    Today, postgraduate students experience a variety of stresses and anxiety in different situations of academic cycle. Stress and anxiety have been defined as a syndrome shown by emotional exhaustion and reduced personal goal achievement. This article addresses the causes and different strategies of coping with this phenomena by PhD students at Iranian Universities of Medical Sciences. The study was conducted by a qualitative method using conventional content analysis approach. Through purposive sampling, 16 postgraduate medical sciences PhD students were selected on the basis of theoretical sampling. Data were gathered through semistructured interviews and field observations. Six hundred fifty-four initial codes were summarized and classified into 4 main categories and 11 subcategories on the thematic coding stage dependent on conceptual similarities and differences. The obtained codes were categorized under 4 themes including "thesis as a major source of stress," "supervisor relationship," "socioeconomic problem," and "coping with stress and anxiety." It was concluded that PhD students experience stress and anxiety from a variety of sources and apply different methods of coping in effective and ineffective ways. Purposeful supervision and guidance can reduce the cause of stress and anxiety; in addition, coping strategy must be in a thoughtful approach, as recommended in this study.

  9. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  10. Shot Peening and Thermal Stress Relaxation in 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Chen, Guoxing; Tan, Ziming; Wu, Shuhui

    2015-11-01

    Shot peening is an effective process to enhance the fatigue performance of turbine blades. In this study, the effect of peening pressures was discussed in terms of the residual stress distribution and the surface morphology. Shot peening processes were designed at varying pressures on a 17-4 PH martensitic stainless steel. The profiles of hardness and residual stress were characterized in the cross section. The thermal stress relaxation was further carried out to evaluate the stability of the compressive residual stress under service temperatures of turbine blades. Results show that a maximum stress depth is obtained with peening pressure of 0.40 MPa, and the residual stress can be maintained up to 400 °C, which ensures the service in low-pressure turbine blades.

  11. Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana.

    PubMed

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2013-09-01

    Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH. It is unknown how different U species determine U uptake and translocation within plants and how they might affect the oxidative defense mechanisms of these plants. The present study analyzed U uptake and oxidative stress-related responses in A. thaliana (Columbia ecotype) under contrasted U chemical speciation conditions. The 18-d-old seedlings were exposed for 3 d to 25 µM U in a nutrient solution of which the pH was adjusted to 4.5, 5.5, 6.5, or 7.5. Results indicate that there is a different rate of U uptake and translocation at the different pHs, with high uptake and low translocation at low pH and lower uptake but higher translocation at high pH. After U exposure, an increased glutathione reductase activity and total glutathione concentration were observed in U-exposed roots, pointing toward an important role for glutathione in the root defense system against U either by chelation or by antioxidative defense mechanisms. In leaves, antioxidative defense mechanisms were activated on U exposure, indicated by increased superoxide dismutase and catalase activity. As it seems that U toxicity is influenced by pH, it is important to consider site-specific characteristics when making U risk assessments. PMID:23737149

  12. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.

    PubMed

    Gong, Biao; Li, Xiu; Bloszies, Sean; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-06-01

    Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions.

  13. The regulators of yeast PHO system participate in the transcriptional regulation of G1 cyclin under alkaline stress conditions.

    PubMed

    Nishizawa, Masafumi

    2015-03-01

    The yeast Pho85 kinase oversees whether environmental conditions are favourable for cell growth and enables yeast cells to express only genes that are appropriate for the conditions. Alkaline stress perturbs transport of molecules across the plasma membrane that is vital for cell survival. Progression through the cell cycle is halted until the cells can adapt to the stress conditions. I found that Pho85 is required for CLN2 expression and that overproduction of the transcription factors Pho4, Rim101 and Crz1, all targets of Pho85, inhibited CLN2 expression. CLN2 expression in the absence of Pho85 could be recovered only when all the three transcription factors were deleted. Whi5, a functional homologue of the mammalian Rb protein, represses CLN2 expression and is inactivated when phosphorylated by either of the CDK-cyclin complexes, Cdc28-Cln3 or Pho85-Pcl9. Under alkaline conditions, the absence of Whi5 caused an increase in CLN2 expression but failed to do so when Pho85 was also absent, or when Pho4 was overproduced. The expression level of CLN2 in a Δpho85 Δpho4 Δrim101 Δcrz1 quadruple mutant was stimulated when the Whi5 activity was repressed by overproduction of Pho85-Pcl9. These results indicate that Whi5 is also under control of alkaline stress. The inhibitory function of Whi5 on CLN2 is dependent on Rpd3 HDAC, and the absence of Rpd3 could also suppress the inhibitory effect of Pho4 overproduction. Based on these findings, a model is presented in which Pho85 and Pho4 functions in CLN2 regulation under alkaline conditions.

  14. Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values.

    PubMed

    Qu, Ruijuan; Feng, Mingbao; Wang, Xinghao; Qin, Li; Wang, Chao; Wang, Zunyao; Wang, Liansheng

    2014-05-01

    In this study, laboratory experiments were conducted to investigate the combined effect of zinc and pH on metal accumulation and oxidative stress biomarkers in Carassius auratus. Fish were exposed to 0.1 and 1.0mg Zn/L at three pH values (5.0, 7.25, 9.0) for 3, 12, and 30 d. After each exposure, the contents of three trace elements (Zn, Fe and Cu) were determined in liver. Generally, longer exposure to zinc (12d and 30 d) increased hepatic Zn and Cu deposition, but decreased Fe content. Increasing accumulation of Zn in the tissue was also observed with increasing zinc concentration in the exposure medium. Moreover, hepatic antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), together with the level of glutathione (GSH) were measured to evaluate the oxidative stress status. The decreases in the four measured biochemical parameters after 3d exposure might reflect the failure of the antioxidant defense system in neutralizing the ROS generated during the metabolic process, while the recovery of the antioxidants at days 12 and 30 suggested a possible shift toward a detoxification mechanism. With regard to the influence of pH on zinc toxicity, the general observation was that the living environment became more stressful when the water conditions changed from an acidic state toward a near-neutral or alkaline state. PMID:24632310

  15. Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values.

    PubMed

    Qu, Ruijuan; Feng, Mingbao; Wang, Xinghao; Qin, Li; Wang, Chao; Wang, Zunyao; Wang, Liansheng

    2014-05-01

    In this study, laboratory experiments were conducted to investigate the combined effect of zinc and pH on metal accumulation and oxidative stress biomarkers in Carassius auratus. Fish were exposed to 0.1 and 1.0mg Zn/L at three pH values (5.0, 7.25, 9.0) for 3, 12, and 30 d. After each exposure, the contents of three trace elements (Zn, Fe and Cu) were determined in liver. Generally, longer exposure to zinc (12d and 30 d) increased hepatic Zn and Cu deposition, but decreased Fe content. Increasing accumulation of Zn in the tissue was also observed with increasing zinc concentration in the exposure medium. Moreover, hepatic antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), together with the level of glutathione (GSH) were measured to evaluate the oxidative stress status. The decreases in the four measured biochemical parameters after 3d exposure might reflect the failure of the antioxidant defense system in neutralizing the ROS generated during the metabolic process, while the recovery of the antioxidants at days 12 and 30 suggested a possible shift toward a detoxification mechanism. With regard to the influence of pH on zinc toxicity, the general observation was that the living environment became more stressful when the water conditions changed from an acidic state toward a near-neutral or alkaline state.

  16. Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia.

    PubMed

    Sashaw, Jessica; Nawata, Michele; Thompson, Sarah; Wood, Chris M; Wright, Patricia A

    2010-03-01

    Recent studies have shown that genes for the putative ammonia transporter, Rhesus glycoproteins (Rh) and the facilitated urea transporter (UT) are expressed before hatching in rainbow trout (Oncorhychus mykiss Walbaum) embryos. We tested the hypothesis that Rh and UT gene expressions are regulated in response to environmental conditions that inhibit ammonia excretion during early life stages. Eyed-up embryos (22 days post-fertilization (dpf)) were exposed to control (pH 8.3), high ammonia (1.70 mmol l(-1) NH4HCO3) and high pH (pH 9.7) conditions for 48h. With exposure to high water ammonia, ammonia excretion rates were reversed, tissue ammonia concentration was elevated by 9-fold, but there were no significant changes in mRNA expression relative to control embryos. In contrast, exposure to high water pH had a smaller impact on ammonia excretion rates and tissue ammonia concentrations, whereas mRNA levels for the Rhesus glycoprotein Rhcg2 and urea transporter (UT) were elevated by 3.5- and 5.6-fold, respectively. As well, mRNAs of the genes for H+ATPase and Na+/H+ exchanger (NHE2), associated with NH3 excretion, were also upregulated by 7.2- and 13-fold, respectively, in embryos exposed to alkaline water relative to controls. These results indicate that the Rhcg2, UT and associated transport genes are regulated in rainbow trout embryos, but in contrast to adults, there is no effect of high external ammonia at this stage of development.

  17. Sensitization of Listeria monocytogenes to Low pH, Organic Acids, and Osmotic Stress by Ethanol

    PubMed Central

    Barker, Clive; Park, Simon F.

    2001-01-01

    The killing of Listeria monocytogenes following exposure to low pH, organic acids, and osmotic stress was enhanced by the addition of 5% (vol/vol) ethanol. At pH 3, for example, the presence of this agent stimulated killing by more than 3 log units in 40 min of exposure. The rate of cell death at pH 3.0 was dependent on the concentration of ethanol. Thus, while the presence 10% (vol/vol) ethanol at pH 3.0 stimulated killing by more than 3 log units in just 5 min, addition of 1.25% (vol/vol) ethanol resulted in less than 1 log unit of killing in 10 min. The ability of 5% (vol/vol) ethanol to stimulate killing at low pH and at elevated osmolarity was also dependent on the amplitude of the imposed stress, and an increase in the pH from 3.0 to 4.0 or a decrease in the sodium chloride concentration from 25 to 2.5% led to a marked reduction in the effectiveness of 5% (vol/vol) ethanol as an augmentative agent. Combinations of organic acids, low pH, and ethanol proved to be particularly effective bactericidal treatments; the most potent combination was pH 3.0, 50 mM formate, and 5 % (vol/vol) ethanol, which resulted in 5 log units of killing in just 4 min. Ethanol-enhanced killing correlated with damage to the bacterial cytoplasmic membrane. PMID:11282610

  18. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils

    PubMed

    Johri; Surange; Nautiyal

    1999-08-01

    An ecological survey was conducted to characterize 4800 bacterial strains isolated from the root-free soil, rhizosphere, and rhizoplane of Prosopis juliflora growing in alkaline soils. Of the 4800 bacteria, 857 strains were able to solubilize phosphate on plates. The incidence of phosphate-solubilizing bacteria (PSB) in the rhizoplane was highest, followed by rhizosphere and root-free soil. Eighteen bacterial strains out of 857 PSB were able to produce halo at 30 degrees C in a plate assay in the presence of 5% salt (NaCl) and solubilize tricalcium phosphate in National Botanical Research Institute's phosphate growth medium (NBRIP) broth, in the presence of various salts, pHs, and temperatures. Among the various bacteria tested, NBRI4 and NBRI7 did not produced halo in a plate assay at 30 degrees C in the absence of salt. Contrary to indirect measurement of phosphate solubilization by plate assay, the direct measurement of phosphate solubilization in NBRIP broth assay always resulted in reliable results. The phosphate solubilization ability of NBRI4 was higher than in the control in the presence of salts (NaCl, CaCl2, and KCl) at 30 degrees C. Phosphate solubilization further increased in the presence of salts at 37 degrees C as compared with 30 degrees C. At 37 degrees C, CaCl2 reduced phosphate solubilization ability of NBRI4 compared with the control. The results indicated the role of calcium salt in the phosphate solubilization ability of NBRI4.http://link.springer-ny. com/link/service/journals/00284/bibs/39n2p89.html PMID:10398833

  19. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.

    PubMed

    Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui

    2016-04-01

    Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress. PMID:26477612

  20. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes.

  1. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Huang, Qingguo; Wei, Zhongbo; Wang, Zunyao

    2015-03-01

    Experiments were conducted to investigate the effect of three different carbon nanotubes [single-walled carbon nanotubes (SWCNTs), hydroxylated multi-walled carbon nanotubes (OH-MWCNTs), and carboxylated multi-walled carbon nanotubes (COOH-MWCNTs)] on antioxidant parameters and metals accumulation in the liver of Carassius auratus. A semi-static test system was used to expose C. auratus to either a freshwater control, 0.1, or 0.5mg/L CNTs at three pH levels (5.0, 7.25, and 9.0) for 3 and 12 days. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), together with the level of glutathione (GSH) and malondialdehyde (MDA) were determined in liver on the 3rd and 12th day. The results showed that there was a significant increase in MDA concentration and SOD activity in fish exposed to CNTs, indicating that CNTs exposure induces an oxidative stress response in fish. According to integrated biomarker response (IBR) index, the effect of these three CNTs on liver can be ordered as SWCNTs>OH-MWCNTs>COOH-MWCNTs and they are more toxic to fish in an alkaline environment. Moreover, the concentrations of catalyst metals (Co, Ni, and Mo) and bioelements (Cu, Fe, Zn, and Se) in liver were changed, depending on the CNTs concentration, the pH level, and the exposure duration. Generally, all CNTs groups showed that catalyst metals could be concentrated significantly into the liver of fish, and changes in hepatic Cu, Zn, Fe, and Se contents are consistent with the activity of antioxidant enzymes. PMID:25625523

  2. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. PMID:27151682

  3. pH Dependence of the Stress Regulator DksA

    PubMed Central

    Furman, Ran; Danhart, Eric M.; NandyMazumdar, Monali; Yuan, Chunhua; Foster, Mark P.; Artsimovitch, Irina

    2015-01-01

    DksA controls transcription of genes associated with diverse stress responses, such as amino acid and carbon starvation, oxidative stress, and iron starvation. DksA binds within the secondary channel of RNA polymerase, extending its long coiled-coil domain towards the active site. The cellular expression of DksA remains constant due to a negative feedback autoregulation, raising the question of whether DksA activity is directly modulated during stress. Here, we show that Escherichia coli DksA is essential for survival in acidic conditions and that, while its cellular levels do not change significantly, DksA activity and binding to RNA polymerase are increased at lower pH, with a concomitant decrease in its stability. NMR data reveal pH-dependent structural changes centered at the interface of the N and C-terminal regions of DksA. Consistently, we show that a partial deletion of the N-terminal region and substitutions of a histidine 39 residue at the domain interface abolish pH sensitivity in vitro. Together, these data suggest that DksA responds to changes in pH by shifting between alternate conformations, in which competing interactions between the N- and C-terminal regions modify the protein activity. PMID:25799498

  4. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  5. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study.

    PubMed

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne; Ariño, Joaquín

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  6. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study

    PubMed Central

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M. Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  7. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific.

  8. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  9. Exogenous γ-Aminobutyric Acid Improves the Structure and Function of Photosystem II in Muskmelon Seedlings Exposed to Salinity-Alkalinity Stress

    PubMed Central

    Xu, Weinan; Zhen, Ai; Zhang, Liang; Hu, Xiaohui

    2016-01-01

    Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test. They also reduced the activity of chloroplast ATPases and disrupted the internal lamellar system of the thylakoids. Exogenous GABA alleviated the stress-induced reduction of net photosynthesis, the activity of chloroplast ATPases, and overcame some of the damaging effects of stress on the chloroplast structure. Based on interpretation of the JIP-test, we conclude that exogenous GABA alleviated stress-related damage on the acceptor side of PSII. It also restored energy distribution, the reaction center status, and enhanced the ability of PSII to repair reaction centers in stressed seedlings. GABA may play a crucial role in protecting the chloroplast structure and function of PSII against the deleterious effects of salinity-alkalinity stress. PMID:27764179

  10. Ectopic Expression of GsPPCK3 and SCMRP in Medicago sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content

    PubMed Central

    Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming

    2014-01-01

    So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886

  11. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    SciTech Connect

    Aisha, M.D.; Nor-Ashikin, M.N.K.; Sharaniza, A.B.R.; Nawawi, H.; Froemming, G.R.A.

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  12. Snow leopard (Panthera uncia) spermatozoa are sensitive to alkaline pH, but motility in vitro is not influenced by protein or energy supplements.

    PubMed

    Roth, T L; Swanson, W F; Collins, D; Burton, M; Garell, D M; Wildt, D E

    1996-01-01

    To better understand the biology of snow leopard spermatozoa and to facilitate developing assisted reproduction, a series of studies was conducted to: 1) identify the component(s) of complex culture media responsible for the detrimental effect on sperm survival in vitro, 2) optimize medium for supporting sperm viability, and 3) evaluate sperm capacitation in vitro. Constituents of complex media were added systematically to phosphate-buffered saline (PBS) to isolate the factor(s) influencing snow leopard sperm motility in vitro. Sperm capacitation was also assessed following incubation in PBS with bovine serum albumin (BSA), fetal calf serum (FCS), or heparin. For maintaining sperm motility, there was no benefit (P > or = 0.05) to supplementing PBS with low (5%) or high (20%) concentrations of snow leopard serum (SLS) versus FCS or BSA. Likewise, adding supplemental energy substrates (pyruvate, glucose, lactate, or glutamine) did not enhance or hinder (P > or = 0.05) sperm motility. However, motility rapidly decreased (P < 0.05) with the addition of NaHCO3 to PBS or Ham's F10 nutrient mixture. Surprisingly, Ham's F10 with no buffering component or with both NaHCO3 and N-Z-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) maintained sperm motility at levels similar (P > or = 0.05) to PBS. Although sperm motility in all treatments decreased with time, there was a strong inverse relationship (P < 0.01; r = 0.90) between motility and sample pH at 6 hours. Spermatozoa incubated in PBS containing FCS, BSA, or heparin did not undergo the acrosome reaction when exposed to calcium ionophore. In summary, alkaline pH has a profound detrimental effect on snow leopard sperm motility, and capacitation does not occur under conditions that normally promote this event in other felid species. These results clearly demonstrate a high degree of interspecific variation among felids in fundamental sperm function, and they provide evidence for the necessity of basic research when

  13. Snow leopard (Panthera uncia) spermatozoa are sensitive to alkaline pH, but motility in vitro is not influenced by protein or energy supplements.

    PubMed

    Roth, T L; Swanson, W F; Collins, D; Burton, M; Garell, D M; Wildt, D E

    1996-01-01

    To better understand the biology of snow leopard spermatozoa and to facilitate developing assisted reproduction, a series of studies was conducted to: 1) identify the component(s) of complex culture media responsible for the detrimental effect on sperm survival in vitro, 2) optimize medium for supporting sperm viability, and 3) evaluate sperm capacitation in vitro. Constituents of complex media were added systematically to phosphate-buffered saline (PBS) to isolate the factor(s) influencing snow leopard sperm motility in vitro. Sperm capacitation was also assessed following incubation in PBS with bovine serum albumin (BSA), fetal calf serum (FCS), or heparin. For maintaining sperm motility, there was no benefit (P > or = 0.05) to supplementing PBS with low (5%) or high (20%) concentrations of snow leopard serum (SLS) versus FCS or BSA. Likewise, adding supplemental energy substrates (pyruvate, glucose, lactate, or glutamine) did not enhance or hinder (P > or = 0.05) sperm motility. However, motility rapidly decreased (P < 0.05) with the addition of NaHCO3 to PBS or Ham's F10 nutrient mixture. Surprisingly, Ham's F10 with no buffering component or with both NaHCO3 and N-Z-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) maintained sperm motility at levels similar (P > or = 0.05) to PBS. Although sperm motility in all treatments decreased with time, there was a strong inverse relationship (P < 0.01; r = 0.90) between motility and sample pH at 6 hours. Spermatozoa incubated in PBS containing FCS, BSA, or heparin did not undergo the acrosome reaction when exposed to calcium ionophore. In summary, alkaline pH has a profound detrimental effect on snow leopard sperm motility, and capacitation does not occur under conditions that normally promote this event in other felid species. These results clearly demonstrate a high degree of interspecific variation among felids in fundamental sperm function, and they provide evidence for the necessity of basic research when

  14. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.

    PubMed

    Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L

    2005-01-01

    Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid

  15. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress.

  16. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress. PMID:27112014

  17. Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water.

    PubMed

    Darcan, Cihan; Ozkanca, Reşit; Idil, Onder; Flint, Ken P

    2009-01-01

    When exposed extreme environmental conditions such as sea water, bacteria have been shown different survival strategy for continue their life. One of this strategy known as viable but nonculturable (VBNC) state which is very important for nondifferiation bacteria. VBNC cells cause serious human health problems. Little is known, however, about the genetic mechanisms underlying the VBNC state. Under different environmental conditions, porins are important in the survival strategy of bacteria. EnvZ/OmpR work together as regulators of ompF and ompC gene expression. It is known that the EnvZ system has a role in VBNC state. In this study we tried to find out the viability of EnvZ, OmpC and OmpF mutant E. coli under stress effect of osmolarity, pH and starvation. Bacteria were suspended in filtered-autoclaved sea water microcosms and numbers determined over 25 day incubation periods by plate count (PC), direct viable count (DVC) and count of cells capable of respiration (RCC). As regard to results, alkaline pH affected E. coli more than acidic pH, which led to decline in number. On the contrary glycine betaine addition to sea water protected E. coli porin mutants and also reduced the death rate of bacteria. Under the effect of pH, osmotic stress and starvation stress, wild type E. coli and porin mutants entered a dormant state or became VBNC with the exception of MSZ31 (envZ mutant) E. coli cells which did not enter the VBNC state under the three tested stress conditions. This study is the first report to demonstrate that E. coli could not enter the VBNC state in the lack of EnvZ product under the stress of osmolarity, pH and starvation and the relationship between EnvZ and VBNC state are not affected by pH, osmolarity and starvation. PMID:20380141

  18. Structure of Escherichia coli tryptophanase purified from an alkaline-stressed bacterial culture.

    PubMed

    Rety, Stephane; Deschamps, Patrick; Leulliot, Nicolas

    2015-11-01

    Tryptophanase is a bacterial enzyme involved in the degradation of tryptophan to indole, pyruvate and ammonia, which are compounds that are essential for bacterial survival. Tryptophanase is often overexpressed in stressed cultures. Large amounts of endogenous tryptophanase were purified from Escherichia coli BL21 strain overexpressing another recombinant protein. Tryptophanase was crystallized in space group P6522 in the apo form without pyridoxal 5'-phosphate bound in the active site.

  19. Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors.

