Sample records for alkaline ph stress

  1. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  2. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  3. Coordinate responses to alkaline pH stress in budding yeast

    PubMed Central

    Serra-Cardona, Albert; Canadell, David; Ariño, Joaquín

    2015-01-01

    Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products. PMID:28357292

  4. The Bbgas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline pH.

    PubMed

    Luo, Zhibing; Zhang, Tongbing; Liu, Pengfei; Bai, Yuting; Chen, Qiyan; Zhang, Yongjun; Keyhani, Nemat O

    2018-05-25

    Fungal β-1,3-glucanosyltransferases are cell wall remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH = 4-10). Random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene ( Bbgas3 ). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, that activates genes in response to neutral/alkaline growth conditions. Targeted gene-knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo Red and calcofluor white), and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than wild type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased lethal time to kill (LT 50 , i.e. increased virulence) was seen for the mutant using intra-hemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall remodeling enzyme involved in resistance to extreme pH (>9). Importance Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane remodelling β-1,3-glucanosyltransferase ( Bbgas3 ), regulated by the pH-responsive PacC transcription factor forms a critical

  5. Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway.

    PubMed

    Serrano, Raquel; Martín, Humberto; Casamayor, Antonio; Ariño, Joaquín

    2006-12-29

    Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.

  6. Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis.

    PubMed Central

    Flahaut, S; Hartke, A; Giard, J C; Auffray, Y

    1997-01-01

    The alkaline shock response in Enterococcus faecalis was studied in this work. Cells adapted to an optimum pH of 10.5 were tolerate to pH 11.9 conditions but acquired sensitivity to acid damage. An analysis of stress proteins revealed that 37 polypeptides were amplified. Two of these are DnaK and GroEL. The combined results show that bile salts and alkaline stress responses are closely related. PMID:9023964

  7. Analysis of ambient pH stress response mediated by iron and copper intake in Schizosaccharomyces pombe.

    PubMed

    Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru

    2018-01-01

    The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress.

    PubMed

    Liu, Duo; Liu, Miao; Liu, Xiao-Long; Cheng, Xian-Guo; Liang, Zheng-Wei

    2018-01-01

    Alkaline stress as a result of higher pH usually triggers more severe physiological damage to plants than that of saline stress with a neutral pH. In the present study, we demonstrated that silicon (Si) priming of alfalfa ( Medicago sativa L.) seedlings increased their tolerance to high alkaline stress situations. Gongnong No. 1 seedlings were subjected to alkaline stress simulated by 25 mM Na 2 CO 3 (pH 11.2). Alkaline stress greatly decreased the biomass and caused severe lodging or wilting of alfalfa seedlings. In contrast, the application of Si to alfalfa seedlings 36 h prior to the alkaline treatment significantly alleviated the damage symptoms and greatly increased the biomass and chlorophyll content. Because of being concomitant with increasing photosynthesis and water use efficiency, decreasing membrane injury and malondialdehyde content, and increasing peroxidase and catalase ascorbate activities in alfalfa leaves, thereby alleviating the triggered oxidative damage by alkaline stress to the plant. Furthermore, Si priming significantly decreased the accumulation of protein and proline content in alfalfa, thus reducing photosynthetic feedback repression. Si priming significantly accumulated more Na in the roots, but led to a decrease of Na accumulation and an increase of K accumulation in the leaves under alkaline stress. Meanwhile, Si priming decreased the accumulation of metal ions such as Mg, Fe, Mn, and Zn in the roots of alfalfa seedlings under alkaline stress. Collectively, these results suggested that Si is involved in the metabolic or physiological changes and has a potent priming effect on the alkaline tolerance of alfalfa seedlings. The present study indicated that Si priming is a new approach to improve the alkaline tolerance in alfalfa and provides increasing information for further exploration of the alkaline stress response at the molecular level in alfalfa.

  9. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress

    PubMed Central

    Liu, Duo; Liu, Miao; Liu, Xiao-Long; Cheng, Xian-Guo; Liang, Zheng-Wei

    2018-01-01

    Alkaline stress as a result of higher pH usually triggers more severe physiological damage to plants than that of saline stress with a neutral pH. In the present study, we demonstrated that silicon (Si) priming of alfalfa (Medicago sativa L.) seedlings increased their tolerance to high alkaline stress situations. Gongnong No. 1 seedlings were subjected to alkaline stress simulated by 25 mM Na2CO3 (pH 11.2). Alkaline stress greatly decreased the biomass and caused severe lodging or wilting of alfalfa seedlings. In contrast, the application of Si to alfalfa seedlings 36 h prior to the alkaline treatment significantly alleviated the damage symptoms and greatly increased the biomass and chlorophyll content. Because of being concomitant with increasing photosynthesis and water use efficiency, decreasing membrane injury and malondialdehyde content, and increasing peroxidase and catalase ascorbate activities in alfalfa leaves, thereby alleviating the triggered oxidative damage by alkaline stress to the plant. Furthermore, Si priming significantly decreased the accumulation of protein and proline content in alfalfa, thus reducing photosynthetic feedback repression. Si priming significantly accumulated more Na in the roots, but led to a decrease of Na accumulation and an increase of K accumulation in the leaves under alkaline stress. Meanwhile, Si priming decreased the accumulation of metal ions such as Mg, Fe, Mn, and Zn in the roots of alfalfa seedlings under alkaline stress. Collectively, these results suggested that Si is involved in the metabolic or physiological changes and has a potent priming effect on the alkaline tolerance of alfalfa seedlings. The present study indicated that Si priming is a new approach to improve the alkaline tolerance in alfalfa and provides increasing information for further exploration of the alkaline stress response at the molecular level in alfalfa. PMID:29896213

  10. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  11. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli.

    PubMed

    Holdsworth, Scarlett R; Law, Christopher J

    2013-05-23

    In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

  12. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  13. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  14. Effects of prolonged exposure to moderate static magnetic field and its synergistic effects with alkaline pH on Enterococcus faecalis.

    PubMed

    Fan, Wei; Huang, Zhuo; Fan, Bing

    2018-02-01

    Static magnetic field (SMF) has been shown to biologically affect various microorganisms, but its effects on Enterococcus faecalis, which is associated with multiple dental infections, have not been reported yet. Besides, Enterococcus faecalis was found to be resistant to the alkaline environment provided by a major dental antimicrobial, calcium hydroxide. Therefore, the antibacterial activity of prolonged exposure to moderate SMF (170 mT) and its possible synergistic activity with alkaline pH (pH = 9) were evaluated in the study. The ability to form a biofilm under these conditions was examined by crystal violet assay. Real-time quantitative PCR was performed to evaluate the relative expression of stress (dnaK and groEL) and virulence (efaA, ace, gelE and fsrC) related genes. As the results indicated, cell proliferation was inhibited after 120 h of SMF exposure. What's more, the combined treatment of SMF and alkaline pH showed significantly improved antimicrobial action when compared to single SMF and alkaline pH treatment for more than 24 h and 72 h respectively. However, the ability to form a biofilm was also enhanced under SMF and alkaline pH treatments. SMF can induce stress response by up-regulating the expression of dnaK and elevate virulence gene expression (efaA and ace). These responses were more significant and more genes were up-regulated including groEL, gelE and fsrC when exposed to SMF and alkaline pH simultaneously. Hence, combination of SMF and alkaline pH could be a promising disinfection strategy in dental area and other areas associated with Enterococcus faecalis infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  16. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  17. Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach

    PubMed Central

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5–8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0±0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars. PMID:25402470

  18. Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: an alkaline pH shift approach.

    PubMed

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5-8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0 ± 0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars.

  19. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Discomfort from an alkaline formulation delivered subcutaneously in humans: albumin at pH 7 versus pH 10.

    PubMed

    Ward, W Kenneth; Castle, Jessica R; Branigan, Deborah L; Massoud, Ryan G; El Youssef, Joseph

    2012-07-01

    There is a paucity of data regarding tolerability of alkaline drugs administered subcutaneously. The aim of this study was to assess the tolerability of alkaline preparations of human albumin delivered subcutaneously to healthy humans. We compared the tolerability of neutral versus alkaline (pH 10) formulations of human albumin in ten volunteers. With an intent to minimize the time required to reach physiological pH after injection, the alkaline formulation was buffered with a low concentration of glycine (20 mmol/L). Each formulation was given at two rates: over 5 seconds and over 60 seconds. A six-point scale was used to assess discomfort. For slow injections, there was a significant difference between pH 7.4 and pH 10 injections (0.4 ± 0.2 vs 1.1 ± 0.2, mean ± SEM; p = 0.025), though the degree of discomfort at pH 10 injections was only 'mild or slight'. For fast injections, the difference between neutral and alkaline formulations was of borderline significance. Inflammation and oedema, as judged by a physician, were very minimal for all injections, irrespective of pH. For subcutaneous drug administration (especially when delivered slowly), there was more discomfort associated with alkaline versus neutral formulations of albumin, though the discomfort was mild. This study suggests that there is little discomfort and inflammation resulting from subcutaneous administration of protein drugs formulated with weak buffers at alkaline pH.

  1. Alkaline pH shock enhanced production of validamycin A in fermentation of Streptomyces hygroscopicus.

    PubMed

    Jiang, Jing; Sun, Ya-Fang; Tang, Xi; He, Chao-Nan; Shao, Ye-Lin; Tang, Ya-Jie; Zhou, Wen-Wen

    2018-02-01

    Validamycin A (Val-A) is produced by Streptomyces as a secondary metabolite with wide agricultural applications of controlling rice sheath blight, false smut and damping-off diseases. The effect of alkaline pH shock on enhancing Val-A production and its mechanism were investigated. A higher yield of Val-A was achieved by NaOH shock once or several times together with faster protein synthesis and sugar consumption and alkaline pH shock can increase Val-A production by 27.43%. Transcription of genes related to amino acid metabolism, carbon metabolism and electron respiratory chain was significantly up-regulated, accompanied by the substantial increase of respiratory activity and glutamate concentration. Val-A production was promoted by a series of complex mechanisms and made a response to pH stress signal, which led to the enhancement of glutamate metabolism and respiration activity. The obtained information will facilitate future studies for antibiotic yield improvement and the deep revealment of molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  3. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  4. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to

  7. Response of Desulfovibrio vulgaris to Alkaline Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolyar, S.; He, Q.; He, Z.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included threemore » ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).« less

  8. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    PubMed

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Response to alkaline stress by root canal bacteria in biofilms.

    PubMed

    Chávez de Paz, L E; Bergenholtz, G; Dahlén, G; Svensäter, G

    2007-05-01

    To determine whether bacteria isolated from infected root canals survive alkaline shifts better in biofilms than in planktonic cultures. Clinical isolates of Enterococcus faecalis, Lactobacillus paracasei, Olsenella uli, Streptococcus anginosus, S. gordonii, S. oralis and Fusobacterium nucleatum in biofilm and planktonic cultures were stressed at pH 10.5 for 4 h, and cell viability determined using the fluorescent staining LIVE/DEAD BacLight bacterial viability kit. In addition, proteins released into extracellular culture fluids were identified by Western blotting. Enterococcus faecalis, L. paracasei, O. uli and S. gordonii survived in high numbers in both planktonic cultures and in biofilms after alkaline challenge. S. anginosus, S. oralis and F. nucleatum showed increased viability in biofilms compared with planktonic cultures. Alkaline exposure caused all planktonic cultures to aggregate into clusters and resulted in a greater extrusion of cellular proteins compared with cells in biofilms. Increased levels of DnaK, HPr and fructose-1,6-bisphosphate aldolase were observed in culture fluids, especially amongst streptococci. In general, bacteria isolated from infected roots canals resisted alkaline stress better in biofilms than in planktonic cultures, however, planktonic cells appeared to use aggregation and the extracellular transport of specific proteins as survival mechanisms.

  10. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  11. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and

  12. Signaling pathways coordinating the alkaline pH response confer resistance to the hevein-type plant antimicrobial peptide Pn-AMP1 in Saccharomyces cerevisiae.

    PubMed

    Kwon, Youngho; Chiang, Jennifer; Tran, Grant; Giaever, Guri; Nislow, Corey; Hahn, Bum-Soo; Kwak, Youn-Sig; Koo, Ja-Choon

    2016-12-01

    Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.

  13. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.

    PubMed

    Mamo, Gashaw; Thunnissen, Marjolein; Hatti-Kaul, Rajni; Mattiasson, Bo

    2009-09-01

    The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P2(1)2(1)2(1) and the structure was determined at a resolution of 2.1 A. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9-9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.

  14. Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance.

    PubMed

    Sampathkumar, Balamurugan; Khachatourians, George G; Korber, Darren R

    2004-08-01

    The responses of Salmonella enterica serovar Enteritidis to a sublethal dose of trisodium phosphate (TSP) and its equivalent alkaline pH made with NaOH were examined. Pretreatment of S. enterica serovar Enteritidis cells with 1.5% TSP or pH 10.0 solutions resulted in a significant increase in thermotolerance, resistance to 2.5% TSP, resistance to high pH, and sensitivity to acid and H(2)O(2). Protein inhibition studies with chloramphenicol revealed that thermotolerance, unlike resistance to high pH, was dependent on de novo protein synthesis. Two-dimensional polyacrylamide gel electrophoresis (PAGE) of total cellular proteins from untreated control cells resolved as many as 232 proteins, of which 22 and 15% were absent in TSP- or alkaline pH-pretreated cells, respectively. More than 50% of the proteins that were either up- or down-regulated by TSP pretreatment were also up- or down-regulated by alkaline pH pretreatment. Sodium dodecyl sulfate-PAGE analysis of detergent-insoluble outer membrane proteins revealed the up-regulation of at least four proteins. Mass spectrometric analysis showed the up-regulated proteins to include those involved in the transport of small hydrophilic molecules across the cytoplasmic membrane and those that act as chaperones and aid in the export of newly synthesized proteins by keeping them in open conformation. Other up-regulated proteins included common housekeeping proteins like those involved in amino acid biosynthesis, nucleotide metabolism, and aminoacyl-tRNA biosynthesis. In addition to the differential expression of proteins following TSP or alkaline pH treatment, changes in membrane fatty acid composition were also observed. Alkaline pH- or TSP-pretreated cells showed a higher saturated and cyclic to unsaturated fatty acid ratio than did the untreated control cells. These results suggest that the cytoplasmic membrane could play a significant role in the induction of thermotolerance and resistance to other stresses following TSP

  15. Biochemical stabilization of glucagon at alkaline pH.

    PubMed

    Caputo, Nicholas; Jackson, Melanie A; Castle, Jessica R; El Youssef, Joseph; Bakhtiani, Parkash A; Bergstrom, Colin P; Carroll, Julie M; Breen, Matthew E; Leonard, Gerald L; David, Larry L; Roberts, Charles T; Ward, W Kenneth

    2014-11-01

    For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas.

  16. Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum.

    PubMed

    Fu, Jian; Liu, Zhihua; Li, Zuotong; Wang, Yufeng; Yang, Kejun

    2017-01-01

    This study investigated the influence of Trichoderma asperellum on active oxygen production in maize seedlings under saline-alkaline stress conditions. Two maize cultivars were tested: 'Jiangyu 417' ('JY417'), which can tolerate saline-alkaline stress; and, 'Xianyu 335' ('XY335'), which is sensitive to saline-alkaline stress. The seedlings were grown on natural saline-alkaline soil (pH 9.30) in plastic pots. To each liter of saline-alkaline soil, 200 mL of T. asperellum spore suspension was applied; three fungal suspensions were used, namely, 1 × 103, 1 × 106, and 1 × 109 spores/L. A control with only the vehicle applied was also established, along with a second control in which untreated meadow soil (pH 8.23) was used. Root and leaf samples were collected when the seedlings had three heart-shaped leaves and the fourth was in the developmental phase. Physical and biochemical parameters related to oxidation resistance were assessed. The results indicated that the 'JY417' and 'XY335' seedlings showed different degrees of oxidative damage and differences in their antioxidant defense systems under saline-alkaline stress. As the spore density of the fungal suspension increased, the K+ and Ca2+ contents in the seedlings increased, but Na+ content decreased. Moreover, fungal treatment promoted the synthesis or accumulation of osmolytes, which enhanced the water absorbing capacity of the cells, increased antioxidant enzyme activities, enhanced the content of non-enzyme antioxidants, and reduced the accumulation of reactive oxygen species. Fungal treatment alleviated oxidative damage caused by the saline-alkaline stress in roots and leaves of the seedlings. The application of T. asperellum overcame the inhibitory effect of saline-alkaline soil stress on the growth of maize seedlings. In the present experiment, application with 1 × 109 spores/L gave the optimal results.

  17. Biochemical Stabilization of Glucagon at Alkaline pH

    PubMed Central

    Jackson, Melanie A.; Castle, Jessica R.; El Youssef, Joseph; Bakhtiani, Parkash A.; Bergstrom, Colin P.; Carroll, Julie M.; Breen, Matthew E.; Leonard, Gerald L.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Abstract Background: For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. Methods and Results: As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Conclusions: Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas. PMID:24968220

  18. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  19. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Alkaline biodegradable implants for osteoporotic bone defects--importance of microenvironment pH.

    PubMed

    Liu, W; Wang, T; Yang, C; Darvell, B W; Wu, J; Lin, K; Chang, J; Pan, H; Lu, W W

    2016-01-01

    Change of microenvironment pH by biodegradable implants may ameliorate unbalanced osteoporotic bone remodeling. The present work demonstrated that a weak alkaline condition stimulated osteoblasts differentiation while suppressed osteoclast generation. In vivo, implants with an alkaline microenvironment pH (monitored by a pH microelectrode) exhibited a promising healing effect for the repair of osteoporotic bone defects. Under osteoporotic conditions, the response of the bone microenvironment to an endosseous implant is significantly impaired, and this substantially increases the risk of fracture, non-union and aseptic implant loosening. Acid-base equilibrium is an important factor influencing bone cell behaviour. The present purpose was to study the effect of a series of alkaline biodegradable implant materials on regeneration of osteoporotic bone defect, monitoring the microenvironment pH (μe-pH) over time. The proliferation and differentiation potential of osteoporotic rat bone marrow stromal cells and RAW 264.7 cells were examined under various pH conditions. Ovariectomized rat bone defects were filled with specific biodegradable materials, and μe-pH was measured by pH microelectrode. New osteoid and tartrate-resistant acid phosphatase-positive osteoclast-like cells were examined by Goldner's trichrome and TRAP staining, respectively. The intermediate layer between implants and new bone were studied using energy-dispersive X-ray spectroscopy (EDX) linear scanning. In vitro, weak alkaline conditions stimulated osteoporotic rat bone marrow stromal cells (oBMSC) differentiation, while inhibiting the formation of osteoclasts. In vivo, μe-pH differs from that of the homogeneous peripheral blood and exhibits variations over time particular to each material. Higher initial μe-pH was associated with more new bone formation, late response of TRAP-positive osteoclast-like cells and the development of an intermediate 'apatitic' layer in vivo. EDX suggested that

  1. Minimising alkalinity and pH spikes from Portland cement-bound Bauxsol (seawater-neutralized red mud) pellets for pH circum-neutral waters.

    PubMed

    Despland, Laure M; Clark, Malcolm W; Aragno, Michel; Vancov, Tony

    2010-03-15

    Bauxsol reagents (powder, slurry, or pellet forms) are powerful tools in environmental remediation and water and sewage treatment However, when used in circum-neutral water treatments, cement-bound Bauxsol pellets produce a sustained pH and alkalinity spike due to the presence of unreacted CaO in the cement binder. This study developed a pellet treatment system to minimize the alkalinity/pH spike. The recipe for pelletization consisted of Bauxsol powder, ordinary Portland cement (OPC), hydrophilic fumed silica, aluminum powder, a viscosity modifier, and water. Several batches (including different ratios and sizes) were run using modified makeup waters (H(2)0 + CO(2) or NaHCO(3)) or curing brines (CO(2), NaHCO(3), or Mg/CaCl(2)). Alkalinity, pH stability, and slake durability tests were performed on pellets before and/or after curing. The best result for reducing the alkalinity/pH spike was obtained from a MgCl(2), CaCl(2) bath treatment using a Bauxsol:cement ratio of 2.8:1 (pH 8.28; alkalinity 75.1 mg/L) for a 100 g batch or 245:1 (pH 8.05; alkalinity 35.4 mg/L) for a 1 kg batch. Although brine curing does provide a control on pH/alkalinity release, the pellets may still contain unreacted CaO. Therefore, a freshwater rinse of pellets before treating circum-neutral waters is recommended as is the continued investigation of alternative pellet binders.

  2. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs.

    PubMed

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-03-01

    Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.

  3. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    PubMed

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the

  5. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba)

    PubMed Central

    Tian, Shan; Wang, Bei; Zhao, Xusheng

    2017-01-01

    Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube. PMID:28976994

  6. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  7. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  8. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments

    PubMed Central

    Charles, C. J.; Rout, S. P.; Patel, K. A.; Akbar, S.; Laws, A. P.; Jackson, B. R.; Boxall, S. A.

    2017-01-01

    ABSTRACT The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS

  9. Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments.

    PubMed

    Charles, C J; Rout, S P; Patel, K A; Akbar, S; Laws, A P; Jackson, B R; Boxall, S A; Humphreys, P N

    2017-03-15

    The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca 2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0. IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are

  10. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  11. Improved methane production from waste activated sludge with low organic content by alkaline pretreatment at pH 10.

    PubMed

    Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J

    2013-01-01

    Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.

  12. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinity<20g/L) on TP, pH=1.8176×TEX86+8.2376 (n=31, r=0.86, RMSE=0.24). To evaluate its performance, we applied the calibration at Bangong Co in western TP and reconstructed past changes in lake water pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  13. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    PubMed

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  14. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  15. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  16. [Degradation kinetics of chlorogenic acid, cryptochlorogenic acid, and neochlorogenic acid at neutral and alkaline pH values].

    PubMed

    Zhu, Peng; Miao, Xiao-lei; Chen, Yong

    2016-01-01

    The degradation kinetics of chlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), and neochlorogenic acid (3-CQA) in aqueous solution at 37 degrees C and different pH values (7.05, 7.96, 9.25) were investigated in the present work. The results indicated that 3-, 4- and 5-CQA tended to remain stable in acidic pH circumstance, and unstable in neutral and alkaline pH circumstance. With the increase of the alkalinity, the degradation of 3-, 4- and 5-CQA was increased leading to a less amount of total CQA and was satisfactorily described by the Weibull equation. Meanwhile, caffeic acid was not detected after the degradation of CQA. Moreover, the degradation of 3-CQA and 5-CQA tended to be converted to 4-CQA, and the degradation of 4-CQA tended to be converted to 3-CQA rather than 5-CQA. The comparison of the degradation kinetics parameters of 3-, 4- and 5-CQA at neutral and alkaline pH values showed that the orders of the rate constant (k) values were 4-CQA > 3-CQA > 5-CQA, while the orders of the degradation half life (t½) values were 4-CQA < 3-CQA < 5-CQA, indicating the orders of the stabilities of 3-, 4- and 5-CQA at 37 degrees C and neutral and alkaline pH values were 4-CQA < 3-CQA < 5-CQA.

  17. Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum virgatum L.)

    PubMed Central

    Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao

    2014-01-01

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834

  18. Potential benefits of pH 8.8 alkaline drinking water as an adjunct in the treatment of reflux disease.

    PubMed

    Koufman, Jamie A; Johnston, Nikki

    2012-07-01

    At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.

  19. Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH

    PubMed Central

    Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun

    2017-01-01

    ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical

  20. Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers.

    PubMed

    Roadcap, George S; Kelly, Walton R; Bethke, Craig M

    2005-01-01

    Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.

  1. Alkaline pH block of CLC-K kidney chloride channels mediated by a pore lysine residue.

    PubMed

    Gradogna, Antonella; Pusch, Michael

    2013-07-02

    CLC-K chloride channels are expressed in the kidney and the inner ear, where they are involved in NaCl reabsorption and endolymph production, respectively. These channels require the beta subunit barttin for proper function. Mutations in ClC-Kb and barttin, lead to Bartter's syndrome. Block of CLC-K channels by acid pH was described in a previous work, and we had identified His-497 as being responsible for the acidic block of CLC-K channels. Here, we show that ClC-K currents are blocked also by alkaline pH with an apparent pK value of ∼8.7 for ClC-K1. Using noise analysis, we demonstrate that alkaline block is mediated by an allosteric reduction of the open probability. By an extensive mutagenic screen we identified K165, a highly conserved residue in the extracellular vestibule of the channel, as the major element responsible for the alkaline pH modulation. Deprotonation of K165 underlies the alkaline block. However, MTS modification of the K165C mutant demonstrated that not only the charge but also the chemical and sterical properties of lysine 165 are determinants of CLC-K gating. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  3. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.)

    PubMed Central

    Li, Qian; Yang, An; Zhang, Wen-Hao

    2016-01-01

    To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na+/K+ ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H+-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress. PMID:27811002

  4. Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress.

    PubMed

    Liu, Jia; Wang, Yongqing; Li, Qingtian

    2017-01-01

    Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum ( Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba , a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure. To understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba . Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings. This represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results

  5. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Characterizing the Effects of Inorganic Acid and Alkaline Shock on the Staphylococcus aureus Transcriptome and Messenger RNA Turnover

    PubMed Central

    Anderson, Kelsi L.; Roux, Christelle M.; Olson, Matthew W.; Luong, Thanh T.; Lee, Chia Y.; Olson, Robert; Dunman, Paul M.

    2010-01-01

    Staphylococcus aureus pathogenesis can be partially attributed to its ability to adapt to otherwise deleterious host-associated stresses. Here, Affymetrix GeneChips® were used to examine the S. aureus responses to inorganic acid and alkaline shock and to assess whether stress dependent changes in mRNA turnover are likely to facilitate the organism’s ability to tolerate pH challenge. Results indicate that S. aureus adapts to pH shock by eliciting responses expected of cells coping with pH alteration, including neutralizing cellular pH, DNA repair, amino acid biosynthesis and virulence factor expression. Further, the S. aureus response to alkaline conditions is strikingly similar to that of stringent response induced cells. Indeed, we show that alkaline shock stimulates accumulation of the stringent response activator (p)ppGpp. Results also revealed that pH shock significantly alters the mRNA properties of the cell. A comparison of the mRNA degradation properties of transcripts whose titers either increased or decreased in response to sudden pH change revealed that alterations in mRNA degradation may, in part, account for the changes in the mRNA levels of factors predicted to mediate pH tolerance. A set of small stable RNA molecules were induced in response to acid or alkaline shock conditions and may mediate adaptation to pH stress. PMID:21039920

  7. Alkaline and Acid Phosphatase Activity, pH and Osmotic Pressure of Boar Semen***

    PubMed Central

    King, G. J.; Macpherson, J. W.

    1966-01-01

    Alkaline phosphatase activity was recorded in forty ejaculates of the sperm rich fraction of boar semen as 9,790 ± 5,250 Klein-Babson-Read units per 100 ml. of seminal plasma. Acid phosphatase activity in the same ejaculates was 681 ± 304 Babson-Read units per 100 ml. of seminal plasma. No alkaline phosphatase activity was detected in the seminal plasma of vasectomized boars. The pH of the sperm rich fractions was 7.69 ± 0.33 and the osmotic pressure was 313.56 ± 7.98 milliosmols. PMID:4226380

  8. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase*

    PubMed Central

    Stojanovski, Bosko M.; Breydo, Leonid; Hunter, Gregory A.; Uversky, Vladimir N.; Ferreira, Gloria C.