    PubMed

    Ge, Ying; Li, Yong; Lv, De-Kang; Bai, Xi; Ji, Wei; Cai, Hua; Wang, Ao-Xue; Zhu, Yan-Ming

    2011-06-01

    Transcriptome of Glycine soja leaf tissue during a detailed time course formed a foundation for examining transcriptional processes during NaHCO(3) stress treatment. Of a total of 2,310 detected differentially expressed genes, 1,664 genes were upregulated and 1,704 genes were downregulated at various time points. The number of stress-regulated genes increased dramatically after a 6-h stress treatment. GO category gene enrichment analysis revealed that most of the differentially expressed genes were involved in cell structure, protein synthesis, energy, and secondary metabolism. Another enrichment test revealed that the response of G. soja to NaHCO(3) highlights specific transcription factors, such as the C2C2-CO-like, MYB-related, WRKY, GARP-G2-like, and ZIM families. Co-expressed genes were clustered into ten classes (P < 0.001). Intriguingly, one cluster of 188 genes displayed a unique expression pattern that increases at an early stage (0.5 and 3 h), followed by a decrease from 6 to 12 h. This group was enriched in regulation of transcription components, including AP2-EREBP, bHLH, MYB/MYB-related, C2C2-CO-like, C2C2-DOF, C2C2, C3H, and GARP-G2-like transcription factors. Analysis of the 1-kb upstream regions of transcripts displaying similar changes in abundance identified 19 conserved motifs, potential binding sites for transcription factors. The appearance of ABA-responsive elements in the upstream of co-expression genes reveals that ABA-mediated signaling participates in the signal transduction in alkaline response.

  20. Induction kinetics of a conditional pH stress response system in Escherichia coli.

    PubMed

    Fritz, Georg; Koller, Christiane; Burdack, Korinna; Tetsch, Larissa; Haneburger, Ina; Jung, Kirsten; Gerland, Ulrich

    2009-10-23

    The analysis of stress response systems in microorganisms can reveal molecular strategies for regulatory control and adaptation. In this study, we focused on the Cad module, a subsystem of Escherichia coli's response to acidic stress that is conditionally activated at low pH only when lysine is available. When expressed, the Cad system counteracts the elevated H(+) concentration by converting lysine to cadaverine under the consumption of H(+) and exporting cadaverine in exchange for external lysine. Surprisingly, the cad operon displays a transient response, even when the conditions for its induction persist. To quantitatively characterize the regulation of the Cad module, we experimentally recorded and theoretically modeled the dynamics of important system variables. We established a quantitative model that adequately describes and predicts the transient expression behavior for various initial conditions. Our quantitative analysis of the Cad system supports negative feedback by external cadaverine as the origin of the transient response. Furthermore, the analysis puts causal constraints on the precise mechanism of signal transduction via the regulatory protein CadC. PMID:19703467

  1. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).

    PubMed

    Carvalho, Cleoni dos Santos; Bernusso, Vanessa Aline; Fernandes, Marisa Narciso

    2015-10-01

    We analyzed the effect of exposure to 25% 96 h-LC50 of copper at low (24.5 μg L(-1) Cu, pH 4.5), neutral (7.25 μg L(-1) Cu, pH 7.0) and high pH (4.0 μg L(-1) Cu, pH 8.0) at 20 °C on antioxidant defenses and oxidative stress in the liver, gills and white muscle of the fish Prochilodus lineatus. Water at pH 4.5 and 8.0 affected the enzymatic and non-enzymatic antioxidant systems of the liver and gills, but not of the white muscles of P. lineatus, when compared to water at pH 7.0. After Cu exposure, SOD (superoxide dismutase), GPx (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) activities increased and CAT (catalase) activity decreased in the liver at water at pH 4.5 and 8.0. Meanwhile, the activities of SOD, CAT, GPx, GR and GST increased in the gills at these pHs. SOD and CAT activities increased in the white muscle after Cu exposure at pH 8.0 and GPx, GR and GST activities decreased after Cu exposure at pH 4.5 and 8.0. LPO levels decreased in the liver and gills of fish that were exposed to water at pH 4.5 and 8.0 and, after Cu exposure, the LPO level increased in the liver, gills and white muscle of fish that were exposed to water at pH 4.5 and 8.0, when compared to the control group at pH 7.0. The metallothionein (MT) concentration increased in the liver of fish in water at pH 4.5 and 8.0 and the gill of fish in water at pH 8.0. After Cu exposure, MT in the liver and gills was significantly elevated in fish exposed to water at pH 4.5 and 8.0, but remained at levels similar to the control group in the white muscle. These results indicate a differing sensitivity of fish organs and tissues to essential metals, such as copper, and that toxicity may be relevant at environmental concentrations. These results indicate that the effect of Cu on the response of antioxidant defense systems is determined by water pH.

  2. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties.

  3. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties. PMID:25986749

  4. Effects of heat and pH stresses on the recovery of Staphylococcus aureus on medium-110.

    PubMed

    Salamah, A A

    1990-07-01

    The effects of heat and pH stresses on Staphylococcus aureus strain ATCC 10390 (coagulase positive) and strain ATCC 6020 (coagulase negative) were studied. The coagulase negative strain was more sensitive to heat and low or high pH than the coagulase positive strain. Both strains, however, were injured by heat and by pH 4.5 and 9 as estimated by the decrease in their tolerance to the selective agents (sodium chloride and sodium azide) present in the selective medium. The heat or pH injured cells, however, regained their tolerance to the selective agents if they were pregrown in a non-selective medium before they were plated on the selective medium. PMID:2273983

  5. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.

    PubMed

    Chen, Yinguang; Liu, Kun; Su, Yinglong; Zheng, Xiong; Wang, Qin

    2013-07-01

    This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis.

  6. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands.

    PubMed

    Fan, Pengfei; Chen, Daitao; He, Yanan; Zhou, Qingxia; Tian, Yongqiang; Gao, Lihong

    2016-11-01

    Salt-induced soil degradation is common in farmlands and limits the growth and development of numerous crop plants in the world. In this study, we isolated salt-tolerant bacteria from the rhizosphere of Tamarix chinensis, Suaeda salsa and Zoysia sinica, which are common wild plants grown on a saline-alkaline land, to test these bacteria's efficiency in alleviating salt stress in tomato plants. We screened out seven strains (TF1-7) that are efficient in reducing salt stress in tomato seedlings. The sequence data of 16S rRNA genes showed that these strains belong to Arthrobacter and Bacillus megaterium. All strains could hydrolyze casein and solubilize phosphate, and showed at least one plant growth promotion (PGP)-related gene, indicating their potential in promoting plant growth. The Arthrobacter strains TF1 and TF7 and the Bacillus megaterium strain TF2 and TF3 could produce indole acetic acid under salt stress, further demonstrating their PGP potential. Tomato seed germination, seedling length, vigor index, and plant fresh and dry weight were enhanced by inoculation of Arthrobacter and B. megaterium strains under salt stress. Our results demonstrated that salt-tolerant bacteria isolated from the rhizosphere of wild plants grown on saline-alkaline lands could be used for alleviating salt stress in crop plants. PMID:27196364

  7. 2,4-Dichlorophenoxyacetic acid (2,4-D) utilization by Delftia acidovorans MC1 at alkaline pH and in the presence of dichlorprop is improved by introduction of the tfdK gene.

    PubMed

    Hoffmann, Doreen; Müller, Roland H

    2006-06-01

    Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain's degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (mu max) of 0.158 h(-1). The half-maximum rate-associated substrate concentration (Ks) was 45 microM. At pH 8.5 mu max was only 0.05 h(-1) and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that mu max with dichlorprop was around 0.2 h(-1) at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with mu max of 0.147 h(-1) and Ks of 267 microM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 microM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)-2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h(-1) at pH 6.8 and up to D = 0.2 h(-1) at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.

  8. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5

    PubMed Central

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed. PMID:26042463

  9. Induction of Oxidative Stress and Antioxidative Mechanisms in Arabidopsis thaliana after Uranium Exposure at pH 7.5.

    PubMed

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed. PMID:26042463

  10. The effect of temperature and pH gradients on Lactobacillus rhamnosus gene expression of stress-related genes.

    PubMed

    Wallenius, Janne; Uuksulainen, Tuomas; Salonen, Kalle; Rautio, Jari; Eerikäinen, Tero

    2011-11-01

    In this study, Lactobacillus rhamnosus, a renowned probiotic, was cultivated in fluctuating environment. Base gradients caused by a pH control in an industrial process and temperature gradients caused by uneven heating were simulated with a scale-down method. A pH gradient was created in a plug flow reactor (PFR). Expression of pH stress-related genes (atpA, aldB, cfa, groEL, hrcA and pstS) were studied as a relative gene expression study using ldhD as a reference gene. Expression measurements were carried out with the TRAC method. The responses of groEL, hrcA and atpA genes to temperature and pH changes were observed. The expression of phosphate uptake system-related pstS gene was induced almost linearly in the chemostat cultivation experiments when the base gradient in the PFR was increased. Correlations between the results from gene expression studies and freeze stability or acid stress survival were studied. However, by measuring the expression of these genes, we were not able to predict eventual freeze stability or survival from the acid stress test.

  11. Characterizing the Effects of Inorganic Acid and Alkaline Shock on the Staphylococcus aureus Transcriptome and Messenger RNA Turnover

    PubMed Central

    Anderson, Kelsi L.; Roux, Christelle M.; Olson, Matthew W.; Luong, Thanh T.; Lee, Chia Y.; Olson, Robert; Dunman, Paul M.

    2010-01-01

    Staphylococcus aureus pathogenesis can be partially attributed to its ability to adapt to otherwise deleterious host-associated stresses. Here, Affymetrix GeneChips® were used to examine the S. aureus responses to inorganic acid and alkaline shock and to assess whether stress dependent changes in mRNA turnover are likely to facilitate the organism’s ability to tolerate pH challenge. Results indicate that S. aureus adapts to pH shock by eliciting responses expected of cells coping with pH alteration, including neutralizing cellular pH, DNA repair, amino acid biosynthesis and virulence factor expression. Further, the S. aureus response to alkaline conditions is strikingly similar to that of stringent response induced cells. Indeed, we show that alkaline shock stimulates accumulation of the stringent response activator (p)ppGpp. Results also revealed that pH shock significantly alters the mRNA properties of the cell. A comparison of the mRNA degradation properties of transcripts whose titers either increased or decreased in response to sudden pH change revealed that alterations in mRNA degradation may, in part, account for the changes in the mRNA levels of factors predicted to mediate pH tolerance. A set of small stable RNA molecules were induced in response to acid or alkaline shock conditions and may mediate adaptation to pH stress. PMID:21039920

  12. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.

  13. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  14. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2016-10-01

    In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)).

  15. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2016-10-01

    In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)). PMID:27132820

  16. Effect of Stress on Corrosion at Crack Tip on Pipeline Steel in a Near-Neutral pH Solution

    NASA Astrophysics Data System (ADS)

    Yang, Yao; Cheng, Y. Frank

    2016-10-01

    In this work, the local corrosion at crack tip on an API 5L X46 pipeline steel specimens was investigated under various applied loads in a near-neutral pH solution. Electrochemical measurements, including potentiodynamic polarization and electrochemical impedance spectroscopy, combined with micro-electrochemical technique and surface characterization, were conducted to investigate the effect of stress on local anodic solution of the steel at the crack tip. The stress corrosion cracking of the steel was dominated by an anodic dissolution mechanism, while the effect of hydrogen was negligible. The applied load (stress) increased the corrosion rate at the crack tip, contributing to crack propagation. The deposit of corrosion products at the crack tip could protect somewhat from further corrosion. At sufficiently large applied loads such as 740 N in the work, it was possible to generate separated cathode and anode, further accelerating the crack growth.

  17. Stress corrosion cracking of X-60 line pipe steel in a carbonate-bicarbonate solution

    SciTech Connect

    Pilkey, A.K.; Lambert, S.B.; Plumtree, A. . Dept. of Mechanical Engineering)

    1995-02-01

    An experimental system was developed to reproduce stress corrosion cracking (SCC) of API X-60 line pipe steels in highly alkaline (pH = 10) carbonate-bicarbonate (1 N sodium carbonate [Na[sub 2]CO[sub 3

  18. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  19. Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum virgatum L.)

    PubMed Central

    Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao

    2014-01-01

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834

  20. Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants.

    PubMed

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-12-01

    Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 μM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 μM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress. PMID:26263174

  1. Oxidative stress responses induced by uranium exposure at low pH in leaves of Arabidopsis thaliana plants.

    PubMed

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-12-01

    Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 μM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 μM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.

  2. Effects of dietary allspice, Pimenta dioica powder on physiological responses of Oreochromis mossambicus under low pH stress.

    PubMed

    Yılmaz, Sevdan; Acar, Ümit; Kesbiç, Osman Sabri; Gültepe, Nejdet; Ergün, Sebahattin

    2015-01-01

    This study investigated the effects of the supplementation with allspice (0, 5, 10, 15, or 20 g kg(-1)) on the haemato-immunological and biochemical variables in tilapia, Oreochromis mossambicus under acidic stress condition. In a 60-day feeding trial, 15 aquariums (80-L) were stocked with 18 fish (20.05 ± 0.10 g) each. Then, acidic stress was achieved by exposing the sampled fish to acidic water (pH 5.5) for 3 days. Allspice supplementation influenced the haematological indices, serum glucose, protein, globulin and innate immune parameters such as respiratory burst activity, lysozyme, and myeloperoxidase activities. In general, at acidic pH decreased circulating red blood cell numbers (RBC), increased mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and the innate immune parameters were observed. On the other hand, the inclusion of allspice prevented an increase in blood glucose MCV and MCH, decreases in albumin, RBC, lysozyme activity and respiratory burst avtivity. In conclusion, this study demonstrated that allspice supplementation at 10 g kg(-1) for 60 days, has adequate beneficial effects on improvement of haemato-immunological and biochemical status of O. mossambicus after stressful management.

  3. Effects of dietary allspice, Pimenta dioica powder on physiological responses of Oreochromis mossambicus under low pH stress.

    PubMed

    Yılmaz, Sevdan; Acar, Ümit; Kesbiç, Osman Sabri; Gültepe, Nejdet; Ergün, Sebahattin

    2015-01-01

    This study investigated the effects of the supplementation with allspice (0, 5, 10, 15, or 20 g kg(-1)) on the haemato-immunological and biochemical variables in tilapia, Oreochromis mossambicus under acidic stress condition. In a 60-day feeding trial, 15 aquariums (80-L) were stocked with 18 fish (20.05 ± 0.10 g) each. Then, acidic stress was achieved by exposing the sampled fish to acidic water (pH 5.5) for 3 days. Allspice supplementation influenced the haematological indices, serum glucose, protein, globulin and innate immune parameters such as respiratory burst activity, lysozyme, and myeloperoxidase activities. In general, at acidic pH decreased circulating red blood cell numbers (RBC), increased mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and the innate immune parameters were observed. On the other hand, the inclusion of allspice prevented an increase in blood glucose MCV and MCH, decreases in albumin, RBC, lysozyme activity and respiratory burst avtivity. In conclusion, this study demonstrated that allspice supplementation at 10 g kg(-1) for 60 days, has adequate beneficial effects on improvement of haemato-immunological and biochemical status of O. mossambicus after stressful management. PMID:26636007

  4. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9.

  5. The water barrier function of the skin in relation to the water content of stratum corneum, pH and skin lipids. The effect of alkaline soap and syndet on dry skin in elderly, non-atopic patients.

    PubMed

    Thune, P; Nilsen, T; Hanstad, I K; Gustavsen, T; Lövig Dahl, H

    1988-01-01

    Clinical dryness of the skin is a common problem among elderly, dermatological patients. In the present investigation, hydration, surface lipids, skin pH and water barrier function as expressed by the transepidermal water loss (TEWL) were studied in both dry and normal skin. Using these parameters, a comparison of the local effects of acid and alkaline cleansing products was made. In non-atopic elderly patients with dry skin, the TEWL values were lower than in the younger control group but higher than in the older controls. Following one week's topical therapy, the TEWL values in the patient group decreased further and approached the lower values of the older control group. At the same time the skin hydration values increased, indicating a beneficial effect on the skin barrier. An inverse relationship was demonstrated between TEWL and skin hydration. The study indicates that high TEWL values are frequently correlated with high pH, low hydration of the stratum corneum and reduced skin surface lipid content. Despite the intensive use of an acid syndet and lotion, the pH-readings increased but were still within the 'confidence limits' of the control groups.

  6. Characterization of two glycoside hydrolase family 36 α-galactosidases: novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity.

    PubMed

    Zhou, Junpei; Lu, Qian; Zhang, Rui; Wang, Yiyan; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-03-01

    Two α-galactosidases, AgaAJB07 from Mesorhizobium and AgaAHJG4 from Streptomyces, were expressed in Escherichia coli. Recombinant AgaAJB07 showed a 2.9-fold and 22.6-fold increase in kcat with a concomitant increase of 2.3-fold and 16.3-fold in Km in the presence of 0.5mM ZnSO4 and 30.0mM Pb(CH3COO)2, respectively. Recombinant AgaAHJG4 showed apparent optimal activity at pH 8.0 in McIlvaine or Tris-HCl buffer and 9.5 in glycine-NaOH or HCl-borax-NaOH buffer, retention of 23.6% and 43.2% activity when assayed at 10 and 20°C, respectively, and a half-life of approximately 2min at 50°C. The activation energies for p-nitrophenyl-α-d-galactopyranoside hydrolysis by AgaAJB07 and AgaAHJG4 were 71.9±0.8 and 48.2±2.0kJmol(-1), respectively. Both AgaAJB07 and AgaAHJG4 exhibited transglycosylation activity, but they required different acceptors and produced different compounds. Furthermore, potential factors for alkaline and multiple pH optima and low-temperature adaptations of AgaAHJG4 were presumed. PMID:26471539

  7. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress.

    PubMed

    Checchetto, Vanessa; Segalla, Anna; Sato, Yuki; Bergantino, Elisabetta; Szabo, Ildiko; Uozumi, Nobuyuki

    2016-04-01

    The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes. PMID:26880819

  8. An acid/alkaline stress and the addition of amino acids induce a prolonged viability of Lactobacillus plantarum loaded into alginate gel.

    PubMed

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2010-08-15

    This study reports on the investigation on the effects of the conditions used throughout the step of biomass production on the survival of Lactobacillus plantarum loaded into alginate gels. L. plantarum was grown under different conditions (MRS or a laboratory medium-LB(2)-at acidic or alkaline pHs, with NaCl, phenols, vitamins or amino acids) and immobilized in sodium alginate; cell number was evaluated throughout the storage and death (delta(stand)) and first-reduction times (delta) were calculated. The storage of alginate gels at 4 degrees C prolonged cell viability up to 60 days (ca. 20 days for cells produced in MRS and stored at 30 degrees C); however, a similar prolongation was achieved for cells produced in LB(2) adjusted to pH 5.0 and 9.0 or added with amino acids (death time>50-60 days).

  9. Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights into Stress Adaptation

    PubMed Central

    Xu, Jian; Ji, Peifeng; Wang, Baosen; Zhao, Lan; Wang, Jian; Zhao, Zixia; Zhang, Yan; Li, Jiongtang; Xu, Peng; Sun, Xiaowen

    2013-01-01

    Background Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the genetics of stress tolerance. The objective of the study is to sequence the transcriptome and obtain a well-assembled transcriptome of Amur ide. Results The transcriptome of Amur ide was sequenced using the Illumina platform and assembled into 53,632 cDNA contigs, with an average length of 647 bp and a N50 length of 1,094 bp. A total of 19,338 unique proteins were identified, and gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses classified all contigs into functional categories. Open Reading Frames (ORFs) were detected from 34,888 (65.1%) of contigs with an average length of 577 bp, while 9,638 full-length cDNAs were identified. Comparative analyses revealed that 31,790 (59.3%) contigs have a significant similarity to zebrafish proteins, and 27,096 (50.5%), 27,524 (51.3%) and 27,996 (52.2%) to teraodon, medaka and three-spined stickleback proteins, respectively. A total of 10,395 microsatellites and 34,299 SNPs were identified and classified. A dN/dS analysis on unigenes was performed, which identified that 61 of the genes were under strong positive selection. Most of the genes are associated with stress adaptation and immunity, suggesting that the extreme alkaline-saline environment resulted in fast evolution of certain genes. Conclusions The transcriptome of Amur ide had been deeply sequenced, assembled and characterized, providing a valuable resource for a better understanding of the Amur ide genome. The transcriptome data will facilitate future functional studies on the Amur ide genome, as well as provide insight into potential mechanisms for

  10. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review.

    PubMed

    Aldakheel, F M; Thomas, P S; Bourke, J E; Matheson, M C; Dharmage, S C; Lowe, A J

    2016-06-01

    Oxidative stress has a recognized role in the pathophysiology of asthma. Recently, interest has increased in the assessment of pH and airway oxidative stress markers. Collection of exhaled breath condensate (EBC) and quantification of biomarkers in breath samples can potentially indicate lung disease activity and help in the study of airway inflammation, and asthma severity. Levels of oxidative stress markers in the EBC have been systematically evaluated in children with asthma; however, there is no such systematic review conducted for adult asthma. A systematic review of oxidative stress markers measured in EBC of adult asthma was conducted, and studies were identified by searching MEDLINE and SCOPUS databases. Sixteen papers met the inclusion criteria. Concentrations of exhaled hydrogen ions, nitric oxide products, hydrogen peroxide and 8-isoprostanes were generally elevated and related to lower lung function tests in adults with asthma compared to healthy subjects. Assessment of EBC markers may be a noninvasive approach to evaluate airway inflammation, exacerbations, and disease severity of asthma, and to monitor the effectiveness of anti-inflammatory treatment regimens. Longitudinal studies, using standardized analytical techniques for EBC collection, are required to establish reference values for the interpretation of EBC markers in the context of asthma.

  11. Effects of dietary soybean isoflavones on non-specific immune responses and hepatic antioxidant abilities and mRNA expression of two heat shock proteins (HSPs) in juvenile golden pompano Trachinotus ovatus under pH stress.

    PubMed

    Zhou, Chuanpeng; Lin, Heizhao; Huang, Zhong; Wang, Jun; Wang, Yun; Yu, Wei

    2015-12-01

    This study determined the effect of dietary soybean isoflavones on non-specific immunity and on mRNA expression of two HSPs in juvenile golden pompano Trachinotus ovatus under pH stress. Six diets were formulated to contain 0, 10, 20, 40, 60 and 80 mg/kg of soybean isoflavones. Each diet was fed to triplicate groups of fish in cylindrical tanks. After 56 days of feeding, 15 fish per tank were exposed to pH stress (pH ≈ 9.2) for 24 h. Serum total protein (TP), respiratory burst activity (RBA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), lysozyme (LYZ), complement 3 (C3), complement 4 (C4), cortisol, hepatic total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and the relative mRNA expression of heat shock protein 70 (HSP70) and 90 (HSP90) were investigated. The results showed that after pH stress, serum TP, RBA, LYZ, C4, hepatic T-AOC and CAT levels were significantly reduced (P < 0.05) while serum ALT, hepatic MDA and HSP70 and HSP90 mRNA expression levels were significantly increased (P < 0.05). On the other hand, supplementation with soybean isoflavones significantly reduced levels of serum ALT (20, 40, 60 mg/kg soybean isoflavones groups) and hepatic MDA (40, 60 and 80 mg/kg soybean isoflavones groups). Supplemented groups had increased serum TP content (40 mg/kg soybean isoflavones groups), RBA (20 and 40 mg/kg soybean isoflavones groups), LYZ (40 and 60 mg/kg soybean isoflavones groups), C3(20, 40, 60 and 80 mg/kg soybean isoflavones groups), hepatic SOD activity (40, 60 and 80 mg/kg soybean isoflavones groups) as well as increased relative mRNA expression of hepatic HSP70 (40, 60 and 80 mg/kg soybean isoflavones groups) and HSP90 (40 and 60 mg/kg soybean isoflavones groups) (P < 0.05). These results indicate that ingestion of a basal diet supplemented with 40-60 mg/kg soybean isoflavones could enhance resistance against pH stress in T. Ovatus to some degree

  12. Effects of dietary soybean isoflavones on non-specific immune responses and hepatic antioxidant abilities and mRNA expression of two heat shock proteins (HSPs) in juvenile golden pompano Trachinotus ovatus under pH stress.

    PubMed

    Zhou, Chuanpeng; Lin, Heizhao; Huang, Zhong; Wang, Jun; Wang, Yun; Yu, Wei

    2015-12-01

    This study determined the effect of dietary soybean isoflavones on non-specific immunity and on mRNA expression of two HSPs in juvenile golden pompano Trachinotus ovatus under pH stress. Six diets were formulated to contain 0, 10, 20, 40, 60 and 80 mg/kg of soybean isoflavones. Each diet was fed to triplicate groups of fish in cylindrical tanks. After 56 days of feeding, 15 fish per tank were exposed to pH stress (pH ≈ 9.2) for 24 h. Serum total protein (TP), respiratory burst activity (RBA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP), lysozyme (LYZ), complement 3 (C3), complement 4 (C4), cortisol, hepatic total antioxidant capacity (T-AOC), superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and the relative mRNA expression of heat shock protein 70 (HSP70) and 90 (HSP90) were investigated. The results showed that after pH stress, serum TP, RBA, LYZ, C4, hepatic T-AOC and CAT levels were significantly reduced (P < 0.05) while serum ALT, hepatic MDA and HSP70 and HSP90 mRNA expression levels were significantly increased (P < 0.05). On the other hand, supplementation with soybean isoflavones significantly reduced levels of serum ALT (20, 40, 60 mg/kg soybean isoflavones groups) and hepatic MDA (40, 60 and 80 mg/kg soybean isoflavones groups). Supplemented groups had increased serum TP content (40 mg/kg soybean isoflavones groups), RBA (20 and 40 mg/kg soybean isoflavones groups), LYZ (40 and 60 mg/kg soybean isoflavones groups), C3(20, 40, 60 and 80 mg/kg soybean isoflavones groups), hepatic SOD activity (40, 60 and 80 mg/kg soybean isoflavones groups) as well as increased relative mRNA expression of hepatic HSP70 (40, 60 and 80 mg/kg soybean isoflavones groups) and HSP90 (40 and 60 mg/kg soybean isoflavones groups) (P < 0.05). These results indicate that ingestion of a basal diet supplemented with 40-60 mg/kg soybean isoflavones could enhance resistance against pH stress in T. Ovatus to some degree.

  13. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  14. Effect of pH and zinc stress on micropore system of rye roots

    NASA Astrophysics Data System (ADS)

    Szatanik-Kloc, A.

    2012-07-01

    After zinc stress the total micropore volume decreased remarkably while the average micropore radius increased remarkably for the rye roots. Pore size distribution functions of the roots after the additional zinc application showed the decrease of the small micropore fraction from ca 2 to 10 nm and the increase of the large micropore from ca 22 to 50 nm. The root surface pores were fractal. After the stress pore fractal dimension increased. The changes of the microporosity observed in the roots surface can be related to the high content of zinc in the cell wall and/or due to the shortage of Ca+2 the intercellular spaces particularly in the tissues of seminal cortex of the studied roots might have grown.

  15. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor

    PubMed Central

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism. PMID:27557053

  16. Molecular Components of the Neurospora crassa pH Signaling Pathway and Their Regulation by pH and the PAC-3 Transcription Factor.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Bernardes, Natália Elisa; Freitas, Fernanda Zanolli; Takeda, Agnes Alessandra Sekijima; Fontes, Marcos Roberto de Mattos; Bertolini, Maria Célia

    2016-01-01

    Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components. The PAC-3 transcription factor binds to the tyrosinase promoter and negatively regulates its gene expression. PAC-3 also binds to all pal gene promoters, regulating their expression at normal growth pH and/or alkaline pH, which indicates a feedback regulation of PAC-3 in the pal gene expression. In addition, PAC-3 binds to the pac-3 promoter only at alkaline pH, most likely influencing the pac-3 expression at this pH suggesting that the activation of PAC-3 in N. crassa results from proteolytic processing and gene expression regulation by the pH signaling components. In N. crassa, PAC-3 is proteolytically processed in a single cleavage step predominately at alkaline pH; however, low levels of the processed protein can be observed at normal growth pH. We also demonstrate that PAC-3 preferentially localizes in the nucleus at alkaline pH stress and that the translocation may require the N. crassa importin-α since the PAC-3 nuclear localization signal (NLS) has a strong in vitro affinity with importin-α. The data presented here show that the pH signaling pathway in N. crassa shares all the components with the A. nidulans and S. cerevisiae pathways; however, it exhibits some properties not previously described in either organism. PMID:27557053

  17. Influence of solute, pH, and incubation temperature on recovery of heat-stressed Wallemia sebi conidia.

    PubMed

    Beuchat, L R; Pitt, J I

    1990-08-01

    The influences of glucose, sorbitol, and NaCl in a basal enumeration medium at water activities (aw) from 0.82 to 0.97 on colony formation by sublethally heat-stressed Wallemia sebi conidia were determined. Over this aw range, glucose and sorbitol had similar effects on recovery, whereas at an aw of 0.82 to 0.92, NaCl had a detrimental effect. Colony diameters were generally largest on media containing sorbitol and smallest on media containing NaCl. Maximum colony size and viable population of heat-stressed conidia were observed on media at an aw of ca. 0.92. When the recovery incubation temperature was 20 degrees C, the number of uninjured conidia detected at an aw of 0.82 was reduced compared with the number detected at 25 degrees C, while at 30 degrees C, the number recovered at an aw of 0.97 was reduced. The effect on heat-stressed conidia was magnified. This suggests that W. sebi conidia may be more tolerant of aw values higher than the optimum 0.92 when the incubation temperature is decreased from the near optimum of 25 degrees C and less tolerant of aw values greater than 0.92 when the incubation temperature is higher than 25 degrees C. The sensitivity of heat-stressed conidia increased as the pH of the recovery medium was decreased from 6.55 to 3.71. W. sebi conidia dispersed in wheat flour at aw values of 0.43 and 0.71 and stored for up to 65 days at both 1 and 25 degrees C neither lost viability nor underwent sublethal desiccation or temperature injury.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2403261

  18. Response of Desulfovibrio vulgaris to Alkaline Stress▿ †

    PubMed Central

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P.; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E.; Joyner, Dominique C.; Huang, Katherine; Alm, Eric; Hazen, Terry C.; Zhou, Jizhong; Wall, Judy D.; Arkin, Adam P.; Stahl, David A.

    2007-01-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580). PMID:17921288

  19. Effects of yeast stress and pH on 3-monochloropropanediol (3-MCPD)-producing reactions in model dough systems.

    PubMed

    Hamlet, C G; Sadd, P A

    2005-07-01

    A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.

  20. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  1. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates.

    PubMed Central

    Lowe, S E; Jain, M K; Zeikus, J G

    1993-01-01

    Anaerobic bacteria include diverse species that can grow at environmental extremes of temperature, pH, salinity, substrate toxicity, or available free energy. The first evolved archaebacterial and eubacterial species appear to have been anaerobes adapted to high temperatures. Thermoanaerobes and their stable enzymes have served as model systems for basic and applied studies of microbial cellulose and starch degradation, methanogenesis, ethanologenesis, acetogenesis, autotrophic CO2 fixation, saccharidases, hydrogenases, and alcohol dehydrogenases. Anaerobes, unlike aerobes, appear to have evolved more energy-conserving mechanisms for physiological adaptation to environmental stresses such as novel enzyme activities and stabilities and novel membrane lipid compositions and functions. Anaerobic syntrophs do not have similar aerobic bacterial counterparts. The metabolic end products of syntrophs are potent thermodynamic inhibitors of energy conservation mechanisms, and they require coordinated consumption by a second partner organism for species growth. Anaerobes adapted to environmental stresses and their enzymes have biotechnological applications in organic waste treatment systems and chemical and fuel production systems based on biomass-derived substrates or syngas. These kinds of anaerobes have only recently been examined by biologists, and considerably more study is required before they are fully appreciated by science and technology. Images PMID:8336675

  2. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  3. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  4. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluska, Frantisek; Kronzucker, Herbert J; Liang, Jiansheng; Zhang, Jianhua

    2013-12-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H(+) secretion by regulating plasma membrane (PM) H(+)-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]-TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H(+) efflux and the activity of PM H(+)-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H(+)-ATPase-mediated H(+) efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H(+) efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  5. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation].

    PubMed

    Jia, Ke-Li; Zhang, Jun-Hua

    2014-03-01

    The relationship between alkalinity and pH of the soil, reflectance spectra and red-edge parameters of the sunflower canopy in different growth periods under different alkalinity soil were analyzed, respectively. The results showed that the spectral reflectance of the sunflower canopy in different stage under different alkalinity soil is the same as the spectral reflectance characters of the other greenery canopy. Along with the advancement of the sunflower growth period, sunflower canopy spectral reflectance increases gradually at different stages, the spectral reflectance is higher at flowering stage than 7-leaf stage and budding stage, and there exists a high reflection peak at 809nm at flowering period. At the same time, the spectral reflectance is affected by salinity-alkalinity stress at different stages, in the near infrared shortwave band, the spectral reflectance of the sunflower canopy in different stage increases with the decreases in soil alkalinity. When the derivatives are applied to determine the wavelength of the red-edge, there is a shift phenomenon of the red edge. The red edges were at 702-720 nm during every growth period of the sunflower. The "blue shift" phenomenon is also emerged for red edge position and red edge sloped with the increase in the soil alkalinity. Conversely, at the same growth periods, the red edge positions and red edge slope move to longer wave bands with the decrease in soil alkalinity. There is a "red shift" phenomenon before flowering period and "blue shift" phenomenon after flowering period for the red edge position and red edge slope of canopy spectrum at the same soil alkalinity. Respectively. The red edges at different growth stages of the sunflower show very significant positive correlation and quadratic polynomial to alkalinity and pH of the soil. Therefore, we thought used the red edge features of greenery could indicate the soil alkalization degree, it providing scientific basis for monitoring soil alkalization

  6. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  7. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule.

  8. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress

    PubMed Central

    Matsushika, Akinori; Negi, Kanako; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2016-01-01

    The use of yeasts tolerant to acid (low pH) and salt stress is of industrial importance for several bioproduction processes. To identify new candidate genes having potential roles in low-pH tolerance, we screened an expression genomic DNA library of a multiple-stress-tolerant yeast, Issatchenkia orientalis (Pichia kudriavzevii), for clones that allowed Saccharomyces cerevisiae cells to grow under highly acidic conditions (pH 2.0). A genomic DNA clone containing two putative open reading frames was obtained, of which the putative protein-coding gene comprising 1629 bp was retransformed into the host. This transformant grew significantly at pH 2.0, and at pH 2.5 in the presence of 7.5% Na2SO4. The predicted amino acid sequence of this new gene, named I. orientalis GAS1 (IoGAS1), was 60% identical to the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity, and 58–59% identical to Candida albicans Phr1 and Phr2, pH-responsive proteins implicated in cell wall assembly and virulence. Northern hybridization analyses indicated that, as for the C. albicans homologs, IoGAS1 expression was pH-dependent, with expression increasing with decreasing pH (from 4.0 to 2.0) of the medium. These results suggest that IoGAS1 represents a novel pH-regulated system required for the adaptation of I. orientalis to environments of diverse pH. Heterologous expression of IoGAS1 complemented the growth and morphological defects of a S. cerevisiae gas1Δ mutant, demonstrating that IoGAS1 and the corresponding S. cerevisiae gene play similar roles in cell wall biosynthesis. Site-directed mutagenesis experiments revealed that two conserved glutamate residues (E161 and E262) in the IoGas1 protein play a crucial role in yeast morphogenesis and tolerance to low pH and salt stress. Furthermore, overexpression of IoGAS1 in S. cerevisiae remarkably improved the ethanol fermentation ability at pH 2.5, and at pH 2.0 in the presence of

  9. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress.

    PubMed

    Matsushika, Akinori; Negi, Kanako; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2016-01-01

    The use of yeasts tolerant to acid (low pH) and salt stress is of industrial importance for several bioproduction processes. To identify new candidate genes having potential roles in low-pH tolerance, we screened an expression genomic DNA library of a multiple-stress-tolerant yeast, Issatchenkia orientalis (Pichia kudriavzevii), for clones that allowed Saccharomyces cerevisiae cells to grow under highly acidic conditions (pH 2.0). A genomic DNA clone containing two putative open reading frames was obtained, of which the putative protein-coding gene comprising 1629 bp was retransformed into the host. This transformant grew significantly at pH 2.0, and at pH 2.5 in the presence of 7.5% Na2SO4. The predicted amino acid sequence of this new gene, named I. orientalis GAS1 (IoGAS1), was 60% identical to the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity, and 58-59% identical to Candida albicans Phr1 and Phr2, pH-responsive proteins implicated in cell wall assembly and virulence. Northern hybridization analyses indicated that, as for the C. albicans homologs, IoGAS1 expression was pH-dependent, with expression increasing with decreasing pH (from 4.0 to 2.0) of the medium. These results suggest that IoGAS1 represents a novel pH-regulated system required for the adaptation of I. orientalis to environments of diverse pH. Heterologous expression of IoGAS1 complemented the growth and morphological defects of a S. cerevisiae gas1Δ mutant, demonstrating that IoGAS1 and the corresponding S. cerevisiae gene play similar roles in cell wall biosynthesis. Site-directed mutagenesis experiments revealed that two conserved glutamate residues (E161 and E262) in the IoGas1 protein play a crucial role in yeast morphogenesis and tolerance to low pH and salt stress. Furthermore, overexpression of IoGAS1 in S. cerevisiae remarkably improved the ethanol fermentation ability at pH 2.5, and at pH 2.0 in the presence of

  10. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state.

    PubMed

    Liu, Yanfang; Zhang, Cuixian; Chen, Juan; Guo, Lihong; Li, Xiaolu; Li, Wenpeng; Yu, Zefen; Deng, Jingshi; Zhang, Pengyuan; Zhang, Keqin; Zhang, Lemin

    2013-03-01

    Arabidopsis heat shock factor HsfA1a is present in a latent, monomeric state under normal conditions; its activation involves heat stress-induced trimerization, binding to heat shock element in target promoters, and the acquisition of transcriptional competence. HsfA1a is an important regulator for heat stress-induced gene expression and thermotolerance. However, it is not clear whether HsfA1a is directly activated by stress and the mechanisms of the stress signaling are poorly understood. We analyzed HsfA1a activation by trimerization and DNA-binding assays in vitro and in vivo in response to heat stress, low/high pH, and hydrogen peroxide treatments. Our results show that purified recombinant HsfA1a was activated by these stress treatments in vitro. The same treatments also induced the binding to HSP18.2 and HSP70 promoters as examined by chromatin immunoprecipitation, and the HsfA1a DNA binding paralleled the mRNA expression of its target genes induced by different stresses. Stress-induced DNA-binding could be reversed, both in vitro and in vivo, by subsequent incubation with reducing agents (DTT, NADPH). These data suggest that HsfA1a can directly sense stress and become activated, and this process is dependent on the redox state. An N-terminal deletion of the amino acid residues from 48 to 74 negatively affected pH- and hydrogen peroxide-, but not heat-stress sensing.

  11. Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH.

    PubMed

    Garcia, L O; Becker, A G; Bertuzzi, T; Cunha, M A; Kochhann, D; Finamor, I A; Riffel, A P K; Llesuy, S; Pavanato, M A; Baldisserotto, B

    2011-05-31

    The aim of this study was to determine oxidative stress parameters in the liver, gill and muscle of silver catfish juveniles infected with Ichthyophthirius multifiliis and maintained at pH 5.0 or 7.0 for three days. Juveniles were infected by adding one I. multifiliis-infected juvenile and water containing theronts to tanks. After the appearance of white spots on the skin, infected juveniles exposed to pH 5.0 and 7.0 showed significantly higher thiobarbituric acid reactive substances (TBARS) levels in the liver and gills compared to uninfected juveniles. Liver of infected juveniles exposed to pH 7.0 showed higher catalase (CAT) and lower glutathione-S-transferase (GST) activities, but those maintained at pH 5.0 showed significantly higher GST activity than uninfected juveniles. The gills of infected juveniles showed significantly higher CAT (day two) and GST activity at both pH 5.0 and 7.0 compared to uninfected juveniles. Muscle of infected juveniles showed significantly lower CAT and GST activity and TBARS levels (at day three) when maintained at both pH 5.0 and 7.0 compared to uninfected juveniles. In conclusion, I. multifiliis infection induces liver and gill damage via lipid peroxidation products in silver catfish, but higher antioxidant enzyme activity could indicate a greater degree of protection against this parasite.

  12. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  13. Acclimation of sublethal acidic and alkaline media of Tilapia mossambica (Peters): changes in glycogen metabolism of red muscle

    SciTech Connect

    Bhaskar, M.; Govindappa, S.

    1986-07-01

    Freshwater bodies at several parts of the globe are presently undergoing progressive acidification due to acid precipitation and acid mine drainage. Significant changes under altered pH stress includes reduced primary production of algal biomass, benthic communities and rapid decline in fish populations. Studies dealing with the physiological responses of fish to acidic and alkaline water pollution are very limited. Hence, the studies dealing with the biological impact of acidity and alkalinity on the physiology and biochemistry of freshwater fish has been undertaken.

  14. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    PubMed

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  15. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions: cellular responses to stress and their implication for plant water relations.

    PubMed

    Netting, A G

    2000-02-01

    A paradigm for the response of plants to stress is presented which suggests that plants move towards a state of minimal metabolic activity as a stress intensifies and remain in that state until that stress is relieved. The paradigm is based on the proposition that cells that interface with the transpiration stream employ variations on the following theme to move towards that state. Tension on the apoplastic water opens a mechanosensitive Ca2+ channel, a response that is augmented by apoplastic ABA. The resulting elevated cytoplasmic Ca2+ deactivates a plasmalemma H+/ATPase and also activates a K(+)-H+ symport. The inflow of K+ and H+ depolarizes the membrane and renders the apoplast less acidic, the protons being removed to the vacuole and the K+ ions being re-exported via the K+ outward rectifying channel. The onset of darkness in guard and mesophyll cells deactivates the plasmalemma H+/ATPase and then the events outlined above ensue except that these cells do not appear to utilize either Ca2+ or ABA during these changes. In stressed cells it is proposed that elevated cytoplasmic Ca2+ activates the release of an ABA precursor from a stored form. ABA is then released in the apoplast after export of the precursor if the activity of the K(+)-H+ symport has brought the apoplastic pH close to 7.0. It is proposed that aquaporins in the xylem parenchyma and mesophyll cells are opened by elevated cytoplasmic Ca2+ when the water potential of the transpiration stream is high so that water can be stored in the 'xylem parenchyma reservoir'. The water in this reservoir is then used to increase the water potential in the transpiration stream when the water column is under tension and to help repair embolisms by a mechanism that resembles stomatal closure.

  16. Analysis of individual versus group behavior of zebrafish: a model using pH sublethal effects.

    PubMed

    Magalhães, Danielly de Paiva; Buss, Daniel Forsin; da Cunha, Rodolfo Armando; Linde-Arias, Ana Rosa; Baptista, Darcilio Fernandes

    2012-06-01

    An image analysis biomonitoring system was used to evaluate sublethal effects of pH on the mean swimming velocity of zebrafish. Responses to stress were tested comparing individual and group responses. Group analysis indicated no effect for all acid pH and for pH 9.0-9.5. Individual analysis indicated behavioral differences for most acid pH and higher than 9.5. Sensitivity to sublethal pH was best assessed when using individual analysis. Zebrafish decreased hyperactivity and increased hypoactivity with more acid or alkaline pH. Individual approach allowed to determine hyperactivity or hypoactivity and the species' thresholds of exposure, which is critical for the management of impairments.

  17. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  18. Alkaline Bohr effect of human hemoglobin Ao.

    PubMed

    Di Cera, E; Doyle, M L; Gill, S J

    1988-04-01

    Differential oxygen binding measurements obtained over the pH range 6.95 to 9.10 at 25 degrees C have allowed a detailed description of the alkaline Bohr effect of human hemoglobin Ao. Phenomenological analysis of the data in terms of the Adair equation shows that: (1) the oxygen binding curves are asymmetrical with the population of the triply oxygenated species being negligible throughout the pH range studied: (2) the shape of the oxygen binding curve is affected by pH, especially at low saturation; and (3) the maximum O2-proton linkage is -0.52 mole of proton per mole of oxygen at pH 7.4. A possible molecular mechanism of the Bohr effect is proposed within the framework of an allosteric model which accounts for the low population of triply oxygenated hemoglobin species. At least three Bohr groups are necessary for a quantitative description of the alkaline Bohr effect. Two of these groups titrate in the range of the His146 beta and Vall alpha residues, which have long been identified as the main alkaline Bohr groups, and altogether contribute 84% of the alkaline Bohr effect at physiological pH. A third ionizable group, linked to oxygenation presumably at the beta chains, is implicated and is titrated in a pH range characteristic of a surface histidyl residue.