    2014-01-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphtalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  9. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum.

    PubMed

    Mizumori, Misa; Ham, Maggie; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2009-07-15

    Regulation of localized extracellular pH (pH(o)) maintains normal organ function. An alkaline microclimate overlying the duodenal enterocyte brush border protects the mucosa from luminal acid. We hypothesized that intestinal alkaline phosphatase (IAP) regulates pH(o) due to pH-sensitive ATP hydrolysis as part of an ecto-purinergic pH regulatory system, comprised of cell-surface P2Y receptors and ATP-stimulated duodenal bicarbonate secretion (DBS). To test this hypothesis, we measured DBS in a perfused rat duodenal loop, examining the effect of the competitive alkaline phosphatase inhibitor glycerol phosphate (GP), the ecto-nucleoside triphosphate diphosphohydrolase inhibitor ARL67156, and exogenous nucleotides or P2 receptor agonists on DBS. Furthermore, we measured perfusate ATP concentration with a luciferin-luciferase bioassay. IAP inhibition increased DBS and luminal ATP output. Increased luminal ATP output was partially CFTR dependent, but was not due to cellular injury. Immunofluorescence localized the P2Y(1) receptor to the brush border membrane of duodenal villi. The P2Y(1) agonist 2-methylthio-ADP increased DBS, whereas the P2Y(1) antagonist MRS2179 reduced ATP- or GP-induced DBS. Acid perfusion augmented DBS and ATP release, further enhanced by the IAP inhibitor l-cysteine, and reduced by the exogenous ATPase apyrase. Furthermore, MRS2179 or the highly selective P2Y(1) antagonist MRS2500 co-perfused with acid induced epithelial injury, suggesting that IAP/ATP/P2Y signalling protects the mucosa from acid injury. Increased DBS augments IAP activity presumably by raising pH(o), increasing the rate of ATP degradation, decreasing ATP-mediated DBS, forming a negative feedback loop. The duodenal epithelial brush border IAP-P2Y-HCO(3-) surface microclimate pH regulatory system effectively protects the mucosa from acid injury.

  12. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    PubMed

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  13. Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover.

    PubMed

    Anderson, Kelsi L; Roux, Christelle M; Olson, Matthew W; Luong, Thanh T; Lee, Chia Y; Olson, Robert; Dunman, Paul M

    2010-12-01

    Staphylococcus aureus pathogenesis can be attributed partially to its ability to adapt to otherwise deleterious host-associated stresses. Here, Affymetrix GeneChips® were used to examine the S. aureus responses to inorganic acid and alkaline shock and to assess whether stress-dependent changes in mRNA turnover are likely to facilitate the organism's ability to tolerate a pH challenge. The results indicate that S. aureus adapts to pH shock by eliciting responses expected of cells coping with pH alteration, including neutralizing cellular pH, DNA repair, amino acid biosynthesis, and virulence factor expression. Further, the S. aureus response to alkaline conditions is strikingly similar to that of stringent response-induced cells. Indeed, we show that alkaline shock stimulates the accumulation of the stringent response activator (p)ppGpp. The results also revealed that pH shock significantly alters the mRNA properties of the cell. A comparison of the mRNA degradation properties of transcripts whose titers either increased or decreased in response to a sudden pH change revealed that alterations in mRNA degradation may, in part, account for the changes in the mRNA levels of factors predicted to mediate pH tolerance. A set of small stable RNA molecules were induced in response to acid- or alkaline-shock conditions and may mediate adaptation to pH stress. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.

    PubMed

    Tam, Y S; Elefsiniotis, P

    2009-10-01

    This study explored the potential of lead and copper leaching from brass plumbing in the Auckland region of New Zealand. A five-month field investigation, at six representative locations, indicated that Auckland's water can be characterized as soft and potentially corrosive, having low alkalinity and hardness levels and a moderately alkaline pH. More than 90% of the unflushed samples contained lead above the maximum acceptable value (MAV) of 10 microg/L (New Zealand Standards). In contrast, the copper level of unflushed samples remained consistently below the corresponding MAV of 2 mg/L. Flushing however reduced sharply metal concentrations, with lead values well below the MAV limit. Generally, metal leaching patterns showed a limited degree of correlation with the variations in temperature, dissolved oxygen and free chlorine residual at all sampling locations. Furthermore, a series of bench-scale experiments was conducted to evaluate the effectiveness of pH and alkalinity adjustment, as well as orthophosphate addition as corrosion control tools regarding lead and copper dissolution. Results demonstrated that lead and copper leaching was predominant during the first 24 hr of stagnation, but reached an equilibrium state afterwards. Since the soluble fraction of both metals was small (12% for lead, 29% for copper), it is apparent that the non-soluble compounds play a predominant role in the dissolution process. The degree of leaching however was largely affected by the variations in pH and alkalinity. At pH around neutrality, an increase in alkalinity promoted metal dissolution, while at pH 9.0 the effect of alkalinity on leaching was marginal. Lastly, addition of orthophosphate as a corrosion inhibitor was more effective at pH 7.5 or higher, resulting in approximately 70% reduction in both lead and copper concentrations.

  15. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  16. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.).

    PubMed

    Li, Qian; Yang, An; Zhang, Wen-Hao

    2016-12-01

    To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na 2 CO 3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na + /K + ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H + -ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  18. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    PubMed

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Distribution of Surface pH and Total Alkalinity at the Sea of Okhotsk and the East Sea in October 2007

    NASA Astrophysics Data System (ADS)

    Shim, J.; Kang, D.; Jin, Y.; Obzhirov, A.

    2008-12-01

    Surface pH, total alkalinity, temperature and salinity were measured at the Sea of Okhotsk and the East Sea (along a track from Vladivostok to the northeastern slope of Sakhalin Island through Soya Strait: 42°N, 132°E - 55°N, 145°E) in October 2007. Continuous pH measurements were conducted using an underway potentiometric pH system modified from Tishchenko et al. (2002) and discrete total alkalinity measurements were made by direct titration with hydrochloric acid. Warm saline surface waters were observed in the East Sea (from Vladivostok to Soya Strait), and relatively cold less-saline waters were observed in the Sea of Okhotsk (at the eastern slopes of Sakhalin Island). In the East Sea and the Sea of Okhotsk, surface pH ranged from 8.063 to 8.158 and 8.047 to 8.226, and total alkalinity normalized to salinity 35 ranged from 2323 to 2344 μmol kg-1 and 2367 to 2422 μmol kg-1, respectively. Due to the freshwater input from rivers and geochemical activity in the water column and sediment, the Sea of Okhotsk generally showed much wider ranges of water properties and richer in carbonate parameters than those of the East Sea. Particularly, water properties changed dramatically at the eastern slopes of Sakhalin Island; surface salinity decreased southward by about 0.5-1 psu and pH and normalized total alkalinity increased southward by about 0.05-0.1 and 20-50 μmol kg-1, respectively. Thus, pCO2 concentration calculated from pH and total alkalinity, ranged from 350-375 μatm in the north to 280-300 μatm in the south of the Okhotsk Sea. The high pH and normalized total alkalinity, and low pCO2 and salinity in the south might be the result of surface water mixing with fresh water discharge from rivers and/or the results of massive primary production along the eastern coast of Sakhalin Island. In the most study area, surface pCO2 ranged from 280 to 370 μatm and was undersaturated relative to atmosphere. Therefore, the Sea of Okhotsk and the East Sea acted as

  20. Survival and stress responses of E. coli exposed to alkaline cleaners

    USDA-ARS?s Scientific Manuscript database

    Studies were undertaken to evaluate the effects of alkaline cleaners commonly used in food processing environments on survival and stress responses of the foodborne pathogen Escherichia coli O157:H7. Alkaline cleaners containing either sodium hydroxide or potassium hydroxide and hypochlorite had gre...

  1. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  2. [Adaptability of abnormal tadpole (Rana chensinensis) to water pH, salinity and alkalinity in Changbai Mountain of China].

    PubMed

    Yang, Fuyi; Shao, Qingchun; Li, Jinglin; Chen, Guoshuang

    2004-08-01

    Under field condition with 16-18 degree C water temperature, single-factor acute toxicity test was used to study the toxicity effects of water pH, salinity and carbonate-alkalinity on abnormal tadpole (R. chensinensis). The results showed that when the water salinity was 0.18 g x L(-1), carbonate-alkalinity was 1.41 mmol x L(-1), and water pH was 4.3-9.7, the survival rate of abnormal tadpole within 96 hours was not affected. The upper limit of LC50 for the pH within 24, 48, 72 and 96 hours was 10.33, 10.18, 10.08 and 10.02, and the prescribed minimum was 3.92, 4.07, 4.11 and 4.16, respectively. The upper limit of LC0 was 9.95, 9.80, 9.70 and 9.70, and the prescribed minimum was 4.23, 4.45, 4.30 and 4.30, and that of LC100 was 10.70, 10.55, 10.45 and 10.33, and the prescribed minimum was 3.55, 3.70, 3.92 and 4.03, respectively. The survival rate of abnormal tadpole within 96 hours was not affected in the water salinity between 2.0-3.0 g x L(-1). When water pH was 7.0-8.5 and carbonate-alkalinity was 1.41 mmol x L(-1), the LC50 of the salinity within 24, 48, 72 and 96 hours was 8.21, 7.25, 5.17 and 3.70 g x L(-1), the LC0 was 7.14, 6.00, 2.67 and 2.20 g x L(-1), and the LC100 was 9.98, 9.00, 7.67 and 5.20 g x L(-1), respectively, while the SC was 1.70 g x L(-1). Under the same water pH and when the water salinity was 0.18 g x L(-1), the LC50 of carbonate-alkalinity within 24, 48, 72 and 96 hours was 14.36, 11.83, 10.35, and 7.68 mmol x L(-1), the LC0 was 8.76, 8.51, 4.65 and 3.88 mmol x L(-1), and the LC100 was 19.96, 15.14, 16.05 and 11.48 mmol x L(-1), respectively, while the SC was 1.70 mmol x L(-1). The survival rate of abnormal tadpole (R. chensinensis) was decreased with increasing water pH, salinity and carbonate-alkalinity. The optimum water salinity and carbonate-alkalinity to the survival and the growth of abnormal tadpole (R. chensinensis) were below 2.0 g x L(-1) and 3.0 mmol x L(-1), respectively, and water pH was between 6.0 and 9.0.

  3. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    PubMed

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  4. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  5. Mechanisms of glucagon degradation at alkaline pH.

    PubMed

    Caputo, Nicholas; Castle, Jessica R; Bergstrom, Colin P; Carroll, Julie M; Bakhtiani, Parkash A; Jackson, Melanie A; Roberts, Charles T; David, Larry L; Ward, W Kenneth

    2013-07-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  7. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato.

    PubMed

    Zhang, Yi; Zhang, Hao; Zou, Zhi-Rong; Liu, Yi; Hu, Xiao-Hui

    2015-02-01

    In this research, the protective effect of spermidine (Spd) in mitigating saline-alkaline stress in tomato (Solanum lycopersicum L.) at physiological and proteomic levels were examined. The results showed that saline-alkaline stress induced accumulation of H2O2 and O2(-*), and increased the activities of antioxidase (SOD, CAT, and POD). Spermidine efficiently alleviated the inhibitory role of saline-alkaline on plant growth and inhibited saline-alkaline stress-induced H2O2 and O2(-*) accumulation. Proteomics investigations of the leaves of tomato seedlings, responding to a 75 mM saline-alkaline solution and 0.25 mM Spd, were performed. Maps of the proteome of leaf extracts were obtained by two-dimensional gel electrophoresis. An average of 49, 47 and 34 spots, which appeared repeatedly and that significantly altered the relative amounts of polypeptides by more than twofold, were detected for seedlings treated with saline-alkaline solution (S) compared to normal solution (CK), saline-alkaline plus spermidine (MS) compared to CK, or S versus MS, respectively. Thirty-nine of these proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and were classified into five functional categories, including energy and metabolism, signal transduction, amino acid metabolism, protein metabolism, and stress-defense response. Proteomics analysis coupled with bioinformatics indicated that Spd treatment helps tomato seedlings combat saline-alkaline stress by modulating the defense mechanism of plants and activating cellular detoxification, which protect plants from oxidative damage induced by saline-alkaline stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  9. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  11. Response of Desulfovibrio vulgaris to Alkaline Stress▿ †

    PubMed Central

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P.; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E.; Joyner, Dominique C.; Huang, Katherine; Alm, Eric; Hazen, Terry C.; Zhou, Jizhong; Wall, Judy D.; Arkin, Adam P.; Stahl, David A.

    2007-01-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580). PMID:17921288

  12. Effects of Alkalinity and pH on Survival, Growth, and Enzyme Activities in Juveniles of the Razor Clam, Sinonovacula constricta

    PubMed Central

    Maoxiao, Peng; Bo, Ye; Xiaojun, Liu; Donghong, Niu; Tianyi, Lan; Zhiguo, Dong; Jiale, Li

    2018-01-01

    In order to clarify the possibility of rearing razor clams (Sinonovacula constricta) in inland saline water (ISW) and to facilitate their breeding under these stressful conditions, we performed semi-static acute and chronic toxicity tests to determine the effects of carbonate alkalinity (CA) and pH on the survival and growth rate, and critical metabolic enzyme activity in juvenile of S. constricta (JSC). (1) Acute toxicity test. As the water CA increased from 1.22 to 45.00 mmol L-1, the survival rate decreased significantly, which was exacerbated by the increase in the pH. When the water CA was set at 2.5 mmol L-1, the 48 h lethal concentration 50% (LC50) for JSCs with respect to pH was 9.86. When the water pH was 9.0, 9.5, and 10.0, the 48 h LC50 values for JSCs with respect to CA were 10.38, 8.79, and 3.11 mmol L-1, respectively. (2) Chronic toxicity test. Four experimental groups comprising the control, CAS, pHS, and CA-pHS were designated according to the target ISW data. After 3 months of stress, the JSC survival rate in each group exceeded 85%, but survival was significantly lower in the CA-pHS group than the control group (p < 0.05) in the first month. For the JSCs in various groups, the shell length growth rate (SGR) and weight gain (WG) rate were significantly lower in the CA-pHS group than the other groups (p < 0.05 for SGR; p < 0.001 for WG) in the first month. However, the difference in the growth rate among groups decreased in the next 2 months. For the JSCs in the CA-pHS group, the oxygen consumption, ammonia-N excretion, Na+/K+-ATPase, aspartate aminotransferase, and superoxide dismutase levels were significantly higher than those in the other groups during the first month, but there were no significant differences between the groups subsequently. The acetylcholinesterase and lysozyme levels did not differ significantly among groups during stress for 3 months. The integrated biomarker response index showed that stressors comprising high pH and CA

  13. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH

    PubMed Central

    Kumar, Sujeet

    2015-01-01

    ABSTRACT The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. IMPORTANCE The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family

  14. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  15. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  16. Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism.

    PubMed

    Li, Jianming; Hu, Lipan; Zhang, Li; Pan, Xiongbo; Hu, Xiaohui

    2015-12-29

    Salinity-alkalinity stress is known to adversely affect a variety of processes in plants, thus inhibiting growth and decreasing crop yield. Polyamines protect plants against a variety of environmental stresses. However, whether exogenous spermidine increases the tolerance of tomato seedlings via effects on chloroplast antioxidant enzymes and chlorophyll metabolism is unknown. In this study, we examined the effect of exogenous spermidine on chlorophyll synthesis and degradation pathway intermediates and related enzyme activities, as well as chloroplast ultrastructure, gene expression, and antioxidants in salinity-alkalinity-stressed tomato seedlings. Salinity-alkalinity stress disrupted chlorophyll metabolism and hindered uroorphyrinogen III conversion to protoporphyrin IX. These effects were more pronounced in seedlings of cultivar Zhongza No. 9 than cultivar Jinpengchaoguan. Under salinity-alkalinity stress, exogenous spermidine alleviated decreases in the contents of total chlorophyll and chlorophyll a and b in seedlings of both cultivars following 4 days of stress. With extended stress, exogenous spermidine reduced the accumulation of δ-aminolevulinic acid, porphobilinogen, and uroorphyrinogen III and increased the levels of protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide, suggesting that spermidine promotes the conversion of uroorphyrinogen III to protoporphyrin IX. The effect occurred earlier in cultivar Jinpengchaoguan than in cultivar Zhongza No. 9. Exogenous spermidine also alleviated the stress-induced increases in malondialdehyde content, superoxide radical generation rate, chlorophyllase activity, and expression of the chlorophyllase gene and the stress-induced decreases in the activities of antioxidant enzymes, antioxidants, and expression of the porphobilinogen deaminase gene. In addition, exogenous spermidine stabilized the chloroplast ultrastructure in stressed tomato seedlings. The tomato cultivars examined exhibited different

  17. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.

  18. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.

    PubMed

    Abdel Latef, Arafat A; Tran, Lam-Son P

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  19. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study.

    PubMed

    Patel, Rufi Murad; Varma, Siddhartha; Suragimath, Girish; Zope, Sameer

    2016-07-01

    In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey's test were applied for statistical analysis. The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  20. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH.

    PubMed

    Kumar, Sujeet; Doerrler, William T

    2015-07-01

    The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved

  1. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    PubMed

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  2. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  3. In vitro nonenzymatic glycation of DNA nucleobases: an evaluation of advanced glycation end products under alkaline pH.

    PubMed

    Dutta, Udayan; Cohenford, Menashi A; Guha, Madhumita; Dain, Joel A

    2006-11-01

    The advanced glycation end products (AGEs) of DNA nucleobases have received little attention, perhaps due to the fact that adenine, guanine, cytosine and thymine do not dissolve under mild pH conditions. To maintain nucleobases in solution, alkaline pH conditions are typically required. The objectives of this investigation were twofold: to study the susceptibility of DNA nucleobases to nonenzymatic attack by different sugars, and to evaluate the factors that influence the formation of nucleobase AGEs at pH 12, i.e., in an alkaline environment that promotes the aldo-keto isomerization and epimerization of sugars. Varying concentrations of adenine, guanine, thymine and cytosine were incubated over time with constant concentrations of D-glucose, D-galactose or D/L-glyceraldehyde under different conditions of temperature and ionic strength. Incubation of the nucleobases with the sugars resulted in a heterogeneous assembly of AGEs whose formation was monitored by UV/fluorescence spectroscopy. Capillary electrophoresis and HPLC were used to resolve the AGEs of the DNA adducts and provided a powerful tool for following the extent of glycation in each of the DNA nucleobases. Mass spectrometry studies of DNA adducts of guanine established that glycation at pH 12 proceeded through an Amadori intermediate.

  4. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus.

    PubMed

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L; Armstrong-James, Darius; Espeso, Eduardo A; Read, Nick D; Nierman, William C; Bignell, Elaine M

    2017-12-01

    Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca 2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  5. ALT1, a Snf2 Family Chromatin Remodeling ATPase, Negatively Regulates Alkaline Tolerance through Enhanced Defense against Oxidative Stress in Rice

    PubMed Central

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  6. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. II. THE EFFECT OF TEMPERATURE, PH, ALKALINITY, AND DOM PROPERTIES

    EPA Science Inventory

    The influence of temperature, pH, alkalinity, and type and concentration of the dissolved organic matter (DOM) on the rate of ozone (O3) decomposition, O3-exposure, .OH-exposure and the ratio Rct of the concentrations of .OH and O3 has been studied. For a standardized single ozon...

  7. [Alpha but not beta-adrenergic stimulation has a positive inotropic effect associated with alkalinization of intracellular pH].

    PubMed

    Gambassi, G; Lakatta, E G; Capogrossi, M C

    1991-01-01

    There is increasing evidence that alpha-adrenoceptors also exist in the myocardium and that an increase in force of contraction may be produced by stimulation of these sites. This positive inotropism seems to be dependent either on an increased amount of Ca++ released into the cytosol with each action potential or on increased myofilament responsiveness. In contrast, beta-adrenergic stimulation reduces the sensitivity of the contractile proteins and the positive inotropic effect is due to the activation of L-type calcium channels on the sarcolemma. We used single, isolated, enzymatically dissociated, adult rat ventricular myocytes. Cells were loaded either with the ester derivative of the Ca++ probe Indo-1 or with the intracellular pH probe Snarf-1 and at the same time we measured the contractile parameters and monitored the fluorescence as an index of intracellular calcium concentration or pH value. The single cells (bicarbonate buffer continuously gassed with O2 95%, CO2 5%, Ca++ 1.5 mM, field stimulation 0.5 Hz) were exposed to phenylephrine (50 microM) and nadolol (1 microM). Alpha-adrenergic stimulation increased twitch amplitude (delta ES = 1.93 +/- 0.77, n = 8; p less than 0.05) and showed only a slight increase in Ca++ transient. On the other end, the positive inotropic effect (delta ES = 2.84 +/- 0.86, n = 4; p less than 0.02) obtained with beta-adrenergic stimulation (isoproterenol 50 nM, bicarbonate buffer, Ca++ 0.5 mM, field stimulation 0.2 Hz) was always associated with a large increase in intracellular Ca++ concentration. Isoproterenol did not change intracellular pH (delta pH = 0.006 +/- 0.006, n = 4; NS) while phenylephrine increased it significantly (delta pH = 0.055 +/- 0.011, n = 8; p less than 0.002). Moreover, there was a statistically significant correlation between delta ES and delta pH (R2 = 0.532; p less than 0.05) when phenylephrine was present. This alkalinization as well as the increased contractility was antagonized by treatment with

  8. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.

  9. Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH*

    PubMed Central

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W. M.; Wu, Wu-Tian; Yue, Jianbo

    2013-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression. PMID:23836916

  10. Ectopic Expression of a Glycine soja myo-Inositol Oxygenase Gene (GsMIOX1a) in Arabidopsis Enhances Tolerance to Alkaline Stress

    PubMed Central

    Chen, Chen; Sun, Xiaoli; Duanmu, Huizi; Yu, Yang; Liu, Ailin; Xiao, Jialei; Zhu, Yanming

    2015-01-01

    Myo-inositol participates in various aspects of plant physiology, and myo-inositol oxygenase is the key enzyme of the myo-inositol oxygenation pathway. Previous studies indicated that myo-inositol oxygenase may play a role in plant responses to abiotic stresses. In this study, we focused on the functional characterization of GsMIOX1a, a remarkable alkaline stress-responsive gene of Glycine soja 07256, based on RNA-seq data. Using quantitative real-time PCR, we demonstrated that GsMIOX1a is rapidly induced by alkaline stress and expressed predominantly in flowers. We also elucidated the positive function of GsMIOX1a in the alkaline response in the wild type, atmiox1 mutant as well as GsMIOX1a-overexpressing Arabidopsis. We determined that atmiox1 mutant decreased Arabidopsis tolerance to alkaline stress, whereas GsMIOX1a overexpression increased tolerance. Moreover, the expression levels of some alkaline stress-responsive and inducible marker genes, including H+-Ppase, NADP-ME, KIN1 and RD29B, were also up-regulated in GsMIOX1a overexpression lines compared with the wild type and atmiox1 mutant. Together, these results suggest that the GsMIOX1a gene positively regulates plant tolerance to alkaline stress. This is the first report to demonstrate that ectopic expression of myo-inositol oxygenase improves alkaline tolerance in plants. PMID:26091094

  11. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.

    PubMed

    Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui

    2016-04-01

    Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress. © 2015 Scandinavian Plant Physiology Society.

  12. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    PubMed

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Discomfort from an Alkaline Formulation Delivered Subcutaneously in Humans

    PubMed Central

    Ward, W. Kenneth; Castle, Jessica R.; Branigan, Deborah L.; Massoud, Ryan G.; Youssef, Joseph El

    2013-01-01

    Background and Objective There is a paucity of data regarding tolerability of alkaline drugs administered subcutaneously. The aim of this study was to assess the tolerability of alkaline preparations of human albumin delivered subcutaneously to healthy humans. Methods We compared the tolerability of neutral versus alkaline (pH 10) formulations of human albumin in ten volunteers. With an intent to minimize the time required to reach physiological pH after injection, the alkaline formulation was buffered with a low concentration of glycine (20 mmol/L). Each formulation was given at two rates: over 5 seconds and over 60 seconds. A six-point scale was used to assess discomfort. Results For slow injections, there was a significant difference between pH 7.4 and pH 10 injections (0.4 ± 0.2 vs 1.1 ± 0.2, mean ± SEM; p = 0.025), though the degree of discomfort at pH 10 injections was only ‘mild or slight’. For fast injections, the difference between neutral and alkaline formulations was of borderline significance. Inflammation and oedema, as judged by a physician, were very minimal for all injections, irrespective of pH. Conclusion For subcutaneous drug administration (especially when delivered slowly), there was more discomfort associated with alkaline versus neutral formulations of albumin, though the discomfort was mild. This study suggests that there is little discomfort and inflammation resulting from subcutaneous administration of protein drugs formulated with weak buffers at alkaline pH. PMID:22568666

  14. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  15. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons

    PubMed Central

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X.Z. Shawn

    2016-01-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation has been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins, whose functions are largely unknown. Here, we characterize C. elegans TMC-1 which was suggested to form a Na+-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9 which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  16. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  17. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

  18. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  19. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions.

    PubMed

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-08-07

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments.

  20. A proteomic investigation of Fusobacterium nucleatum alkaline-induced biofilms

    PubMed Central

    2012-01-01

    Background The Gram negative anaerobe Fusobacterium nucleatum has been implicated in the aetiology of periodontal diseases. Although frequently isolated from healthy dental plaque, its numbers and proportion increase in plaque associated with disease. One of the significant physico-chemical changes in the diseased gingival sulcus is increased environmental pH. When grown under controlled conditions in our laboratory, F. nucleatum subspecies polymorphum formed mono-culture biofilms when cultured at pH 8.2. Biofilm formation is a survival strategy for bacteria, often associated with altered physiology and increased virulence. A proteomic approach was used to understand the phenotypic changes in F. nucleatum cells associated with alkaline induced biofilms. The proteomic based identification of significantly altered proteins was verified where possible using additional methods including quantitative real-time PCR (qRT-PCR), enzyme assay, acidic end-product analysis, intracellular polyglucose assay and Western blotting. Results Of 421 proteins detected on two-dimensional electrophoresis gels, spot densities of 54 proteins varied significantly (p < 0.05) in F. nucleatum cultured at pH 8.2 compared to growth at pH 7.4. Proteins that were differentially produced in biofilm cells were associated with the functional classes; metabolic enzymes, transport, stress response and hypothetical proteins. Our results suggest that biofilm cells were more metabolically efficient than planktonic cells as changes to amino acid and glucose metabolism generated additional energy needed for survival in a sub-optimal environment. The intracellular concentration of stress response proteins including heat shock protein GroEL and recombinational protein RecA increased markedly in the alkaline environment. A significant finding was the increased abundance of an adhesin, Fusobacterial outer membrane protein A (FomA). This surface protein is known for its capacity to bind to a vast number of

  1. Genome-wide analysis of Glycine soja ubiquitin (UBQ) genes and functional analysis of GsUBQ10 in response to alkaline stress.