  19. Application of adsorption methods to determine the effect of pH and Cu-stress on the changes in the surface properties of the roots

    NASA Astrophysics Data System (ADS)

    Szatanik-Kloc, Alicja

    2014-10-01

    Rye plants were grown in a nutrient solution prepared according to Hoagland for 2 weeks at pH 7, next for 14 days at pH 4.5 (without Cu+2) and in the presence of 20, 50, or 100 mg dm-3 copper ions. The control plants were grown continuously at pH 7. The physicochemical surface properties of the roots were examined using two adsorbates - polar (water vapour) and non-polar (nitrogen). The surface properties of the roots grown at pH 4.5 without Cu+2 were apparently the same as those of controls. The roots of rye which grew in the presence of Cu+2 were characterized by lower (relative to controls) specific surface area values. Statistically significant differences in the size of the apparent surface area (determined by water vapour) were reported for roots incubated with copper ions at a concentration of 20 and 50 mg dm-3. The average water vapour adsorption energy of the root surface decreased under the stress conditions. There were no statistically significant differences for the free surface area and characteristic energy of nitrogen adsorption.

  20. Stress concentration factors for circular, reinforced penetrations in pressurized cylindrical shells. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.

    1975-01-01

    The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.

  1. Large and giant vesicles "decorated" with chitosan: effects of pH, salt or glucose stress, and surface adhesion.

    PubMed

    Quemeneur, Francois; Rammal, Ayman; Rinaudo, Marguerite; Pépin-Donat, Brigitte

    2007-08-01

    This paper describes the behavior of large and giant unilamellar vesicles (LUVs and GUVs, respectively) in the presence of chitosan, a positively charged polyelectrolyte. Variation of the zeta-potential of LUVs as a function of chitosan concentration is studied for two different molecular weights (MW) after a preliminary study devoted to pH and salt effects on zeta-potential in order to discriminate among the effects of protons, salt, and chitosan concentrations. The difference observed between pH and salt effects on the one hand and chitosan on the other allows us to conclude there is a strong LUV-chitosan interaction. In presence of chitosan, the zeta-potential of LUVs becomes positive and two distinct regimes of variation are suggested and interpreted as follows: a first step consists of chitosan adsorption flat on the membrane (independent of MW) followed by a possible reorganization of the polymer of higher molecular weight on the surface, giving rise to loops. Then a comparative observation of the effect of pH and salt by optical microscopy is made on naked and chitosan-decorated GUVs. Results further confirm a membrane-chitosan interaction and are interpreted in the light of the results obtained for LUVs in terms of both electrostatic and hydrophobic interaction. A large majority of decorated vesicles remain stable down to pH = 1 while in the absence of chitosan they burst quickly at pH between 2 and 3. Osmotic pressure and net charge change due to addition of HCl results in a decrease in the diameter of the decorated vesicles, which remain spherical while forming tubes of lipids. In presence of NaCl, a higher resistance of decorated vesicles is also evidenced (they are stable for NaCl concentrations up to 10-1 M while naked vesicles burst when [NaCl] is between 10-2 and 10-3 M). At higher salt concentration, aggregation of decorated vesicles occurs, which is attributed to the screening of electrostatic repulsions between vesicles covered by the positively

  2. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  3. Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Harrison, Peter N.; Johnson, Eric R.; Starnes, James H., Jr.

    1994-01-01

    A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses.

  4. The effect of stress rate on crack damage evolution in polystyrene and PEEK. Ph.D. Thesis

    SciTech Connect

    Gregory, B.L.

    1993-01-01

    The effects of stress rate on fatigue crack propagation (FCP) in polystyrene (PS) and polyetheretherketone (PEEK) were examined emphasizing damage evolution during fatigue fracture. Extruded and compression molded PS were studied. Craze distributions along trailing edges of successive process zone configurations in each material were self-similar. A core of dense crazing was observed in the extruded PS; no core was observed in the compression molded material. These results have important implications for the kinematics of process zone evolution in compression molded PS. Crack growth kinetics were treated as dl/dn and dl/dt. Consideration of the loading waveform and the load-time-area (LTA) revealed that LTA and rate effects couldn`t be decoupled. However, by treating the data as dl/dt the contribution of LTA constant, and the effect of stress rate was determined. Attempts were made to quantify the contributions of fatigue and creep LTA on total FCP kinetics by linear summation. While these failed, it was subsequently determined that two linear regimes separated by a characteristic period could approximate the data. The contributions of both stress rate and LTA varied above and below this characteristic period. From this analysis, the contributions of time and cycle reversal could be evaluated. Crack growth due to creep exhibited strong correlation with an exponential function compatible with stress-temperature activated processes. The crack damage evolution of PEEK as a function of stress rate during fatigue was also investigated. A brittle-ductile transition was observed characterized by a transformation at the crack tip from a rounded to a triangular (90 deg angle) crack front. The results showed that the damaged material ahead of the crack tip behaved as an elastic perfectly plastic material (plane stress conditions). This damage zone was further characterized as a volume of transformed material.

  5. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  6. Arbitrarily Curved and Twisted Space Beams. Ph.D. Thesis - Va. Polytech. Inst. and State Univ.; [Elastic Deformation, Stress Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, W. F.

    1974-01-01

    A derivation of the equations which govern the deformation of an arbitrarily curved and twisted space beam is presented. These equations differ from those of the classical theory in that (1) extensional effects are included; (2) the strain-displacement relations are derived; and (3) the expressions for the stress resultants are developed from the strain displacement relations. It is shown that the torsional stress resultant obtained by the classical approach is basically incorrect except when the cross-section is circular. The governing equations are given in the form of first-order differential equations. A numerical algorithm is given for obtaining the natural vibration characteristics and example problems are presented.

  7. The energy release in earthquakes, and subduction zone seismicity and stress in slabs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.

    1983-01-01

    Energy release in earthquakes is discussed. Dynamic energy from source time function, a simplified procedure for modeling deep focus events, static energy estimates, near source energy studies, and energy and magnitude are addressed. Subduction zone seismicity and stress in slabs are also discussed.

  8. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91.

    PubMed

    Campestre, María Paula; Castagno, Luis Nazareno; Estrella, María Julia; Ruiz, Oscar Adolfo

    2016-03-15

    Inoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P. eucalypti M91, a plant growth-promoting bacterial strain capable of producing pyoverdine-like and pyochelin-like siderophores under alkaline growth conditions, alters the root, resulting in a herringbone pattern of root branching. Additional features include improvement in Fe(2+) transport to the shoots, acidification of the hydroponic solution of the plant cultures, and an accompanying increase in the efficiency of the PSII parameters. In addition, there was an increase in the expression of the FRO1 and IRT1 genes, accompanied by a significant increase in FRO activity. Results showed that P. eucalypti M91 has a beneficial effect on the Fe acquisition machinery of Strategy I, as described for non-graminaceous monocots and dicots, suggesting its potential as an inoculant for legume crops cultivated in alkaline soils.

  9. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91.

    PubMed

    Campestre, María Paula; Castagno, Luis Nazareno; Estrella, María Julia; Ruiz, Oscar Adolfo

    2016-03-15

    Inoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P. eucalypti M91, a plant growth-promoting bacterial strain capable of producing pyoverdine-like and pyochelin-like siderophores under alkaline growth conditions, alters the root, resulting in a herringbone pattern of root branching. Additional features include improvement in Fe(2+) transport to the shoots, acidification of the hydroponic solution of the plant cultures, and an accompanying increase in the efficiency of the PSII parameters. In addition, there was an increase in the expression of the FRO1 and IRT1 genes, accompanied by a significant increase in FRO activity. Results showed that P. eucalypti M91 has a beneficial effect on the Fe acquisition machinery of Strategy I, as described for non-graminaceous monocots and dicots, suggesting its potential as an inoculant for legume crops cultivated in alkaline soils. PMID:26815729

  10. Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model.

    PubMed

    Van-Thuoc, Doan; Hashim, Suhaila O; Hatti-Kaul, Rajni; Mamo, Gashaw

    2013-07-01

    Compatible solutes are small, soluble organic compounds that have the ability to stabilise proteins against various stress conditions. In this study, the protective effect of ectoines against pH stress is examined using a recombinant xylanase from Bacillus halodurans as a model. Ectoines improved the enzyme stability at low (4.5 and 5.0) and high pH (11 and 12); stabilisation effect of hydroxyectoine was superior to that of ectoine and trehalose. In the presence of hydroxyectoine, residual activity (after 10 h heating at 50 °C) increased from about 45 to 86 % at pH 5 and from 33 to 89 % at pH 12. When the xylanase was incubated at 65 °C for 5 h with 50 mM hydroxyectoine at pH 10, about 40 % of the original activity was retained while no residual activity was detected in the absence of additives or in the presence of ectoine or trehalose. The xylanase activity was slightly stimulated in the presence of 25 mM ectoines and then gradually decreased with increase in ectoines concentration. The thermal unfolding of the enzyme in the presence of the compatible solutes showed a modest increase in denaturation temperature but a larger increase in calorimetric enthalpy.

  11. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  12. Use of CE-SDS gel for characterization of monoclonal antibody hinge region clipping due to copper and high pH stress.

    PubMed

    Rustandi, Richard R; Wang, Yang

    2011-11-01

    CE-SDS gel technique has been used extensively in the field of monoclonal antibody (mAb) as a tool for product purity, stability, and characterization. It offers many advantages over the traditional labor-intensive SDS-PAGE slab gel technology with respect to speed and resolution. Monoclonal antibodies are known to cleave in the hinge region due to extreme pH, high temperature and in the presence of metals, especially copper. This cleavage will impact the shelf lifetime of mAb product hence its quality. CESDS gel method using Beckman PA800 with UV detection is used to characterize the effects of copper and other metals such as iron and zinc on mAb clipping. In addition, mAb integrity under high temperature and high pH stress conditions was also evaluated and the results clearly show that CE-SDS gel can distinguish clipping due to copper versus heat and/or high pH. The data presented illustrate the power of this simple CESDS gel technique in supporting the development of mAb from product quality and stability to the final product characterization. PMID:22145164

  13. An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2010-11-01

    Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ⩽ I ⩽ 1 M), total dissolved carbonate concentration (10 -4 M < ΣCO 2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO 32- activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory ( Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r=k{>MgOH2+}41-exp (-4ART), where rd represents the BET surface area normalized dissolution rate, {>MgOH2+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO 2 stem from a corresponding decrease in {>MgOH2+}. This decrease in {>MgOH2+} results from the increasing stability of the >MgCO3- and >MgOH° surface species with increasing temperature, pH and CO 32- activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.

  14. Alkalinity and carbon budgets in the Mediterranean Sea

    SciTech Connect

    Copin-Montegut, C. )

    1993-12-01

    The carbon budget of the Mediterranean Sea has never been assessed. This paper reports the results of numerous measurements of pH and alkalinity in the spring of 1991. This concentration in inorganic carbon was deduced from the measurements. The existence of simple relationships between alkalinity and salinity or inorganic carbon and salinity made it possible to assess the budget of alkalinity and carbon in the Mediterranean Sea. 55 refs., 4 figs., 4 tabs.

  15. Investigating the mechanism of transgranular stress corrosion cracking in near-neutral pH environments on buried fuel transmission pipelines

    NASA Astrophysics Data System (ADS)

    Asher, Stefanie Lynn

    This research investigates the mechanism of transgranular stress corrosion cracking on fuel transmission pipelines. This research proposes that in near-neutral pH environments, hydrogen can be generated by the dissociation of carbonic acid and the reaction of metal ions with bicarbonate solutions, significantly increasing the available hydrogen for diffusion into the pipeline steel. This research has shown that TGSCC of pipeline steels is possible in simple groundwater solutions containing bicarbonate ions and carbon dioxide. Microstructural characterization coupled with hydrogen permeation indicates that the level of strain in the microstructure has the most influence on hydrogen diffusivity. Hydrogen accumulation occurs preferentially in at high energy discontinuous interfaces such as inclusion interfaces. It was determined that a stress concentration is required to facilitate sufficient hydrogen accumulation in the pipeline steel in order to initiate TGSCC. It was discovered that these stress concentrations develop from inclusions falling out of the pipeline surface. Slow strain rate tests found that TGSCC occurred in a wide range of compositions and temperatures as long as near-neutral conditions were maintained. Microcracks ahead of the crack tip provide evidence of hydrogen in these cracking processes. Morphology of these microcracks indicates that cracks propagate by the coalescence of microcracks with the main crack tip. Further research findings, scientific impact, and potential future work are also discussed.

  16. Early transcriptomic adaptation to Na₂CO₃ stress altered the expression of a quarter of the total genes in the maize genome and exhibited shared and distinctive profiles with NaCl and high pH stresses.

    PubMed

    Zhang, Li-Min; Liu, Xiang-Guo; Qu, Xin-Ning; Yu, Ying; Han, Si-Ping; Dou, Yao; Xu, Yao-Yao; Jing, Hai-Chun; Hao, Dong-Yun

    2013-11-01

    Sodium carbonate (Na₂CO₃) presents a huge challenge to plants by the combined damaging effects of Na⁺, high pH, and CO₃²⁻. Little is known about the cellular responses to Na₂CO₃ stress. In this study, the transcriptome of maize (Zea mays L. cv. B73) roots exposed to Na₂CO₃ stress for 5 h was compared with those of NaCl and NaOH stresses. The expression of 8,319 genes, representing over a quarter of the total number of genes in the maize genome, was altered by Na₂CO₃ stress, and the downregulated genes (5,232) outnumbered the upregulated genes (3,087). The effects of Na₂CO₃ differed from those of NaCl and NaOH, primarily by downregulating different categories of genes. Pathways commonly altered by Na₂CO₃, NaCl, and NaOH were enriched in phenylpropanoid biosynthesis, oxidation of unsaturated fatty acids, ATP-binding cassette (ABC) transporters, as well as the metabolism of secondary metabolites. Genes for brassinosteroid biosynthesis were specifically upregulated by Na₂CO₃, while genes involved in ascorbate and aldarate metabolism, protein processing in the endoplasmic reticulum and by N-glycosylation, fatty acid biosynthesis, and the circadian rhythm were downregulated. This work provides the first holistic picture of early transcriptomic adaptation to Na₂CO₃ stress, and highlights potential molecular pathways that could be manipulated to improve tolerance in maize.

  17. The Cyclic Stress-Strain Behavior of a Single Crystal Nickel-Base Superalloy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1988-01-01

    The cyclic stress-strain response and similar deformation structures of the single crystal nickel based superalloy was described under a specific set of conditions. The isothermal low cycle fatigue response and deformation structures were described at a typical intermediate temperature and at high temperature. Specimens oriented near the (001) and (111) crystallographic orientations were tested at 1050 C, where more moderate orientation effects were expected. This enabled the description of the deformation structures at each of the 2 temperatures and their relationship to the observed cyclic stress-strain behavior. The initial yield strength of all specimens tested at 650 C was controlled by the shearing of the gamma prime precipitates by dislocation pairs. Low cycle fatigue tests at 650 C had cyclic hardening, which was associated with dislocation interactions in the gamma matrix. The initial yield strength of specimens tested at 1050 C was associated with dislocation bypassing of the gamma prime precipitates. Low cycle fatigue tests at 1050 C had cyclic softening, associated with extensive dislocation recovery at the gamma-gamma prime interfaces along with some gamma prime precipitate coarsening.

  18. Photoelastic response of alkaline earth aluminosilicate glasses.

    PubMed

    Smedskjaer, Morten M; Saxton, Scott A; Ellison, Adam J; Mauro, John C

    2012-02-01

    Understanding the structural origins of the photoelastic response in oxide glasses is important for discovering new families of zero-stress optic glasses and for developing a predictive physical model. In this Letter, we have investigated the composition dependence of the stress optic coefficient C of 32 sodium aluminosilicate glasses with different types of alkaline earth oxides (MgO, CaO, SrO, and BaO). We find that most of the composition dependence of the stress optic response can be captured by a linear regression model and that the individual contributions from the alkaline earths to C depend on the alkaline earth-oxygen bond metallicity. High bond metallicity is required to allow bonds to be distorted along both the bonding direction and perpendicular to it. These findings are valuable for understanding the photoelastic response of oxide glasses.

  19. Stress and failure analysis of textile composites using a global/local finite element method. Ph.D. Thesis

    SciTech Connect

    Woo, K.

    1993-01-01

    Textile composites are known to have improved out-of-plane properties and impact resistance. However, detailed analysis of textile composites is very difficult to perform due to the geometric complexity. In the present study, a practical computational procedure based on a global/local finite element method was developed for detailed analysis of textile composites. This procedure utilizes two problem levels: global and local levels. At the global level, an initial solution was obtained using a coarse global mesh. At the local level, a small portion of the textile composite was refined in a local mesh and analyzed in a great detail. In this study, single-field and multi-field macro elements were used in the global analysis. The macro elements are defined herein to be elements with microstructure within each element. Both the conventional finite element method and the global/local finite element method with macro elements were used to study the variation of effective properties and failure behavior of plain weave and satin weave textile composites. Results indicated that the global/local procedure was very efficient for the detailed analysis of the textile composites. The use of macro elements in the global mesh predicted the global response well and the detailed local stress distribution was obtained by the refined local mesh with discrete material modeling. With a small loss of accuracy, the global/local procedure was able to provide a reasonable solution where the conventional finite element analysis was not possible due to huge computer resource requirements. The effective properties of plain weave and satin weave textile composites were dependent on waviness. The effective properties also showed strong dependency on the number of layers. Quick convergence was obtained, however, as the number of layers increased. The stress and failure index distribution of thin plain weave textile composites were different from that of thick plain weave textile composites.

  20. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea.

    PubMed

    Moran-Reyna, Aida; Coker, James A

    2014-01-01

    The halophilic archaea (haloarchaea) live in saline environments, which are found across the globe.  In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature.  However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously investigated in regard to the changes induced in the transcriptome. Therefore, we endeavored to determine the responses in three haloarchaea: Halorubrum lacusprofundi (Hla), Haloferax volcanii (Hvo), and Halobacterium sp. NRC-1 (NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 regulated stress, motility, and ABC transporters in a similar manner, which is in line with previous reports from other prokaryotes when grown in an acidic environment.  However, the pattern for Hla was more species specific. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria showing the haloarchaeal response was general to prokaryotes. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to a shift in the opposite direction. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp, tfb, orc/ cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial

  1. Purification and characterization of neutral and alkaline invertase from carrot.

    PubMed Central

    Lee, H S; Sturm, A

    1996-01-01

    Neutral and alkaline invertase were identified in cells of a suspension culture of carrot (Daucus carota L.) and purified to electrophoretic homogeneity. Neutral invertase is an octamer with a molecular mass of 456 kD and subunits of 57 kD, whereas alkaline invertase is a tetramer with a molecular mass of 504 kD and subunits of 126 kD. Both enzymes had sharp pH profiles, with maximal activities at pH 6.8 for neutral invertase and pH 8.0 for alkaline invertase, and both hydrolyzed sucrose with typical hyperbolic kinetics and similar Km values of about 20 mM at pH 7.5. Neutral invertase also hydrolyzed raffinose and stachyose and, therefore, is a beta-fructofuranosidase. In contrast, alkaline invertase was highly specific for sucrose. Fructose acted as a competitive inhibitor of both enzymes, with Ki values of about 15 mM. Glucose was a noncompetitive inhibitor of both neutral and alkaline invertase, with a Ki of about 30 mM. Neither enzyme was inhibited by HgCl2. Alkaline invertase was markedly inhibited by CaCl2, MgCl2, and MnCl2, and neutral invertase was not. In contrast to alkaline invertase, neutral invertase was inhibited by the nucleotides ATP, CTP, GTP, and UTP. PMID:8972597

  2. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  3. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  4. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  5. Antioxidant Defense System of Tadpoles (Eupemphix nattereri) Exposed to Changes in Temperature and pH.

    PubMed

    Freitas, Juliane S; Almeida, Eduardo A

    2016-04-01

    Amphibians are highly susceptible to environmental changes, mainly at the larval stage during which they are restricted to small and ephemeral aquatic habitats, which are subject to large fluctuations of abiotic parameters, such as temperature and pH. Consequently, tadpoles experience changes in biochemical, physiological, and molecular processes related to the maintenance of homeostasis, which may lead them to an oxidative stress state. In the present study, we investigated the effects of stress caused by changes in temperature and pH on the antioxidant enzymes catalase (CAT), glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR) and glutathione-S-transferase (GST) in tadpoles of Eupemphix nattereri. The results show that changes in temperature and pH conditions induce an antioxidant response in tadpoles. GST and GR showed temperature-dependent activities; GST activity was higher in tadpoles exposed to 28°C, whereas GR exhibited increased activity in response to 28°C and 36°C. At 32°C, both GST and GR had the lowest activity. CAT was induced by treatments with acidic (pH 5.0) and alkaline (pH 8.5) pH. Tadpoles exposed to acidic pH also had increased GR activity. The G6PDH was not changed in either experiment. Our data demonstrate that E. nattereri possesses an efficient antioxidant defense system for coping with the damaging effects of heat and acidity/alkalinity conditions in water. The alterations in antioxidant enzymes are probably a result of immediate physiological adaptation of individuals in response to increased production of ROS under environmental stress conditions. PMID:27032684

  6. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    PubMed Central

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  7. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress.

    PubMed

    Netting, A G

    2002-02-01

    continued export to the apoplast. K(+) is transferred from the vacuole to the apoplast, the K(+) being replaced by protons from the export of mitochondrial pyruvate. The maintenance of the tonoplast electrochemical gradient is thought to result in an increase in the pH of the apoplast which may cause the hydrolysis of abscisic acid precursors with the resulting abscisic acid opening Ca(2+) channels so that the above events are reinforced. (7) This mode is proposed to continue by the metabolism of glucose to four phosphoenolpyruvate, three of which are carboxylated to malate(1-) for continued export to the apoplast with K(+) from the vacuole, the 'stress-tolerant quiescent state'.

  8. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  9. Eukaryotic diversity at pH extremes.

    PubMed

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  10. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  11. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    PubMed

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. PMID:26017815

  12. Individual and combined effects of waterlogging and alkalinity on yield of wheat (Triticum aestivum L.) imposed at three critical stages.