    PubMed

    Chen, Chao; Chen, Ranran; Wu, Shengyang; Zhu, Dan; Sun, Xiaoli; Liu, Beidong; Li, Qiang; Zhu, Yanming

    2018-03-26

    Ubiquitin is a highly conserved protein with multiple essential regulation functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway were very well characterized. The functions of ubiquitin genes in regulating alkaline stress response are not fully established. In this study, we identified 12 potential UBQ genes in Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and function of GsUBQ10 was characterized using overexpression transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa. This article is protected by copyright. All rights reserved.

  2. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.

    PubMed

    Geilfus, Christoph-Martin; Tenhaken, Raimund; Carpentier, Sebastien Christian

    2017-11-17

    During chloride salinity, the pH of the leaf apoplast (pH apo ) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pH apo changes. Using proteomic analyses of expanding leaves of corn ( Zea mays L.), we show that this transition in pH apo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pH apo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pH apo These elevated protein abundances did not directly arise from high tissue concentrations of Cl - or Na + but were due to changes in the pH apo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified ( i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t -coumaric and t -ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  4. Stress-life interrelationships associated with alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Martin, Ronald E.; Stedman, James K.

    1987-01-01

    A review is presented concerning the interrelationships between applied stress and the expected service life of alkaline fuel cells. Only the physical, chemical, and electrochemical phenomena that take place within the fuel cell stack portion of an overall fuel cell system will be discussed. A brief review will be given covering the significant improvements in performance and life over the past two decades as well as summarizing the more recent advances in understanding which can be used to predict the performance and life characteristics of fuel cell systems that have yet to be built.

  5. Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters*

    PubMed Central

    Cheng, Bin; Meng, Yiwei; Cui, Yanbing; Li, Chunfang; Tao, Fei; Yin, Huijia; Yang, Chunyu; Xu, Ping

    2016-01-01

    Halomonas sp. Y2 is a halotolerant alkaliphilic strain from Na+-rich pulp mill wastewater with high alkalinity (pH >11.0). Transcriptome analysis of this isolate revealed this strain may use various transport systems for pH homeostasis. In particular, the genes encoding four putative Na+/H+ antiporters were differentially expressed upon acidic or alkaline conditions. Further evidence, from heterologous expression and mutant studies, suggested that Halomonas sp. Y2 employs its Na+/H+ antiporters in a labor division way to deal with saline and alkaline environments. Ha-NhaD2 displayed robust Na+(Li+) resistance and high transport activities in Escherichia coli; a ΔHa-nhaD2 mutant exhibited growth inhibition at high Na+(Li+) concentrations at pH values of 6.2, 8.0, and 10.0, suggesting its physiological role in osmotic homeostasis. In contrast, Ha-NhaD1 showed much weaker activities in ion exporting and pH homeostasis. Ha-Mrp displayed a combination of properties similar to those of Mrp transporters from some Bacillus alkaliphiles and neutrophiles. This conferred obvious Na+(Li+, K+) resistance in E. coli-deficient strains, as those ion transport spectra of some neutrophil Mrp antiporters. Conversely, similar to the Bacillus alkaliphiles, Ha-Mrp showed central roles in the pH homeostasis of Halomonas sp. Y2. An Ha-mrp-disrupted mutant was seriously inhibited by high concentrations of Na+(Li+, K+) but only under alkaline conditions. Ha-NhaP was determined to be a K+/H+ antiporter and shown to confer strong K+ resistance both at acidic and alkaline stresses. PMID:27777302

  6. Acidity and Alkalinity in mine drainage: Practical considerations

    USGS Publications Warehouse

    Cravotta, III, Charles A.; Kirby, Carl S.

    2004-01-01

    In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by

  7. The Effect of Carbonate and pH on Hydrogen Oxidation and Oxygen Reduction on Pt-Based Electrocatalysts in Alkaline Media

    DOE PAGES

    John, Samuel St.; Atkinson, Robert W.; Roy, Asa; ...

    2016-01-11

    In this paper, we investigated the performance of several carbon-supported Ru xPt y electrocatalysts for their alkaline hydrogen oxidation and oxygen reduction performance in the presence of carbonate and compared their performance with monometallic, carbon-supported Pt. Our results indicate a strong dependence of HOR upon pH for the monometallic Pt catalysts (22 mV/pH) and a weak dependence upon pH for the Ru-containing electrocatalysts (3.7, 2.5, and 4.7 mV/pH on Ru 0.2Pt 0.8, Ru 0.4Pt 0.6, and Ru 0.8Pt 0.2, respectively). These results are consistent with our previous findings that illustrate a change in rds from electron transfer (on monometallic Pt)more » to dissociative hydrogen adsorption (on Ru xPt y catalysts). Analysis of the kinetic currents to determine the rate-determining step via Tafel slope analysis provides additional data supporting this conclusion. There is no difference in the performance at comparable pH values in the presence or absence of carbonate on monometallic Pt indicating that water/hydroxide is the primary proton acceptor for alkaline HOR in 0.1 M KOH aqueous electrolyte. Finally, we observe no pH or carbonate dependence for the ORR on monometallic Pt.« less

  8. The Effect of Carbonate and pH on Hydrogen Oxidation and Oxygen Reduction on Pt-Based Electrocatalysts in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, Samuel St.; Atkinson, Robert W.; Roy, Asa

    In this paper, we investigated the performance of several carbon-supported Ru xPt y electrocatalysts for their alkaline hydrogen oxidation and oxygen reduction performance in the presence of carbonate and compared their performance with monometallic, carbon-supported Pt. Our results indicate a strong dependence of HOR upon pH for the monometallic Pt catalysts (22 mV/pH) and a weak dependence upon pH for the Ru-containing electrocatalysts (3.7, 2.5, and 4.7 mV/pH on Ru 0.2Pt 0.8, Ru 0.4Pt 0.6, and Ru 0.8Pt 0.2, respectively). These results are consistent with our previous findings that illustrate a change in rds from electron transfer (on monometallic Pt)more » to dissociative hydrogen adsorption (on Ru xPt y catalysts). Analysis of the kinetic currents to determine the rate-determining step via Tafel slope analysis provides additional data supporting this conclusion. There is no difference in the performance at comparable pH values in the presence or absence of carbonate on monometallic Pt indicating that water/hydroxide is the primary proton acceptor for alkaline HOR in 0.1 M KOH aqueous electrolyte. Finally, we observe no pH or carbonate dependence for the ORR on monometallic Pt.« less

  9. Mechanisms on the Impacts of Alkalinity, pH, and Chloride on Persulfate-Based Groundwater Remediation.

    PubMed

    Li, Wei; Orozco, Ruben; Camargos, Natalia; Liu, Haizhou

    2017-04-04

    Persulfate (S 2 O 8 2- )-based in situ chemical oxidation (ISCO) has gained more attention in recent years due to the generation of highly reactive and selective sulfate radical (SO 4 •- ). This study examined the effects of important groundwater chemical parameters, i.e., alkalinity, pH, and chloride on benzene degradation via heterogeneous persulfate activation by three Fe(III)- and Mn(IV)-containing aquifer minerals: ferrihydrite, goethite, and pyrolusite. A comprehensive kinetic model was established to elucidate the mechanisms of radical generation and mineral surface complexation. Results showed that an increase of alkalinity up to 10 meq/L decreased the rates of persulfate decomposition and benzene degradation, which was associated with the formation of unreactive surface carbonato complexes. An increase in pH generally accelerated persulfate decomposition due to enhanced formation of reactive surface hydroxo complexation. A change in the chloride level up to 5 mM had a negligibly effect on the reaction kinetics. Kinetics modeling also suggested that SO 4 •- was transformed to hydroxyl radical (HO • ) and carbonate radical (CO 3 •- ) at higher pHs. Furthermore, the yields of two major products of benzene oxidation, i.e., phenol and aldehyde, were positively correlated with the branching ratio of SO 4 •- reacting with benzene, but inversely correlated with that of HO • or CO 3 •- , indicating that SO 4 •- preferentially oxidized benzene via pathways involving fewer hydroxylation steps compared to HO • or CO 3 •- .

  10. Exogenous Melatonin Alleviates Alkaline Stress in Malus hupehensis Rehd. by Regulating the Biosynthesis of Polyamines.

    PubMed

    Gong, Xiaoqing; Shi, Shuting; Dou, Fangfang; Song, Yi; Ma, Fengwang

    2017-09-13

    Since melatonin was identified in plants decades ago, much attention has been devoted to discovering its role in plant science. There is still a great deal to learn about the functional importance of melatonin, as well as its functional mode. In this paper, we examine the role of melatonin treatment in the response of Malus hupehensis Rehd. to alkaline conditions. Stressed seedlings showed chlorosis and suppressed growth. However, this phenotype was ameliorated when 5 µM melatonin was added to the irrigation solution. This supplementation was also associated with a reduction in cell membrane damage and maintenance of a normal root system architecture. Fewer reactive oxygen species (ROS) were accumulated due to the enhanced scavenging activity of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, alkaline-stressed seedlings that received the melatonin supplement accumulated more polyamines compared with untreated seedlings. Transcript levels of six genes involved in polyamine synthesis, including SAMDC1 , - 3 , and - 4 , and SPDS1 , - 3 , and - 5 , - 6 , were upregulated in response to melatonin application. All of these results demonstrate that melatonin has a positive function in plant tolerance to alkaline stress because it regulates enzyme activity and the biosynthesis of polyamines.

  11. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  12. Nucleobase recognition at alkaline pH and apparent pKa of single DNA bases immobilised within a biological nanopore.

    PubMed

    Franceschini, Lorenzo; Mikhailova, Ellina; Bayley, Hagan; Maglia, Giovanni

    2012-02-01

    The four DNA bases are recognized in immobilized DNA strands at high alkaline pH by nanopore current recordings. Ionic currents through the biological nanopores are also employed to measure the apparent pK(a) values of single nucleobases within the immobilised DNA strands. This journal is © The Royal Society of Chemistry 2012

  13. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses

    PubMed Central

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin

    2017-01-01

    ABSTRACT The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB. Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche

  14. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses.

    PubMed

    Harter, Eva; Wagner, Eva Maria; Zaiser, Andreas; Halecker, Sabrina; Wagner, Martin; Rychli, Kathrin

    2017-08-15

    The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481 , and two homologous genes of the nonpathogenic species Listeria innocua : lin0464 , coding for a putative transcriptional regulator, and lin0465 , encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σ B Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments. IMPORTANCE Listeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation

  15. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    PubMed

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  17. Exogenous γ-Aminobutyric Acid Improves the Structure and Function of Photosystem II in Muskmelon Seedlings Exposed to Salinity-Alkalinity Stress

    PubMed Central

    Xu, Weinan; Zhen, Ai; Zhang, Liang; Hu, Xiaohui

    2016-01-01

    Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test. They also reduced the activity of chloroplast ATPases and disrupted the internal lamellar system of the thylakoids. Exogenous GABA alleviated the stress-induced reduction of net photosynthesis, the activity of chloroplast ATPases, and overcame some of the damaging effects of stress on the chloroplast structure. Based on interpretation of the JIP-test, we conclude that exogenous GABA alleviated stress-related damage on the acceptor side of PSII. It also restored energy distribution, the reaction center status, and enhanced the ability of PSII to repair reaction centers in stressed seedlings. GABA may play a crucial role in protecting the chloroplast structure and function of PSII against the deleterious effects of salinity-alkalinity stress. PMID:27764179

  18. Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions.

    PubMed

    Ghate, Vinayak; Leong, Ai Ling; Kumar, Amit; Bang, Woo Suk; Zhou, Weibiao; Yuk, Hyun-Gyun

    2015-06-01

    Light emitting diodes (LEDs) with their antibacterial effect present a novel method for food preservation. This effect may be influenced by environmental conditions such as the pH of the food contaminated by the pathogen. Thus, it is necessary to investigate the influence of pH on the antibacterial effect of LEDs before their application to real food matrices. Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in trypticase soy broth were illuminated using 10-W 461 (22.1 mW/cm(2)) and 521 nm (16 mW/cm(2)) LEDs at pH values of 4.5, 6.0, 7.3, 8.0 and 9.5 for 7.5 h at 15 °C. Using the 461 nm LEDs, the populations of E. coli O157:H7 decreased by 2.1 ± 0.02, 1.2 ± 0.08 and 4.1 ± 0.42 log CFU/ml at pH 4.5, 7.3 and 9.5 respectively, after a dosage of 596.7 J/cm(2). For L. monocytogenes, approximately a 5.8 ± 0.03 log reduction was observed after 238.7 J/cm(2) at pH 4.5 using the 461 nm LEDs, while the bacterial concentration was reduced by 1.8 ± 0.01 log at pH 9.5 after 596.7 J/cm(2). Bacterial inactivation using the 521 nm LEDs showed similar trends to the 461 nm LEDs at both acidic and alkaline pH conditions but with lower (1-2 log CFU/ml) reductions after 432 J/cm(2). Lower D-values were observed for L. monocytogenes when exposed to LEDs at acidic pH values, while the sensitivity of E. coli O157:H7 and S. Typhimurium to LED was markedly increased at an alkaline pH. Regardless of the pH at which the cultures were illuminated, the percentage of sublethal injury increased with the treatment time. These results highlight the enhanced antibacterial effect of the 461 nm LED under acidic and alkaline pH conditions, proving its potential to preserve foods as well as to have synergistic effect with acidic and alkaline antimicrobials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Solid State Sensor for Simultaneous Measurement of Total Alkalinity and pH of Seawater.

    PubMed

    Briggs, Ellen M; Sandoval, Sergio; Erten, Ahmet; Takeshita, Yuichiro; Kummel, Andrew C; Martz, Todd R

    2017-09-22

    A novel design is demonstrated for a solid state, reagent-less sensor capable of rapid and simultaneous measurement of pH and Total Alkalinity (A T ) using ion sensitive field effect transistor (ISFET) technology to provide a simplified means of characterization of the aqueous carbon dioxide system through measurement of two "master variables": pH and A T . ISFET-based pH sensors that achieve 0.001 precision are widely used in various oceanographic applications. A modified ISFET is demonstrated to perform a nanoliter-scale acid-base titration of A T in under 40 s. This method of measuring A T , a Coulometric Diffusion Titration, involves electrolytic generation of titrant, H + , through the electrolysis of water on the surface of the chip via a microfabricated electrode eliminating the requirement of external reagents. Characterization has been performed in seawater as well as titrating individual components (i.e., OH - , HCO 3 - , CO 3 2- , B(OH) 4 - , PO 4 3- ) of seawater A T . The seawater measurements are consistent with the design in reaching the benchmark goal of 0.5% precision in A T over the range of seawater A T of ∼2200-2500 μmol kg -1 which demonstrates great potential for autonomous sensing.

  20. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  1. Clinical utility of pH paper versus pH meter in the measurement of critical gastric pH in stress ulcer prophylaxis.

    PubMed

    Bradley, J S; Phillips, J O; Cavanaugh, J E; Metzler, M H

    1998-11-01

    To evaluate the clinical utility of measuring gastric pH with a pH meter vs. pH paper in critical care patients. Prospective comparison of gastric pH measurements, using both pH meter and pH paper. Surgical intensive care unit (ICU) at a rural Midwestern university medical center. Fifty-one patients who received therapy for prophylaxis of stress ulcers in the surgical ICU. Therapy for stress ulcer prophylaxis was monitored. The pH of 985 gastric samples, taken from 51 patients, was measured with both pH meter and pH paper. The pH meter and pH paper measures demonstrated a concordance correlation coefficient of .896. The mean difference between the two measures (pH paper - pH meter) was estimated to be between -0.4 and 1.4, suggesting a positive bias for the paper. The prevalence of events representing clinically relevant differences between the pH meter and pH paper in the measurement of the same gastric sample was calculated. The frequency with which each of the events occurred consecutively (or, in one case, two nearly consecutive events on the same day) was also calculated. Bias in a clinically relevant range was estimated. A set of "probability profiles" was constructed. A hand-held pH meter and pH paper are not interchangeable measures of gastric pH. The pH paper exhibits an appreciable positive bias compared with a hand-held pH meter in the clinically relevant range of 2 to 6. More research is needed to determine if that bias affects treatment outcomes. We recommend the use of a pH meter for patients who demonstrate pH readings of < or = 4, consecutive with readings of < or = 5.

  2. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  3. Stress-Corrosion Cracking in Martensitic PH Stainless Steels

    NASA Technical Reports Server (NTRS)

    Humphries, T.; Nelson, E.

    1984-01-01

    Precipitation-hardening alloys evaluated in marine environment tests. Report describes marine-environment stress-corrosion cracking (SCC) tests of three martensitic precipitation hardening (PH) stainless-steel alloys.

  4. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  5. Carbonic anhydrase 2-like and Na⁺-K⁺-ATPase α gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress.

    PubMed

    Yao, Zongli; Lai, Qifang; Hao, Zhuoran; Chen, Ling; Lin, Tingting; Zhou, Kai; Wang, Hui

    2015-12-01

    High carbonate alkalinity is one of the major stress factors for living organisms in saline-alkaline water areas. Acute and chronic effects of carbonate alkalinity on expression of two genes, carbonic anhydrase 2-like (CA2-like) and Na(+)-K(+)-ATPase α subunit (NKA-α) mRNA in medaka (Oryzias latipes) were evaluated to better understand the responses important for coping with a carbonate alkalinity stress. In the acute exposure experiment, the expression of CA2-like and NKA-α mRNA in the gill and kidney of medaka were examined from 0 h to 7 days exposed to 30.4 mM carbonate alkalinity water. Exposure to high carbonate alkalinity resulted in a transitory alkalosis, followed by a transient increase in gill and kidney CA2-like and NKA-α mRNA expression. In the chronic exposure experiment, the expression of these two genes was examined in the gill and kidney at 50 days post-exposure to six different carbonate alkalinity concentrations ranging from 1.5 to 30.4 mM. Gill and kidney CA2-like mRNA levels in 30.4 mM were approximately 10 and 30 times higher than that of the control (1.5 mM), respectively. Less differences were found in NKA-α expression in the 50-days exposure. The results indicate that when transferred to high carbonate alkalinity water, a transitory alkalosis may occur in medaka, followed by compensatory acid-base and ion regulatory responses. Thus, CA2-like and NKA-α are at least two of the important factors that contribute to the regulation of alkalinity stress.

  6. Synergistic Action of a Microbial-based Biostimulant and a Plant Derived-Protein Hydrolysate Enhances Lettuce Tolerance to Alkalinity and Salinity

    PubMed Central

    Rouphael, Youssef; Cardarelli, Mariateresa; Bonini, Paolo; Colla, Giuseppe

    2017-01-01

    In the coming years, farmers will have to deal with growing crops under suboptimal conditions dictated by global climate changes. The application of plant biostimulants such as beneficial microorganisms and plant-derived protein hydrolysates (PHs) may represent an interesting approach for increasing crop tolerance to alkalinity and salinity. The current research aimed at elucidating the agronomical, physiological, and biochemical effects as well as the changes in mineral composition of greenhouse lettuce (Lactuca sativa L.) either untreated or treated with a microbial-based biostimulant (Tablet) containing Rhizophagus intraradices and Trichoderma atroviride alone or in combination with a PH. Plants were sprayed with PH at weekly intervals with a solution containing 2.5 ml L-1 of PH. Lettuce plants were grown in sand culture and supplied with three nutrient solutions: standard, saline (25 mM NaCl) or alkaline (10 mM NaHCO3 + 0.5 g l-1 CaCO3; pH 8.1). Salt stress triggered a decrease in fresh yield, biomass production, SPAD index, chlorophyll fluorescence, leaf mineral composition and increased leaf proline concentration, without altering antioxidant enzyme activities. The decrease in marketable yield and biomass production under alkali stress was not significant. Irrespective of nutrient solution, the application of Tablet and especially Tablet + PH increased fresh marketable yield, shoot and root dry weight. This was associated with an improvement in SPAD index, Fv/Fm ratio, CAT and GPX activities and a better nutritional status (higher P, K, and Fe and lower Na with NaCl and higher P and Fe with NaHCO3) via an increase of total root length and surface. The combination of microbial biostimulant with foliar application of PH synergistically increased the marketable fresh yield by 15.5 and 46.7% compared to the Tablet-treated and untreated plants, respectively. The improved crop performance of Tablet + PH application was attributed to a better root system

  7. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  8. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    PubMed

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  9. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    NASA Astrophysics Data System (ADS)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  10. Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    PubMed Central

    Zhao, Yueju; Zhang, Yunhua; Cao, Yang; Qi, Jianxun; Mao, Liangwei; Xue, Yanfen; Gao, Feng; Peng, Hao; Wang, Xiaowei; Gao, George F.; Ma, Yanhe

    2011-01-01

    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline

  11. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress.

    PubMed

    Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang

    2018-08-30

    Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.

  12. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase's adaptation to alkaline conditions.

    PubMed

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Svedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.

  13. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  14. Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS.

    PubMed

    Midgett, Charles R; Almagro-Moreno, Salvador; Pellegrini, Maria; Taylor, Ronald K; Skorupski, Karen; Kull, F Jon

    2017-07-01

    ToxR is a transmembrane transcription factor that is essential for virulence gene expression and human colonization by Vibrio cholerae. ToxR requires its operon partner ToxS, a periplasmic integral membrane protein, for full activity. These two proteins are thought to interact through their respective periplasmic domains, ToxRp and ToxSp. In addition, ToxR is thought to be responsive to various environmental cues, such as bile salts and alkaline pH, but how these factors influence ToxR is not yet understood. Using NMR and reciprocal pull down assays, we present the first direct evidence that ToxR and ToxS physically interact. Furthermore, using NMR and DSF, it was shown that the bile salts cholate and chenodeoxycholate interact with purified ToxRp and destabilize it. Surprisingly, bile salt destabilization of ToxRp enhanced the interaction between ToxRp and ToxSp. In contrast, alkaline pH, which is one of the factors that leads to ToxR proteolysis, decreased the interaction between ToxRp and ToxSp. Taken together, these data suggest a model whereby bile salts or other detergents destabilize ToxR, increasing its interaction with ToxS to promote full ToxR activity. Subsequently, as V. cholerae alkalinizes its environment in late stationary phase, the interaction between the two proteins decreases, allowing ToxR proteolysis to proceed. © 2017 John Wiley & Sons Ltd.

  15. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  16. Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH†

    PubMed Central

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm, Eric; Wan, Xiu-Feng; Arkin, Adam; Brown, Steven D.; Wu, Liyou; Yan, Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2006-01-01

    The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions. PMID:16452448

  17. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  18. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  19. Saliva pH as a biomarker of exam stress and a predictor of exam performance.

    PubMed

    Cohen, Miri; Khalaila, Rabia

    2014-11-01

    Salivary pH is regulated by the sympathetic and parasympathetic nervous system; therefore, it may serve as a biomarker of stress. To assess the associations between the cognitive and emotional dimensions of exam stress and pH levels, and the predictability of salivary pH in relation to test performance. A prospective study. Eighty-three nursing students answered a questionnaire on stress appraisals, experienced stress, test anxiety (including worry and emotionality subscales) and health behaviors, and gave a saliva sample for measuring pH on the morning of their first term exam and three months later. Their performance on the test (grades) was also recorded. Levels of pH in saliva were higher (levels of acidity were lower) in the post exam compared to the exam period, in parallel to lower threat appraisal, experienced stress, and test anxiety levels post exam. Controlling for smoking, physical activity and working hours per week, pH levels at both time points were predicted by appraised threat regarding the exam situation, experienced stress, and the emotionality dimension of test anxiety. pH at Time 1 predicted performance on the exams and mediated the associations of experienced stress and emotionality subscale with test performance. the present study indicates that pH levels may serve as a reliable, accessible and inexpensive means by which to assess the degree of physiological reactions to exams and other naturalistic stressors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under different stress conditions.

    PubMed

    Bevilacqua, Antonio; Ciuffreda, Emanuela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2015-04-01

    This paper reports on the inactivation of spores of 5 strains of Alicyclobacillus acidoterrestris under different stress conditions (acidic and alkaline pH, high temperature, addition of lysozyme, hydrogen peroxide and p-coumaric acid). The research was divided into two different steps; first, each stress was studied alone, thus pointing out a partial uncoupling between spore inactivation and DPA release, as H2O2 reduced spore level below the detection but it did not cause the release of DPA. A partial correlation was found only for acidic and alkaline pH. 2nd step was focused on the combination of pH, temperature and H2O2 through a factorial design; experiments were performed on both fresh and 4 month-old spores and pinpointed a different trend for DPA release as a function of spore age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGES

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH) 2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potentialmore » measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  2. Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    PubMed

    Mardones, Pablo; Chang, Jung Chin; Oude Elferink, Ronald P J

    2014-06-01

    The hydration of CO2 catalyzed by the ubiquitous carbonic anhydrase 2 (Ca2) is central for bicarbonate transport, bone metabolism and acid-base homeostasis in metazoans. There is evidence that in some tissues Ca2 expression can be acutely induced by cAMP, whereas in other cell types it is unresponsive to cAMP-mediated transcriptional activation. We isolated fibroblasts from wild type and mice lacking the ubiquitous chloride/bicarbonate exchanger (Ae2a,b(-/-) mice). In these cells the regulation of carbonic anhydrase 2 by cAMP was studied. We show that Ca2 expression is strongly inhibited by chronic incubation with dibutyryl-cAMP, forskolin or alkaline pH in cultured mouse fibroblasts. Furthermore, fibroblasts obtained from anion exchanger 2 deficient (Ae2a,b(-/-)) mice, which display intracellular alkalosis and increased cAMP production, express less than 10% of control Ca2 mRNA and protein. Surprisingly, inhibition of the bicarbonate-sensitive soluble adenylyl cyclase (sAC) was found to reduce CA2 expression instead of increasing it. CA2 expression is strongly regulated by intracellular pH and by cAMP, suggesting a role for soluble adenylyl cyclase. Regulation occurs in opposite directions which may be explained by an incoherent feedforward loop consisting of activation by pCREB and repression by ICER. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Tolerance of Chemoorganotrophic Bioleaching Microorganisms to Heavy Metal and Alkaline Stresses

    PubMed Central

    Monballiu, Annick; Cardon, Nele; Tri Nguyen, Minh; Cornelly, Christel; Meesschaert, Boudewijn; Chiang, Yi Wai

    2015-01-01

    The bioleaching potential of the bacterium Bacillus mucilaginosus and the fungus Aspergillus niger towards industrial residues was investigated by assessing their response towards various heavy metals (including arsenic, cadmium, cobalt, chromium, nickel, lead, and zinc) and elevated pH. The plate diffusion method was performed for each metal to determine the toxicity effect. Liquid batch cultures were set up for more quantitative evaluation as well as for studying the influence of basicity. Growth curves were prepared using bacterial/fungal growth counting techniques such as plate counting, optical density measurement, and dry biomass determination. Cadmium, nickel, and arsenite had a negative influence on the growth of B. mucilaginosus, whereas A. niger was sensitive to cadmium and arsenate. However, it was shown that growth recovered when microorganisms cultured in the presence of these metals were inoculated onto metal-free medium. Based on the findings of the bacteriostatic/fungistatic effect of the metals and the adaptability of the microorganisms to fairly elevated pH values, it is concluded that both strains have potential applicability for further research concerning bioleaching of alkaline waste materials. PMID:26236176

  4. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  5. Alkaline precipitation in Bahia Blanca, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccolo, M.C.; Perillo, G.M.E.; Varela, P.