    PubMed

    Sharma, Praveen Kumar; Sharma, S K; Choi, I Y

    2010-07-01

    Response of wheat genotype HD 2329 to individual and combined effects of alkalinity and waterlogging (WL) at tillering, panicle emergence and anthesis stage was studied. Both stresses increased Na accumulation and reduced K uptake which leads to higher Na(+)/K(+) ratio in the leaves. Yield was decreased under all the stress treatments and highly correlated with Na(+)/K(+) ratio at all the three growth stages (r = -0.83, -0.82 and -0.73, respectively) with maximum reduction under pH 9.4 + WL. Increase in pH from 7.2 to 9.1 and 9.4 delayed complete panicle emergence (4 and 8 days) and flowering (1 and 2 days) at both, tillering and panicle emergence stages. Dual stress further increased days, required for complete panicle emergence and flowering. These results suggested that high Na(+)/K(+) ratio of plant tissue may be the critical factor for growth and development of wheat under WL, alkalinity and dual stress. Due to this delay in flowering and panicle emergence, times required for maturity of grains shorten, resulted in lower grain yield. PMID:23572981

  13. Alkaline biofiltration of H2S odors.

    PubMed

    González-Sánchez, Armando; Revah, Sergio; Deshusses, Marc A

    2008-10-01

    Hydrogen sulfide (H2S) is a very common odor nuisance which is best controlled by chemical or biological scrubbing. Under alkaline pH, the amount of H2S that can be solubilized in a scrubbing liquid increases significantly, and therefore, gas-liquid mass transfer limitations can be reduced. To date, biological scrubbing of H2S has been limited to neutral or acidic pH, despite the potential benefit of reduced mass transfer limitations at alkaline pH. In the present paper, an alkaliphilic sulfoxidizing bacterial consortium was deployed in a laboratory-scale biotrickling filter treating H2S at pH 10. The gas contact time ranged from 1 to 6 s, and H2S inlet concentrations, from 2.5 to 18 ppm(v). The results showed that under most conditions, H2S removal exceeded 98% and the degradation end-product was sulfate. At the highest H2S concentrations and shortest gas contacttimes, when the loading exceeded 30 g m(-3) h(-1), the H2S removal efficiency decreased significantly due to biological reaction limitation, and incompletely oxidized sulfides were measured in the trickling liquid. An analysis of the process demonstrated that operating the biotrickling filter at high pH results in an enhancement of the mass transfer by a factor of 1700-11 000. Overall, alkaline biotrickling filtration was shown to be very effective at low concentration of H2S and very short gas contact time. This is the first demonstration of a biotrickling filter for air pollution control operated at high pH.

  14. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  15. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  16. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  17. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  18. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

    PubMed

    Esbaugh, A J; Mager, E M; Brix, K V; Santore, R; Grosell, M

    2013-04-15

    The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HClpH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

  19. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant.

    PubMed Central

    Becker, D; Braet, C; Brumer , H; Claeyssens, M; Divne, C; Fagerström, B R; Harris, M; Jones, T A; Kleywegt, G J; Koivula, A; Mahdi, S; Piens, K; Sinnott, M L; Ståhlberg, J; Teeri, T T; Underwood, M; Wohlfahrt, G

    2001-01-01

    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. PMID:11336632

  20. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  1. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India.

    PubMed

    Panda, Ananta Narayan; Mishra, Samir R; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  2. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India

    PubMed Central

    Panda, Ananta Narayan; Mishra, Samir R.; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  3. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.

    PubMed

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-25

    Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  4. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  5. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  6. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  7. Roles of Four Putative DEAD-Box RNA Helicase Genes in Growth of Listeria monocytogenes EGD-e under Heat, pH, Osmotic, Ethanol, and Oxidative Stress Conditions

    PubMed Central

    Lindström, Miia; Johansson, Per; Björkroth, Johanna; Korkeala, Hannu

    2012-01-01

    To examine the role of the four putative DEAD-box RNA helicase genes of Listeria monocytogenes EGD-e in stress tolerance, the growth of the Δlmo0866, Δlmo1246, Δlmo1450, and Δlmo1722 deletion mutant strains at 42.5°C, at pH 5.6 or pH 9.4, in 6% NaCl, in 3.5% ethanol, and in 5 mM H2O2 was studied. Restricted growth of the Δlmo0866 deletion mutant strain in 3.5% ethanol suggests that Lmo0866 contributes to ethanol stress tolerance of L. monocytogenes EGD-e. The Δlmo1450 mutant strain showed negligible growth at 42.5°C, at pH 9.4, and in 5 mM H2O2 and a lower maximum growth temperature than the wild-type EGD-e, suggesting that Lmo1450 is involved in the tolerance of L. monocytogenes EGD-e to heat, alkali, and oxidative stresses. The altered stress tolerance of the Δlmo0866 and Δlmo1450 deletion mutant strains did not correlate with changes in relative expression levels of lmo0866 and lmo1450 genes under corresponding stresses, suggesting that Lmo0866- and Lmo1450-dependent tolerance to heat, alkali, ethanol, or oxidative stress is not regulated at the transcriptional level. Growth of the Δlmo1246 and Δlmo1722 deletion mutant strains did not differ from that of the wild-type EGD-e under any of the conditions tested, suggesting that Lmo1246 and Lmo1722 have no roles in the growth of L. monocytogenes EGD-e under heat, pH, osmotic, ethanol, or oxidative stress. This study shows that the putative DEAD-box RNA helicase genes lmo0866 and lmo1450 play important roles in tolerance of L. monocytogenes EGD-e to ethanol, heat, alkali, and oxidative stresses. PMID:22820328

  8. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  9. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    PubMed

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  10. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  11. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  12. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions.

  13. Stress response in medically important Mucorales.

    PubMed

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. PMID:27292160

  14. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  15. Role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in bacterial heat resistance as a function of treatment medium pH.

    PubMed

    Ait-Ouazzou, A; Mañas, P; Condón, S; Pagán, R; García-Gonzalo, D

    2012-02-15

    This investigation aimed to determine the role of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) in heat resistance and the occurrence of sublethal injuries in cell envelopes of stationary-phase Escherichia coli BJ4 and Listeria monocytogenes EGD-e cells, respectively, as a function of treatment medium pH. Given that microbial death followed first-order inactivation kinetics (R(2)>0.95) the traditional D(T) and z values were used to describe the heat inactivation kinetics. Influence of rpoS deletion was constant at every treatment temperature and pH, making a ΔrpoS deletion mutant strain approximately 5.5 times more heat sensitive than its parental strain for every studied condition. Furthermore, the influence of the pH of the treatment medium on the reduction of the heat resistance of E. coli was also constant and independent of the treatment temperature (average z value=4.9°C) in both parental and mutant strains. L. monocytogenes EGD-e z values obtained at pH 7.0 and 5.5 were not significantly different (p>0.05) in either parental or the ∆sigB deletion mutant strains (average z value=4.8°C). Nevertheless, at pH 4.0 the z value was higher (z=8.4°C), indicating that heat resistance of both L. monocytogenes strains was less dependent on temperature at pH 4.0. At both pH 5.5 and 7.0 the influence of sigB deletion was constant and independent of the treatment temperature, decreasing L. monocytogenes heat resistance approximately 2.5 times. In contrast, the absence of sigB did not decrease the heat resistance of L. monocytogenes at pH 4.0. The role of RpoS in protecting cell envelopes was more important in E. coli (4 times) than SigB in L. monocytogenes (1.5 times). Moreover, the role of σ(S) in increasing heat resistance seems more relevant in enhancing the intrinsic resilience of the cytoplasmic membrane, and to a lesser extent, outer membrane resilience. Knowledge of environmental conditions related to the activation of

  16. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  17. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2006-02-01

    Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.

  18. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  19. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  20. Yield performance of cowpea genotypes grown in alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  1. Field screening of cowpea cultivars for alkaline soil tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  2. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    PubMed

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  3. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.

    PubMed

    Abd-Alla, Mohamed Hemida; El-Enany, Abdel-Wahab Elsadek; Nafady, Nivien Allam; Khalaf, David Mamdouh; Morsy, Fatthy Mohamed

    2014-01-20

    Egyptian soils are generally characterized by slightly alkaline to alkaline pH values (7.5-8.7) which are mainly due to its dry environment. In arid and semi-arid regions, salts are less concentrated and sodium dominates in carbonate and bicarbonate forms, which enhance the formation of alkaline soils. Alkaline soils have fertility problems due to poor physical properties which adversely affect the growth and the yield of crops. Therefore, this study was devoted to investigating the synergistic interaction of Rhizobium and arbuscular mycorrhizal fungi for improving growth of faba bean grown in alkaline soil. A total of 20 rhizobial isolates and 4 species of arbuscular mycorrhizal fungi (AMF) were isolated. The rhizobial isolates were investigated for their ability to grow under alkaline stress. Out of 20 isolates 3 isolates were selected as tolerant isolates. These 3 rhizobial isolates were identified on the bases of the sequences of the gene encoding 16S rRNA and designated as Rhizobium sp. Egypt 16 (HM622137), Rhizobium sp. Egypt 27 (HM622138) and Rhizobium leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The best alkaline tolerant was R. leguminosarum bv. viciae STDF-Egypt 19 (HM587713). The effect of R. leguminosarum bv. viciae STDF-Egypt 19 and mixture of AMF (Acaulospora laevis, Glomus geosporum, Glomus mosseae and Scutellospora armeniaca) both individually and in combination on nodulation, nitrogen fixation and growth of Vicia faba under alkalinity stress were assessed. A significant increase over control in number and mass of nodules, nitrogenase activity, leghaemoglobin content of nodule, mycorrhizal colonization, dry mass of root and shoot was recorded in dual inoculated plants than plants with individual inoculation. The enhancement of nitrogen fixation of faba bean could be attributed to AMF facilitating the mobilization of certain elements such as P, Fe, K and other minerals that involve in synthesis of nitrogenase and leghaemoglobin. Thus it is

  4. Alkaline galvanic cell

    SciTech Connect

    Inoue, T.; Maeda, Y.; Momose, K.; Wakahata, T.

    1983-10-04

    An alkaline galvanic cell is disclosed including a container serving for a cathode terminal, a sealing plate in the form of a layered clad plate serving for an anode terminal to be fitted into the container, and an insulating packing provided between the sealing plate and container for sealing the cell upon assembly. The cell is provided with a layer of epoxy adduct polyamide amine having amine valence in the range of 50 to 400 and disposed between the innermost copper layer of the sealing plate arranged to be readily amalgamated and the insulating packing so as to serve as a sealing agent or liquid leakage suppression agent.

  5. Gene response in rice plants treated with continuous fog influenced by pH, was similar to that treated with biotic stress

    PubMed Central

    2014-01-01

    Background Throughout Asia, including Japan, rice plants are cultivated in a wide range of areas from lowlands to highlands and are frequently exposed to fog, including acid fog. Some physiological studies have shown that acid fog can be a stress factor for plants. We analyzed the gene expression profiles of rice plants treated with artificially prepared simulated acid fog (SiAF) or simulated neutral fog (SiNF) for 1 or 7 days. Results Microarray analysis results suggested that both the SiAF and the SiNF treatments induced the expression of genes involved in the defense and stress responses in rice plants. Induction of such genes was detected in plants treated with SiAF for 1 day, and the number of induced genes increased in plants treated with SiAF for 7 days. The genes for defense and stress responses were also induced by SiNF for 7 days, although they were not induced by SiNF for 1 day. The gene expression profiles of the SiAF-treated and the SiNF-treated plants were compared to those of plants treated with other stress factors. The comparison revealed that both SiAF and SiNF treatments have similar effects to biotic stresses and ozone stress. The genes encoding NADPH oxidase and germin, which function in apoplasts, were also induced by SiAF, SiNF and biotic stresses. Conclusions These findings suggest that both the SiAF and the SiNF treatments may result in oxidative stress through the apoplastic production of reactive oxygen species. PMID:24987489

  6. [Study on relieving effects of exogenous SNP, Spd on Belamcanda chinensis under salt-alkalline stress].

    PubMed

    Xu, Meng-Ping; He, Ping; Duan, Cai-Xu; Yang, Mou

    2014-12-01

    The study is aimed to provide the theoretical basis for exploiting and utilization of salt-alkaline soil and cultivating Belamcanda chinensis. In this study, we exerted exogenous substances SNP, Spd to relieve the damage of the mixing salt-alkaline stress on B. chinensis seedling which is NaCl, Na2SO4, NaHCO3 and Na2CO3 four kinds of salt molar ratio of 9: 1: 9: 1, salt concentration of 100 mmol x L(-1). The result illustrated that high pH stress is a major factor caused the salt-alkaline stress, the interaction between time and the concentration of each, treatment was observed, what is more, there are synergies between the salt and alkali stress. The content of B. chinensis seedling leaves' membrane peroxidation index (MDA, O2-*) and metabolites (soluble protein, soluble sugars, organic acids) are showing an upward trend in varying degrees under 100 mmol x L(-1) salt-alkaline stress. It is effective to reduce the content of MDA and O2-*. and improve the levels of metabolites, in which the SNP (0.05 mmol x L(-1)) and Spd (0.5 mmol x L(-1)) to alleviate damage effects is the best. Therefore we can hold the conclusion that SNP and Spd can effectively mitigate the damage of B. chinensis seedling on salt-alkaline stress, improve the resistance ability of B. chinensis seedling which can provide the scientific basis for the utilization of salt-alkaline soil, and the cultivation of B. chinensis.

  7. [Study on relieving effects of exogenous SNP, Spd on Belamcanda chinensis under salt-alkalline stress].

    PubMed

    Xu, Meng-Ping; He, Ping; Duan, Cai-Xu; Yang, Mou

    2014-12-01

    The study is aimed to provide the theoretical basis for exploiting and utilization of salt-alkaline soil and cultivating Belamcanda chinensis. In this study, we exerted exogenous substances SNP, Spd to relieve the damage of the mixing salt-alkaline stress on B. chinensis seedling which is NaCl, Na2SO4, NaHCO3 and Na2CO3 four kinds of salt molar ratio of 9: 1: 9: 1, salt concentration of 100 mmol x L(-1). The result illustrated that high pH stress is a major factor caused the salt-alkaline stress, the interaction between time and the concentration of each, treatment was observed, what is more, there are synergies between the salt and alkali stress. The content of B. chinensis seedling leaves' membrane peroxidation index (MDA, O2-*) and metabolites (soluble protein, soluble sugars, organic acids) are showing an upward trend in varying degrees under 100 mmol x L(-1) salt-alkaline stress. It is effective to reduce the content of MDA and O2-*. and improve the levels of metabolites, in which the SNP (0.05 mmol x L(-1)) and Spd (0.5 mmol x L(-1)) to alleviate damage effects is the best. Therefore we can hold the conclusion that SNP and Spd can effectively mitigate the damage of B. chinensis seedling on salt-alkaline stress, improve the resistance ability of B. chinensis seedling which can provide the scientific basis for the utilization of salt-alkaline soil, and the cultivation of B. chinensis. PMID:25911800

  8. Ruthenium capping layer preservation for 100X clean through pH driven effects

    NASA Astrophysics Data System (ADS)

    Dattilo, Davide; Dietze, Uwe; Hsu, Jyh-Wei

    2015-10-01

    In the absence of pellicle a EUVL reticle is expected to withstand up to 100x cleaning cycles. Surface damage upon wet and dry cleaning methods has been investigated and reported in recent years. [1] Thermal stress, direct photochemical oxidation and underlying Silicon layer oxidation are reported as the most relevant root-causes for metal damage and peeling off. [2,3] An investigation of final clean performance is here reported as a function of operating pH; the results show increased Ruthenium durability in moderately alkaline environment. The electrochemical rationale and the dependency of the reducing strength of the media with the pH will be presented as possible explanations for reduced damage.

  9. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  10. Stress

    MedlinePlus

    ... hurt or killed. Examples include a major accident, war, assault, or a natural disaster. This type of ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  11. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    PubMed

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  12. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGES

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  13. Effects of low pH stress on shell traits and proteomes of the dove snail, Anachis misera inhabiting shallow vent environments off Kueishan Islet, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Wu, J. Y.; Chen, C. T. A.; Liu, L. L.

    2014-12-01

    The effects of naturally acidified seawater on a snail species, Anachis misera (Family: Columbellidae) were quantified in five shallow vent-based environments off Kueishan Islet, Taiwan. An absence of Anachis snails was observed in the most acidic North site (pH 7.22), and the size structure differed among the remaining East, South, Southwest and Northwest sites. If a positive correlation between shell length and shell width or total weight existed, the coefficient of determination (R2) of the equations was low, i.e., 0.207-0.444. Snails from the Northwest site (pH 7.33) exhibited a more globular shape than those of the South ones (pH 7.80). Standardized shell thickness T1 (thickness of body whorl : shell length) and T2 (thickness of penultimate whorl : shell length) from the Northwest site showed a decrease of 6.3 and 9.4%, respectively, compared to the South ones. In a similar vein, based on the 16 examined protein spots, protein expression profiles of snails in the South were distinct. With further characterization by principle component analysis, the separation was mainly contributed by the first (i.e., spots 8, 1, 15, and 12) and second (i.e., spots 15, 13, 12, 1, and 11) principal-components. As a whole, the shallow vent-based findings provide new information from subtropics on the effects of ocean acidification on gastropod snails in natural environments.

  14. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  15. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  16. Total alkalinity versus buffer value (capacity) as a sensitivity indicator for fresh waters receiving acid rain

    SciTech Connect

    Faust, S.D.

    1983-09-01

    The frequently stated idea that total alkalinity is a measure of the buffer capacity of a natural water is refuted. Total alkalinity is a measure of the acid neutralizing capacity, equivalents/liter, of a water. In natural waters, the carbonate system provides most of this neutralizing capacity. In as much as the pH values of natural fresh waters lie below 8.3, the total alkalinity is, for all intents and purposes, the total bicarbonate content. Any contributions of carbonate and hydroxide to total alkalinity are nil. The buffer capacity or buffer value is the relation between the increment of a strong base, or strong acid, that causes a one unit change in the pH value. The values of total alkalinity and pH, considered individually cannot give an accurate assessment of the impact of acid deposition on a natural water. Rather it is necessary to combine the pH and alkalinity values into the beta concept in order to assess accurately and to calculate the capacity of a natural water to resist the impact of acid deposition. An analytical determination of total alkalinity is given with an application of the beta value. 17 references, 2 figures, 4 tables.

  17. Growth of Vibrio parahaemolyticus O3:K6 at Different Salt Concentrations Modulates Responses to pH and Temperature Stresses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus inhabits marine, brackish, and estuarine waters worldwide, where fluctuations in salinity pose a constant challenge to the osmotic stress response of the organism. Vibrio parahaemolyticus is a moderate halophile, having an absolute requirement for salt for survival, and is c...

  18. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  19. Spectrophotometric studies on alkaline isomerization of spinach ferredoxin.

    PubMed

    Hasumi, H; Nagata, E; Nakamura, S

    1985-10-01

    The gross protein structure, the microenvironment of the iron-sulfur cluster, and the effect of neutral salts on the molecular structure of spinach ferredoxin were studied by CD and absorption spectroscopy in the alkaline pH range. In the pH range of 7-11, the existence of reversible isomerization which consisted of at least two proton dissociation processes was indicated by the statical CD and absorption spectra. The CD changes in the visible and far-UV regions were dramatic upon elevation of the pH from neutral to alkaline, indicating a significant alteration of the microenvironment of the cluster and a decrease in the ordered secondary structures. The absorption change in the visible region due to pH elevation was small but clearly observed with a high signal-to-noise ratio. The numbers of protons involved in the respective processes and the apparent pK values obtained from the pH-dependence of the CD changes were in good agreement with those obtained from the pH-dependence of the absorption changes in the visible region. In addition, the rate constants obtained from the time courses of the CD and absorption changes agreed with one another. By the addition of 1 M NaCl, the CD and absorption spectra at alkaline pH were reversed almost to those at neutral pH without significant pH change. On the other hand, above pH 11, ferredoxin was found to be irreversibly denatured. Based on analyses of the statical CD and absorption spectra and of the time courses of the CD changes, the probable mechanism of the isomerization was considered to be as follows: (Formula: see text) where H stands for a proton, N-form for native ferredoxin at neutral pH, N*-form for alkaline ferredoxin below pH 11 which still has the iron-sulfur cluster but with disordered secondary structures of the polypeptide chain, and D-form for completely denatured ferredoxin above pH 11. These results lead to the conclusions that (1) the interaction between the protein moiety and the iron-sulfur cluster is

  20. pH in atomic scale simulations of electrochemical interfaces.

    PubMed

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan; Tripković, Vladimir; Björketun, Mårten E

    2013-07-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity of electrochemical interfaces.

  1. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  2. A program to reduce coronary heart disease risk by altering job stresses. Final Report, 1 Aug. 1971 - 30 Sep. 1973 - Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.

    1973-01-01

    This study reports the design, implementation, and evaluation of a program attempting to reduce job stress by improving person-environment fit with respect to job aspects such as work load, responsibility, and interpersonal relationships. In order to assess the effects of the program, measures of both stress and strain were collected at three points in time--just prior to the program, immediately after the program, and three months after completion of the program. Measures of strain included systolic and diastolic blood pressure, determinations of glucose, cholesterol, and uric acid in the plasma, job satisfaction, and job related self-esteem. The findings were interpreted in light of both program incidents within specific experimental groups and general aspects of the program common to the experimental groups. Additional analyses indicated that both good person-environment fit with respect to participation predicts to good fit with respect to other job aspects over a three month interval and that stress causes strain, rather than the reverse.

  3. High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses.

    PubMed

    Hachiya, Takushi; Sugiura, Daisuke; Kojima, Mikiko; Sato, Shigeru; Yanagisawa, Shuichi; Sakakibara, Hitoshi; Terashima, Ichiro; Noguchi, Ko

    2014-02-01

    Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.

  4. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.

    PubMed

    Ismaiel, Mostafa Mahmoud Sami; El-Ayouty, Yassin Mahmoud; Piercey-Normore, Michele

    2016-01-01

    Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis. PMID:26991300

  5. [A Contrastive Study on Salt-alkaline Resistance and Removal Efficiency of Nitrogen and Phosphorus by Phragmites australis and Typha angustifolia in Coastal Estuary Area].

    PubMed

    Chen, You-yuan; Sun, Ping; Chen, Guang-lin; Wang, Ning-ning

    2015-04-01

    The salt and alkali contents were so high that the ecological landscape was depressed in water body of a coastal estuary area. Screening some plants which could not only tolerate saline-alkaline but also effectively remove nitrogen and phosphorus was therefore in urgent need. The tolerance range and removal rate of nitrogen and phosphorus by Phragmites australis and Typha angustifolia under salt and pH stress were investigated by hydroponic experiments. The results showed that Phragmites australis could tolerate at least 10 per thousand salinity and pH 8.5, while Typha angustifolia tolerated 7.5 per thousand salinity and pH 8.0. Combined with the change of the growth and physiological indexes (relative conductivity, proline, chlorophyll and root activity), the salt resistance of Phragmites australis was stronger than that of Typha angustifolia. Under salt stress, the removal rate of ammonia nitrogen of Phragmites australis was higher. The removal rates of nitrate nitrogen and phosphorus of Typha angustifolia were 2.5% and 7.3% higher than those of Phragmites australis in average, respectively, because of the high biomass of Typha angustifolias. The total nitrogen removal rate was equivalent. Under pH stress, the removal rate of ammonia nitrogen and total phosphorus of Phragmites australis was a little higher than that of Typha angustifolia. However, Typha angustifolia had a higher removal rate of total nitrogen, which was 8.2% higher than that of Phragmites australis. All the analysis showed that both Phragmites australis and Typha angustifolia could be used as alternative plants to grow and remove nitrogen and phosphorus in the high salt-alkaline water body in coastal estuary area.