    1988-02-01

    The spatial, meteorological, and seasonal factors associated with precipitation pH in Bahia Blanca and its surroundings are presented. From April 1984 to April 1985, 85 rain events were studied from 12 sites that represent significant land-use sectors of the city. Mean pH for all sites ranged from 6.5 to 7.2. The area is characterized by alkaline precipitation since most stations reported maximum values in excess of 7.6. The highest values of pH were observed under the influence of continental air masses, which have traveled over the pampas soil, thus introducing large amounts of alkaline cations. The lowest pH values weremore » obtained during the winter season when marine advection introduces high concentrations of spray. Stations located close to the estuary and the industrial park present the larger effect of sea spray but also of the incidence of an incipient atmospheric contamination.« less

  6. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Buch, A.; Raulin, F.; Coll, P.; Poch, O.; Ramirez, S.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have studied the evolution of alkaline pH hydrolysis of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at ambient and low temperature. However, we identified oxygenated molecules in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, the study of oxygen-free tholins' evolution has been carried out. A recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), as previously described by other teams [2,4]. Thus new hydrolysis experiments will take this lower value into account. Additionally, a new report [5] provides upper and lower limits for the bulk content of Titan's interior for various gas species. It also shows that most of them are likely stored and dissolved in the subsurface water ocean. But considering the plausible acido-alkaline properties of the ammonia-water ocean, additional species could be dissolved in the ocean and present in the magma. They were also included in our hydrolysis experiments. Taking into account these new data, four different hydrolysis have been applied to oxygen-free tholins. For each type of hydrolysis, we also follow the influence of the hydrolysis temperature on the organic molecules production. The preliminary qualitative and quantitative

  7. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  9. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USDA-ARS?s Scientific Manuscript database

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels that lie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone's (...

  10. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    PubMed

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  11. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  12. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis

    PubMed Central

    2009-01-01

    Background The maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis. Results Here we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 ± 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions. Conclusions Novel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense. PMID:20025733

  13. Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao

    2010-12-15

    Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.

  14. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only

  15. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    PubMed

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  16. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells

    PubMed Central

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.

    2012-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847

  17. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USGS Publications Warehouse

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P < 0.001; R2 = 0.881) to changes in bed height (BH, cm) over the range 83–165 cm following the relation: (Alkalinity, mg/L) = 123.51 − (3788.76 (BH)). Differences between filtered and non-filtered alkalinity were small(P > 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the

  18. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.

    PubMed

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-25

    Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Systemic and local effects of long-term exposure to alkaline drinking water in rats

    PubMed Central

    Merne, Marina ET; Syrjänen, Kari J; Syrjänen, Stina M

    2001-01-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined. PMID:11493345

  20. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    PubMed

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  1. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress

    PubMed Central

    Chandrashekarappa, Dakshayini G.; McCartney, Rhonda R.; O’Donnell, Allyson F.; Schmidt, Martin C.

    2016-01-01

    Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf 1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms. PMID:27592031

  2. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  3. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    States, S.J.; Conley, L.F.; Towner, S.G.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospitalmore » cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.« less

  4. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  5. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  7. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers: Retrospective cohort study.

    PubMed

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T; Poorolajal, Jalal

    2016-08-01

    Saliva contains alkaline phosphatase (ALP)-a key intracellular enzyme related to destructive processes and cellular damage-and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components.

  8. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.

    PubMed

    Chandrashekarappa, Dakshayini G; McCartney, Rhonda R; O'Donnell, Allyson F; Schmidt, Martin C

    2016-12-01

    Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells

    PubMed Central

    Senft, Jeffrey L.; Lockett, Stephen J.; Brett, Paul J.; Burtnick, Mary N.; DeShazer, David

    2016-01-01

    ABSTRACT Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia. PMID:27799332

  10. pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells.

    PubMed

    Chua, Jennifer; Senft, Jeffrey L; Lockett, Stephen J; Brett, Paul J; Burtnick, Mary N; DeShazer, David; Friedlander, Arthur M

    2017-01-01

    Burkholderia mallei and B. pseudomallei cause glanders and melioidosis, respectively, in humans and animals. A hallmark of pathogenesis is the formation of granulomas containing multinucleated giant cells (MNGCs) and cell death. These processes depend on type 6 secretion system 1 (T6SS-1), which is required for virulence in animals. We examined the cell biology of MNGC formation and cell death. We found that chloroquine diphosphate (CLQ), an antimalarial drug, inhibits Burkholderia growth, phagosomal escape, and subsequent MNGC formation. This depends on CLQ's ability to neutralize the acid pH because other alkalinizing compounds similarly inhibit escape and MNGC formation. CLQ inhibits bacterial virulence protein expression because T6SS-1 and some effectors of type 3 secretion system 3 (T3SS-3), which is also required for virulence, are expressed at acid pH. We show that acid pH upregulates the expression of Hcp1 of T6SS-1 and TssM, a protein coregulated with T6SS-1. Finally, we demonstrate that CLQ treatment of Burkholderia-infected Madagascar hissing cockroaches (HCs) increases their survival. This study highlights the multiple mechanisms by which CLQ inhibits growth and virulence and suggests that CLQ be further tested and considered, in conjunction with antibiotic use, for the treatment of diseases caused by Burkholderia. Copyright © 2016 American Society for Microbiology.

  11. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan.

    PubMed

    Pálffy, Károly; Felföldi, Tamás; Mentes, Anikó; Horváth, Hajnalka; Márialigeti, Károly; Boros, Emil; Vörös, Lajos; Somogyi, Boglárka

    2014-01-01

    Winter phytoplankton communities in the shallow alkaline pans of Hungary are frequently dominated by picoeukaryotes, sometimes in particularly high abundance. In winter 2012, the ice-covered alkaline Zab-szék pan was found to be extraordinarily rich in picoeukaryotic green algae (42-82 × 10(6) cells ml(-1)) despite the simultaneous presence of multiple stressors (low temperature and light intensity with high pH and salinity). The maximum photosynthetic rate of the picoeukaryote community was 1.4 μg C μg chlorophyll a (-1) h(-1) at 125 μmol m(-2) s(-1). The assimilation rates compared with the available light intensity measured on the field show that the community was considerably light-limited. Estimated areal primary production was 180 mg C m(-2) d(-1). On the basis of the 18S rRNA gene analysis (cloning and DGGE), the community was phylogenetically heterogeneous with several previously undescribed chlorophyte lineages, which indicates the ability of picoeukaryotic communities to maintain high genetic diversity under extreme conditions.

  13. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products.

    PubMed

    Surasani, Vijay Kumar Reddy

    2018-05-22

    Several technologies and methods have been developed over the years to address the environmental pollution and nutritional losses associated with the dumping of fish processing waste and low-cost fish and by-products. Despite the continuous efforts put in this field, none of the developed technologies was successful in addressing the issues due to various technical problems. To solve the problems associated with the fish processing waste and low-value fish and by-products, a process called pH shift/acid and alkaline solubilization process was developed. In this process, proteins are first solubilized using acid and alkali followed by precipitating them at their isoelectric pH to recover functional and stable protein isolates from underutilized fish species and by-products. Many studies were conducted using pH shift process to recover proteins from fish and fish by-products and found to be most successful in recovering proteins with increased yields than conventional surimi (three cycle washing) process and with good functional properties. In this paper, problems associated with conventional processing, advantages and principle of pH shift processing, effect of pH shift process on the quality and storage stability of recovered isolates, applications protein isolates, etc. are discussed in detail for better understanding.

  14. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    NASA Astrophysics Data System (ADS)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  15. Syntheses and structures of alkaline earth metal bis(diphenylamides).

    PubMed

    Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias

    2007-06-11

    Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.

  16. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  17. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  18. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  19. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.

    PubMed

    Gong, Biao; Li, Xiu; Bloszies, Sean; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-06-01

    Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  2. Extracellular Alkalinization as a Defense Response in Potato Cells.

    PubMed

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  3. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    PubMed

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  4. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Potassium extrusion by the moderately halophilic and alkaliphilic methanogen methanolobus taylorii GS-16 and homeostasis of cytosolic pH.

    PubMed Central

    Ni, S; Boone, J E; Boone, D R

    1994-01-01

    Methanolobus taylorii GS-16, a moderately halophilic and alkaliphilic methanogen, grows over a wide pH range, from 6.8 to 9.0. Cells suspended in medium with a pH above 8.2 reversed their transmembrane pH gradient (delta pH), making their cytosol more acidic than the medium. The decreased energy in the proton motive force due to the reversed delta pH was partly compensated by an increased electric membrane potential (delta psi). The cytosolic acidification by M. taylorii at alkaline pH values was accompanied by K+ extrusion. The cytosolic K+ concentration was 110 mM in cells suspended at pH 8.7, but it was 320 mM in cells suspended at neutral pH values. High external K+ concentrations (210 mM or higher) inhibited the growth of M. taylorii at alkaline pH values, perhaps by preventing K+ extrusion. Cells suspended at pH 8.5 and 300 mM external K+ failed to acidify their cytosol. The key observation indicative of the involvement of K+ transport in cytosolic acidification was that valinomycin (0.8 microM), a K+ uniporter, inhibited the growth of M. taylorii only at alkaline pH values. Experiments with resting cells indicated that at alkaline pH values valinomycin uncoupled catabolic reactions from ATP synthesis. Thus, K+/H+ antiport activity was proposed to account for the K+ extrusion and the uncoupling effect of valinomycin at alkaline pH values. Such antiport activity was demonstrated by the sharp drop in pH of the bulk medium of the cell suspension upon the addition of 0.1 M KCl. The antiporter appeared to be active only at alkaline pH values, which was in accordance with a possible role in pH homeostasis by M. taylorii growing at alkaline pH values. PMID:7961499

  6. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  7. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. New test method for the evaluation of the preservation efficacy of soaps at very alkaline pH made by saponification.

    PubMed

    Témoin-Fardini, S; Servant, J; Sellam, S

    2017-10-01

    The aim of this study was to develop a test method to evaluate the preservation efficacy for a specific product, a very high-alkaline liquid soap (pH around 10) made by a saponification process. Several manufacturers have experienced contamination issues with these high-pH soaps despite passing a classic preservative efficacy challenge test or even a multi-inoculation challenge test. Bacteria were isolated from contaminated soaps and were identified using 16S rRNA gene sequencing. High-alkaline-pH unpreserved soaps were tested using the Thor Personal Care internal multichallenge test method (TM206) with classical microorganisms and then with the bacterial strains isolated from various contaminated soaps (TM768). Preservatives were added to these soaps and assessed for their efficacy using the newly developed test. Four different species of bacteria (Nesterenkonia lacusekhoensis, Dermacoccus sp., Halomonas sp. and Roseomonas sp.) were identified by sequencing among the contaminants of the various soaps tested. Among these, only one bacterial species, Nesterenkonia lacusekhoensis, appeared to be responsible for the specific contamination of these high-alkaline soaps. Thus, one specific wild-type strain of Nesterenkonia lacusekhoensis, named as strain 768, was used in a new multi-inoculation test (TM768). Unlike the single inoculation challenge test, the multi-inoculation test using the Nesterenkonia strain 768 was able to predict the sensitivity of a product towards this bacterium. Among the 27 different preservatives tested, 10 were able to protect the formula against contamination with this bacterium. This study enabled the development of a test method to evaluate the efficacy of preservation using a specific bacterium, Nesterenkonia lacusekhoensis, responsible for the contamination of very alkaline soaps made by saponification and identify an appropriate preservative system. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  10. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  11. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  12. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    PubMed Central

    2011-01-01

    Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229) was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min), respectively. The effects of medium compositions (starch, peptone, and soybean meal) and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v), peptone concentration 1.45% (w/v), soybean meal concentration 1.3% (w/v), and temperature 37°C), the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis. PMID:21978209

  13. Stress response in medically important Mucorales.

    PubMed

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  14. The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.

    PubMed Central

    Ahlers, J

    1975-01-01

    1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995

  15. Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor.

    PubMed

    Xue, Zhongwei; Zhao, Hu; Liu, Jian; Han, Jiahuai; Han, Shoufa

    2017-03-24

    The organelle-specific pH is crucial for cell homeostasis. Aberrant pH of lysosomes has been manifested in myriad diseases. To probe lysosome responses to cell stress, we herein report the detection of lysosomal pH changes with a dual colored probe (CM-ROX), featuring a coumarin domain with "always-on" blue fluorescence and a rhodamine-lactam domain activatable to lysosomal acidity to give red fluorescence. With sensitive ratiometric signals upon subtle pH changes, CM-ROX enables discernment of lysosomal pH changes in cells undergoing autophagy, cell death, and viral infection.

  16. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].

    PubMed

    Zhang, Meng-xiang; Xia, Dan; Shi, Gao-xiang; Shao, Jing; Wang, Tian-ming; Tang, Chuan-chao; Wang, Chang-zhong

    2015-02-01

    To investigate the effects of butyl alcohol extract of Baitouweng decoction ( BAEB) on yeast-to-hyphae transition of Candida albicans isolates from vulvovaginal candidiasis (VVC) in alkaline pH. Serial 2-fold dilution assay was used to determine the minimal inhibitory concentrations (MICs) of Baitouweng decoction extracts against C. albicans isolates from VVC, XTT assay was applied to determine the metabolic activity of C. albicans hypha treated by BAEB for 6 h. The morphological change of C. albicans treated by BAEB was inspected at different pH by inverted microscope, fluorescence microscope, scanning electron microscopy (SEM). Solid agar plate and semi-solid agar were utilized to evaluate colony morphology and invasive growth of C. albicans, respectively. Quantitative Real-time PCR (qRT-PCR) was adopted to observe the expressions of hyphae-specific genes including HWP1, ALS3, CSH1, SUN41 and CaPDE2. The MIC of BAEB against C. albicans is less than that of other extracts; hyphae grow best at pH 8. 0; 512 mg · L(-1) and 1,024 mg · L(-1) BAEB could inhibit formation of hyphae and influence colony morphology. When treated by 512 mg · L(-1) and 1,024 mg · L(-1) BAEB, the colonies became smooth; while by 0 and 256 mg · L(-1) BAEB, the colonies became wrinkled. In semi-solid agar, the length of hyphae decreased steadily as the concentration of BAEB lowered. The expression of HWP1, ALS3, CSHl, SUN41 were downregulated by 5.12, 4.26, 3.2 and 2.74 folds, and CaPDE2 was upregulated by 2.38 fold. BAEB could inhibit yeast-to-hyphae transition of C. albicans isolates from VVC in alkaline pH.

  17. Management of Stress and Anxiety Among PhD Students During Thesis Writing: A Qualitative Study.

    PubMed

    Bazrafkan, Leila; Shokrpour, Nasrin; Yousefi, Alireza; Yamani, Nikoo

    2016-01-01

    Today, postgraduate students experience a variety of stresses and anxiety in different situations of academic cycle. Stress and anxiety have been defined as a syndrome shown by emotional exhaustion and reduced personal goal achievement. This article addresses the causes and different strategies of coping with this phenomena by PhD students at Iranian Universities of Medical Sciences. The study was conducted by a qualitative method using conventional content analysis approach. Through purposive sampling, 16 postgraduate medical sciences PhD students were selected on the basis of theoretical sampling. Data were gathered through semistructured interviews and field observations. Six hundred fifty-four initial codes were summarized and classified into 4 main categories and 11 subcategories on the thematic coding stage dependent on conceptual similarities and differences. The obtained codes were categorized under 4 themes including "thesis as a major source of stress," "supervisor relationship," "socioeconomic problem," and "coping with stress and anxiety." It was concluded that PhD students experience stress and anxiety from a variety of sources and apply different methods of coping in effective and ineffective ways. Purposeful supervision and guidance can reduce the cause of stress and anxiety; in addition, coping strategy must be in a thoughtful approach, as recommended in this study.

  18. Tight Coupling of Astrocyte pH Dynamics to Epileptiform Activity Revealed by Genetically Encoded pH Sensors.

    PubMed

    Raimondo, Joseph V; Tomes, Hayley; Irkle, Agnese; Kay, Louise; Kellaway, Lauriston; Markram, Henry; Millar, Robert P; Akerman, Colin J

    2016-06-29

    Astrocytes can both sense and shape the evolution of neuronal network activity and are known to possess unique ion regulatory mechanisms. Here we explore the relationship between astrocytic intracellular pH dynamics and the synchronous network activity that occurs during seizure-like activity. By combining confocal and two-photon imaging of genetically encoded pH reporters with simultaneous electrophysiological recordings, we perform pH measurements in defined cell populations and relate these to ongoing network activity. This approach reveals marked differences in the intracellular pH dynamics between hippocampal astrocytes and neighboring pyramidal neurons in rodent in vitro models of epilepsy. With three different genetically encoded pH reporters, astrocytes are observed to alkalinize during epileptiform activity, whereas neurons are observed to acidify. In addition to the direction of pH change, the kinetics of epileptiform-associated intracellular pH transients are found to differ between the two cell types, with astrocytes displaying significantly more rapid changes in pH. The astrocytic alkalinization is shown to be highly correlated with astrocytic membrane potential changes during seizure-like events and mediated by an electrogenic Na(+)/HCO3 (-) cotransporter. Finally, comparisons across different cell-pair combinations reveal that astrocytic pH dynamics are more closely related to network activity than are neuronal pH dynamics. This work demonstrates that astrocytes exhibit distinct pH dynamics during periods of epileptiform activity, which has relevance to multiple processes including neurometabolic coupling and the control of network excitability. Dynamic changes in intracellular ion concentrations are central to the initiation and progression of epileptic seizures. However, it is not known how changes in intracellular H(+) concentration (ie, pH) differ between different cell types during seizures. Using recently developed pH-sensitive proteins, we

  19. Elevated extracellular pH during early shell formation in the blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Melzner, F.; Himmerkus, N.; Hu, M.; Bleich, M.

    2016-02-01

    Marine calcifiers are amongst the most vulnerable organisms to ocean acidification (OA). However, limited studies investigate the mechanisms underlying their hindered performance under OA stress. Working with larval stages of the blue mussel, Mytilus edulis, we use microsensors to study the pH and calcium conditions necessary for shell deposition. Using 45-48 hour, D-veliger stages, we discover alkaline conditions with respect to ambient seawater pH by 0.28 pH units and higher calcium concentrations (by 0.54mM) in the extra pallial space beneath the growing shell that likely promotes the rapid synthesis of the first shell. We further use enzyme assays in combination with immuno-stainings of sodium-potassium ATPase (NKA) and proton ATPase (VHA) to provide information on the major ion regulatory pathways that enable transport of calcium carbonate required for shell formation and pH homeostasis. We also use the juvenile stages of M. edulis to understand how extracellular pH regulation close to the shell formation site will be influenced by OA stress. This allows us to describe the pH dependency of early shell formation and to begin to develop a model of the ion regulatory network that facilitates biomineralisation in the organism. The results are discussed in the context of environmental change and consequences for mollusc developmental success.

  20. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.

    PubMed

    Yazawa, Hisashi; Iwahashi, Hitoshi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi

    2009-03-01

    Saccharomyces cerevisiae produces saturated and monounsaturated fatty acids of 16- and 18-carbon atoms and no polyunsaturated fatty acids (PUFAs) with more than two double bonds. To study the biological significance of PUFAs in yeast, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase (KlFAD2) and omega3 fatty acid desaturase (KlFAD3) genes into S. cerevisiae to produce linoleic and alpha-linolenic acids in S. cerevisiae. The strain producing linoleic and alpha-linolenic acids showed an alkaline pH-tolerant phenotype. DNA microarray analyses showed that the transcription of a set of genes whose expressions are under the repression of Rim101p were downregulated in this strain, suggesting that Rim101p, a transcriptional repressor which governs the ion tolerance, was activated. In line with this activation, the strain also showed elevated resistance to Li(+) and Na(+) ions and to zymolyase, a yeast lytic enzyme preparation containing mainly beta-1,3-glucanase, indicating that the cell wall integrity was also strengthened in this strain. Our findings demonstrate a novel influence of PUFA production on transcriptional control that is likely to play an important role in the early stage of alkaline stress response. The Accession No. for microarray data in the Center for Information Biology Gene Expression database is CBX68.

  1. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  2. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reformation of casein particles from alkaline-disrupted casein micelles.

    PubMed

    Huppertz, Thom; Vaia, Betsy; Smiddy, Mary A

    2008-02-01

    In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10.0, and subsequently reformed by decreasing milk pH to 6.6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH 7.0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelles.

  4. Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing

    NASA Astrophysics Data System (ADS)

    Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.

    2008-12-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.

  5. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  6. Xylary pH and Reduction Potential Levels of Iron-stressed Silver Maple (Acer saccharinum L.) 1

    PubMed Central

    Morris, Robert L.; Swanson, Bert T.

    1980-01-01

    Xylary fluid pH and reduction potentials were measured on silver maple (Acer saccharinum L.) grown under Fe and pH stress. Although pH and reduction potential (millivolt/59.2) varied significantly in the nutrient solution, xylary pH and reduction potential remained constant. It was concluded that changes in the pH and reduction potential in the xylary fluid of silver maple are not responsible for iron chlorosis. PMID:16661196

  7. Comparison of enteral and parenteral methods of urine alkalinization in patients receiving high-dose methotrexate.

    PubMed

    Rouch, Jamie A; Burton, Bradley; Dabb, Alix; Brown, Vicky; Seung, Amy H; Kinsman, Katharine; Holdhoff, Matthias

    2017-01-01

    Purpose Hyperhydration and urinary alkalinization is implemented with all high-dose (HD)-methotrexate infusions to promote excretion and prevent precipitation of methotrexate in the renal tubules. Our institution utilized enteral alkalinizing agents (sodium bicarbonate tablets and sodium citrate/citric acid solution) to alkalinize the urine of patients receiving HD-methotrexate during a parenteral sodium bicarbonate and sodium acetate shortage. The purpose of this study is to establish the safety and efficacy of the enteral route for urine alkalinization. Methods A single-center, retrospective, cohort study was conducted comparing cycles of HD-methotrexate using enteral alkalinizing agents to parenteral sodium bicarbonate. The primary objective was to compare the time, in hours, from administration of first inpatient administered dose of alkalinizing agent to time of achieving goal urine pH. Secondary objectives evaluated total dose of sodium bicarbonate required to achieve goal urine pH, time from start of urine alkalinizing agent until time of achieving methotrexate level safe for discharge, and toxicities associated with methotrexate and the alkalinizing agents. Results A total of 118 patients were included in this study, equally divided into two cohorts based on parenteral versus enteral routes of administration. No statistical difference was determined between the two cohorts regarding time to goal urine pH (6.5 h versus 7.9 h, P = 0.051) or regarding time to methotrexate level deemed safe for discharge (63.5 h versus 62.5 h, p = 0.835). There were no significant differences in methotrexate-induced toxicities. Conclusion Our study found enteral routes of urine alkalinization to be a viable alternative to the traditional parenteral sodium bicarbonate, especially during parenteral sodium bicarbonate and acetate shortages.

  8. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  9. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes

    PubMed Central

    Winship, Lawrence J.; Rounds, Caleb; Hepler, Peter K.

    2016-01-01

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. PMID:28042810

  10. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes.

    PubMed

    Winship, Lawrence J; Rounds, Caleb; Hepler, Peter K

    2016-12-30

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily ( Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.

  11. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  12. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  13. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure.

    PubMed

    Yu, Tao; Deng, Yihuan; Liu, Hongyu; Yang, Chunping; Wu, Bingwen; Zeng, Guangming; Lu, Li; Nishimura, Fumitake

    2017-05-10

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Results showed that the manure disintegration degree was maximized of 63.91% at energy input of 54 J/g and pH of 12.0, and variance analysis indicated that pH value played a more important role in the pretreatment than in energy input. Anaerobic digestion results demonstrated that MW-A pretreatment not only significantly increased cumulative biogas production, but also shortened the duration for a stable biogas production rate. Therefore, the alkaline microwaving pretreatment could become an alternative process for effective treatment of swine manure.

  14. Afforestation neutralizes soil pH.

    PubMed

    Hong, Songbai; Piao, Shilong; Chen, Anping; Liu, Yongwen; Liu, Lingli; Peng, Shushi; Sardans, Jordi; Sun, Yan; Peñuelas, Josep; Zeng, Hui

    2018-02-06

    Soil pH regulates soil biogeochemical processes and has cascading effects on terrestrial ecosystem structure and functions. Afforestation has been widely adopted to increase terrestrial carbon sequestration and enhance water and soil preservation. However, the effect of afforestation on soil pH is still poorly understood and inconclusive. Here we investigate the afforestation-caused soil pH changes with pairwise samplings from 549 afforested and 148 control plots in northern China. We find significant soil pH neutralization by afforestation-afforestation lowers pH in relatively alkaline soil but raises pH in relatively acid soil. The soil pH thresholds (T pH ), the point when afforestation changes from increasing to decreasing soil pH, are species-specific, ranging from 5.5 (Pinus koraiensis) to 7.3 (Populus spp.) with a mean of 6.3. These findings indicate that afforestation can modify soil pH if tree species and initial pH are properly matched, which may potentially improve soil fertility and promote ecosystem productivity.

  15. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    PubMed

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  16. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH.

    PubMed

    Secchi, Francesca; Zwieniecki, Maciej A

    2016-11-01

    Severe water stress constrains, or even stops, water transport in the xylem due to embolism formation. Previously, the xylem of poplar trees was shown to respond to embolism formation by accumulating carbohydrates in the xylem apoplast and dropping xylem sap pH. We hypothesize that these two processes may be functionally linked as lower pH activates acidic invertases degrading sucrose and inducing accumulation of monosaccharides in xylem apoplast. Using a novel in vivo method to measure xylem apoplast pH, we show that pH drops from ~6.2 to ~5.6 in stems of severely stressed plants and rises following recovery of stem water status. We also show that in a lower pH environment, sugars are continuously accumulating in the xylem apoplast. Apoplastic carbohydrate accumulation was reduced significantly in the presence of a proton pump blocker (orthovanadate). These observations suggest that a balance in sugar concentrations exists between the xylem apoplast and symplast that can be controlled by xylem pH and sugar concentration. We conclude that lower pH is related to loss of xylem transport function, eventually resulting in accumulation of sugars that primes stems for recovery from embolism when water stress is relieved. © 2016 John Wiley & Sons Ltd.