  6. Occurrence and activity of iron and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1980-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (1) acidic pyrite-rich waste coal, (2) oxidation halo material, and (3) alkaline, which was the most widespread type. Bacterial numbers, sulfur oxidation, and /sup 14/CO/sub 2/ uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH indicating that bacterial pyrite oxidation occurred in localized areas where groundwaters contacted either replaced spoils or coal which contained either pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching which occur in the area.

  7. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1981-01-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron-and sulphur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal; (b) oxidation halo material; and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulphur oxidation and /SUP/1/SUP/4CO/SUB/2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulphur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils of coal that contained pyrite or other metal sulphides. Bacterial activity may contribute to trace metal and sulphate leaching in the area. (27 refs.)

  8. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  9. Sensing pH with TMCs.

    PubMed

    Spalthoff, Christian; Göpfert, Martin C

    2016-07-01

    Transmembrane channel-like (TMC) proteins have been implicated in hair cell mechanotransduction, Drosophila proprioception, and sodium sensing in the nematode C. elegans. In this issue of Neuron, Wang et al. (2016) report that C. elegans TMC-1 mediates nociceptor responses to high pH, not sodium, allowing the nematode to avoid strongly alkaline environments in which most animals cannot survive. PMID:27387645

  10. Advanced development of the boundary element method for elastic and inelastic thermal stress analysis. Ph.D. Thesis, 1987 Final Report

    NASA Technical Reports Server (NTRS)

    Henry, Donald P., Jr.

    1991-01-01

    The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.

  11. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  12. Initiation of Stress Corrosion Cracks in X80 and X100 Pipe Steels in Near-Neutral pH Environment

    NASA Astrophysics Data System (ADS)

    Kang, Jidong; Zheng, Wenyue; Bibby, Darren; Amirkhiz, Babak Shalchi; Li, Jian

    2016-01-01

    Tests were conducted on X80 and X100 pipe steels at 95% specified minimum yield stress in NS4 solution mixed with soil using specimens machined along the transverse direction of the pipes. Crack initiation in X100 is much easier than in X80. With test time increasing from 110 to 220 days, less numerous but deeper cracks were found in both pipe steels. Cracks showed higher growth rates in the transverse specimens than those in longitudinal ones. TEM results revealed concentration of Ni or Cr elements, formation of oxide layer at crack walls, and TiN-related dissolution at the crack tip.

  13. Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae.

    PubMed

    Lukito, Yonathan; Chujo, Tetsuya; Scott, Barry

    2015-12-01

    In order to survive and adapt to the environment, it is imperative for fungi to be able to sense and respond to changes in extracellular pH conditions. In ascomycetes, sensing of extracellular pH is mediated by the Pal pathway resulting in activation of the PacC transcription factor at alkaline pH. The role of PacC in regulating fungal virulence and pathogenicity has been described in several pathogenic fungi but to date not in a symbiotic fungus. Epichloë festucae is a biotrophic fungal endophyte that forms a stable mutualistic interaction with Lolium perenne. In this study, pacC deletion (ΔpacC) and dominant active (pacC(C)) mutants were generated in order to study the cellular roles of PacC in E. festucae. Deletion of pacC resulted in increased sensitivity of the mutant to salt-stress but surprisingly did not affect the ability of the mutant to grow under alkaline pH conditions. Alkaline pH was observed to induce conidiation in wild-type E. festucae but not in the ΔpacC mutant. On the other hand the pacC(C) mutant had increased conidiation at neutral pH alone. Null pacC mutants had no effect on the symbiotic interaction with ryegrass plants whereas the pacC(C) mutant increased the tiller number. Examination of the growth of the pacC(C) mutant in the plant revealed the formation of aberrant convoluted hyphal structures and an increase in hyphal breakage, which are possible reasons for the altered host interaction phenotype.

  14. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  15. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    PubMed

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  16. Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE.

    PubMed

    Liu, Yingbao; Yang, Xiaobing; Yin, Yajie; Lin, Jinshui; Chen, Can; Pan, Junfeng; Si, Meiru; Shen, Xihui

    2016-07-14

    Mycothiol (MSH) plays a major role in protecting cells against oxidative stress and detoxification from a broad range of exogenous toxic agents. In the present study, we reveal that intracellular MSH contributes significantly to the adaptation to acidic conditions in the model organism Corynebacterium glutamicum. We present evidence that MSH confers C. glutamicum with the ability to adapt to acidic conditions by maintaining pHi homeostasis, scavenging reactive oxygen species (ROS), and protecting methionine synthesis by the S-mycothiolation modification of methionine synthase (MetE). The role of MSH in acid adaptation was further confirmed by improving the acid tolerance of C. glutamicum by overexpressing the key MSH synthesis gene mshA. Hence, our work provides insights into a previously unknown, but important, aspect of the C. glutamicum cellular response to acid stress. The results reported here may help to understand acid tolerance mechanisms in acid sensitive bacteria and may open a new avenue for improving acid resistance in industry strains for the production of bio-based chemicals from renewable biomass. PMID:27250661

  17. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  18. Design factors and performance efficiencies of successive alkalinity producing systems

    SciTech Connect

    Jage, C.R.; Zipper, C.E.

    1999-07-01

    Successive Alkalinity Producing Systems (SAPS) are passive treatment wetlands that have been used successfully in renovating acidic mine drainage (AMD) for several years. Unfortunately, design parameters and treatment efficiency of these systems vary widely due to a lack of clear, consistent design and construction guidelines. This study is investigating ten operating SAPS systems in Virginia and West Virginia for the purpose of identifying the relationship of design and construction factors to system performance. Influent and effluent water samples were collected for a period of two years or longer by the operators of each system. Each sample was analyzed for pH, alkalinity, acidity, sulfate, total iron, total manganese, and aluminum. The individual systems were also characterized according to system age, size, and construction materials. Residence times for the ten systems ranged from 4.5 hours to 13.31 days. On average, they were able to raise the pH 0.65 units and generate a net alkalinity of 84.84 mg/l as CaCO{sub 3}. Iron and manganese removal did occur in the SAPS cells, but the majority of the removal took place in post-SAPS settling ponds. Net alkalinity generation was positively correlated with residence time and iron removal rates suggesting a synergistic effect. Seasonal variation in alkalinity production was also noted, possibly indicating changes in alkalinity generation rates by dissimilatory sulfate reduction. These data provide the foundation for the development of a user-oriented SAPS design model based solely on influent AMD chemistry and final treatment goals as input parameters.

  19. Long-term alkalinity decrease and acidification of estuaries in northwestern Gulf of Mexico.

    PubMed

    Hu, Xinping; Pollack, Jennifer Beseres; McCutcheon, Melissa R; Montagna, Paul A; Ouyang, Zhangxian

    2015-03-17

    More than four decades of alkalinity and pH data (late 1960s to 2010) from coastal bays along the northwestern Gulf of Mexico were analyzed for temporal changes across a climatic gradient of decreasing rainfall and freshwater inflow, from northeast to southwest. The majority (16 out of 27) of these bays (including coastal waters) showed a long-term reduction in alkalinity at a rate of 3.0-21.6 μM yr(-1). Twenty-two bays exhibited pH decreases at a rate of 0.0014-0.0180 yr(-1). In contrast, a northernmost coastal bay exhibited increases in both alkalinity and pH. Overall, the two rates showed a significant positive correlation, indicating that most of these bays, especially those at lower latitudes, have been experiencing long-term acidification. The observed alkalinity decrease may be caused by reduced riverine alkalinity export, a result of precipitation decline under drought conditions, and freshwater diversion for human consumption, as well as calcification in these bays. A decrease in alkalinity inventory and accompanying acidification may have negative impacts on shellfish production in these waters. In addition, subsequent reduction in alkalinity export from these bays to the adjacent coastal ocean may also decrease the buffer capacity of the latter against future acidification.

  20. Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions.

    PubMed

    Vihakas, Matti; Gómez, Isrrael; Karonen, Maarit; Tähtinen, Petri; Sääksjärvi, Ilari; Salminen, Juha-Pekka

    2015-09-01

    Lepidopteran larvae encounter a variety of phenolic compounds while consuming their host plants. Some phenolics may oxidize under alkaline conditions prevailing in the larval guts, and the oxidation products may cause oxidative stress to the larvae. In this study, we aimed to find new ways to predict how phenolic compounds may be modified in the guts of herbivorous larvae. To do so, we studied the ease of oxidation of phenolic compounds from 12 tropical tree species. The leaf extracts were incubated in vitro in alkaline conditions, and the loss of total phenolics during incubation was used to estimate the oxidizability of extracts. The phenolic profiles of the leaf extracts before and after incubation were compared, revealing that some phenolic compounds were depleted during incubation. The leaves of the 12 tree species were each fed to 12 species of lepidopteran larvae that naturally feed on these trees. The phenolic profiles of larval frass were compared to those of in vitro incubated leaf extracts. These comparisons showed that the phenolic profiles of alkali-treated samples and frass samples were similar in many cases. This suggested that certain phenolics, such as ellagitannins, proanthocyanidins, and galloylquinic acid derivatives were modified by the alkaline pH of the larval gut. In other cases, the chromatographic profiles of frass and in vitro incubated leaf extracts were not similar, and new modifications of phenolics were detected in the frass. We conclude that the actual fates of phenolics in vivo are often more complicated than can be predicted by a simple in vitro method. PMID:26364295

  1. Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions.

    PubMed

    Vihakas, Matti; Gómez, Isrrael; Karonen, Maarit; Tähtinen, Petri; Sääksjärvi, Ilari; Salminen, Juha-Pekka

    2015-09-01

    Lepidopteran larvae encounter a variety of phenolic compounds while consuming their host plants. Some phenolics may oxidize under alkaline conditions prevailing in the larval guts, and the oxidation products may cause oxidative stress to the larvae. In this study, we aimed to find new ways to predict how phenolic compounds may be modified in the guts of herbivorous larvae. To do so, we studied the ease of oxidation of phenolic compounds from 12 tropical tree species. The leaf extracts were incubated in vitro in alkaline conditions, and the loss of total phenolics during incubation was used to estimate the oxidizability of extracts. The phenolic profiles of the leaf extracts before and after incubation were compared, revealing that some phenolic compounds were depleted during incubation. The leaves of the 12 tree species were each fed to 12 species of lepidopteran larvae that naturally feed on these trees. The phenolic profiles of larval frass were compared to those of in vitro incubated leaf extracts. These comparisons showed that the phenolic profiles of alkali-treated samples and frass samples were similar in many cases. This suggested that certain phenolics, such as ellagitannins, proanthocyanidins, and galloylquinic acid derivatives were modified by the alkaline pH of the larval gut. In other cases, the chromatographic profiles of frass and in vitro incubated leaf extracts were not similar, and new modifications of phenolics were detected in the frass. We conclude that the actual fates of phenolics in vivo are often more complicated than can be predicted by a simple in vitro method.

  2. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  3. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  4. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation.

    PubMed

    Maspolim, Yogananda; Zhou, Yan; Guo, Chenghong; Xiao, Keke; Ng, Wun Jern

    2015-08-01

    Sludge fermentation between pH 4 and 11 was investigated to generate volatile fatty acids (VFA). Despite the highest sludge solubilization of 25.9% at pH 11, VFA accumulation was optimized at pH 8 (12.5% out of 13.1% sludge solubilization). 454 pyrosequencing identified wide diversity of acidogens in bioreactors operated at the various pHs, with Tissierella, Petrimonas, Proteiniphilum, Levilinea, Proteiniborus and Sedimentibacter enriched and contributing to the enhanced fermentation at pH 8. Hydrolytic enzymatic assays determined abiotic effect to be the leading cause for improved solubilization under high alkaline condition but the environmental stress at pH 9 and above might lead to disrupt biological activities and eventually VFA production. Furthermore, molecular weight (MW) characterization of the soluble fractions found large MW aromatic substances at pH 9 and above, that is normally associated with poor biodegradability, making them disadvantageous for subsequent bioprocesses. The findings provided information to better understand and control sludge fermentation.

  5. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  6. The role of carbon dioxide (and intracellular pH) in the pathomechanism of several mental disorders. Are the diseases of civilization caused by learnt behaviour, not the stress itself?

    PubMed

    Sikter, András; Faludi, Gábor; Rihmer, Zoltán

    2009-09-01

    The role of carbon dioxide (CO2) is underestimated in the pathomechanism of neuropsychiatric disorders, though it is an important link between psyche and corpus. The actual spiritual status also influences respiration (we start breathing rarely, frequently, irregularly, etc.) causing pH alteration in the organism; on the other hand the actual cytosolic pH of neurons is one of the main modifiers of Ca2+-conductance, hence breathing directly, quickly, and effectively influences the second messenger system through Ca2+-currents. (Decreasing pCO2 turns pH into alkalic direction, augments psychic arousal, while increasing pCO2 turns pH acidic, diminishes arousal.) One of the most important homeostatic function is to maintain or restore the permanence of H+-concentration, hence the alteration of CO2 level starts cascades of contraregulation. However it can be proved that there is no perfect compensation, therefore compensational mechanisms may generate psychosomatic disorders causing secondary alterations in the "milieu interieur". Authors discuss the special physico-chemical features of CO2, the laws of interweaving alterations of pCO2 and catecholamine levels (their feedback mechanism), the role of acute and chronic hypocapnia in several hyperarousal disorders (delirium, panic disorder, hyperventilation syndrome, generalized anxiety disorder, bipolar disorder), the role of "locus minoris resistentiae" in the pathomechanism of psychosomatic disorders. It is supposed that the diseases of civilization are caused not by the stress itself but the lack of human instinctive reaction to it, and this would cause long-lasting CO2 alteration. Increased brain-pCO2, acidic cytosol pH and/or increased basal cytosolic Ca2+ level diminish inward Ca2+-current into cytosol, decrease arousal--they may cause dysthymia or depression. This state usually co-exists with ATP-deficiency and decreased cytosolic Mg2+ content. This energetical- and ion-constellation is also typical of ageing

  7. The role of carbon dioxide (and intracellular pH) in the pathomechanism of several mental disorders. Are the diseases of civilization caused by learnt behaviour, not the stress itself?

    PubMed

    Sikter, András; Faludi, Gábor; Rihmer, Zoltán

    2009-09-01

    The role of carbon dioxide (CO2) is underestimated in the pathomechanism of neuropsychiatric disorders, though it is an important link between psyche and corpus. The actual spiritual status also influences respiration (we start breathing rarely, frequently, irregularly, etc.) causing pH alteration in the organism; on the other hand the actual cytosolic pH of neurons is one of the main modifiers of Ca2+-conductance, hence breathing directly, quickly, and effectively influences the second messenger system through Ca2+-currents. (Decreasing pCO2 turns pH into alkalic direction, augments psychic arousal, while increasing pCO2 turns pH acidic, diminishes arousal.) One of the most important homeostatic function is to maintain or restore the permanence of H+-concentration, hence the alteration of CO2 level starts cascades of contraregulation. However it can be proved that there is no perfect compensation, therefore compensational mechanisms may generate psychosomatic disorders causing secondary alterations in the "milieu interieur". Authors discuss the special physico-chemical features of CO2, the laws of interweaving alterations of pCO2 and catecholamine levels (their feedback mechanism), the role of acute and chronic hypocapnia in several hyperarousal disorders (delirium, panic disorder, hyperventilation syndrome, generalized anxiety disorder, bipolar disorder), the role of "locus minoris resistentiae" in the pathomechanism of psychosomatic disorders. It is supposed that the diseases of civilization are caused not by the stress itself but the lack of human instinctive reaction to it, and this would cause long-lasting CO2 alteration. Increased brain-pCO2, acidic cytosol pH and/or increased basal cytosolic Ca2+ level diminish inward Ca2+-current into cytosol, decrease arousal--they may cause dysthymia or depression. This state usually co-exists with ATP-deficiency and decreased cytosolic Mg2+ content. This energetical- and ion-constellation is also typical of ageing

  8. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  9. Investigating Mechanisms of Alkalinization for Reducing Primary Breast Tumor Invasion

    PubMed Central

    Robey, Ian F.; Nesbit, Lance A.

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P < 0.01). Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs). To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (P ≤ 0.003). Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX). The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion. PMID:23936808

  10. β-Amylase1 and β-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions1[W][OPEN

    PubMed Central

    Monroe, Jonathan D.; Storm, Amanda R.; Badley, Elizabeth M.; Lehman, Michael D.; Platt, Samantha M.; Saunders, Lauren K.; Schmitz, Jonathan M.; Torres, Catherine E.

    2014-01-01

    Starch degradation in chloroplasts requires β-amylase (BAM) activity, which is encoded by a multigene family. Of nine Arabidopsis (Arabidopsis thaliana) BAM genes, six encode plastidic enzymes, but only four of these are catalytically active. In vegetative plants, BAM1 acts during the day in guard cells, whereas BAM3 is the dominant activity in mesophyll cells at night. Plastidic BAMs have been difficult to assay in leaf extracts, in part because of a cytosolic activity encoded by BAM5. We generated a series of double mutants lacking BAM5 and each of the active plastidic enzymes (BAM1, BAM2, BAM3, and BAM6) and found that most of the plastidic activity in 5-week-old plants was encoded by BAM1 and BAM3. Both of these activities were relatively constant during the day and the night. Analysis of leaf extracts from double mutants and purified BAM1 and BAM3 proteins revealed that these proteins have distinct properties. Using soluble starch as the substrate, BAM1 and BAM3 had optimum activity at pH 6.0 to 6.5, but at high pH, BAM1 was more active than BAM3, consistent with its known daytime role in the guard cell stroma. The optimum temperature for BAM1, which is transcriptionally induced by heat stress, was about 10°C higher than that of BAM3, which is transcriptionally induced by cold stress. The amino acid composition of BAM1 and BAM3 orthologs reflected differences that are consistent with known adaptations of proteins from heat- and cold-adapted organisms, suggesting that these day- and night-active enzymes have undergone thermal adaptation. PMID:25293962

  11. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    NASA Astrophysics Data System (ADS)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  12. [Contrastive analysis on soil alkalinization predicting models based on measured reflectance and TM image reflectance].

    PubMed

    Zhang, Fang; Xiong, Hei-Gang; Long, Tao; Lu, Wen-Juan

    2011-01-01

    Based on the monitored data of soil pH and measured Vis-NIR reflectance on spot in Qitai oasis alkalinized area in Xinjiang, as well as comparison of the relationship between measured reflectance and soil pH and the relationship between TM reflectance and soil pH, both of the reflectance multivariate linear regression models were built to evaluate soil alkalinization level, and the model accuracy of pH fitting was discussed with error inspection of post-sample. The results showed that there is a significant positive correlation between soil pH and reflectance. With pH rising the reflectance increased concurrently. So the alkalinization soil characterized by hardening had good spectral response characteristics. Both measured reflectance and TM image reflectance had good potential ability for change detection of the alkalinization soil. The pH predicting model of measured reflectance had higher accuracy and the major error was from different hardening state. If building model by TM reflectance directly, the accuracy of fitting was lower because of the vegetation information in image spectrum. With the vegetation factor removed with NDVI, the accuracy of TM predicting model was near the accuracy of measured reflectance predicting model, and both of the model levels were good. PMID:21428094

  13. [Contrastive analysis on soil alkalinization predicting models based on measured reflectance and TM image reflectance].

    PubMed

    Zhang, Fang; Xiong, Hei-Gang; Long, Tao; Lu, Wen-Juan

    2011-01-01

    Based on the monitored data of soil pH and measured Vis-NIR reflectance on spot in Qitai oasis alkalinized area in Xinjiang, as well as comparison of the relationship between measured reflectance and soil pH and the relationship between TM reflectance and soil pH, both of the reflectance multivariate linear regression models were built to evaluate soil alkalinization level, and the model accuracy of pH fitting was discussed with error inspection of post-sample. The results showed that there is a significant positive correlation between soil pH and reflectance. With pH rising the reflectance increased concurrently. So the alkalinization soil characterized by hardening had good spectral response characteristics. Both measured reflectance and TM image reflectance had good potential ability for change detection of the alkalinization soil. The pH predicting model of measured reflectance had higher accuracy and the major error was from different hardening state. If building model by TM reflectance directly, the accuracy of fitting was lower because of the vegetation information in image spectrum. With the vegetation factor removed with NDVI, the accuracy of TM predicting model was near the accuracy of measured reflectance predicting model, and both of the model levels were good.

  14. Buffering of alkaline steel slag leachate across a natural wetland.

    PubMed

    Mayes, William M; Younger, Paul L; Aumônier, Jonathan

    2006-02-15

    Buffering of high-pH (>12) steel slag leachate is documented across a small, natural calcareous wetland. The alkaline leachate is supersaturated with respect to calcite upstream of the wetland (Sl(calcite) values +2.3) and becomes less saturated with progress across the wetland, to Sl(calcite) values of +0.27 at the wetland outlet. Reduction in pH across the wetland (to around pH 8 at the wetland outlet) was observed to be more pronounced over summer months, possibly due to increased microbial activity, possibly further assisted by greater flow baffling by emergent vegetation. Calculated calcite precipitation rates downstream of the leachate source, estimated from hydrochemical data, flow, and surface area, were on the order of 0.4-15 g m(-2) day(-1), while direct measurements (using immersed limestone blocks) showed calcite precipitation values in the range 3-10 g m(-2) day(-1). Precipitation rate was highest in the pH range where the carbonate ion is a dominant constituent of sample alkalinity (pH 9.5-11) and at the locations where wetland biota became established downstream of the leachate emergence. These data provide valuable insights into the potential for using constructed wetlands for the passive treatment of high pH steel slag leachates.

  15. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  16. Microbial thiocyanate utilization under highly alkaline conditions.

    PubMed

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  17. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  18. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  19. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  20. Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash.

    PubMed

    Hijikata, Nowaki; Tezuka, Rui; Kazama, Shinobu; Otaki, Masahiro; Ushijima, Ken; Ito, Ryusei; Okabe, Satoshi; Sano, Daisuke; Funamizu, Naoyuki

    2016-10-01

    In the present study, the bactericidal and virucidal mechanisms in the alkaline disinfection of compost with calcium lime and ash were investigated. Two indicator microorganisms, Escherichia coli and MS2 coliphage, were used as surrogates for enteric pathogens. The alkaline-treated compost with calcium oxide (CaO) or ash resulted primarily in damage to the outer membrane and enzyme activities of E. coli. The alkaline treatment of compost also led to the infectivity loss of the coliphage because of the partial capsid damage and RNA exteriorization due to a raised pH, which is proportional to the amount of alkaline agents added. These results indicate that the alkaline treatment of compost using calcium oxide and ash is effective and can contribute to the safe usage of compost from a mixing type dry toilet. PMID:27562698

  1. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  2. Simplified seawater alkalinity analysis: Use of linear array spectrometers

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Byrne, Robert H.

    1998-08-01

    Modified spectrophotometric procedures are presented for the determination of seawater total alkalinity using rapid scan linear array spectrometers. Continuous monitoring of solution pH allows titrations to be terminated at relatively high pH, whereby excess acid terms are very small. Excess acid concentrations are quantified using the sulfonephthalein indicators, bromocresol green and bromocresol purple. The outlined spectrophotometric procedures require no thermal equilibration of samples. Using bromocresol green, solution pH T ([H +] T in moles per kg of solution) is given as: pHT=4.2699+0.002578(35- S)+ log((R(25)-0.00131)/(2.3148-0.1299 R(25))) - log(1-0.001005S) and R(25)= R( t){1+0.00909(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t) is the absorbance ratio ( A616/ A444) at temperature t and salinity S. Using bromocresol purple, the solution pH T is given as pH T=5.8182+0.00129(35- S)+log(( R(25)-0.00381)/(2.8729-0.05104 R(25))) and R(25)= R( t){1+0.01869(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t)= A589/ A432. Alkalinity measurements using bromocresol purple had a precision on the order of 0.3 μmol kg -1 and were within 0.3-0.9 μmol kg -1 of the alkalinities of certified seawater reference materials.

  3. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    PubMed

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  4. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  5. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  6. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  7. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J. R.

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  8. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  9. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  10. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  11. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils ▿

    PubMed Central

    Turner, Benjamin L.

    2010-01-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates. PMID:20709838

  12. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes.

    PubMed

    Lin, Hao; Chen, Wei; Ding, Hui

    2013-01-01

    The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH<5) or alkaline (pH>9) solution. Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and 97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment.

  13. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes

    PubMed Central

    Lin, Hao; Chen, Wei; Ding, Hui

    2013-01-01

    The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH<5) or alkaline (pH>9) solution. Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and 97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment. PMID:24130738

  14. Metal bioavailability and toxicity to fish in low-alkalinity lakes - a critical-review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, J.G.

    1991-01-01

    Fish in low-alkalinity lakes having ph of 6.0-6.5 Or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher ph. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (ch3hg+, cd2+, and pb2+) at low ph. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-ph water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  15. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  16. Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803.

    PubMed

    Kurian, Dominic; Phadwal, Kanchan; Mäenpää, Pirkko

    2006-06-01

    A comparative proteomic analysis using 2-DE coupled with MALDI-MS and LC-MS/MS was performed in Synechocystis sp. PCC 6803 to identify protein candidates involved in acid stress response in cyanobacteria. Comparison of soluble proteins from the cytoplasmic fraction of cells grown on media set at pH 7.5 and 5.5 using 2-DE identified four proteins, which showed significant changes in the abundance. Surprisingly, several general stress proteins, either the heat shock family proteins or chaperonins, did not show perceptible fold changes in response to acidity. Compared to the cytoplasmic proteome, the periplasmic proteome showed remarkable changes as a function of external pH. Protein expression profiling at different external pH, i.e., 9.0, 7.5, 6.0 and 5.5, allowed classifying the periplasmic proteins depending on their preferential expression patterns towards acidity or alkalinity. Among the acid- and base-induced proteins, oxalate decarboxylase and carbonic anhydrase were already known for their role in pH homeostasis. Several unknown proteins from the periplasm, that showed significant changes in response to pH, provide ideal targets for further studies in understanding pH stress response in cyanobacteria. This study also identified 14 novel proteins, hitherto unknown from the periplasmic space of Synechocystis. PMID:16691555

  17. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    PubMed

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  18. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Munz, Giulio; Oleszkiewicz, Jan A

    2016-01-01

    The impact of pH variation on aerobic granular sludge stability and performance was investigated. A 9-day alkaline (pH=9) and acidic (pH=6) pH shocks were imposed on mature granules with simultaneous chemical oxygen demand (COD), nitrogen and phosphorus removal. The imposed alkaline pH shock (pH 9) reduced nitrogen and phosphorus removal efficiency from 88% and 98% to 66% and 50%, respectively, with no further recovery. However, acidic pH shock (pH 6) did not have a major impact on nutrient removal and the removal efficiencies recovered to their initial values after 3 days of operation under the new pH condition. Operating the reactors under alkaline pH induced granules breakage and resulted in an increased solids concentration in the effluent and a significant decrease in the size of the bio-particles, while acidic pH did not have significant impacts on granules stability. Changes in chemical structure and composition of extracellular polymeric substances (EPS) matrix were suggested as the main factors inducing granules instability under high pH. PMID:26744935

  20. Alkalinization by chloride/bicarbonate pathway in larval mosquito midgut

    PubMed Central

    Boudko, Dmitri Y.; Moroz, Leonid L.; Harvey, William R.; Linser, Paul J.

    2001-01-01

    The midgut of mosquito larvae maintains a specific lumen alkalinization profile with large longitudinal gradients (pH ≈ 3 units⋅mm−1) in which an extremely alkaline (pH ≈ 11) anterior midgut lies between near-neutral posterior midgut and gastric cecum (pH 7–8). A plasma membrane H+ V-ATPase energizes this alkalinization but the ion carriers involved are unknown. Capillary zone electrophoresis of body samples with outlet conductivity detection showed a specific transepithelial distribution of chloride and bicarbonate/carbonate ions, with high concentrations of both anions in the midgut tissue: 68.3 ± 5.64 and 50.8 ± 4.21 mM, respectively. Chloride was higher in the hemolymph, 57.6 ± 7.84, than in the lumen, 3.51 ± 2.58, whereas bicarbonate was higher in the lumen, 58.1 ± 7.34, than the hemolymph, 3.96 ± 2.89. Time-lapse video assays of pH profiles in vivo revealed that ingestion of the carbonic anhydrase inhibitor acetazolamide and the ion exchange inhibitor DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid), at 10−4 M eliminates lumen alkalinization. Basal application of these inhibitors in situ also reduced gradients recorded with self-referencing pH-sensitive microelectrodes near the basal membrane by ≈65% and 85% respectively. Self-referencing chloride-selective microelectrodes revealed a specific spatial profile of transepithelial chloride transport with an efflux maximum in anterior midgut. Both acetazolamide and DIDS reduced chloride effluxes. These data suggest that an H+ V-ATPase-energized anion exchange occurs across the apical membrane of the epithelial cells and implicate an electrophoretic Cl−/HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{3}^{-}}}\\end{equation*}\\end{document} exchanger and carbonic anhydrase as

  1. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    PubMed Central

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. Findings Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. Conclusions/Significance Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment

  2. Photoreversible changes in pH of pea phytochrome solutions

    SciTech Connect

    Tokutomi, S.; Yamamoto, K.T.; Miyoshi, Y.; Furuya, M.

    1982-02-01

    Phytochrome is a chromoprotein that serves as the photoreceptor for a variety of photomorphogenic responses in plants. Phytochrome was isolated from etiolated pea seedlings. Photoinduced pH changes of an unbuffered solution of the phytochrome were monitored with a semimicrocombination pH electrode at pH 6.5. Red-light irradiation increased the pH of the medium. This alkalinization was reversed by a subsequent far-red-light irradiation. The magnitude and direction of the red-light-induced pH changes was dependent on the pH of the photocrome solution, and the maximum alkalinization was observed at pH 6.0, where the number of protons taken up per phytochrome monomer was 0.18. These results suggest that phytochrome is a multifunctional protein composed of a chromophoric domain and a hydrophobic domain. It is probable that the hydrophobic domain is responsible for the photoinduced change of hydrophobicity of phytochrome and that the ionizable groups responsible for the photoinduced pH changes are localized in the chromophoric domain. (JMT)

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  5. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  6. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH.

  7. Use of precision agriculture technologies in studying the relationships among soil pH, calcium carbonate equivalent, soybean cyst nematode population density, and soybean yield

    NASA Astrophysics Data System (ADS)

    Rogovska, Natalia

    Iron deficiency chlorosis (IDC) and soybean cyst nematode (SCN; Heterodera glycines) infestation are major factors that contribute to soybean (Glycine max Merr.) yield reduction in the Midwest. The IDC is often associated with soybean grown on high pH, calcareous soils. In addition, it was documented that SCN population density is higher in high pH soils. The objectives of this paper were to assess the proportion of within-field soybean yield and SCN variability that could be explained by soil pH, calcium carbonate equivalent (CCE), and a previously defined alkalinity stress index (ASI). Aerial images from 21 fields planted to SCN-resistant or susceptible soybean varieties were collected from 2001 through 2005 and used as a guide for soil and grain sampling. Ten to 16 sampling sites were selected on each field. Regression analyses within and across sites were used to study relationships between the measured variables. The SCN population density increased and yield decreased with increasing pH, CCE, and ASI across the fields. The percentage of yield variability across fields explained by soil pH, CCE, ASI, and SCN was 13%, 15%, 18%, and 1%, respectively, for resistant soybean varieties and 37%, 24%, 39%, and 10%, respectively, for susceptible varieties. The yield reduction due to high pH, CCE, and ASI was greater for SCN-susceptible varieties in field areas heavily infested with SCN.

  8. Intracellular pH and the Control of Multidrug Resistance

    NASA Astrophysics Data System (ADS)

    Simon, Sanford; Roy, Deborshi; Schindler, Melvin

    1994-02-01

    Many anticancer drugs are classified as either weak bases or molecules whose binding to cellular structures is pH dependent. Accumulation of these drugs within tumor cells should be affected by transmembrane pH gradients. Indeed, development of multidrug resistance (MDR) in tumor cells has been correlated with an alkaline shift of cytosolic pH. To examine the role of pH in drug partitioning, the distribution of two drugs, doxorubicin and daunomycin, was monitored in fibroblasts and myeloma cells. In both cell types the drugs rapidly accumulated within the cells. The highest concentrations were measured in the most acidic compartments-e.g., lysosomes. Modifying the cellular pH in drug-sensitive cells to mimic reported shifts in MDR caused an immediate change in the cellular drug concentration. Drug accumulation was enhanced by acidic shifts and reversed by alkaline shifts. All of these effects were rapid and reversible. These results demonstrate that the alkaline shift observed in MDR is sufficient to prevent the accumulation of chemotherapeutic drugs independent of active drug efflux.

  9. pH gradients induced by urea metabolism in 'artificial mouth' microcosm plaques.

    PubMed

    Sissons, C H; Wong, L; Hancock, E M; Cutress, T W

    1994-06-01

    Evidence was sought for urea-induced pH gradients in dental plaque microcosm biofilms cultured from the mixed salivary bacteria in a multi plaque 'artificial mouth'. Application of 500 mmol/l urea for short periods (6 min) to 5-8 mm maximum-thickness plaques induced intraplaque pH gradients of up to 0.7 pH units with the surface alkaline relative to the inner plaque. These pH gradients persisted for more than 5 h in the absence of a flow of fluid. With 30-min urea applications and a flow of a basal medium containing mucin (BMM, pH 7.0), the pH of the inner (deeper) plaque regions also increased. Although the pH gradient initially formed was alkaline at the plaque surface, the BMM flow lowered the surface pH to neutrality whilst the inner layers were still alkaline, thereby reversing the pH gradient. In thick microcosm dental plaques, urea-induced pH gradients can therefore form and last many hours. They probably result from the significant time taken for urea to penetrate to the inner layers of plaque, its rapid metabolism by the outer plaque layers, and a rate-limiting clearance of ammonia. Even a slow BMM flow over the plaque greatly increased the rate of return to the resting pH, causing the gradients to change polarity.

  10. The Buffering Balance: Modeling Arctic river total-, inorganic-, and organic-alkalinity fluxes

    NASA Astrophysics Data System (ADS)

    Hunt, C. W.; Salisbury, J.; Wollheim, W. M.; Mineau, M.; Stewart, R. J.

    2014-12-01

    River-borne inputs of alkalinity influence the pH and pCO2 of coastal ocean waters, and changes in alkalinity inputs also have implications for responses to climate-driven ocean acidification. Recent work has shown that alkalinity fluxes from rivers are not always dominated by inorganic carbon species, and can instead be composed somewhat or mostly of non-carbonate, presumably organic species. Concentrations and proportions of organic alkalinity (O-Alk) are correlated to dissolved organic carbon (DOC) concentrations and fluxes, which are predicted to rise as Arctic permafrost thaws and the hydrologic cycle intensifies. We have scaled results from watershed studies to develop a process-based model to simulate and aggregate Arctic river exports of total alkalinity, DOC, and O-Alk to the coastal sea. Total alkalinity, DOC, and O-Alk were loaded to a river network and routed through a 6-minute hydrologic model (FrAMES). We present results contrasting poorly buffered (e.g. the Kolyma river) and highly buffered (e.g. the Yukon river) systems, the impact of O-Alk on river pH and pCO2, and examine the seasonalities of inorganic and organic influences on coastal ocean carbonate chemistry.

  11. Monoclonal antibody to alkaline phosphatase from the intestinal mucosa of the harp seal, Phoca groenlandica.

    PubMed

    Sakharov IYu; Mechetner, E B; Stepanova, I E; Shekhonin, B V; Pletjushkina OYu

    1992-04-01

    1. Hybridoma secreting a monoclonal antibody APP.1 to the harp seal alkaline phosphatase (A1Ph) was obtained by fusing murine myeloma Sp 2/0 cells with the splenocytes of BALB/c mice immunized with purified isozyme K. 2. The antibody has no effect on the enzyme activity and shows a high affinity for harp seal A1Ph (KD = 8.5 x 10(-10) M). The antibody has similar affinities for the AlPh of harp seal, fur seal, common seal and deer. 3. The antibody APP.1 was coupled to Sepharose and employed in chromatographic purification of the harp seal intestinal AlPh. Alkaline phosphatase isolated on this immunosorbent has a spec. act. of 20,800 units per mg of protein. 4. The antibody-enzyme complex gives an excellent immunocytochemical labeling of tissue sections, cell cultures and smears.

  12. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  13. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  14. [DNA degradation during standard alkaline of thermal denaturation].

    PubMed

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  15. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    PubMed

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  16. Cancer: fundamentals behind pH targeting and the double-edged approach

    PubMed Central

    Koltai, Tomas

    2016-01-01

    The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid–base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor’s metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations

  17. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH.

    PubMed

    Kong, F X; Liu, Y; Hu, W; Shen, P P; Zhou, C L; Wang, L S

    2000-02-01

    Biochemical responses of Pinus massoniana, with and without the inoculation mycorrhizal fungus Pisolithus tinctorius at the root, to artificial acid rain (pH 2.0) and various Ca/Al ratios were investigated. Some enzymes associated with the nutritive metabolism, such as acid phosphatase, alkaline phosphatase, nitrate reductase, mannitol dehydrogenase and trehalase, in the roots, stems and leaves of plant were obviously inhibited by the artificial acid rain and Al. After treatment with pH 2.0 + Ca/Al (0/1 or 1/10) artificial acid rain, the protein content in the organs was decreased. However, the activities of superoxide dismutase (SOD) and peroxidase (POD) and glutathione (GSH) concentrations were induced. It demonstrated that acid rain and Al could induce oxygen radicals in plant. Compared with the treatments with lower pH or Al, respectively, the combination of lower pH and Al concentration was more toxic to P. massoniana. Al toxicity could be ameliorated by the addition of Ca and the amelioration was the most when the ratio was 1/1 among the various Ca/Al ratio. Infection with mycorrhizal fungus P. tinctorius at the root of P. massoniana increased the ability of the plant to resist the toxicity of artificial acid rain and Al stress.

  18. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  19. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  20. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  1. The Martian ocean: First acid, then alkaline

    NASA Astrophysics Data System (ADS)

    Schaefer, M. W.

    1993-09-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  2. Decrease of time for pathogen inactivation in alkaline disinfection systems using pressure.

    PubMed

    Fitzmorris, Kari B; Reimers, Robert S; Oleszkiewicz, Jan A; Little, M Dale

    2007-04-01

    From field studies conducted by Tulane University (New Orleans, Louisiana), efficiency of advanced alkaline disinfection in closed systems was found to depend on ammonia concentration, pH, exposure time, temperature, total solids content, pretreatment storage time, and mixing effectiveness. In this study of a closed alkaline system, an additional pathogen stressor pressure was tested. The effect of the alkaline dosing has been assessed for dewatered raw and aerobically and anaerobically digested municipal sludge cake that produce un-ionized ammonia at concentrations of 0.05 to 2% on a dry-weight basis. Inactivation of Ascaris suum eggs increased from 50 to 99% as the temperature was increased from 40 to 55 degrees C, thus achieving Class A levels. The systems studied were compared with an alkaline process operated under open conditions, which limited the concentrations of ammonia available because of Henry's Law. Under a closed pressurized system, the effect of un-ionized ammonia was greatly increased, and the resulting time required for inactivation was reduced from hours or days to minutes. In the next few years, it is expected that alkaline disinfection of biosolids will be optimized in relation to the factors stated above, at much lower doses of the alkaline agents. The closed-system alkaline processes that will be developed will be more energy-efficient, cost-effective, and have full control of potential odorous emissions.

  3. Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions.

    PubMed

    He, Qun; Wang, Xinghao; Sun, Ping; Wang, Zunyao; Wang, Liansheng

    2015-07-01

    Tetrabromobisphenol A (TBBPA) is a well-known brominated flame retardant. It has been detected in the environment and shows high acute toxicity to different organisms at high concentrations. In this work, the effects of pH and dimethyl sulfoxide (DMSO) on the acute toxicity of TBBPA to Daphnia magna and Limnodrilus hoffmeisteri were tested, and the oxidative stress induced by TBBPA in livers of Carassius auratus was assessed using four biomarkers. The integrated biomarker response (IBR) was applied to assess the overall antioxidant status in fish livers. Moreover, fish tissues (gills and livers) were also studied histologically. The results showed that low pH and DMSO enhanced the toxicity of TBBPA. Furthermore, changes in the activity of antioxidant enzymes and glutathione level suggested that TBBPA generates oxidative stress in fish livers. The IBR index revealed that fish exposed to 3mg/L TBBPA experienced more serious oxidative stress than exposed to acidic or alkaline conditions. The histopathological analysis revealed lesions caused by TBBPA. This study provides valuable toxicological information of TBBPA and will facilitate a deeper understanding on its potential toxicity in realistic aquatic environments. PMID:25980965

  4. Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions.

    PubMed

    He, Qun; Wang, Xinghao; Sun, Ping; Wang, Zunyao; Wang, Liansheng

    2015-07-01

    Tetrabromobisphenol A (TBBPA) is a well-known brominated flame retardant. It has been detected in the environment and shows high acute toxicity to different organisms at high concentrations. In this work, the effects of pH and dimethyl sulfoxide (DMSO) on the acute toxicity of TBBPA to Daphnia magna and Limnodrilus hoffmeisteri were tested, and the oxidative stress induced by TBBPA in livers of Carassius auratus was assessed using four biomarkers. The integrated biomarker response (IBR) was applied to assess the overall antioxidant status in fish livers. Moreover, fish tissues (gills and livers) were also studied histologically. The results showed that low pH and DMSO enhanced the toxicity of TBBPA. Furthermore, changes in the activity of antioxidant enzymes and glutathione level suggested that TBBPA generates oxidative stress in fish livers. The IBR index revealed that fish exposed to 3mg/L TBBPA experienced more serious oxidative stress than exposed to acidic or alkaline conditions. The histopathological analysis revealed lesions caused by TBBPA. This study provides valuable toxicological information of TBBPA and will facilitate a deeper understanding on its potential toxicity in realistic aquatic environments.

  5. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  6. Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily.

    PubMed

    Lovy-Wheeler, Alenka; Kunkel, Joseph G; Allwood, Ellen G; Hussey, Patrick J; Hepler, Peter K

    2006-09-01

    Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events. PMID:16920777

  7. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  8. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  9. Rapid changes of precipitation pH in Qinghai Province, the northeastern Tibetan Plateau.

    PubMed

    Zhang, David D; Jim, C Y; Peart, M R; Shi, Changxing

    2003-04-15

    Rainfall monitoring programs were conducted in two industrial cities of China's Qinghai Province, Xining and Germu, in some periods of the 1980s and 1990s. The results show that the natural precipitation in this area is originally alkaline. Compared with the late 1980s records, pH values declined significantly from approximately 8 in the 1980s to below 7 in mid-1990s. Such rapid and drastic changes were attributed to fast industrial development that released a large amount of pollutants. Subsequent tough control on pollutant emission partly restored pH values back to above 7 in the late 1990s. The pH and rainfall chemical analyses indicate that alkaline rain in this continental arid region is caused by airborne dusts which originate from local alkaline soils. With decrease of pH value, the total ionic concentration of rainwater is increased because acids were added to the rainwater.

  10. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  11. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    SciTech Connect

    States, S.J.; Conley, L.F.; Towner, S.G.; Wolford, R.S.; Stephenson, T.E.; McNamara, M.; Wadowsky, R.M.; Yee, R.B.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospital cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.

  12. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  13. Flow modeling of alkaline dissolution by a thermodynamic or by a kinetic approach

    SciTech Connect

    Labrid, J.; Bazin, B. )

    1993-05-01

    This paper presents a calculation of the propagation of basic pH in a reservoir rock based on either a kinetically controlled reaction or a thermodynamic equilibrium assumption. Results demonstrate that the kinetic approach is the only way to analyze the interactions of alkaline chemicals with clayey sandstones properly.