  17. Outcomes Associated with Reducing the Urine Alkalinization Threshold in Patients Receiving High-Dose Methotrexate.

    PubMed

    Drost, Sarah A; Wentzell, Jason R; Giguère, Pierre; McLurg, Darcy L; Sabloff, Mitchell; Kanji, Salmaan; Nguyen, Tiffany T

    2017-06-01

    Urine alkalinization increases methotrexate (MTX) solubility and reduces the risk of nephrotoxicity. The objectives of this study were to determine whether a reduction in the urine pH threshold from 8 to 7 in patients receiving high-dose methotrexate (HDMTX) results in a shorter length of hospital stay, delayed MTX clearance, or higher rates of nephrotoxicity; and to determine whether specific factors were associated with prolonged MTX clearance. Retrospective cohort study. Hematology service of a large university-affiliated teaching hospital in Ottawa, Canada. Sixty-five adults with 150 HDMTX exposures who had elective admissions for HDMTX between September 1, 2014, and December 18, 2015, were included. Thirty-four patients (with 79 HDMTX exposures) had their urine alkalinized to a pH of 8 or higher, and 31 patients (with 71 HDMTX exposures) had their urine alkalinized to a pH of 7 or higher, after an institutional change in the urine pH threshold from 8 to 7 was implemented on May 1, 2015. Data related to patient demographics, urine alkalinization, MTX serum concentration monitoring, hospital length of stay, and renal function were collected retrospectively from patients' electronic health records. Lowering the urine pH threshold from 8 to 7 did not significantly affect hospital length of stay (absolute difference 3.5 hrs, 95% confidence interval -4.0 to 10.9) or clearance of MTX (elimination rate constant 0.058 in the pH of 7 or higher group vs 0.064 in the pH of 8 or higher group, p=0.233). Nephrotoxicity rates were similar between groups (15.5% in the pH of 7 or higher group vs 10.1% in the pH of 8 or higher group, p=0.34). Higher MTX dose and interacting medications (e.g., proton pump inhibitors and sulfonamide antibiotics) were significantly associated with delayed MTX elimination. No significant differences in HDMTX-associated hospital length of stay, MTX clearance, or rates of nephrotoxicity were noted between patients in the urine pH of 7 or higher and 8

  18. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  19. RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans

    PubMed Central

    Davis, Dana; Wilson, R. Bryce; Mitchell, Aaron P.

    2000-01-01

    Growth and differentiation of Candida albicans over a broad pH range underlie its ability to infect an array of tissues in susceptible hosts. We identified C. albicans RIM101, RIM20, and RIM8 based on their homology to components of the one known fungal pH response pathway. PCR product-disruption mutations in each gene cause defects in three responses to alkaline pH: filamentation, induction of PRA1 and PHR1, and repression of PHR2. We find that RIM101 itself is an alkaline-induced gene that also depends on Rim20p and Rim8p for induction. Two observations indicate that a novel pH response pathway also exists. First, PHR2 becomes an alkaline-induced gene in the absence of Rim101p, Rim20p, or Rim8p. Second, we created strains in which Rim101p activity is independent of Rim20p and Rim8p; in these strains, filamentation remains pH dependent. Thus, pH governs gene expression and cellular differentiation in C. albicans through both RIM101-dependent and RIM101-independent pathways. PMID:10629054

  20. Serum alkaline phosphatase activity during zinc deficiency and long-term inflammatory stress.

    PubMed

    Naber, T H; Baadenhuysen, H; Jansen, J B; van den Hamer, C J; van den Broek, W

    1996-05-30

    A decrease in serum zinc can be caused by a real zinc deficiency but can also be caused by an apparent zinc deficiency, e.g. in inflammatory stress. The aim of this study was to evaluate the diagnostic power of serum alkaline phosphatase (AP) activity in the discrimination between pathophysiologic states of "real" and "apparent" zinc deficiency. A decrease in serum zinc was induced in growing and adult rats, by providing a diet low in zinc and by causing inflammatory stress. AP activity was determined using reagents low or enriched in zinc. Serum AP was decreased in zinc-deficient adult rats (P < 0.01). In zinc-deficient growing rats AP activity was not different from normal rats but AP activity decreased rapidly. In the same growing rats a significant difference was found in AP activities determined using buffers low and enriched in zinc (P < 0.001) between both groups of rats. After inducing inflammatory stress a decrease in AP activity (P < 0.01) and serum zinc (P < 0.001) was seen during the first few days. After the initial phase of inflammation AP activity normalized, serum zinc showed a rise which after correction for the decrease in serum albumin reached the level of the control rats. A difference in AP activity in buffers low and enriched in zinc was observed only during the first few days after induction of inflammatory stress (P < 0.001). Probably the method of measurement of the difference in enzyme activity, using buffers low and enriched in zinc, can be used as an indication for zinc deficiency in situations with changing AP enzyme concentrations. AP activity is decreased during the initial phase of inflammatory stress due to a decrease in serum zinc.

  1. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  2. Plant based dietary supplement increases urinary pH

    PubMed Central

    Berardi, John M; Logan, Alan C; Rao, A Venket

    2008-01-01

    Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg) was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03) with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body. PMID:18990209

  3. Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, James G.

    1991-01-01

    Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  4. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.

    PubMed

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.

  5. 21 CFR 862.1550 - Urinary pH (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (nonquantitative) test system is a device intended to estimate the pH of urine. Estimations of pH are used to evaluate the acidity or alkalinity of urine as it relates to numerous renal and metabolic disorders and in...

  6. 21 CFR 862.1550 - Urinary pH (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (nonquantitative) test system is a device intended to estimate the pH of urine. Estimations of pH are used to evaluate the acidity or alkalinity of urine as it relates to numerous renal and metabolic disorders and in...

  7. The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation.

    PubMed

    Maspolim, Yogananda; Zhou, Yan; Guo, Chenghong; Xiao, Keke; Ng, Wun Jern

    2015-08-01

    Sludge fermentation between pH 4 and 11 was investigated to generate volatile fatty acids (VFA). Despite the highest sludge solubilization of 25.9% at pH 11, VFA accumulation was optimized at pH 8 (12.5% out of 13.1% sludge solubilization). 454 pyrosequencing identified wide diversity of acidogens in bioreactors operated at the various pHs, with Tissierella, Petrimonas, Proteiniphilum, Levilinea, Proteiniborus and Sedimentibacter enriched and contributing to the enhanced fermentation at pH 8. Hydrolytic enzymatic assays determined abiotic effect to be the leading cause for improved solubilization under high alkaline condition but the environmental stress at pH 9 and above might lead to disrupt biological activities and eventually VFA production. Furthermore, molecular weight (MW) characterization of the soluble fractions found large MW aromatic substances at pH 9 and above, that is normally associated with poor biodegradability, making them disadvantageous for subsequent bioprocesses. The findings provided information to better understand and control sludge fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    PubMed Central

    Vega, Karin; Villena, Gretty K.; Sarmiento, Victor H.; Ludeña, Yvette; Vera, Nadia; Gutiérrez-Correa, Marcel

    2012-01-01

    Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1) with higher specific productivities (>30 U g−1 h−1). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry. PMID:23213539

  9. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  10. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.

    PubMed

    Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse

    2018-05-01

    To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.

  11. Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress.

    PubMed

    Matsushika, Akinori; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2017-08-01

    We previously showed that overexpression of IoGAS1, which was isolated from the multiple stress-tolerant yeast Issatchenkia orientalis, endows Saccharomyces cerevisiae cells with the ability to grow and ferment under acidic and high-salt conditions. The deduced amino acid sequence of the IoGAS1 gene product exhibits 60% identity with the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity. However, the functional roles of ScGAS1 in stress tolerance and pH regulation remain unclear. In the present study, we characterized ScGAS1 regarding its roles in tolerance to low pH and high salt concentrations. Transcriptional analysis indicated that, as for the IoGAS1 gene, ScGAS1 expression was pH dependent, with maximum expression at pH 3.0; the presence of salt increased endogenous expression of both GAS1 genes at almost all pH levels. These results suggested that ScGAS1, like IoGAS1, is involved in a novel acid- and salt-stress adaptation mechanism in S. cerevisiae. Overexpression of ScGAS1 in S. cerevisiae improved growth and ethanol production from glucose under acid stress without added salt, although the stress tolerance of the ScGAS1-overexpressing strain was inferior to that of the IoGAS1-overexpressing strain. However, overexpression of ScGAS1 did not result in increased tolerance of S. cerevisiae to combined acid and salt stress, even though ScGAS1 appears to be a salt-responsive gene. Thus, ScGAS1 is directly implicated in tolerance to low pH but does not confer salinity tolerance, supporting the view that ScGAS1 and IoGAS1 have overlapping yet distinct roles in stress tolerance in yeast. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  13. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  14. Genotyping by alkaline dehybridization using graphically encoded particles.

    PubMed

    Zhang, Huaibin; DeConinck, Adam J; Slimmer, Scott C; Doyle, Patrick S; Lewis, Jennifer A; Nuzzo, Ralph G

    2011-03-01

    This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation

    PubMed Central

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications. PMID:26161643

  16. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Nwokoro, Ogbonnaya; Anthonia, Odiase

    2015-01-01

    Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at

  17. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  18. Formation of M-Like Intermediates in Proteorhodopsin in Alkali Solutions (pH ≥ ∼8.5) Where the Proton Release Occurs First in Contrast to the Sequence at Lower pH.

    PubMed

    Tamogami, Jun; Sato, Keitaro; Kurokawa, Sukuna; Yamada, Takumi; Nara, Toshifumi; Demura, Makoto; Miyauchi, Seiji; Kikukawa, Takashi; Muneyuki, Eiro; Kamo, Naoki

    2016-02-23

    Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H(+)-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as Ma), which is different from M, with a pKa of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A pKa value of ca. 9.5 was estimated for this inversion and was in good agreement with the pKa value of the formation of Ma (∼ 9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed.

  19. Accuracy of the evaluation method for alkaline agents’ bactericidal efficacies in solid, and the required time of bacterial inactivation

    PubMed Central

    HAKIM, Hakimullah; TOYOFUKU, Chiharu; OTA, Mari; SUZUKI, Mayuko; KOMURA, Miyuki; YAMADA, Masashi; ALAM, Md. Shahin; SANGSRIRATANAKUL, Natthanan; SHOHAM, Dany; TAKEHARA, Kazuaki

    2016-01-01

    An alkaline agent, namely food additive grade calcium hydroxide (FdCa (OH)2) in the powder form, was evaluated for its bactericidal efficacies in chicken feces at pH 13. The point for this evaluation was neutralization of the alkaline agent’s pH at the time of bacterial recovery, since otherwise the results are substantially misleading. Without neutralization of the FdCa (OH)2 pH, the spiked bacteria were killed within min at the time of recovery in aqueous phase, but not in the solid form in feces, hence, it has been demonstrated that when bacteria were in solid, it took longer time than in liquid for the alkaline agent to inactivate them down to the acceptable level (≥3 log10 CFU/ml). PMID:27890906

  20. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    PubMed

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    PubMed

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  2. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  3. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  4. The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress1[C][W

    PubMed Central

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluška, František; Kronzucker, Herbert J.; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  5. A comparative review of cutaneous pH.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L

    2002-12-01

    This review describes the role of pH in cutaneous structure and function. We first describe the molecules that contribute to the acidity or alkalinity of the skin. Next, differences in cutaneous pH among species, among individuals of the same species and within individuals are described. The potential functions of cutaneous pH in normal and diseased skin are analysed. For example, cutaneous pH has a role in the selection and maintenance of the normal cutaneous microbiota. In addition, cutaneous acidity may protect the skin against infection by microbes. Finally, there is evidence that a cutaneous pH gradient activates pH-dependent enzymes involved in the process of keratinization.

  6. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  7. Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

    PubMed Central

    Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; de Paula, Renato Magalhães; Bertolini, Maria Célia

    2012-01-01

    Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational levels. The existence of a DNA motif for the Aspergillus nidulans pH responsive transcription factor PacC in the promoter of the gene encoding glycogen synthase (gsn) in Neurospora crassa prompted us to investigate whether this transcription factor regulates glycogen accumulation. Transcription factors such as PacC in A. nidulans and Rim101p in Saccharomyces cerevisiae play a role in the signaling pathway that mediates adaptation to ambient pH by inducing the expression of alkaline genes and repressing acidic genes. We showed here that at pH 7.8 pacC was over-expressed and gsn was down-regulated in wild-type N. crassa coinciding with low glycogen accumulation. In the pacCKO strain the glycogen levels and gsn expression at alkaline pH were, respectively, similar to and higher than the wild-type strain at normal pH (5.8). These results characterize gsn as an acidic gene and suggest a regulatory role for PACC in gsn expression. The truncated recombinant protein, containing the DNA-binding domain specifically bound to a gsn DNA fragment containing the PacC motif. DNA-protein complexes were observed with extracts from cells grown at normal and alkaline pH and confirmed by ChIP-PCR analysis. The PACC present in these extracts showed equal molecular mass, indicating that the protein is already processed at normal pH, in contrast to A. nidulans. Together, these results show that the pH signaling pathway controls glycogen accumulation by regulating gsn expression and suggest the existence of a different mechanism for PACC activation in N. crassa. PMID:22952943

  8. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12.

    PubMed

    Maurer, Lisa M; Yohannes, Elizabeth; Bondurant, Sandra S; Radmacher, Michael; Slonczewski, Joan L

    2005-01-01

    Gene expression profiles of Escherichia coli K-12 W3110 were compared as a function of steady-state external pH. Cultures were grown to an optical density at 600 nm of 0.3 in potassium-modified Luria-Bertani medium buffered at pH 5.0, 7.0, and 8.7. For each of the three pH conditions, cDNA from RNA of five independent cultures was hybridized to Affymetrix E. coli arrays. Analysis of variance with an alpha level of 0.001 resulted in 98% power to detect genes showing a twofold difference in expression. Normalized expression indices were calculated for each gene and intergenic region (IG). Differential expression among the three pH classes was observed for 763 genes and 353 IGs. Hierarchical clustering yielded six well-defined clusters of pH profiles, designated Acid High (highest expression at pH 5.0), Acid Low (lowest expression at pH 5.0), Base High (highest at pH 8.7), Base Low (lowest at pH 8.7), Neutral High (highest at pH 7.0, lower in acid or base), and Neutral Low (lowest at pH 7.0, higher at both pH extremes). Flagellar and chemotaxis genes were repressed at pH 8.7 (Base Low cluster), where the cell's transmembrane proton potential is diminished by the maintenance of an inverted pH gradient. High pH also repressed the proton pumps cytochrome o (cyo) and NADH dehydrogenases I and II. By contrast, the proton-importing ATP synthase F1Fo and the microaerophilic cytochrome d (cyd), which minimizes proton export, were induced at pH 8.7. These observations are consistent with a model in which high pH represses synthesis of flagella, which expend proton motive force, while stepping up electron transport and ATPase components that keep protons inside the cell. Acid-induced genes, on the other hand, were coinduced by conditions associated with increased metabolic rate, such as oxidative stress. All six pH-dependent clusters included envelope and periplasmic proteins, which directly experience external pH. Overall, this study showed that (i) low pH accelerates acid

  9. Usefulness of organic acid produced by Exiguobacterium sp. 12/1 on neutralization of alkaline wastewater.

    PubMed

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  10. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    PubMed Central

    Kulshreshtha, Niha Mohan; Kumar, Anil; Bisht, Gopal; Pasha, Santosh; Kumar, Rita

    2012-01-01

    The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148) in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s). The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry. PMID:22666107

  11. Pathways for external alkalinization in intact and in microwounded Chara cells are differentially sensitive to wortmannin

    PubMed Central

    Bulychev, Alexander A.; Foissner, Ilse

    2017-01-01

    ABSTRACT Proton flows across the plant cell membranes play a major role in electrogenesis and regulation of photosynthesis and ion balance. The profiles of external pH along the illuminated internodal cells of characean algae consist of alternating high- and low-pH zones that are spatially coordinated with the distribution of photosynthetic activity of chloroplasts underlying these zones. The results based on confocal laser scanning fluorescence microscopy, pH microsensors, and pulse-amplitude-modulated chlorophyll microfluorometry revealed that the coordination of H+ transport and photosynthesis is disrupted by the 2 different environmental cues (low light and wounding) and by a chemical, wortmannin interfering with the inositol phospholipid metabolism. On the one hand, the transition from moderate to low irradiance diminished the peaks in the profiles of photosystem II (PSII) quantum efficiency but did not remove the pH bands. On the other hand, the microwounding of the internode with a glass micropipette, impacting primarily the cell wall, resulted in a rapid local alkalinization of the external medium (by 2–2.5 pH units) near the cell surface, thus mimicking the appearance of natural pH bands. Despite their seeming similarity, the alkaline bands of intact cells were eliminated by wortmannin, whereas the wound-induced alkalinization was insensitive to this drug. Furthermore, the attenuation of natural pH bands in wortmannin-treated cells was accompanied by the enhancement in spatial heterogeneity of PSII efficiency and electron transport rates, which indicates the complexity of chloroplast–plasma membrane interactions. The results suggest that the light- and wound-induced alkaline areas on the cell surface are associated with different ion-transport systems. PMID:28805493

  12. Impact of 6-month frozen storage of cervical specimens in alkaline buffer conditions on human papillomavirus genotyping.

    PubMed

    LaMere, Brandon J; Howell, Renee; Fetterman, Barbara; Shieh, Jen; Castle, Philip E

    2008-08-01

    The impact of 6-month storage of cervical specimens under alkaline conditions that occurs as the result of Hybrid Capture 2 testing on human papillomavirus (HPV) genotyping is not well documented. To examine this issue, 143 frozen hc2-positive specimens in specimen transport medium were selected at random from each of the following groups: specimens stored for 6 months, 4 months, and 2.5 months under alkaline pH (pH 12-13) and specimens stored 1 month at neutral pH (pH 6-7) as controls. Specimens were tested in a masked fashion for 20 HPV genotypes (HPV6, 11, 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 73, and 82) using a prototype, research-use-only GP5+/6+ L1 consensus PCR method and multiplex hybridization using Luminex xMAP for detection of specific HPV genotypes One control specimen had missing test results. There were no statistical differences in the number of HPV genotypes detected, number of carcinogenic HPV genotypes detected, or in the signal strength among HPV-positive results across groups. Six-month frozen storage of cervical specimens at alkaline pH had little impact on testing for HPV genotypes among hc2-positive women using this HPV genotyping method.

  13. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells

    PubMed Central

    Pandey, Rachna; Vischer, Norbert O. E.; Smelt, Jan P. P. M.; van Beilen, Johan W. A.; Ter Beek, Alexander; De Vos, Winnok H.; Manders, Erik M. M.

    2016-01-01

    ABSTRACT Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pHi at single-cell levels in Bacillus subtilis. Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pHi in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pHi and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pHi regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. IMPORTANCE This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous

  14. pH dependence of cyanide binding to the ferric heme domain of the direct oxygen sensor from Escherichia coli and the effect of alkaline denaturation.

    PubMed

    Bidwai, Anil K; Ok, Esther Y; Erman, James E

    2008-09-30

    The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.

  15. Purification and characterization of an alkaline protease Prot 1 from Botrytis cinerea : biodetergent catalyst assay.

    PubMed

    Abidi, Ferid; Limam, Ferid; Marzouki, M Nejib

    2007-01-01

    Alkaline thiol protease named Prot 1 was isolated from a culture filtrate of Botrytis cinerea. The enzyme was purified by ammonium sulfate fractionation, gel filtration, and ion-exchange chromatography. Thus, the enzyme was purified to homogeneity with specific activity of 30-fold higher than that of the crude broth. The purified alkaline protease has an apparent molecular mass of 43 kDa under denaturing conditions as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular mass (45 kDa), determined by gel filtration, indicated that the alkaline protease has a monomeric form. The purified protease was biochemically characterized. The enzyme is active at alkaline pH and has a suitable and high thermostability. The optimal pH and temperature for activity were 9.0-10.0 and 60 degrees C, respectively. This protease was stable between pH 5.0 and 12.0. The enzyme retained 85% of its activity by treatment at 50 degrees C over 120 min; it maintained 50% of activity after 60 min of heating at 60 degrees C. Furthermore, the protease retained almost complete activity after 4 wk storage at 25 degrees C. The activity was significantly affected by thiol protease inhibitors, suggesting that the enzyme belongs to the alkaline thiol protease family. With the aim on industrial applications, we focused on studying the stability of the protease in several conditions. Prot 1 activity was not affected by ionic strength and different detergent additives, and, thus, the protease shows remarkable properties as a biodetergent catalyst.

  16. Cancer: fundamentals behind pH targeting and the double-edged approach

    PubMed Central

    Koltai, Tomas

    2016-01-01

    The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid–base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor’s metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations

  17. Alkalinity of non-industrial cleaning products and the likelihood of producing significant esophageal burns.

    PubMed

    Howell, J M

    1991-11-01

    Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.

  18. pH modulation ameliorates the red blood cell storage lesion in a murine model of transfusion.

    PubMed

    Chang, Alex L; Kim, Young; Seitz, Aaron P; Schuster, Rebecca M; Pritts, Timothy A

    2017-05-15

    Prolonged storage of packed red blood cells (pRBCs) induces a series of harmful biochemical and metabolic changes known as the RBC storage lesion. RBCs are currently stored in an acidic storage solution, but the effect of pH on the RBC storage lesion is unknown. We investigated the effect of modulation of storage pH on the RBC storage lesion and on erythrocyte survival after transfusion. Murine pRBCs were stored in Additive Solution-3 (AS3) under standard conditions (pH, 5.8), acidic AS3 (pH, 4.5), or alkalinized AS3 (pH, 8.5). pRBC units were analyzed at the end of the storage period. Several components of the storage lesion were measured, including cell-free hemoglobin, microparticle production, phosphatidylserine externalization, lactate accumulation, and byproducts of lipid peroxidation. Carboxyfluorescein-labeled erythrocytes were transfused into healthy mice to determine cell survival. Compared with pRBCs stored in standard AS3, those stored in alkaline solution exhibited decreased hemolysis, phosphatidylserine externalization, microparticle production, and lipid peroxidation. Lactate levels were greater after storage in alkaline conditions, suggesting that these pRBCs remained more metabolically viable. Storage in acidic AS3 accelerated erythrocyte deterioration. Compared with standard AS3 storage, circulating half-life of cells was increased by alkaline storage but decreased in acidic conditions. Storage pH significantly affects the quality of stored RBCs and cell survival after transfusion. Current erythrocyte storage solutions may benefit from refinements in pH levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of the 5 and 8 pH point titration methods for monitoring anaerobic digesters treating solid waste.

    PubMed

    Vannecke, T P W; Lampens, D R A; Ekama, G A; Volcke, E I P

    2015-01-01

    Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.

  1. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  2. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity.

    PubMed

    Cao, Lei; Yu, Yang; Ding, Xiaodong; Zhu, Dan; Yang, Fan; Liu, Beidong; Sun, Xiaoli; Duan, Xiangbo; Yin, Kuide; Zhu, Yanming

    2017-10-01

    Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO 3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress

  3. Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells.

    PubMed

    Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie

    2005-07-01

    Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.

  4. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  5. Alkalinity-salinity relationship in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Cintrón Del Valle, S. M.; Najjar, R.; Herrmann, M.; Goldberger, S.; Stets, E.

    2016-12-01

    Estuaries are a significant source of atmospheric CO2, a major greenhouse gas. However, it is not known whether the Chesapeake Bay, the largest estuary in the United States, is a source or sink of CO2. Extensive pH measurements in the Bay offer the possibility of estimating the air-water CO2 flux if robust relationships between alkalinity, the acid neutralizing capacity of a water body, and salinity can be established. Here we conduct a comprehensive analysis of the alkalinity-salinity relationship in the Chesapeake Bay based on more than 18,000 alkalinity measurements made between 1985 and 2015. It was found that seven segments of the Bay could be grouped into three different linear functions, suggesting that alkalinity is conserved in the Bay and has properties that change depending on the freshwater endmember (the riverine source). The highest freshwater endmember was 1.21 mol m-3 for the Potomac River, the lowest one was 0.41 mol m-3 for the York and Rappahannock Rivers, and an intermediate freshwater endmember was 0.79 mol m-3 for the remaining four segments. For some segments, most notably the Potomac River, the scatter of the data increases with decreasing salinity, which is due, in part, to seasonal and interannual variations in the freshwater endmember.

  6. No-core fiber-based highly sensitive optical fiber pH sensor.

    PubMed

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  7. Alkaline fermentation of waste activated sludge stimulated by saponin: volatile fatty acid production, mechanisms and pilot-scale application.

    PubMed

    Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia

    2016-12-01

    Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.

  8. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  9. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  10. TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons

    PubMed Central

    Wang, Sheng; Benamer, Najate; Zanella, Sébastien; Kumar, Natasha N.; Shi, Yingtang; Bévengut, Michelle; Penton, David; Guyenet, Patrice G.; Lesage, Florian

    2013-01-01

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H+ via an unidentified pH-sensitive background K+ channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K+ channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2−/− mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2−/− mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K+ currents were reduced in amplitude in RTN neurons from TASK-2−/− mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart–brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2−/− mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold. PMID:24107938

  11. Recovery and characterization of proteins from pangas (Pangasius pangasius) processing waste obtained through pH shift processing.

    PubMed

    Surasani, Vijay Kumar Reddy; Kudre, Tanaji; Ballari, Rajashekhar V

    2018-04-01

    Study was conducted to recover proteins from pangas (Pangasius pangasius) processing waste (fillet frames) using pH shift method and to characterize the recovered isolates. pH 2.0 from acidic range and pH 13.0 from alkaline range were found to have maximum protein recovery (p < 0.05). During the recovery process, acidic pH (pH 2.0) was found to have minimal effect on proteins resulting in more stable isolates and strong protein gels. Alkaline pH (pH 13.0) caused protein denaturation resulting in less stable proteins and poor gel network. Both acidic and alkaline-aided processing caused significant (p < 0.05) reductions in total lipid, myoglobin, and pigment content thus by resulting in whiter protein isolates and gels. The content of total essential amino acids increased during pH shift processing, indicating the enrichment of essential amino acids. No microbial counts were detected in any of the isolates prepared using acid and alkaline extraction methods. pH shift processing was found to be promising in the utilization of fish processing waste for the recovery of functional proteins from pangas processing waste thus by reducing the supply demand gap as well pollution problems.

  12. Responses of alkaline phosphatase activity to phosphorus stress in Daphnia magna.

    PubMed

    McCarthy, S D S; Rafferty, S P; Frost, P C

    2010-01-15

    We examined how alkaline phosphatase (AP) activity within the bodies and in the materials released by the crustacean Daphnia magna responds to variable algal food phosphorus (P)-content. We found that Daphnia eating P-poor food (C:P approximately 700) had significantly higher AP activity in their bodies on a mass-specific basis compared with individuals eating P-rich food (C:P approximately 100). This dietary P effect on AP activity was not altered by Daphnia starvation but was partially related to differences in the P concentration of animal body homogenates. By contrast, poor P-nutrition of Daphnia lowered AP activity in released materials compared with that measured from their P-sufficient conspecifics. Moreover, AP activity in Daphnia release was lowest in animals consuming P-poor food for longer time periods. Our results support the hypothesis that AP activity increases inside P-limited Daphnia as a mechanism to increase P-acquisition and retention from ingested algae in these nutritionally stressed animals. The lower level of AP activity present in the water of P-deprived animals could reflect a change from largely free to membrane-bound AP isotypes in the digestive tracts of P-starved animals or a decrease in the shedding of membrane-anchored AP from their intestinal lining. These results supplement accumulating evidence that P-poor algal food reduces the dietary mineral P available to Daphnia. In addition, animal body AP activity measurements, with some refinement, may prove useful as an in situ indicator of P-stress in aquatic consumers.