  14. Studies on alkaline serine protease produced by Bacillus clausii GMBE 22.

    PubMed

    Kazan, Dilek; Bal, Hulya; Denizci, Aziz Akin; Ozturk, Nurcin Celik; Ozturk, Hasan Umit; Dilgimen, Aydan Salman; Ozturk, Dilek Coskuner; Erarslan, Altan

    2009-01-01

    An alkali tolerant Bacillus strain having extracellular serine alkaline protease activity was newly isolated from compost and identified as Bacillus clausii GMBE 22. An alkaline protease (AP22) was 4.66-fold purified in 51.5% yield from Bacillus clausii GMBE 22 by ethanol precipitation and DEAE-cellulose anion exchange chromatography. The purified enzyme was identified as serine protease by LC-ESI-MS analysis. Its complete inhibition by phenylmethanesulfonylfluoride (PMSF) also justified that it is a serine alkaline protease. The molecular weight of the enzyme is 25.4 kDa. Optimal temperature and pH values are 60 degrees C and 12.0, respectively. The enzyme showed highest specificity to N-Suc-Ala-Ala-Pro-Phe-pNA. The K(m) and k(cat) values for hydrolysis of this substrate are 0.347 mM and 1141 min(-1) respectively. The enzyme was affected by surface active agents to varying extents. The enzyme is stable for 2 h at 30 degrees C and pH 10.5. AP22 is also stable for 5 days over the pH range 9.0-11.0 at room temperature. AP22 has good pH stability compared with the alkaline proteases belonging to other strains of Bacillus clausii reported in the literature. PMID:19431045

  15. Alkaline fixation drastically improves the signal of in situ hybridization

    PubMed Central

    Basyuk, Eugenia; Bertrand, Edouard; Journot, Laurent

    2000-01-01

    In situ hybridization (ISH) is widely used to detect DNA and RNA sequences within the cell and tissue sections. The important step in performing this technique is tissue fixation. We investigated the influence of the pH of the fixative on the outcome of ISH. Our studies indicate that alkaline formaldehyde dramatically increases the ISH signal with RNA probes. The increase in signal was observed for detection of low as well as for high abundance messages. The sensitivity of the method was increased 5- to 6-fold. PMID:10773094

  16. Reduction of Proteinuria through Podocyte Alkalinization*

    PubMed Central

    Altintas, Mehmet M.; Moriwaki, Kumiko; Wei, Changli; Möller, Clemens C.; Flesche, Jan; Li, Jing; Yaddanapudi, Suma; Faridi, Mohd Hafeez; Gödel, Markus; Huber, Tobias B.; Preston, Richard A.; Jiang, Jean X.; Kerjaschki, Dontscho; Sever, Sanja; Reiser, Jochen

    2014-01-01

    Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi. PMID:24817115

  17. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  18. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  19. Relation of pH to toxicity of lampricide TFM in the laboratory

    USGS Publications Warehouse

    Bills, T.D.; Marking, L.L.; Howe, G.E.; Rach, J.J.

    1988-01-01

    In the control of larval sea lamprey (Petromyzon marinus ) with 3-trifluoromethyl-4-nitrophenol (TFM) in tributaries of the Great Lakes, occasional kills of other fishes have caused concern about the effects of the chemical on non-target organisms. Stream treatment rates have been based on previous application rates, alkalinity measurements, results of on-site toxicity tests, or combinations of these. Laboratory studies in 1987 showed that pH is the primary factor that affects the toxicity of TFM (the lower the pH, the greater the toxicity): even small changes in pH alter the toxicity, whereas substantial changes in alkalinity have little effect. In 12-h exposures, the 96-h LC50 for TFM to rainbow trout (Salmo gairdneri ) ranged from about 0.9 mg/L at pH 6.5 to > 100 mg/L at pH 9.5, but (at pH 7.5) the LC50's differed little at total alkalinities of about 18 mg/L and 207 mg/L. Decreases in pH as small as 0.5 pH unit caused nontoxic solutions to become toxic to rainbow trout. Some kills of non-target fish during stream treatments were reportedly caused by decreases in pH, and (conversely) that some stream treatments for sea lampreys were ineffective because pH increased.

  20. Simulation of hydrogen sulphide absorption in alkaline solution using a packed column.

    PubMed

    Azizi, Mohamed; Biard, Pierre-François; Couvert, Annabelle; Ben Amor, Mohamed

    2014-01-01

    In this work, a simulation tool was developed for hydrogen sulphide (H₂S) removal in an alkaline solution in packed columns working at countercurrent. Modelling takes into account the mass-transfer enhancement due to the reversible reactions between H₂S and the alkaline species (CO(²⁻)(3), HCO⁻(3), and HO⁻) in the liquid film. Many parameters can be controlled by the user such as the gas and liquid inlet H₂S concentrations, the gas and liquid flow rates, the scrubbing liquid pH, the desired H₂S removal efficiency, the temperature, the alkalinity, etc. Since the influence of the hydrodynamic and mass-transfer performances in a packed column is well known, the numerical resolutions performed were dedicated to the study of the influence of the chemical conditions (through the pH and the alkalinity), the temperature and the liquid-to-gas mass flow rate ratio (L/G). A packed column of 3 m equipped with a given random packing material working at countercurrent and steady state has been modelled. The results show that the H₂S removal efficiency increases with the L/G, the pH, the alkalinity and more surprisingly with the temperature. Alkalinity has a very significant effect on the removal efficiency through the mass-transfer enhancement and buffering effect, which limits pH decreasing due to H₂S absorption. This numerical resolution provides a tool for designers and researchers involved in H₂S treatment to understand deeper the process and optimize their processes.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  2. Silicon improves maize photosynthesis in saline-alkaline soils.

    PubMed

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  3. pH in atomic scale simulations of electrochemical interfaces.

    PubMed

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan; Tripković, Vladimir; Björketun, Mårten E

    2013-07-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity of electrochemical interfaces. PMID:23703376

  4. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  5. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  6. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  7. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  8. Acidic minespoil reclamation with alkaline biosolids

    SciTech Connect

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-12-31

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter.

  9. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  10. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  11. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  12. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  13. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  14. Tracer monitored titrations: measurement of total alkalinity.

    PubMed

    Martz, Todd R; Dickson, Andrew G; DeGrandpre, Michael D

    2006-03-15

    We introduce a new titration methodology, tracer monitored titration (TMT), in which analyses are free of volumetric and gravimetric measurements and insensitive to pump precision and reproducibility. Spectrophotometric monitoring of titrant dilution, rather than volume increment, lays the burden of analytical performance solely on the spectrophotometer. In the method described here, the titrant is a standardized mixture of acid-base indicator and strong acid. Dilution of a pulse of titrant in a titration vessel is tracked using the total indicator concentration measured spectrophotometrically. The concentrations of reacted and unreacted indicator species, derived from Beer's law, are used to calculate the relative proportions of titrant and sample in addition to the equilibrium position (pH) of the titration mixture. Because the method does not require volumetric or gravimetric additions of titrant, simple low-precision pumps can be used. Here, we demonstrate application of TMT for analysis of total alkalinity (A(T)). High-precision, high-accuracy seawater A(T) measurements are crucial for understanding, for example, the marine CaCO3 budget and saturation state, anthropogenic CO2 penetration into the oceans, calcareous phytoplankton blooms, and coral reef dynamics. We present data from 286 titrations on three types of total alkalinity standards: Na2CO3 in 0.7 mol kg x soln(-1) NaCl, NaOH in 0.7 mol kg x soln(-1) NaCl, and a seawater Certified Reference Material (CRM). Based on Na2CO3 standards, the accuracy and precision are +/-0.2 and +/-0.1% (4 and 2 micromol kg x soln(-1) for A(T) approximately 2100-2500 micromol kg x soln(-1), n = 242), using low-precision solenoid pumps to introduce sample and titrant. Similar accuracy and precision were found for analyses run 42 days after the initial experiments. Excellent performance is achieved by optimizing the spectrophotometric detection system and relying upon basic chemical thermodynamics for calculating the

  15. Surfactant-enhanced alkaline flooding with weak alkalis

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1991-02-01

    The objective of Project BE4B in FY90 was to develop cost-effective and efficient chemical flooding formulations using surfactant-enhanced, lower pH (weak) alkaline chemical systems. Chemical systems were studied that mitigate the deleterious effects of divalent ions. The experiments were conducted with carbonate mixtures and carbonate/phosphate mixtures of pH 10.5, where most of the phosphate ions exist as the monohydrogen phosphate species. Orthophosphate did not further reduce the deleterious effect of divalent ions on interfacial tension behavior in carbonate solutions, where the deleterious effect of the divalent ions is already very low. When added to a carbonate mixture, orthophosphate did substantially reduce the adsorption of an atomic surfactant, which was an expected result; however, there was no correlation between the amount of reduction and the divalent ion levels. For acidic oils, a variety of surfactants are available commercially that have potential for use between pH 8.3 and pH 9.5. Several of these surfactants were tested with oil from Wilmington (CA) field and found to be suitable for use in that field. Two low-acid crude oils, with acid numbers of 0.01 and 0.27 mg KOH/g of oil, were studied. It was shown that surfactant-enhanced alkaline flooding does have merit for use with these low-acid crude oils. However, each low-acid oil tested was found to behave differently, and it was concluded that the applicability of the method must be experimentally determined for any given low-acid crude oil. 19 refs., 10 figs. 4 tabs.

  16. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  17. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  18. The design of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1990-01-01

    Alkaline fuel cells recently developed have yielded satisfactory operation even in the cases of their use of mobile and matrix-type electrolytes; the advantages of realistic operation have been demonstrated by a major West German manufacturer's 100 kW alkaline fuel cell apparatus, which was operated in the role of an air-independent propulsion system. Development has begun for a spacecraft alkaline fuel cell of the matrix-electrolyte configuration.

  19. Long-term stability monitoring of pH reference materials using primary pH method.

    PubMed

    Gonzaga, Fabiano Barbieri; Dias, Júlio Cesar

    2015-04-01

    This work presents the results from a series of stability studies for some batches of different aqueous pH reference materials, packed in high-density polyethylene (HDPE) bottles, taking primary pH measurements over long periods (time lengths from 18.4 to 21.0 months). The results obtained over time for acid and neutral buffer solutions (nominal pH values of 1.68, 4.00, and 6.86 at 25 °C), considering their uncertainties, were statistically similar, demonstrating the high stability of these materials. On the other hand, for the alkaline buffer solutions (nominal pH values of 9.18 and 10.01 at 25 °C), there was a clear decrease in the results over time, with pH variation rates around -8.5 × 10(-4) per month. The results showed that reference materials of the acid and neutral buffer solutions can be easily provided with small uncertainty values and long shelf lives in simple HDPE bottles closed under air atmosphere, whereas reference materials of the alkaline buffer solutions must have more limited shelf lives and higher uncertainty values (taking into account the pH decrease over time) or must be provided in special packaging (such as ampoules) to prevent carbon dioxide interference. PMID:25318462

  20. Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating.

    PubMed

    Zhao, Wei; Kong, Ming; Feng, Chao; Cheng, Xiaojie; Liu, Ya; Chen, Xiguang

    2016-01-20

    The gelling behaviors of thiolated chitosan (TCS) in alkaline condition were investigated. Thioglycolic acid was conjugated onto chitosan backbone through amide bond formation. The variations of thiol group content were monitored in presence of H2O2 or different pH values (pH 7.0, 8.0, 9.0) in dialysis mode. Different from the decreasing thiol group content upon time in acidic condition, increasing amount of thiol groups was detected in alkaline pH during 120 min dialysis attributed to alkaline hydrolysis of intra-molecular disulfide bonds. The extent of which was larger at higher pH values. Higher degree of thiolation, thiomer concentration or pH values promoted gelation of TCS. Entanglement and coagulation of chitosan molecule chains and re-arrangement of disulfide bonds acted closely and dynamically in the gelation process. Disulfide bonds, especially inter-molecular type, are formed by synergetic effects of thiol/disulfide interchange and thiol/thiol oxidation reactions. TCS coated vascular stent displayed wave-like microstructure of parallel ridges and grooves, which favored HUVECs adhesion and proliferation. The biocompatibility, peculiar morphology and thiol moieties of TCS as stent coating material appear application potential for vascular stent. PMID:26572360

  1. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    SciTech Connect

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  2. Effect of pH on Paramagnetic Centers in Cladosporium cladosporioides Melanin

    NASA Astrophysics Data System (ADS)

    Pilawa, B.; Buszman, E.; Gondzik, A.; Wilczyński, S.; Zdybel, M.; Witoszyńska, T.; Wilczok, T.

    2006-07-01

    Paramagnetic centers in melanin existing in pigmented soil fungi Cladosporium cladosporioides cultured at acidic (4, 5, 6), neutral (7), and alkaline (8) pH were studied by EPR method. o-semiquinone free radicals (g: 2.0032-2.0040) concentration in melanin biopolymer increased for pH from 4 to 6, decreased at pH 7, and reached the maximum value at pH 8. It may be expected that melanin free radicals reactions with small molecules (metal ions, drugs) are the most effective at pH between 6 and 8. Slow spin-lattice relaxation processes exist in the all studied melanin samples.

  3. Extraction, Purification and Characterization of Thermostable, Alkaline Tolerant α-Amylase from Bacillus cereus.

    PubMed

    Annamalai, N; Thavasi, R; Vijayalakshmi, S; Balasubramanian, T

    2011-10-01

    Thermostable alkaline α-amylase producing bacterium Bacilluscereus strain isolated from Cuddalore harbour waters grew maximally in both shake flask and fermentor, and produced α-amylase at 35°C, pH 7.5 and 1.0% of substrate concentrations. α-Amylase activity was maximum at 65°C, pH 8.0, 89% of its activity was sustained even at pH 11.0. Added with MnCl(2,) α-amylase activity showed 4% increase but it was inhibited by EDTA. The molecular weight of the purified α-amylase is 42 kDa.

  4. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  5. Performance of Media for Recovering Stressed Cells of Enterobacter sakazakii as Determined Using Spiral Plating and Ecometric Techniques

    PubMed Central

    Gurtler, J. B.; Beuchat, L. R.

    2005-01-01

    A study was done to determine the performance of differential, selective media for supporting resuscitation and colony development by stressed cells of Enterobacter sakazakii. Cells of four strains of E. sakazakii isolated from powdered infant formula were exposed to five stress conditions: heat (55°C for 5 min), freezing (−20°C for 24 h, thawed, frozen again at −20°C for 2 h, thawed), acidic pH (3.54), alkaline pH (11.25), and desiccation in powdered infant formula (water activity, 0.25; 21°C for 31 days). Control and stressed cells were spiral plated on tryptic soy agar supplemented with 0.1% pyruvate (TSAP, a nonselective control medium); Leuschner, Baird, Donald, and Cox (LBDC) agar (a differential, nonselective medium); Oh and Kang agar (OK); fecal coliform agar (FCA); Druggan-Forsythe-Iversen (DFI) medium; violet red bile glucose (VRBG) agar; and Enterobacteriaceae enrichment (EE) agar. With the exception of desiccation-stressed cells, suspensions of stressed cells were also plated on these media and on R&F Enterobacter sakazakii chromogenic plating (RF) medium using the ecometric technique. The order of performance of media for recovering control and heat-, freeze-, acid-, and alkaline-stressed cells by spiral plating was TSAP > LBDC > FCA > OK, VRBG > DFI > EE; the general order for recovering desiccated cells was TSAP, LBDC, FCA, OK > DFI, VRBG, EE. Using the ecometric technique, the general order of growth indices of stressed cells was TSAP, LBDC > FCA > RF, VRBG, OK > DFI, EE. The results indicate that differential, selective media vary greatly in their abilities to support resuscitation and colony formation by stressed cells of E. sakazakii. The orders of performance of media for recovering stressed cells were similar using spiral plating and ecometric techniques, but results from spiral plating should be considered more conclusive. PMID:16332738

  6. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode

    PubMed Central

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    ABSTRACT Objectives To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. Materials and Methods We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recent pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered an inaccurate result. Results A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Conclusions Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH. PMID:27286119

  7. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  8. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions.

    PubMed

    Ruiz-Bermejo, Marta; Rivas, Luis A; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4). At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  9. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  10. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  11. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  12. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311–318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm

  13. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea. PMID:26841066

  14. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells.

    PubMed

    Bulychev, A A; Kamzolkina, N A; Luengviriya, J; Rubin, A B; Müller, S C

    2004-11-01

    Using pH microelectrodes and a Microscopy PAM (pulse-amplitude modulated) chlorophyll fluorometer, it is shown that a propagation of an action potential in Chara corallina leads to transient suppression of spatially periodic pH profiles along the illuminated cell. The suppression was manifested as a large pH decrease in the alkaline zones and a slight pH increase in the acid zones. The propagating action potential diminished the maximum yield of chlorophyll fluorescence (F(m)') in the alkaline cell regions, as well as the quantum yield of photosystem II photochemistry, without affecting F(m)' in the acid cell regions. The results indicate an interference of membrane excitation in the mechanisms responsible for pH banding patterns in Characean algae. Apparently, the electrical excitation of the plasma membrane in the alkaline cell regions initiates a pathway that can modulate membrane events at the thylakoid membrane.

  15. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions.

    PubMed

    Olszewska, Magdalena A; Kocot, Aleksandra M; Łaniewska-Trokenheim, Łucja

    2015-04-20

    Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response.

  16. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Oh, Sang-Eun

    2013-01-01

    The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)). PMID:22840537

  17. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    PubMed

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  18. Accurate approach for determining fresh-water carbonate (H2CO3(*)) alkalinity, using a single H3PO4 titration point.

    PubMed

    Birnhack, Liat; Sabach, Sara; Lahav, Ori

    2012-10-15

    A new, simple and accurate method is introduced for determining H(2)CO(3)(*) alkalinity in fresh waters dominated by the carbonate weak-acid system. The method relies on a single H(3)PO(4) dosage and two pH readings (acidic pH value target: pH~4.0). The computation algorithm is based on the concept that the overall alkalinity mass of a solution does not change upon the addition of a non-proton-accepting species. The accuracy of the new method was assessed batch-wise with both synthetic and actual tap waters and the results were compared to those obtained from two widely used alkalinity analysis methods (titration to pH~4.5 and the Gran titration method). The experimental results, which were deliberately obtained with simple laboratory equipment (glass buret, general-purpose pH electrode, magnetic stirrer) proved the method to be as accurate as the conventional methods at a wide range of alkalinity values (20-400 mg L(-1) as CaCO(3)). Analysis of the relative error attained in the proposed method as a function of the target (acidic) pH showed that at the range 4.0<pH<4.5 the error was minimal. A suggested experimental setup for continuous alkalinity measurement is also described.

  19. Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities.

    PubMed

    Piérri, V; Valter-Severino, D; Goulart-de-Oliveira, K; Manoel-do-Espírito-Santo, C; Nascimento-Vieira, F; Quadros-Seiffert, W

    2015-08-01

    The aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m-3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L-1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH). It was observed a decrease in pH of the water in the treatments with lower alkalinity (p<0.05). The total suspended settleable solids were also lower in the treatment of low alkalinity. No significant difference was observed in other physico-chemical and biological parameters in the water quality assessed, as well as the zootechnical parameters of cultivation between treatments (p≥0.05). The results of survival and growth rate of shrimps were considered suitable for the cultivation system used in the different treatments. The cultivation of marine shrimp Litopenaeus vannamei in biofloc at density of 165 shrimps.m-3 can be performed in waters with alkalinity between 40 and 160 mg.L-1 of CaCO3, without compromising the zootechnical indexes of cultivation. PMID:26292104

  20. Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities.

    PubMed

    Piérri, V; Valter-Severino, D; Goulart-de-Oliveira, K; Manoel-do-Espírito-Santo, C; Nascimento-Vieira, F; Quadros-Seiffert, W

    2015-08-01

    The aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m-3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L-1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH). It was observed a decrease in pH of the water in the treatments with lower alkalinity (p<0.05). The total suspended settleable solids were also lower in the treatment of low alkalinity. No significant difference was observed in other physico-chemical and biological parameters in the water quality assessed, as well as the zootechnical parameters of cultivation between treatments (p≥0.05). The results of survival and growth rate of shrimps were considered suitable for the cultivation system used in the different treatments. The cultivation of marine shrimp Litopenaeus vannamei in biofloc at density of 165 shrimps.m-3 can be performed in waters with alkalinity between 40 and 160 mg.L-1 of CaCO3, without compromising the zootechnical indexes of cultivation.

  1. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  2. Wetland treatment at extremes of pH: a review.

    PubMed

    Mayes, W M; Batty, L C; Younger, P L; Jarvis, A P; Kõiv, M; Vohla, C; Mander, U

    2009-06-15

    Constructed wetlands are an established treatment technology for a diverse range of polluted effluents. There is a long history of using wetlands as a unit process in treating acid mine drainage, while recent research has highlighted the potential for wetlands to buffer highly alkaline (pH>12) drainage. This paper reviews recent evidence on this topic, looking at wetlands treating acidic mine drainage, and highly alkaline leachates associated with drainage from lime-rich industrial by-products or where such residues are used as filter media in constructed wetlands for wastewater treatment. The limiting factors to the success of wetlands treating highly acidic waters are discussed with regard to design practice for the emerging application of wetlands to treat highly alkaline industrial discharges. While empirically derived guidelines (with area-adjusted contaminant removal rates typically quoted at 10 g Fe m(2)/day for influent waters pH>5.5; and 3.5-7 g acidity/m(2)/day for pH>4 to <5.5) for informing sizing of mine drainage treatment wetlands have generally been proved robust (probably due to conservatism), such data exhibit large variability within and between sites. Key areas highlighted for future research efforts include: (1) wider collation of mine drainage wetland performance data in regionalised datasets to improve empirically-derived design guidelines and (2) obtaining an improved understanding of nature of the extremophile microbial communities, microbially-mediated pollutant attenuation and rhizospheral processes in wetlands at extremes of pH. An enhanced knowledge of these (through multi-scale laboratory and field studies), will inform engineering design of treatment wetlands and assist in the move from the empirically-derived conservative sizing estimates that currently prevail to process-based optimal design guidance that could reduce costs and enhance the performance and longevity of wetlands for treating acidic and highly alkaline drainage waters

  3. Seawater neutralization of alkaline bauxite residue and implications for revegetation.

    PubMed

    Menzies, N W; Fulton, I M; Morrell, W J

    2004-01-01

    Reaction of bauxite residue with seawater results in neutralization of alkalinity through precipitation of Mg-, Ca-, and Al-hydroxide and carbonate minerals. In batch studies, the initial pH neutralization reaction was rapid (<5 min), with further reaction continuing to reduce pH for several weeks. Reaction with seawater produced a residue pH of 8 to 8.5. Laboratory leaching column studies were undertaken to provide information on seawater neutralization of the coarse-textured fraction of the waste, residue sand (RS), under conditions comparable with those that might be applied in the field. An 0.80-m-deep column of RS was neutralized by the application of the equivalent of 2-m depth of seawater. In addition to lowering the pH and Na content of the residue, seawater neutralization resulted in the addition of substantial amounts of the plant nutrients Ca, Mg, and K to the profile. Similar results were also obtained from a field-scale assessment of neutralization. However, the accumulation of precipitate, consisting of hydrotalcite, aragonite, and pyroaurite, in the drainage system may preclude the use of in situ seawater neutralization as a routine rehabilitation practice. Following seawater neutralization, RS remains too saline to support plant growth and would require fresh water leaching before revegetation. PMID:15356249