  13. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-01-01

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3− transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs. PMID:26051042

  14. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes.

    PubMed

    Stumpp, Meike; Hu, Marian Y; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-06-08

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H(+)/K(+)-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H(+) secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3(-) transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.

  15. pH Regulation of Electrogenic Sugar/H+ Symport in MFS Sugar Permeases

    PubMed Central

    Bazzone, Andre; Madej, M. Gregor; Kaback, H. Ronald

    2016-01-01

    Bacterial sugar symporters in the Major Facilitator Superfamily (MFS) use the H+ (and in a few cases Na+) electrochemical gradients to achieve active transport of sugar into the cell. Because a number of structures of MFS sugar symporters have been solved recently, molecular insight into the transport mechanism is possible from detailed functional analysis. We present here a comparative electrophysiological study of the lactose permease (LacY), the fucose permease (FucP) and the xylose permease (XylE), which reveals common mechanistic principles and differences. In all three symporters energetically downhill electrogenic sugar/H+ symport is observed. Comparison of the pH dependence of symport at symmetrical pH exhibits broad bell-shaped pH profiles extending over 3 to 6 pH units and a decrease at extremely alkaline pH ≥ 9.4 and at acidic to neutral pH = 4.6–7.5. The pH dependence can be described by an acidic to neutral apparent pK (pKapp) and an alkaline pKapp. Experimental evidence suggests that the alkaline pKapp is due to H+ depletion at the protonation site, while the acidic pKapp is due to inhibition of deprotonation. Since previous studies suggest that a single carboxyl group in LacY (Glu325) may be the only side chain directly involved in H+ translocation and a carboxyl side chain with similar properties has been identified in FucP (Asp46) and XylE (Asp27), the present results imply that the pK of this residue is switched during H+/sugar symport in all three symporters. PMID:27227677

  16. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  17. Identification of a Retroelement from the Resurrection Plant Boea hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis thaliana

    PubMed Central

    Shen, Chun-Ying; Xu, Guang-Hui; Chen, Shi-Xuan; Song, Li-Zhen; Li, Mei-Jing; Wang, Li-Li; Zhu, Yan; Lv, Wei-Tao; Gong, Zhi-Zhong; Liu, Chun-Ming; Deng, Xin

    2014-01-01

    Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species. PMID:24851859

  18. Incontinence Briefs Containing Spiral-Shaped Fiber Acidify Skin pH of Older Nursing Home Residents at Risk for Incontinence-Associated Dermatitis.

    PubMed

    Bliss, Donna Z; Bland, Peggy; Wiltzen, Kjerstie; Gannon, Alexandra; Wilhems, Anna; Mathiason, Michelle A; Turnbaugh, Robert

    The study's purpose was to assess the pH of the skin of older (aged ≥75 years) incontinent nursing home residents after exposure to an incontinence brief containing spiral-shaped fiber wet with an alkaline solution mimicking urine or fecal pH and compared to skin pH after exposure to an industry standard brief wet with the same solution and various controls. The design was experimental, as conditions were applied to skin and skin pH was measured in random order, and subjects served as their own controls. The setting was a Midwestern nonprofit nursing home. The sample was 26 nursing home residents; their mean age was 87 years (SD = 6 years); 77% were female. Most (69%) had urinary incontinence alone, and 31% had dual urinary and fecal incontinence. Skin pH was measured in duplicate on 6 areas of the inner thighs and 6 areas of the volar surface of the forearms. Each area was exposed to 1 of 6 conditions applied in random order: an incontinence brief containing spiral-shaped fiber wet with an alkaline solution and one that was dry; a standard incontinence brief (without spiral-shaped fiber) wet with the same alkaline solution and one that was dry; the alkaline solution alone; and normal skin. On both the thighs and the forearms, skin pH was significantly lower (more acidic) after exposure to the incontinence brief containing spiral-shaped fiber wet with an alkaline solution compared to the wet standard brief and all other control conditions (P < .001). On thighs, the mean skin pH was 5.7 (SD = 0.5) after exposure to the wet brief with spiral-shaped fiber versus 6.4 (SD = 0.5) after exposure to the wet standard brief. On forearms, the mean skin pH was 5.3 (SD = 0.4) after exposure to the wet brief with spiral-shaped fiber versus 6.0 (SD = 0.4) after exposure to the wet standard brief. Incontinence briefs containing a spiral-shaped fiber significantly acidify the pH of the skin exposed to an alkaline solution, while industry standard briefs do not. Since alkaline

  19. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation

    PubMed Central

    Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M

    2000-01-01

    The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669

  20. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.

    PubMed

    Rychli, Kathrin; Grunert, Tom; Ciolacu, Luminita; Zaiser, Andreas; Razzazi-Fazeli, Ebrahim; Schmitz-Esser, Stephan; Ehling-Schulz, Monika; Wagner, Martin

    2016-02-02

    The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the

  1. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    PubMed

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  2. Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition.

    PubMed

    Tian, Gui-Peng; Wu, Qian-Yuan; Li, Ang; Wang, Wen-Long; Hu, Hong-Ying

    2014-01-01

    1,4-Dioxane is a probable human carcinogenic and refractory substance that is widely detected in aquatic environments. Traditional wastewater treatment processes, including activated sludge, cannot remove 1,4-dioxane. Removing 1,4-dioxane with a reaction kinetic constant of 0.32 L/(mol·s) by using ozone, a strong oxidant, is difficult. However, under alkaline environment, ozone generates a hydroxyl radical (•OH) that exhibits strong oxidative potential. Thus, the ozonation of 1,4-dioxane in water under different pH conditions was investigated in this study. In neutral solution, with an inlet ozone feed rate of 0.19 mmol/(L·min), the removal efficiency of 1,4-dioxane was 7.6% at 0.5 h, whereas that in alkaline solution was higher (16.3-94.5%) within a pH range of 9-12. However, the removal efficiency of dissolved organic carbon was considerably lower than that of 1,4-dioxane. This result indicates that several persistent intermediates were generated during 1,4-dioxane ozonation. The pseudo first-order reaction further depicted the reaction of 1,4-dioxane. The obvious kinetic constants (kobs) at pH 9, 10, 11 and 12 were 0.94, 2.41, 24.88 and 2610 L/(mol·s), respectively. Scavenger experiments on radical species indicated that •OH played a key role in removing 1,4-dioxane during ozonation under alkaline condition.

  3. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH.

    PubMed

    Fliefel, Riham; Popov, Cvetan; Tröltzsch, Matthias; Kühnisch, Jan; Ehrenfeld, Michael; Otto, Sven

    2016-06-01

    Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants.

    PubMed

    Gfatter, R; Hackl, P; Braun, F

    1997-01-01

    In adults the influence of cleansing preparations on the pH, fat content and hydration of the skin is well documented. Studies in newborn and small infants have not been reported. Our study aimed at examining whether similar effects can be ascertained in infants. Infants without skin disease, aged 2 weeks to 16 months, entered an open, controlled and randomized study. Ten infants each had skin washed with tap water (control group), liquid detergent (pH 5.5), compact detergent (pH 5.5) or alkaline soap (pH 9.5). The pH, fat content and hydration were measured before and 10 min after cleansing. Findings were statistically evaluated by parametric covariance analysis. The skin pH increased from an average of 6.60 after cleansing in all groups. The smallest increase (+0.19) was observed in the control group, the largest (+0.45) after washing with alkaline soap. After treatment with liquid or compact detergent, the increase of the pH was only 0.09 higher than for the control group. In comparison to the compact and liquid detergents, the alkaline soap group had a significantly higher increase in pH. The fat content (mean starting value: 4.34 micrograms/cm2) decreased after washing in all groups; the smallest effect was observed in the control group (decrease of 0.93 micrograms/cm2), the highest for the alkaline soap group (decrease of 4.81 micrograms/cm2). In comparison to the compact and liquid detergents, the alkaline soap group had a higher decrease in fat content. This difference was significant for compact detergents. No statistically significant differences were observed for hydration before versus after washing. Each cleansing agent, even normal tap water, influences the skin surface. The increase of the skin pH irritates the physiological protective 'acid mantle', changes the composition of the cutaneous bacterial flora and the activity of enzymes in the upper epidermis, which have an acid pH optimum. The dissolution of fat from the skin surface may influence the

  5. Interfacial activity in alkaline flooding enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less

  6. Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes of Lily[W][OA

    PubMed Central

    Lovy-Wheeler, Alenka; Kunkel, Joseph G.; Allwood, Ellen G.; Hussey, Patrick J.; Hepler, Peter K.

    2006-01-01

    Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events. PMID:16920777

  7. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    PubMed

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  8. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    PubMed

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma

    PubMed Central

    2009-01-01

    The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH− efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3− symport or OH−/HCO3− antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions. PMID:19820298

  10. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  11. Does Cholecystectomy Increase the Esophageal Alkaline Reflux? Evaluation by Impedance-pH Technique.

    PubMed

    Uyanikoglu, Ahmet; Akyuz, Filiz; Ermis, Fatih; Arici, Serpil; Bas, Gurhan; Cakirca, Mustafa; Baran, Bulent; Mungan, Zeynel

    2012-04-01

    The aim of this study is to investigate the reflux patterns in patients with galbladder stone and the change of reflux patterns after cholecystectomy in such patients. Fourteen patients with cholecystolithiasis and a control group including 10 healthy control subjects were enrolled in this prospective study. Demographical findings, reflux symptom score scale and 24-hour impedance pH values of the 14 cholecystolithiasis cases and the control group were evaluated. The impedance pH study was repeated 3 months after cholecystectomy. Age, gender, and BMI were not different between the two groups. Total and supine weakly alkaline reflux time (%) (1.0 vs 22.5, P = 0.028; 201.85 vs 9.65, P = 0.012), the longest episodes of total, upright and supine weakly alkaline reflux mediums (11 vs 2, P = 0.025; 8.5 vs 1.0, P = 0.035; 3 vs 0, P = 0.027), total and supine weakly alkaline reflux time in minutes (287.35 vs 75.10, P = 0.022; 62.5 vs 1.4, P = 0.017), the number of alkaline reflux episodes (162.5 vs 72.5, P = 0.022) were decreased with statistical significance. No statistically significant difference was found in the comparison of symptoms between the subjects in the control group and the patients with cholecystolithiasis, in preoperative, postoperative and postcholecystectomy status. Significant reflux symptoms did not occur after cholecystectomy. Post cholecystectomy weakly alkaline reflux was decreased, but it was determined that acid reflux increased after cholecystectomy by impedance pH-metry in the study group.

  12. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  13. Extraction of hexavalent chromium from chromated copper arsenate treated wood under alkaline conditions.

    PubMed

    Radivojevic, Suzana; Cooper, Paul A

    2008-05-15

    Information on chromium (Cr) oxidation states is essential for the assessment of environmental and health risks associated with the overall life-cycle of chromated copper arsenate (CCA) treated wood products because of differences in toxicity between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium compounds. Hypothetical Cr(VI) fixation products were investigated in CCA type C treated sawdust of aspen and red pine during or following preservative fixation by extraction with Cr(VI)-specific extractants. Cr(VI) was found only in alkaline extracts of treated wood. A major source of Cr(VI) was method-induced oxidation of fixed Cr(III) during alkaline extraction, as confirmed by demonstrated oxidation of Cr(III) from CrCl3 treated wood. Oxidation of nontoxic and immobile Cr(III) to toxic and mobile Cr(VI) was facilitated by the presence of wood at pH > 8.5. Thermodynamic equilibrium between Cr(III) and Cr(VI) is affected by pH, temperature, rates of dissolution of CrIII) compounds, and oxygen availability. Results of this study recommend against alkaline extraction protocols for determination of Cr(VI) in treated wood. This Cr oxidation mechanism can act as a previously unrecognized route for generation of hazardous Cr(VI) if CCA treated wood is exposed to alkaline conditions during its production, use, or waste management.

  14. Low pH increases the yield of exosome isolation.

    PubMed

    Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho

    2015-05-22

    Exosomes are the extracellular vesicles secreted by various cells. Exosomes mediate intercellular communication by delivering a variety of molecules between cells. Cancer cell derived exosomes seem to be related with tumor progression and metastasis. Tumor microenvironment is thought to be acidic and this low pH controls exosome physiology, leading to tumor progression. Despite the importance of microenvironmental pH on exosome, most of exosome studies have been performed without regard to pH. Therefore, the difference of exosome stability and yield of isolation by different pH need to be studied. In this research, we investigated the yield of total exosomal protein and RNA after incubation in acidic, neutral and alkaline conditioned medium. Representative exosome markers were investigated by western blot after incubation of exosomes in different pH. As a result, the concentrations of exosomal protein and nucleic acid were significantly increased after incubation in the acidic medium compared with neutral medium. The higher levels of exosome markers including CD9, CD63 and HSP70 were observed after incubation in an acidic environment. On the other hand, no exosomal protein, exosomal RNA and exosome markers have been detected after incubation in an alkaline condition. In summary, our results indicate that the acidic condition is the favorable environment for existence and isolation of exosomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A.

    PubMed

    Kanno, Manabu; Tamaki, Hideyuki; Mitani, Yasuo; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2015-01-01

    Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain

  16. Electrochemical behavior of meso-substituted iron porphyrins in alkaline aqueous media

    NASA Astrophysics Data System (ADS)

    Berezina, N. M.; Bazanov, M. I.; Maksimova, A. A.; Semeikin, A. S.

    2017-12-01

    The effect meso-substitution in iron porphyrin complexes has on their redox behavior in alkaline aqueous solutions is studied via cyclic voltammetry. The voltammetric features of the reduction of iron pyridylporphyrins suggest that the sites of electron transfer lie at the ligand, the metal ion, and the pyridyl moieties. The electron transfer reactions between the different forms of these compounds, including the oxygen reduction reaction they mediate, are outlined to show the sequence and potential ranges in which they occur in alkaline aqueous media. Under our experimental conditions, the iron porphyrins exist as μ-oxo dimmers whose activity for the electrocatalytic reduction of oxygen displays a considerable dependence on the nature of the substitutents and nitrogen isomerization (for pyridylporphyrins) and grows in the order (Fe( ms-Ph)4P)2O, (Fe[ ms-(Py-3)Ph3]P)2O, (Fe[ ms-(Py-4)4]P)2O, and (Fe[ ms-(Py-3)4]P)2O.

  17. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  18. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.

    PubMed

    Ismaiel, Mostafa Mahmoud Sami; El-Ayouty, Yassin Mahmoud; Piercey-Normore, Michele

    2016-01-01

    Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  20. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

    PubMed

    Papa, S; Lorusso, M; Izzo, G; Capuano, F

    1981-02-15

    1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi

  2. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  3. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions.

    PubMed

    Olszewska, Magdalena A; Kocot, Aleksandra M; Łaniewska-Trokenheim, Łucja

    2015-04-20

    Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    USDA-ARS?s Scientific Manuscript database

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  5. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  6. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons.

    PubMed

    Yan, Rong; Chin, Terence; Ng, Yuen Ling; Duan, Huiqi; Liang, David Tee; Tay, Joo Hwa

    2004-01-01

    Alkaline activated carbons are widely used as adsorbents of hydrogen sulfide (H2S), one of the major odorous compounds arising from sewage treatment facilities. Although a number of studies have explored the effects of various parameters, mechanisms of H2S adsorption by alkaline carbons are not yet fully understood. The major difficulty seems to lie in the fact that little is known with certainty about the predominant reactions occurring on the carbon surface. In this study, the surface properties of alkaline activated carbons were systematically investigated to further exploit and better understand the mechanisms of H2S adsorption by alkaline activated carbons. Two commercially available alkaline activated carbons and their representative exhausted samples (8 samples collected at different height of the column after H2S breakthrough tests) were studied. The 8 portions of the exhausted carbon were used to represent the H2S/carbon reaction process. The surface properties of both the original and the exhausted carbons were characterized using the sorption of nitrogen (BET test), surface pH, Boehm titration, thermal and FTIR analysis. Porosity and surface area provide detailed information about the pore structure of the exhausted carbons with respect to the reaction extent facilitating the understanding of potential pore blockages. Results of Boehm titration and FTIR both demonstrate the significant effects of surface functional groups, and identification of oxidation products confirmed the different mechanisms involved with the two carbons. From the DTG curves of thermal analysis, two well-defined peaks representing two products of surface reactions (i.e., sulfur and sulfuric acid) were observed from the 8 exhausted portions with gradually changing patterns coinciding with the extent of the reaction. Surface pH values of the exhausted carbons show a clear trend of pH drop along the reaction extent, while pH around 2 was observed for the bottom of the bed indicating

  7. Proximate composition of Karkadeh (Hibiscus sabdariffa) seeds and some functional properties of seed protein isolate as influenced by pH and NaCl.

    PubMed

    Salah, E O Mahgoub; Hayat, Z E Elbashir

    2009-05-01

    Seeds of an inbred line (B-11-90) of Karkadeh (Hibiscus sabdariffa) were investigated for their proximate composition (AOAC methods), nitrogen solubility and protein isolate (Karkadeh seed protein isolates [KSPI]) functional properties (standard methods). The fat and protein contents of the seeds were 22.43% and 32.46%, respectively. Nitrogen solubility was good in both water and 1.0 M NaCl at alkaline pH rather than at acidic pH, with better solubility at higher pH levels in water than in 1.0 M NaCl. The functional properties of the KSPI were as follows: water absorption capacity, 181 ml/100 g; fat absorption capacity, 110 ml/100 g; bulk density, 0.77 g/ml; and apparent viscosity (at 20 degrees C), 13.42 cps. KSPI showed a maximum foaming capacity at pH 12 and 1.6 M NaCl, a maximum emulsification capacity at pH 11 and 1.8 M NaCl, and a weaker foam stability at neutral pH than at acidic or alkaline pH, with a better foam stability at alkaline pH. The foam stability was considerably improved by treatment with 1.6 M NaCl.

  8. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  9. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  10. Urbanization accelerates long-term salinization and alkalinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  11. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed

    Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.

  12. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli.

    PubMed

    Chen, Weiwei; Yu, Hongwei; Ye, Lidan

    2016-07-01

    The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

  13. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  14. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters

  15. Cytoplasmic pH Response to Acid Stress in Individual Cells of Escherichia coli and Bacillus subtilis Observed by Fluorescence Ratio Imaging Microscopy

    PubMed Central

    Martinez, Keith A.; Kitko, Ryan D.; Mershon, J. Patrick; Adcox, Haley E.; Malek, Kotiba A.; Berkmen, Melanie B.

    2012-01-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no “overshoot” but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms. PMID:22427503

  16. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  17. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Habit-associated salivary pH changes in oral submucous fibrosis-A controlled cross-sectional study.

    PubMed

    Donoghue, Mandana; Basandi, Praveen S; Adarsh, H; Madhushankari, G S; Selvamani, M; Nayak, Prachi

    2015-01-01

    Oral submucous fibrosis (OSF) is a multi-causal inflammatory reaction to the chemical or mechanical trauma caused due to exposure to arecanut containing products with or without tobacco (ANCP/T). Arecanut and additional components such as lime and chewing tobacco render ANCP/T highly alkaline. Fibrosing repair is a common reaction to an alkaline exposure in the skin. OSF may be related to the alkaline exposure by ANCP/T in a similar manner. The study was aimed at establishing the relationship of habit-associated salivary pH changes and OSF. The study design was controlled cross-sectional. Base line salivary pH (BLS pH), salivary pH after chewing the habitual ANCP/T substance, post chew salivary pH (PCSpH) for 2 min and salivary pH recovery time (SpHRT) were compared in 30 OSF patients and 30 sex-matched individuals with ANCP/T habits and apparently healthy oral mucosa. The group's mean BLSpH values were similar and within normal range and representative of the population level values. The average PCSpH was significantly higher (P ˂ 0.0001) than the average BLSpH in both groups. There was no significant difference (P = 0.09) between PCSpH of OSF patients and controls. OSF patients had a significantly longer (P = 0.0076) SpHRT than controls. Factors such as age, daily exposure, cumulative habit years, BLSpH and PCSpH, had varying effects on the groups. Chewing ANCP/T causes a significant rise in salivary pH of all individuals. SpHRT has a significant association with OSF. The effect of salivary changes in OSF patients differs with those in healthy controls.

  19. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  20. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  1. Rise in the pH of an unfrozen solution in ice due to the presence of NaCl and promotion of decomposition of gallic acids owing to a change in the pH.

    PubMed

    Takenaka, Norimichi; Tanaka, Masayuki; Okitsu, Kenji; Bandow, Hiroshi

    2006-09-14

    Oxidative decomposition of gallic acid occurs in alkaline solutions but hardly arises in acidic solutions. We have found that the addition of sodium chloride promotes the decomposition of gallic acid caused by freezing even under neutral and acidic conditions. Even at pH 4.5, gallic acid was decomposed by freezing in the presence of NaCl; however, in the absence of NaCl, it was hardly decomposed by freezing at pH lower than 7. Chloride ions are more easily incorporated in ice than sodium ions when the NaCl solution is frozen. The unfrozen solution in ice becomes positively charged, and as a result, protons transfer from the unfrozen solution to the ice. We measured the pH in the unfrozen solution which coexists with single-crystal ice formed from a 5 mmol dm(-3) NaCl solution and determined the pH to be 8.6 at equilibrium with CO(2) of 380 ppm or 11.3 in the absence of CO(2) compared to pH 5.6 in the original solution. From the model calculation performed for gallic acid solution in the presence of 5 mmol dm(-3) NaCl, it can be estimated that the amount of OH(-) transferred from the ice to the solution corresponds to 1.26 x 10(-5) mol dm(-3). The amount of OH(-) transferred is concentrated into the unfrozen solution and affects the pH of the unfrozen solution. Therefore, the pH in an unfrozen gallic acid solution in ice becomes alkaline, and the decomposition of gallic acid proceeds. It is expected that other base-catalyzed reactions in weakly acidic solutions also proceed by freezing in the presence of NaCl without the need for any alkaline reagents.

  2. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Treesearch

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  3. A novel ''donor-π-acceptor'' type fluorescence probe for sensing pH: mechanism and application in vivo.

    PubMed

    Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin

    2017-11-01

    A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  5. Histone deacetylase-mediated regulation of endolysosomal pH.

    PubMed

    Prasad, Hari; Rao, Rajini

    2018-05-04

    The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na + /H + exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease. © 2018 Prasad and Rao.

  6. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production.

    PubMed

    Scervino, J M; Papinutti, V L; Godoy, M S; Rodriguez, M A; Della Monica, I; Recchi, M; Pettinari, M J; Godeas, A M

    2011-05-01

    To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose- and (NH(4) )(2) SO(4) -based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P-solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH(4) )(2) SO(4) as C and N sources allowed a higher solubilization efficiency at high pH. This organism is a potentially proficient soil inoculant, especially in P-poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. [Alkaline-adapted beta-mannanase of Bacillus pumilus: gene heterologous expression and enzyme characterization].

    PubMed

    Tang, Jiajie; Guo, Su; Wang, Wei; Wei, Wei; Wei, Dongzhi

    2015-11-04

    We expressed a novel alkaline-adapted beta-mannanase gene and characterized the enzyme for potential industrial applications. We obtained a mannanase gene (named man(B)) from Bacillus pumilus Nsic2 and expressed the gene man(B) in Escherichia coli and Bacillus subtilis. Furthermore, we characterized the enzyme. The gene man(B) had an open reading frame of 1104 bp that encoded a polypeptide of 367-amino-acid beta-mannanase (Man(B)). The protein sequence showed the highest identity with the beta-mannanase from B. pumilus CCAM080065. We expressed the gene man(B) in E. coli BL21 (DE3) with the enzyme activity of 11021.3 U/mL. Compared with other mannanases, Man(B) showed higher stability under alkaline conditions and was stable at pH6.0 -9.0. The specific activity of purified Man(B) was 4191 ± 107 U/mg. The K(m) and V(max) values of purified Man(B) were 35.7 mg/mL and 14.9 μmol/(mL x min), respectively. Meanwhile, we achieved recombinant protein secretion expression in B. subtilis WB800N. We achieved heterologous expression of the gene man(B) and characterized its enzyme. The alkaline-adapted Man(B) showed potential value in industrial applications due to its pH stability.

  8. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    PubMed

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  9. Water balance creates a threshold in soil pH at the global scale.

    PubMed

    Slessarev, E W; Lin, Y; Bingham, N L; Johnson, J E; Dai, Y; Schimel, J P; Chadwick, O A

    2016-11-21

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  10. Water balance creates a threshold in soil pH at the global scale

    NASA Astrophysics Data System (ADS)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  11. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP

    PubMed Central

    Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg

    2016-01-01

    PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846

  12. Tissue-nonspecific alkaline phosphatase is activated in enterocytes by oxidative stress via changes in glycosylation.

    PubMed

    López-Posadas, Rocío; González, Raquel; Ballester, Isabel; Martínez-Moya, Patricia; Romero-Calvo, Isabel; Suárez, María Dolores; Zarzuelo, Antonio; Martínez-Augustin, Olga; Sánchez de Medina, Fermín

    2011-02-01

    Intestinal inflammation produces an induction of alkaline phosphatase (AP) activity that is attributable in part to augmented expression, accompanied by a change in isoform, in epithelial cells. This study focuses on induction of AP in intestinal epithelial cells in vitro. Treatment with the oxidants H2O2, monochloramine, or tButOOH increases AP activity in vitro in Caco-2, HT29, and IEC18 cells. We selected IEC18 cells for further testing. Basal AP activity in IEC18 cells is of the tissue-nonspecific (bone-liver-kidney) type, as indicated by Northern and Western blot analysis. Oxidative stress augments AP activity and the sensitivity of the enzyme to levamisole, homoarginine, and heat in IEC18 cells. Increased immunoreactivity to tissue-nonspecific AP antibodies suggests an isoform shift from liver to either kidney or bone type. This effect occurs without changes at the mRNA level and is sensitive to tunicamycin, an inhibitor of N-glycosylation, and neuraminidase digestion. Saponin and deoxycholate produce similar effects to oxidants. Butyrate but not proinflammatory cytokines or LPS can induce a similar effect but without toxicity. The AP increase is not prevented by modulators of the MAPK, NF-κB, calcium, and cyclic adenosine monophosphate (cAMP) pathways, and is actually enhanced by actinomycin D via higher cell stress. Oxidative stress causes a distinct increase in enterocyte AP activity together with cell toxicity via changes in the glycosylation of the enzyme that correspond to a shift in isotype within the tissue-nonspecific paradigm. We speculate that this may have physiological implication for gut defense.

  13. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).

  14. Influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation with calcium oxalate and struvite in healthy cats.

    PubMed

    Bartges, Joseph W; Kirk, Claudia A; Cox, Sherry K; Moyers, Tamberlyn D

    2013-10-01

    To evaluate the influence of acidifying or alkalinizing diets on bone mineral density and urine relative supersaturation (URSS) with calcium oxalate and struvite in healthy cats. 6 castrated male and 6 spayed female cats. 3 groups of 4 cats each were fed diets for 12 months that differed only in acidifying or alkalinizing properties (alkalinizing, neutral, and acidifying). Body composition was estimated by use of dual energy x-ray absorptiometry, and 48-hour urine samples were collected for URSS determination. Urine pH differed significantly among diet groups, with the lowest urine pH values in the acidifying diet group and the highest values in the alkalinizing diet group. Differences were not observed in other variables except urinary ammonia excretion, which was significantly higher in the neutral diet group. Calcium oxalate URSS was highest in the acidifying diet group and lowest in the alkalinizing diet group; struvite URSS was not different among groups. Diet was not significantly associated with bone mineral content or density. Urinary undersaturation with calcium oxalate was achieved by inducing alkaluria. Feeding an alkalinizing diet was not associated with URSS with struvite. Bone mineral density and calcium content were not adversely affected by diet; therefore, release of calcium from bone caused by feeding an acidifying diet may not occur in healthy cats.

  15. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  16. Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?

    PubMed Central

    Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta

    2016-01-01

    Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739

  17. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  18. Identification of key amino acid residues responsible for internal and external pH sensitivity of Orai1/STIM1 channels.

    PubMed

    Tsujikawa, Hiroto; Yu, Albert S; Xie, Jia; Yue, Zhichao; Yang, Wenzhong; He, Yanlin; Yue, Lixia

    2015-11-18

    Changes of intracellular and extracellular pH are involved in a variety of physiological and pathological processes, in which regulation of the Ca(2+) release activated Ca(2+) channel (I CRAC) by pH has been implicated. Ca(2+) entry mediated by I CRAC has been shown to be regulated by acidic or alkaline pH. Whereas several amino acid residues have been shown to contribute to extracellular pH (pHo) sensitivity, the molecular mechanism for intracellular pH (pHi) sensitivity of Orai1/STIM1 is not fully understood. By investigating a series of mutations, we find that the previously identified residue E106 is responsible for pHo sensitivity when Ca(2+) is the charge carrier. Unexpectedly, we identify that the residue E190 is responsible for pHo sensitivity when Na(+) is the charge carrier. Furthermore, the intracellular mutant H155F markedly diminishes the response to acidic and alkaline pHi, suggesting that H155 is responsible for pHi sensitivity of Orai1/STIM1. Our results indicate that, whereas H155 is the intracellular pH sensor of Orai1/STIM1, the molecular mechanism of external pH sensitivity varies depending on the permeant cations. As changes of pH are involved in various physiological/pathological functions, Orai/STIM channels may be an important mediator for various physiological and pathological processes associated with acidosis and alkalinization.

  19. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  20. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted

  1. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  2. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less

  3. Draft Genome Sequence of Bacillus urumqiensis BZ-SZ-XJ18T, a Moderately Haloalkaliphilic Bacterium Isolated from a Saline-Alkaline Lake.

    PubMed

    Liao, Ziya; Ren, Chao; Guo, Xiaomeng; Yan, Yanchun; Li, Jun; Zhao, Baisuo

    2018-05-31

    The moderately haloalkaliphilic bacterium Bacillus urumqiensis BZ-SZ-XJ18 T was isolated from a saline-alkaline lake located in the Xinjiang Uyghur Autonomous Region of China. Optimum growth occurred at the total Na + concentration of 1.08 M, with a broad optimum pH of 8.5 to 9.5. The draft genome consists of approximately 3.28 Mb and contains 3,228 predicted genes. A number of genes associated with adaptation strategies for osmotic balance and alkaline pH homeostasis were identified, providing pertinent insight into specific adaptations to the double-extreme environment. Copyright © 2018 Liao et al.

  4. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.

    PubMed

    Schewe, Bettina; Schmälzlin, Elmar; Walz, Bernd

    2008-03-01

    Blowfly salivary gland cells have a vacuolar-type H(+)-ATPase (V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pH(i)) regulation, and we have localized CA activity by histochemistry. We show: (1) mean pH(i) in salivary gland cells is 7.5+/-0.3 pH units (N=96), higher than that expected from passive H(+) distribution; (2) low 5-HT concentrations (0.3-3 nmol l(-1)) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l(-1), causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pH(i); (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl(-)-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na(+)-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pH(i) regulation and 5-HT-induced outward H(+) pumping does not cause an alkalinization of pH(i) because of cytosolic H(+) accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.

  5. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH

    PubMed Central

    Tambutté, E.; Carpenter, R. C.; Edmunds, P. J.; Evensen, N. R.; Allemand, D.; Ferrier-Pagès, C.; Tambutté, S.; Venn, A. A.

    2017-01-01

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pHCF) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pHCF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (AT). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pHCF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [AT], revealing that seawater pH is not the sole driver of pHCF. Notably, when we synthesize our results with published data, we identify linear relationships of pHCF with the seawater [DIC]/[H+] ratio, [AT]/ [H+] ratio and []. Our findings contribute new insights into the mechanisms determining the sensitivity of coral calcification to changes in seawater carbonate chemistry, which are needed for predicting effects of environmental change on coral reefs and for robust interpretations of isotopic palaeoenvironmental records in coral skeletons. PMID:28100813

  6. Laboratory-Scale Demonstration Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives)

    DTIC Science & Technology

    2016-06-01

    Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) En vi ro nm en ta l L ab or at or y Victor F. Medina, Scott A. Waisner, Charles...Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) Victor F. Medina, Scott A. Waisner...hydrolysis. This project explored the use of ammonia gas to raise soil pH in order to stimulate alkaline hydrolysis. When ammonia gas dissolves in water

  7. Salivary pH: A diagnostic biomarker.

    PubMed

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-07-01

    Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  8. Influences of pH and CO2 on the formation of Metasilicate mineral water in Changbai Mountain, Northeast China

    NASA Astrophysics Data System (ADS)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2017-07-01

    Mineral dissolution reactions actively participate in controlling the composition of mineral water. In this study, water soluble, acidic-alkaline and carbonated solution experiments were designed, and mineral reaction mechanisms were researched using chemical kinetics and the minimum free-energy method. The results showed that the release of metasilicate was controlled by pH, CO2, and rock characteristics. In the water soluble experiment, the release process of metasilicate in powdered rocks reached equilibrium after 40 days, while metasilicate in solid rocks took 170 days. The release process of metasilicate in solid rocks satisfied an asymptotic model, while in powdered rocks it accorded with the Stanford reaction kinetic model. In the acidic-alkaline experiment, metasilicate was released earlier under acidic conditions (2.46 < pH < 7) than under alkaline conditions (7 < pH < 10.61). The release process of metasilicate under acidic conditions reached equilibrium in 40 days, compared with 60 days for alkaline conditions. The addition of CO2 to the water solution was beneficial to the formation of metasilicate. Under neutral pH conditions, the reaction barely occurred. Under alkaline conditions, metasilicate was produced by the hydrolysis of metasilicate minerals. Under acidic and additional CO2 conditions, metasilicate formation was mainly via the reaction of H+, CO2, and metasilicate minerals. From these results, we concluded that the metasilicate mineral water from the Changbai Mountains, Jingyu County, is generated by a combination of the hydrolysis of metasilicate minerals and the reaction of H+, CO2, and metasilicate minerals. These results can contribute to a better development and protection of the mineral water resources in the Changbai Mountains.

  9. Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1

    NASA Astrophysics Data System (ADS)

    Munhoven, G.

    2013-08-01

    The total alkalinity-pH equation, which relates total alkalinity and pH for a given set of total concentrations of the acid-base systems that contribute to total alkalinity in a given water sample, is reviewed and its mathematical properties established. We prove that the equation function is strictly monotone and always has exactly one positive root. Different commonly used approximations are discussed and compared. An original method to derive appropriate initial values for the iterative solution of the cubic polynomial equation based upon carbonate-borate-alkalinity is presented. We then review different methods that have been used to solve the total alkalinity-pH equation, with a main focus on biogeochemical models. The shortcomings and limitations of these methods are made out and discussed. We then present two variants of a new, robust and universally convergent algorithm to solve the total alkalinity-pH equation. This algorithm does not require any a priori knowledge of the solution. SolveSAPHE (Solver Suite for Alkalinity-PH Equations) provides reference implementations of several variants of the new algorithm in Fortran 90, together with new implementations of other, previously published solvers. The new iterative procedure is shown to converge from any starting value to the physical solution. The extra computational cost for the convergence security is only 10-15% compared to the fastest algorithm in our test series.

  10. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.

    PubMed

    Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S

    2007-02-01

    We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.

  11. Intracellular pH regulation in rat round spermatids.

    PubMed

    Osses, N; Pancetti, F; Benos, D J; Reyes, J G

    1997-07-01

    Intracellular pH has been shown to be an important physiological parameter in cell cycle control and differentiation, aspects that are central to the spermatogenic process. However, the pH regulatory mechanisms in spermatogenic cells have not been systematically explored. In this work, measuring intracellular pH (pHi) with a fluorescent probe (BCECF), membrane potential with a fluorescent lipophilic anion (bisoxonol), and net movement of acid using a pH-stat system, we have found that rat round spermatids regulate pHi by means of a V-type H(+)-ATPase, a HCO3- entry pathway, a Na+/HCO3- dependent transport system, and a putative proton conductive pathway. Rat spermatids do not have functional base extruder transport systems. These pH regulatory characteristics seem specially designed to withstand acid challenges, and can generate sustained alkalinization upon acid exit stimulation.

  12. A novel serine alkaline protease from Bacillus altitudinis GVC11 and its application as a dehairing agent.

    PubMed

    Vijay Kumar, E; Srijana, M; Kiran Kumar, K; Harikrishna, N; Reddy, Gopal

    2011-05-01

    A serine alkaline protease from a newly isolated alkaliphilic Bacillus altitudinis GVC11 was purified and characterized. The enzyme was purified to homogeneity by acetone precipitation, DEAE-cellulose anion exchange chromatography with 7.03-fold increase in specific activity and 15.25% recovery. The molecular weight of alkaline protease was estimated to be 28 kDa by SDS PAGE and activity was further assessed by zymogram analysis. The enzyme was highly active over a wide range of pH 8.5 to 12.5 with an optimum pH of 9.5. The optimum temperature of purified enzyme was 45 °C and Ca(2+) further increased the thermal stability of the enzyme. The enzyme activity was enhanced by Ca(2+) and Mg(2+) and inhibited by Hg(2+). The present study is the first report to examine and describe production of highly alkaline protease from Bacillus altitudinis and also its remarkable dehairing ability of goat hide in 18 h without disturbing the collagen and hair integrity.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  14. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15.

    PubMed

    Arikan, Burhan

    2008-05-01

    A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.

  15. Neutralisation of an acidic pit lake by alkaline waste products.

    PubMed

    Allard, Bert; Bäckström, Mattias; Karlsson, Stefan; Grawunder, Anja

    2014-01-01

    A former open pit where black shale (alum shale) was excavated during 1942-1965 has been water filled since 1966. The water chemistry was dominated by calcium and sulphate and had a pH of 3.2-3.4 until 1997-1998, when pH was gradually increasing. This was due to the intrusion of leachates from alkaline cement waste deposited close to the lake. A stable pH of around 7.5 was obtained after 6-7 years. The chemistry of the pit lake has changed due to the neutralisation. Concentrations of some dissolved metals, notably zinc and nickel, have gone down, as a result of adsorption/co-precipitation on solid phases (most likely iron and aluminium hydroxides), while other metals, notably uranium and molybdenum, are present at elevated levels. Uranium concentration is reaching a minimum of around pH 6.5 and is increasing at higher pH, which may indicate a formation of neutral and anionic uranyl carbonate species at high pH (and total carbonate levels around 1 mM). Weathering of the water-exposed shale is still in progress.

  16. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  17. Dual element (CCl) isotope approach to distinguish abiotic reactions of chlorinated methanes by Fe(0) and by Fe(II) on iron minerals at neutral and alkaline pH.

    PubMed

    Rodríguez-Fernández, Diana; Heckel, Benjamin; Torrentó, Clara; Meyer, Armin; Elsner, Martin; Hunkeler, Daniel; Soler, Albert; Rosell, Mònica; Domènech, Cristina

    2018-05-07

    A dual element CCl isotopic study was performed for assessing chlorinated methanes (CMs) abiotic transformation reactions mediated by iron minerals and Fe(0) to further distinguish them in natural attenuation monitoring or when applying remediation strategies in polluted sites. Isotope fractionation was investigated during carbon tetrachloride (CT) and chloroform (CF) degradation in anoxic batch experiments with Fe(0), with FeCl 2 (aq), and with Fe-bearing minerals (magnetite, Mag and pyrite, Py) amended with FeCl 2 (aq), at two different pH values (7 and 12) representative of field and remediation conditions. At pH 7, only CT batches with Fe(0) and Py underwent degradation and CF accumulation evidenced hydrogenolysis. With Py, thiolytic reduction was revealed by CS 2 yield and is a likely reason for different Λ value (Δδ 13 C/Δδ 37 Cl) comparing with Fe(0) experiments at pH 7 (2.9 ± 0.5 and 6.1 ± 0.5, respectively). At pH 12, all CT experiments showed degradation to CF, again with significant differences in Λ values between Fe(0) (5.8 ± 0.4) and Fe-bearing minerals (Mag, 2 ± 1, and Py, 3.7 ± 0.9), probably evidencing other parallel pathways (hydrolytic and thiolytic reduction). Variation of pH did not significantly affect the Λ values of CT degradation by Fe(0) nor Py. CF degradation by Fe(0) at pH 12 showed a Λ (8 ± 1) similar to that reported at pH 7 (8 ± 2), suggesting CF hydrogenolysis as the main reaction and that CF alkaline hydrolysis (13.0 ± 0.8) was negligible. Our data establish a base for discerning the predominant or combined pathways of CMs natural attenuation or for assessing the effectiveness of remediation strategies using recycled minerals or Fe(0). Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress.

    PubMed

    Jin, Yanzheng; Qin, Shidong; Gao, Hai; Zhu, Guoliang; Wang, Wei; Zhu, Weiming; Wang, Yi

    2018-01-01

    To obtain new bioactive natural products, the effect of acidic stress on the metabolites of an aciduric fungus was investigated. This fungus, Penicillium sp. OUCMDZ-4736, which was isolated from the sediment around roots of mangrove (Acanthus ilicifolius), produced different compounds and higher yields under pH 2.5 than under neutral conditions. Using spectroscopic analyses and calculations, three new anthraquinone derivatives (1-3) were isolated and identified from the acidic fermentation broth (pH 2.5) of OUCMDZ-4736. Compound 1 showed much stronger anti-hepatitis B virus activity than that of the positive control, lamivudine, strongly inhibiting HBsAg and HBeAg secretion from HepG2.2.15 cells. These results show that extremophiles are a valuable resource of bioactive compounds, and that pH regulation is an effective strategy to induce metabolite production in aciduric fungi.

  19. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  20. Modeling CO2 degassing and pH in a stream-aquifer system

    USGS Publications Warehouse

    Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.

    1998-01-01

    Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and

  1. Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.

    PubMed

    Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj

    2016-01-01

    To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.

  2. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system.

    PubMed

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-10-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.

  3. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  4. pH control in the midgut of Aedesaegypti under different nutritional conditions.

    PubMed

    Nepomuceno, Denise Barguil; Santos, Vânia Cristina; Araújo, Ricardo Nascimento; Pereira, Marcos Horácio; Sant'Anna, Maurício Roberto; Moreira, Luciano Andrade; Gontijo, Nelder Figueiredo

    2017-09-15

    Aedes aegypti is one of the most important disease vectors in the world. Because their gut is the first site of interaction with pathogens, it is important to understand A. aegypti gut physiology. In this study, we investigated the mechanisms of pH control in the midgut of A. aegypti females under different nutritional conditions. We found that unfed females have an acidic midgut (pH ∼6). The midgut of unfed insects is actively maintained at pH 6 regardless of the ingestion of either alkaline or acidic buffered solutions. V-ATPases are responsible for acidification after ingestion of alkaline solutions. In blood-fed females, the abdominal midgut becomes alkaline (pH 7.54), and the luminal pH decreases slightly throughout blood digestion. Only ingested proteins were able to trigger this abrupt increase in abdominal pH. The ingestion of amino acids, even at high concentrations, did not induce alkalinisation. During blood digestion, the thoracic midgut remains acidic, becoming a suitable compartment for carbohydrate digestion, which is in accordance with the higher alpha-glucolytic activity detected in this compartment. Ingestion of blood releases alkalising hormones in the haemolymph, which induce alkalinisation in ex vivo preparations. This study shows that adult A. aegypti females have a very similar gut physiology to that previously described for Lutzomyia longipalpis It is likely that all haematophagous Nematocera exhibit the same type of physiological behaviour. © 2017. Published by The Company of Biologists Ltd.

  5. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al, Ca and low pH.

    PubMed

    Kong, F X; Liu, Y; Hu, W; Shen, P P; Zhou, C L; Wang, L S

    2000-02-01

    Biochemical responses of Pinus massoniana, with and without the inoculation mycorrhizal fungus Pisolithus tinctorius at the root, to artificial acid rain (pH 2.0) and various Ca/Al ratios were investigated. Some enzymes associated with the nutritive metabolism, such as acid phosphatase, alkaline phosphatase, nitrate reductase, mannitol dehydrogenase and trehalase, in the roots, stems and leaves of plant were obviously inhibited by the artificial acid rain and Al. After treatment with pH 2.0 + Ca/Al (0/1 or 1/10) artificial acid rain, the protein content in the organs was decreased. However, the activities of superoxide dismutase (SOD) and peroxidase (POD) and glutathione (GSH) concentrations were induced. It demonstrated that acid rain and Al could induce oxygen radicals in plant. Compared with the treatments with lower pH or Al, respectively, the combination of lower pH and Al concentration was more toxic to P. massoniana. Al toxicity could be ameliorated by the addition of Ca and the amelioration was the most when the ratio was 1/1 among the various Ca/Al ratio. Infection with mycorrhizal fungus P. tinctorius at the root of P. massoniana increased the ability of the plant to resist the toxicity of artificial acid rain and Al stress.

  6. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  7. Variation in elemental stoichiometry of the marine diatom Thalassiosira weissflogii (Bacillariophyceae) in response to combined nutrient stress and changes in carbonate chemistry.

    PubMed

    Clark, Darren R; Flynn, Kevin J; Fabian, Heiner

    2014-08-01

    The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 ("extant" conditions) or 7.6 ("ocean acidification" [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between "extant" versus "OA" conditions for cell physiology. © 2014 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  8. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil.

    PubMed

    Adhikari, Dinesh; Jiang, Tianyi; Kawagoe, Taiki; Kai, Takamitsu; Kubota, Kenzo; Araki, Kiwako S; Kubo, Motoki

    2017-12-04

    Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil's ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper) in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples ( R ² = 0.25), and this relationship became significantly stronger at near-neutral pH (6.0-7.3; R ² = 0.67). No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0) or alkaline (pH > 7.3) pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH ( R ² = 0.72 and 0.73, respectively), as well as for Ca at alkaline pH ( R ² = 0.64). Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  9. Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence

    NASA Astrophysics Data System (ADS)

    Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna

    2007-05-01

    A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.

  10. A comparative study on oxidative stress response in the hepatopancreas and midgut of the white shrimp Litopenaeus vannamei under gradual changes to low or high pH environment.

    PubMed

    Han, Si-Yin; Wang, Meng-Qiang; Wang, Bao-Jie; Liu, Mei; Jiang, Ke-Yong; Wang, Lei

    2018-05-01

    White shrimp Litopenaeus vannamei were reared under conditions of gradual changes to a low pH (gradual-low pH, 6.65-8.20) or a high pH (gradual-high pH, 8.20-9.81) versus a normal pH environment (8.14-8.31) during a 28-day period. Survival of shrimp, and ROS production, antioxidant responses and oxidative damage in the hepatopancreas and midgut were investigated. Consequently, shrimp enhanced MnSOD, GPx, and Hsp70 transcripts as early defense mechanism in the hepatopancreas and midgut to scavenge excessive ROS during short-term (≤ 7 days) gradual-low and high pH stress. Meanwhile, the hepatopancreas was more sensitive to ROS than midgut because of earlier ROS production increase, antioxidant response and oxidative damage. Then, suppressed antioxidant response in the hepatopancreas and midgut of shrimp suggested a loss of antioxidant regulatory capacity caused by aggravated oxidative damage after long-term (≥ 14 days) gradual-high pH stress, leading to continuous death. However, enhanced GPx, GST, and Hsp70 transcripts in the hepatopancreas and midgut might be long-term(≥ 14 days) antioxidant adaptation mechanism of shrimp to gradual-low pH stress, which could prevent further ROS perturbation and weaken oxidative damage to achieve a new immune homeostasis, contributing to stable survival rate. Therefore, we have a few insights that it is necessary to protect hepatopancreas for controlling shrimp death under gradual-high pH stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Constructing and Screening a Metagenomic Library of a Cold and Alkaline Extreme Environment.

    PubMed

    Glaring, Mikkel A; Vester, Jan K; Stougaard, Peter

    2017-01-01

    Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns as a source of bacteria and enzymes adapted to these conditions. They have also highlighted the limitations of cultivation-based methods in this extreme environment and metagenomic approaches may provide access to novel extremophilic enzymes from the uncultured majority of bacteria. Here, we describe the construction and screening of a metagenomic library of the prokaryotic community inhabiting the ikaite columns.

  12. Reaction pH of urea-formaldehyde resins as related to strength properties of southern pine particleboard

    Treesearch

    C. -Y. Hse

    1974-01-01

    Twelve urea-formaldehyde resins were prepared with factorial combinations of 4 alkaline and 3 acidic reaction phases; i. e., the reaction mixture was adjusted to pH 7, 8, 9, or 10 for the first hour and then made weakly acid to pH 5.8, 4.8, or 3.8.

  13. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  14. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  15. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH.

    PubMed

    Li, Xiao Min; Cheng, Ka Yu; Wong, Jonathan W C

    2013-12-01

    Microbial fuel cells are a promising technology for simultaneous treatment and energy recovery from food waste leachate. This study evaluates the effects of NaCl (0-150 mM) and pH on the treatment of food waste leachate using microbial fuel cells. The food waste leachate amended with 100mM NaCl enabled the highest maximum power density (1000 mW/m(3)) and lowest internal resistance (371Ω). Increasing the anodic pH gradually from acidic to alkaline conditions (pH 4-9) resulted in a gradual increase in maximum power density to 9956 mW/m(3) and decrease in internal cell resistance to 35.3Ω. The coulombic efficiency obtained under acidic conditions was only 17.8%, but increased significantly to 60.0% and 63.4% in the neutral and alkaline pH's MFCs, respectively. Maintaining a narrow pH window (6.3-7.6) was essential for efficient bioelectricity production and COD removal using microbial fuel cells for the treatment of food waste leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  17. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH.

    PubMed

    Masoomi, Mohammad; Shamsaei, Nima; Winholtz, Robert A; Milner, Justin L; Gnäupel-Herold, Thomas; Elwany, Alaa; Mahmoudi, Mohamad; Thompson, Scott M

    2017-08-01

    Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS) 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF). Of these specimens, two were rods (diameter=8 mm, length=80 mm) built vertically upward and one a parallelepiped (8×80×9 mm 3 ) built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V).

  18. Cloning and expression of VB12-independent methionine synthase gene responsive to alkaline stress in rice.

    PubMed

    Xie, Guo-Sheng; Liu, Shen-Kui; Takano, Tetsuo; You, Zong-Bin; Zhang, Duan-Pin

    2002-12-01

    VB12-independent methionine synthase is present in higher plants, and catalyzes the methylation of C-homocysteine to form methionine, which is very important for methylation reactions and syntheses of polyamines and ethylene. Under the alkaline condition, using cDNA-RAPD method, a new VB12-independent methionine synthase gene has been cloned and characterized for the first time in rice in this study. The results exhibited that, the cDNA gene entailed 2740 bp, had single copy in the rice genome and encoded peptide of 765 amino acids, the peptide showed 92% and 83% identity with that from Mesembryanthemum cystallinum (U84889) and Cathararanthus roseus (X83499), respectively. It enhanced the transcription more greatly after sodium carbonate treatment for 12 h and 24 h than that of sodium chloride treatment, and then obviously reduced in 48 h later, suggesting that it is related to this stress tolerance in rice.

  19. Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase 1

    PubMed Central

    Casano, Leonardo M.; Desimone, Marcelo; Trippi, Victorio S.

    1989-01-01

    Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles. PMID:16667194

  20. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  1. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  2. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  3. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  4. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand

    PubMed Central

    Goloran, Johnvie B.; Chen, Chengrong; Phillips, Ian R.; Elser, James J.

    2015-01-01

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance. PMID:26443331

  5. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    PubMed

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  6. Metabolism of 14C-azoxystrobin in water at different pH.

    PubMed

    Singh, Neera; Singh, Shashi B; Mukerjee, Irani; Gupta, Suman; Gajbhiye, Vijay T; Sharma, Praveen K; Goel, Mayurika; Dureja, Prem

    2010-02-01

    Metabolism of (14)C-azoxystrobin was studied in water at pH 4, 7 and 9. The study suggested that volatilization losses of azoxystrobin were very low (3%) during 130 days of incubation. Only 2.5-4.2% of azoxystrobin was mineralised to CO(2) and pH of water did not have much effect on rate of mineralisation. The dissipation of azoxystrobin in water of all the three pHs followed first order kinetic with half-life values ranging from 143 to 158 d; degradation was the fastest at pH 9. Azoxystrobin acid, a major metabolite, was detected 4-7 day onwards and its concentration increased up to 130 days. The formation of azoxystrobin acid was more and faster under alkaline (pH 9) condition than neutral (pH 7) or acidic (pH 4) conditions.

  7. In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System[W

    PubMed Central

    Martinière, Alexandre; Bassil, Elias; Jublanc, Elodie; Alcon, Carine; Reguera, Maria; Sentenac, Hervé; Blumwald, Eduardo; Paris, Nadine

    2013-01-01

    The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH −1.5) and Arabidopsis thaliana root cells (ΔpH −2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H+ ATPase–dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters. PMID:24104564

  8. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  9. Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamarii.

    PubMed

    Anandan, Dayanandan; Marmer, William N; Dudley, Robert L

    2007-05-01

    Aspergillus tamarii expresses an extracellular alkaline protease that we show to be effective in removing hair from cattle hide. Large quantities of the enzyme will be required for the optimization of the enzymatic dehairing process so the growth conditions for maximum protease expression by A. tamarii were optimized for both solid-state culture on wheat bran and for broth culture. Optimal protease expression occurred, for both cultural media, at initial pH 9; the culture was incubated at 30 degrees C for 96 h using a 5% inoculum. The crude enzyme was isolated, purified and characterized using MALDI TOF TOF. The alkaline protease was homologous to the alkaline protease expressed by Aspergillus viridinutans.

  10. External pH changes affect NMDA-evoked and spontaneous release of cholecystokinin, somatostatin and noradrenaline from rat cerebrocortical nerve endings.

    PubMed

    Gemignani, Anita; Paudice, Paolo; Longordo, Fabio; Raiteri, Maurizio

    2004-10-01

    It was previously reported that the K+-evoked release of somatostatin-like immunoreactivity (SRIF-LI) and of cholecystokinin-like immunoreactivity (CCK-LI) from superfused rat cerebrocortical synaptosomes can be enhanced by NMDA or D-serine alone. We here studied the effects of extraterminal pH changes on SRIF-LI and CCK-LI release. Lowering pH from 7.4 to 6.9 or 6.4 abolished the effects of NMDA or D-serine on the K+-evoked peptide release. Identical results were obtained when external pH was raised to 8 or 8.7. Sudden alkalinization of the superfusion medium, in absence of K+-depolarization, induced SRIF-LI or CCK-LI release which was insensitive to NMDA. Based on experiments in Ca2+-free medium and with voltage-sensitive Ca2+ channel (VSCC) blockers, the pH 8.7-induced release of SRIF-LI and CCK-LI was only in part (30-50%) dependent on external Ca2+ and Ca2+ channel activation. In contrast, the alkalinization-evoked release of [3H]noradrenaline was highly sensitive to external Ca2+ removal and to blockade of Ca2+ channels with omega-conotoxins. The pH 8.7-evoked SRIF-LI and CCK-LI was about halved in synaptosomes intoxicated with botulinum toxin C1. The results suggest that the pH-sensitive NMDA receptors mediating somatostatin and cholecystokinin release contain NR1 subunits lacking the exon-5 cassette. Alkalinization represents a novel releasing stimulus which elicits neuropeptide release in part by conventional exocytosis and largely by an external Ca2+-independent mechanism. Differently, the release of noradrenaline provoked by alkalinization occurs entirely by conventional exocytosis.

  11. Defluoridation of drinking water by combined electrocoagulation: effects of the molar ratio of alkalinity and fluoride to Al(III).

    PubMed

    Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren

    2009-03-01

    The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process.

  12. A laboratory study evaluating the pH of various modern root canal filling materials.

    PubMed

    Pawińska, Małgorzata; Szczurko, Grzegorz; Kierklo, Anna; Sidun, Jarosław

    2017-01-01

    Alkaline pH is responsible for antibacterial activity and the stimulation of periapical tissue healing. It neutralizes the acidic environment of inflammatory tissues in the periapical region of the teeth and favors bone repair by activating tissue enzymes. The aim of this study was to evaluate and compare in vitro the pH of 8 root canal filling materials (sealers and points) -AH Plus Jet (AH), Apexit Plus (AP), Endomethasone N (END), Epiphany (EP), GuttaFlow (GF), gutta-percha (G), Resilon (R), Tubliseal (T). 0.1 g of each material (n = 6) was placed in dialysis tubes and immersed in 20 mL of deionized water. The control contained deionized water (pH 6.6) with an empty tube. The pH values were recorded immediately after immersion (baseline) and after 1, 2, 24, 48, 120, and 192 h with a pH-meter. Data were statistically analyzed using the Student's -t test and 1-way analysis of variance (p < 0.05). Nearly all the materials had pH significantly higher than the control (p < 0.05). There were significant differences in the pH between the materials tested at each time point (p < 0.001). The highest pH was exhibited by EP, followed by AP and AH. The lowest pH was shown by GF, G and R. Among the materials studied, only EP, AP and AH Plus were able to elevate the pH level that would allow inactivation of microorganisms in the root canals and promote healing of inflamed periapical tissues. However, the low alkalizing potential of G and R can be modified by the concomitant application of sealers producing alkaline pH.

  13. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  14. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  15. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  16. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration.

    PubMed

    Kim, Dong-Hoon; Jeong, Emma; Oh, Sae-Eun; Shin, Hang-Sik

    2010-05-01

    The individual effects of alkaline (pH 8-13) and ultrasonic (3750-45,000kJ/kg TS) pretreatments on the disintegration of sewage sludge were separately tested, and then the effect of combining these two methods at different intensity levels was investigated using response surface methodology (RSM). In the combined pretreatment, ultrasonic treatment was applied to the alkali-pretreated sludge. While the solubilization (SCOD/TCOD) increase was limited to 50% in individual pretreatments, it reached 70% in combined pretreatment, and the results clearly showed that preconditioning of sludge at high pH levels played a crucial role in enhancing the disintegration efficiency of the subsequent ultrasonic pretreatment. By applying regression analysis, the disintegration degree (DD) was fitted based on the actual value to a second order polynomial equation: Y=-172.44+29.82X(1)+5.30x10(-3)X(2)-7.53x10(-5)X(1)X(2)-1.10X(1)(2)-1.043x10(-7)X(2)(2), where X(1), X(2), and Y are pH, specific energy input (kJ/kg TS), and DD, respectively. In a 2D contour plot describing the tendency of DD with respect to pH and specific energy input, it was clear that DD increased as pH increased, but it seemed that DD decreased when the specific energy input exceeded about 20,000kJ/kg TS. This phenomenon tells us that there exists a certain point where additional energy input is ineffective in achieving further disintegration. A synergetic disintegration effect was also found in the combined pretreatment, with lower specific energy input in ultrasonic pretreatment yielding higher synergetic effect. Finally, in order to see the combined pretreatment effect in continuous operation, the sludge pretreated with low intensity alkaline (pH 9)/ultrasonic (7500kJ/kg TS) treatment was fed to a 3 L of anaerobic sequencing batch reactor after 70 days of control operation. CH(4) production yield significantly increased from 81.9+/-4.5mL CH(4)/g COD(added) to 127.3+/-5.0mL CH(4)/g COD(added) by pretreatment, and

  17. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.

    PubMed

    Abid Charef, S; Affoune, A M; Caballero, A; Cruz-Yusta, M; Morales, J

    2017-10-01

    A parallel study of acidic and alkaline leaching for the recovery of Mn and Zn from spent alkaline batteries is outlined. Using H 2 SO 4 as solvent and selecting appropriate conditions of temperature and concentration, all residues were dissolved except carbon. The separation and recovery of the two components were performed by electrodeposition with satisfactory results at pH values above 4 (current efficiency above 70% for Zn and Mn) but rather lower efficiencies as the pH decreased. Most of the Zn was selectively dissolved by alkaline leaching using a 6.5M NaOH solution, and its recovery was examined by means of both electrochemical and chemical processes. The expected formation of pure Zn by electrowinning failed due to the formation of ZnO, the content of which was highly dependent on the electrodeposition time. For short periods, Zn was the main component. For longer periods the electrodeposit consisted of agglomerated microparticles of ZnO with a minor fraction of Zn metal (barely 3% as measured by X-ray diffraction). A chemical reaction of the element with oxygen released at the anode surface might be responsible for its conversion to ZnO. A simple chemical route is described for the first time for the direct conversion of Zn(OH) 4 2- solution to nanostructured ZnO by lowering the pH to values around 12 using 2M HCl solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  19. Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent.

    PubMed

    Piñón-Castillo, H A; Brito, E M S; Goñi-Urriza, M; Guyoneaud, R; Duran, R; Nevarez-Moorillon, G V; Gutiérrez-Corona, J F; Caretta, C A; Reyna-López, G E

    2010-12-01

    To characterize the bacterial consortia and isolates selected for their role in hexavalent chromium removal by adsorption and reduction. Bacterial consortia from industrial wastes revealed significant Cr(VI) removal after 15 days when incubated in medium M9 at pH 6·5 and 8·0. The results suggested chromium reduction. The bacterial consortia diversity (T-RFLP based on 16S rRNA gene) indicated a highest number of operational taxonomic units in an alkaline carbonate medium mimicking in situ conditions. However, incubations under such conditions revealed low Cr(VI) removal. Genomic libraries were obtained for the consortia exhibiting optimal Cr(VI) removal (M9 medium at pH 6·5 and 8·0). They revealed the dominance of 16S rRNA gene sequences related to the genera Pseudomonas/Stenotrophomonas or Enterobacter/Halomonas, respectively. Isolates related to Pseudomonas fluorescens and Enterobacter aerogenes were efficient in Cr(VI) reduction and adsorption to the biomass. Cr(VI) reduction was better at neutral pH rather than under in situ conditions (alkaline pH with carbonate). Isolated strains exhibited significant capacity for Cr(VI) reduction and adsorption. Bacterial communities from chromium-contaminated industrial wastes as well as isolates were able to remove Cr(VI). The results suggest a good potential for bioremediation of industrial wastes when optimal conditions are applied. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to Mexican Government works.

  20. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0.

    PubMed

    Wood, Chris M; Gonzalez, R J; Ferreira, Márcio Soares; Braz-Mota, Susana; Val, Adalberto Luis

    2018-05-01

    The Tambaqui is a model neotropical teleost which is of great economic and cultural importance in artisanal fisheries and commercial aquaculture. It thrives in ion-poor, often acidic Amazonian waters and exhibits excellent regulation of physiology down to water pH 4.0. Curiously, however, it is reported to perform poorly in aquaculture at pH 8.0, an only slightly alkaline pH which would be benign for most freshwater fish. In initial experiments with Tambaqui of intermediate size (30-50 g), we found that ammonia excretion rate was unchanged at pH 4, 5, 6, and 7, but elevated after 20-24 h at pH 8, exactly opposite the pattern seen in most teleosts. Subsequent experiments with large Tambaqui (150-300 g) demonstrated that only ammonia, and not urea excretion was increased at pH 8.0, and that the elevation was proportional to a general increase in MO 2 . There was an accompanying elevation in net acidic equivalent excretion and/or basic equivalent uptake which occurred mainly at the gills. Net Na + balance was little affected while Cl - balance became negative, implicating a disturbance of Cl - versus base exchange rather than Na + versus acid exchange. Arterial blood pH increased by 0.2 units at pH 8.0, reflecting combined metabolic and respiratory alkaloses. Most parameters recovered to control levels by 18-24 h after return to pH 6.0. With respect to large Tambaqui, we conclude that a physiology adapted to acidic pH performs inappropriately at moderately alkaline pH. In small Tambaqui (4-15 g), the responses were very different, with an initial inhibition of ammonia excretion rate at pH 8.0 followed by a subsequent restoration of control levels. Elevated ammonia excretion rate occurred only after return to pH 6.0. Furthermore, MO 2 , plasma cortisol, and branchial vH + ATPase activities all declined during pH 8.0 exposure in small Tambaqui, in contrast to the responses in larger fish. Overall, small Tambaqui appear to cope better at pH 8.0, a difference that

  1. Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics.

    PubMed

    Simão, Ana Maria S; Bolean, Maytê; Hoylaerts, Marc F; Millán, José Luis; Ciancaglini, Pietro

    2013-09-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium-phosphate-phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.

  2. Endogenous cyclo-oxygenase activity regulates mouse gastric surface pH

    PubMed Central

    Baumgartner, Heidi K; Kirbiyik, Uzay; Coskun, Tamer; Chu, Shaoyou; Montrose, Marshall H

    2002-01-01

    In the stomach, production of prostaglandins by cyclo-oxygenase (COX) is believed to be important in mucosal defence. We tested the hypothesis that endogenous COX activity is required for protective gastric surface pH control. Intact stomachs of anaesthetized mice were perfused with a weakly buffered solution (150 mmNaCl + 4 mm Homopipes) at pH values from 2.5 to 7.0. Gastric effluents were collected to measure pH and estimate amounts of acid or alkali secretion in nanomoles secreted per minute. A switch from net acid to net alkali secretion was seen in response to acidifying luminal pH with an apparent ‘set point’ between pH 4 and 5. At luminal pH 3, the net alkali secretion (12.7 ± 2.8 nmol OH− equivalents min−1) was abolished (2.2 ± 1.7 nmol OH− min−1) by the non-specific COX inhibitor indomethacin (5 mg kg−1 I.P.). Similar inhibition was observed using a COX-1 inhibitor (SC-560; 10 mg kg−1 I.P.), but not a COX-2 inhibitor (NS-398; 10 mg kg−1 I.P.). Subsequent treatment with 16,16-dimethyl prostaglandin E2 (dm-PGE2; 1 mg kg−1 I.P.) rescued the alkali secretion (21.8 ± 2.7 nmol OH− min−1). In either the absence or presence of the H+,K+-ATPase inhibitor omeprazole (60 mg kg−1 I.P.), indomethacin blocked similar amounts of net alkali secretion (10.5 ± 2.7 and 16.4 ± 3.4 nmol OH− min−1, respectively). We also used in vivo confocal microscopy to examine pH near the mucosal surface. The gastric mucosal surface of anaesthetized mice was exposed and mucosal surface pH was imaged using the fluorescence intensity ratio of Cl-NERF as a pH indicator. Results showed a switch from a continuous net acid to net alkali secretion by the stomach in response to changing superfusate pH from 5 to 3. At luminal pH 3, the relatively alkaline surface pH (4.3 ± 0.1) was acidified (3.6 ± 0.2) by indomethacin, and subsequent dm-PGE2 restored surface pH (4.2 ± 0.2). We conclude that the pre-epithelial alkaline layer is regulated by endogenous COX

  3. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    PubMed

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  5. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor.

    PubMed

    Matsuura, Koji; Asano, Yuka; Yamada, Akira; Naruse, Keiji

    2013-02-18

    Biofilm formation in microfluidic channels is difficult to detect because sampling volumes are too small for conventional turbidity measurements. To detect biofilm formation, we used an ion-sensitive field-effect transistor (ISFET) measurement system to measure pH changes in small volumes of bacterial suspension. Cells of Micrococcus luteus (M. luteus) were cultured in polystyrene (PS) microtubes and polymethylmethacrylate (PMMA)-based microfluidic channels laminated with polyvinylidene chloride. In microtubes, concentrations of bacteria and pH in the suspension were analyzed by measuring turbidity and using an ISFET sensor, respectively. In microfluidic channels containing 20 μL of bacterial suspension, we measured pH changes using the ISFET sensor and monitored biofilm formation using a microscope. We detected acidification and alkalinization phases of M. luteus from the ISFET sensor signals in both microtubes and microfluidic channels. In the alkalinization phase, after 2 day culture, dense biofilm formation was observed at the bottom of the microfluidic channels. In this study, we used an ISFET sensor to detect biofilm formation in clinical and industrial microfluidic environments by detecting alkalinization of the culture medium. 

  6. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  7. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  8. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a

  9. The Spinal Cord Has an Intrinsic System for the Control of pH.

    PubMed

    Jalalvand, Elham; Robertson, Brita; Tostivint, Hervé; Wallén, Peter; Grillner, Sten

    2016-05-23

    For survival of the organism, acid-base homeostasis is vital [1, 2]. The respiratory and renal systems are central to this control. Here we describe a novel mechanism, intrinsic to the spinal cord, with sensors that detect pH changes and act to restore pH to physiological levels by reducing motor activity. This pH sensor consists of somatostatin-expressing cerebrospinal fluid-contacting (CSF-c) neurons, which target the locomotor network. They have a low level of activity at pH 7.4. However, at both alkaline and acidic pH, the activity of the individual CSF-c neuron is markedly enhanced through the action of two separate channel subtypes. The alkaline response depends on PKD2L1 channels that have a large conductance and an equilibrium potential around 0 mV, both characteristics of mouse PKD2L1 channels [3-5]. The acidic response is due to an activation of ASIC3 [6]. The discharge pattern of the CSF-c neurons is U-shaped with a minimum frequency around pH 7.4 and a marked increase already at slightly lower and higher pH. During ongoing locomotor activity in the isolated spinal cord, both an increase and as a decrease of pH will reduce the locomotor burst rate. A somatostatin antagonist blocks these effects, suggesting that CSF-c neurons are responsible for the suppression of locomotor activity. CSF-c neurons thus represent a novel innate homeostatic mechanism, designed to sense any deviation from physiological pH and to respond by causing a depression of the motor activity. Because CSF-c neurons are found in all vertebrates, their pH-sensing function is most likely conserved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi.

  11. Proton Transport and pH Control in Fungi

    PubMed Central

    Kane, Patricia M.

    2018-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPaseare coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This re view describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  12. Enhancing boron rejection in FO using alkaline draw solutions.

    PubMed

    Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y

    2017-07-01

    This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior.

    PubMed

    Ruan, Changshun; Hu, Nan; Ma, Yufei; Li, Yuxiao; Liu, Juan; Zhang, Xinzhou; Pan, Haobo

    2017-07-28

    A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.

  14. In silico kinetics of alkaline hydrolysis of 1,3,5-trinitro-1,3,5-triazinane (RDX): M06-2X investigation.

    PubMed

    Sviatenko, L K; Gorb, L; Leszczynska, D; Okovytyy, S I; Shukla, M K; Leszczynski, J

    2017-03-22

    Alkaline hydrolysis of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), as one of the most promising methods for nitrocompound remediation, was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Computational simulation shows that RDX hydrolysis is a highly exothermic multistep process involving initial deprotonation and nitrite elimination, cycle cleavage, further transformation of cycle-opened intermediates to end products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of RDX hydrolysis such as nitrite, nitrous oxide, formaldehyde, formate, and ammonia correspond to experimentally observed ones. Accounting of specific hydration of hydroxide is critical to create an accurate kinetic model for alkaline hydrolysis. Simulated kinetics of the hydrolysis are in good agreement with available experimental data. A period of one month is necessary for 99% RDX decomposition at pH 10. Computations predict significant increases of the reaction rate of hydrolysis at pH 11, pH 12, and pH 13.

  15. Sensitivity of porcine epidemic diarrhea virus (PEDV) to pH and heat treatment in the presence or absence of porcine plasma.

    PubMed

    Quist-Rybachuk, G V; Nauwynck, H J; Kalmar, I D

    2015-12-31

    Emergence of porcine epidemic diarrhea virus (PEDV) resulted in massive neonatal mortality in the North-American and Asian pork industry. Measures to prevent its geographical spread are of utmost importance to safeguard susceptible porcine populations. The major infection route is direct or indirect faecal-oral contact. Adequate biosafety measures should be in place at all levels of the swine production chain, including feed and feed ingredients. Present study aimed to investigate the sensitivity of PEDV to thermal inactivation at neutral and alkaline pH in presence or absence of porcine plasma. Cell culture medium and porcine plasma at different pH (7.2, 9.2, 10.2) and temperature conditions (4 °C, 40 °C, 44 °C, 48 °C) were inoculated to a final titer of 5.5 log10 TCID50 PEDV/ml, incubated for up to 120 min and the residual infectivity was determined by endpoint dilution assay. Irrespective of presence of plasma, PEDV was not sensitive to pH 7.2-10.2 at 4 °C. At moderate temperatures (≥40 °C), both alkaline pH and presence of plasma potentiated thermal inactivation. Inactivation of 8 log10 TCID50/ml plasma within 30 min (8D value<30 min) by moderate pH and temperature would denote potential industrial processing conditions that ensure safety towards PEDV while limiting denaturation of bioactive components. Virus-spiked plasma required heat treatment of 40 °C and alkalinization to pH 9.2 to achieve 8 log10 reduction within such time. At pH 10.2 and 48 °C, the 8D value was 4.6 min in plasma and 15.2 min in MEM. Here we propose heat-alkalinity-time (HAT) pasteurization as a highly efficient method to inactivate PEDV during industrial processing of porcine plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Proteomic analysis of enterotoxigenic Escherichia coli (ETEC) in neutral and alkaline conditions.

    PubMed

    Gonzales-Siles, Lucia; Karlsson, Roger; Kenny, Diarmuid; Karlsson, Anders; Sjöling, Åsa

    2017-01-07

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB 5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-regulated. ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.

  17. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.

    PubMed

    Cross, Adam T; Lambers, Hans

    2017-12-31

    Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the

  18. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress

    PubMed Central

    Matsushika, Akinori; Negi, Kanako; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2016-01-01

    The use of yeasts tolerant to acid (low pH) and salt stress is of industrial importance for several bioproduction processes. To identify new candidate genes having potential roles in low-pH tolerance, we screened an expression genomic DNA library of a multiple-stress-tolerant yeast, Issatchenkia orientalis (Pichia kudriavzevii), for clones that allowed Saccharomyces cerevisiae cells to grow under highly acidic conditions (pH 2.0). A genomic DNA clone containing two putative open reading frames was obtained, of which the putative protein-coding gene comprising 1629 bp was retransformed into the host. This transformant grew significantly at pH 2.0, and at pH 2.5 in the presence of 7.5% Na2SO4. The predicted amino acid sequence of this new gene, named I. orientalis GAS1 (IoGAS1), was 60% identical to the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity, and 58–59% identical to Candida albicans Phr1 and Phr2, pH-responsive proteins implicated in cell wall assembly and virulence. Northern hybridization analyses indicated that, as for the C. albicans homologs, IoGAS1 expression was pH-dependent, with expression increasing with decreasing pH (from 4.0 to 2.0) of the medium. These results suggest that IoGAS1 represents a novel pH-regulated system required for the adaptation of I. orientalis to environments of diverse pH. Heterologous expression of IoGAS1 complemented the growth and morphological defects of a S. cerevisiae gas1Δ mutant, demonstrating that IoGAS1 and the corresponding S. cerevisiae gene play similar roles in cell wall biosynthesis. Site-directed mutagenesis experiments revealed that two conserved glutamate residues (E161 and E262) in the IoGas1 protein play a crucial role in yeast morphogenesis and tolerance to low pH and salt stress. Furthermore, overexpression of IoGAS1 in S. cerevisiae remarkably improved the ethanol fermentation ability at pH 2.5, and at pH 2.0 in the presence of

  19. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of pH on the Production of Phosphate and Pyrophosphate by Matrix Vesicles' Biomimetics

    PubMed Central

    Simão, Ana Maria S.; Bolean, Maytê; Hoylaerts, Marc F.; Millán, José Luis; Ciancaglini, Pietro

    2013-01-01

    During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (ePPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/ phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine (DPPC) liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP, at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph (SCL) containing 1 mM ATP as substrate and amorphous calcium phosphate (ACP) or calciumphosphate- phosphatidylserine complexes (PS-CPLX) as nucleators. Propagation of mineralization was significantly more efficient at pHs 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization. PMID:23942722

  1. Ectopic Expression of GsPPCK3 and SCMRP in Medicago sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content

    PubMed Central

    Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming

    2014-01-01

    So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886

  2. Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (Leuciscus waleckii) in an Extremely Alkaline Environment

    PubMed Central

    Xu, Jian; Li, Jiong-Tang; Jiang, Yanliang; Peng, Wenzhu; Yao, Zongli; Chen, Baohua; Jiang, Likun; Feng, Jingyan; Ji, Peifeng; Liu, Guiming; Liu, Zhanjiang; Tai, Ruyu; Dong, Chuanju; Sun, Xiaoqing; Zhao, Zi-Xia; Zhang, Yan; Wang, Jian; Li, Shangqi; Zhao, Yunfeng; Yang, Jiuhui; Sun, Xiaowen; Xu, Peng

    2017-01-01

    The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments. PMID:28007977

  3. Stability studies on diloxanide furoate: effect of pH, temperature, gastric and intestinal fluids.

    PubMed

    Gadkariem, E A; Belal, F; Abounassif, M A; El-Obeid, H A; E E Ibrahim, K

    2004-04-01

    The degradation of the amoebicide diloxanide furoate in alkaline medium at different temperatures was investigated using both a spectrophotometric and a developed HPLC method. In solutions, the drug was found to undergo decomposition, i.e., temperature and pH dependent. The pH-rate profile at pH between 7.6 and 9.6 indicated a first-order dependence of Kobs on [-OH]. Arrhenius plot obtained at pH 8 was linear between 40 and 63 degrees C. The estimated activation energy of hydrolysis was found to be 18.25 kcal degree.mol(-1). The effect of simulated gastric and intestinal fluids on the drug was also investigated. A new thin-layer chromatographic (TLC) procedure for the fractionation of the drug and its alkaline hydrolysis products has been developed and was found to compare favorably with that of the British Pharmacopoeia. Three hydrolysis products of a basic methanolic solution of the drug, namely furoic acid, diloxanide and methylfuroate could be identified by the use of TLC, HPLC, infrared and mass spectrometry.

  4. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  5. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    PubMed

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  6. Loss on drying, calcium concentration and pH of fluoride dentifrices

    PubMed Central

    Brito, Arella Cristina Muniz; Dantas, Lívia Rocha; De Brito, André Luiz Fiquene; Muniz, Ana Cristina Silva; Ramos, Ianny Alves; Cardoso, Andreia Medeiros Rodrigues; Xavier, Alidianne Fábia Cabral; Cavalcanti, Alessandro Leite

    2015-01-01

    Introduction: Fluoride dentifrices containing calcium carbonate have advantages such as control of dental plaque and progression of dental caries, also contributing to oral hygiene, represent most dentifrices marketed in Brazil. Aim: To evaluate the physicochemical properties of seven fluoride dentifrices containing calcium carbonate in relation to hydrogen potential (pH), loss on drying and calcium concentration. Materials and Methods: Data collection was performed using the potentiometric method for pH ranges, gravimetric analysis for loss on drying and atomic absorption spectrometry for the concentration of calcium ions. All tests were performed in triplicate and the analysis was performed entirely at random according to one-way analysis of variance at 5% significance level. Results: The pH values were alkaline and ranged from 8.67 (Oral-B 123®) to 10.03 (Colgate Máxima Proteção Anticáries®). The results of loss on drying ranged from 33.81% (Oral-B 123®) to 61.13% (Close Up®), with significant differences between brands tested. In relation to the calcium content, the highest and lowest concentrations were found in dentifrices Even® (155.55 g/kg) and Colgate Ultra Branco® (129 g/kg), respectively, with significant difference (P < 0.05). Conclusion: Fluoride dentifrices analyzed showed alkaline pH and high levels of loss on drying and calcium concentration. However, these physicochemical characteristics differed according to the different brands tested. PMID:25821380

  7. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy.

    PubMed

    Tan, Yanan; Zhu, Yun; Zhao, Yue; Wen, Lijuan; Meng, Tingting; Liu, Xuan; Yang, Xiqin; Dai, Suhuan; Yuan, Hong; Hu, Fuqiang

    2018-02-01

    Mitochondria, crucial regulators of inducing tumor cells apoptosis, can be treated as the prime target for tumor therapy. The selective and responsive release of proapoptotic therapeutics into mitochondria may notably improve antitumor efficiency. Herein, (4-Carboxybutyl) triphenylphosphonium bromide (CTPP), a lipophilic cation, was conjugated with glucolipid-like conjugates (CSOSA) to produce mitochondria-targeted conjugates (CTPP-CSOSA). Loading with weakly acidic drug Celastrol (Cela), CTPP-CSOSA/Cela micelles could selectively respond to mitochondrial alkaline pH (pH 8.0), controlled by the weaker interaction between hydrophobic core of micelles and Cela with higher solubility at pH 8.0. However, there was a slow drug release behavior at pH 7.4 and pH 5.0. It illustrated that CTPP-CSOSA/Cela could realize mitochondrial fast drug release, and decrease drug leakage in the cytoplasm and lysosome. CTPP-CSOSA/Cela highly enhanced ROS levels, which further induced mitochondria membrane potential decreasing and more Cytochrome C releasing into cytoplasm, then promoted tumor cells apoptosis notably. In vivo, CTPP-CSOSA had an enhanced accumulation in tumor tissue, compared with CSOSA. Moreover, the tumor-inhibition rate of CTPP-CSOSA/Cela was 80.17%, which was significantly higher than CSOSA/Cela (58.35%) and Cela (54.89%). Thus, CTPP-CSOSA/Cela micelles with mitochondrial targeting and alkaline pH-responsive release capability could provide a new strategy for tumor therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer.

    PubMed

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.

  9. Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

    PubMed Central

    Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme

    2016-01-01

    The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149

  10. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  11. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids.

    PubMed

    Monte, Joseana R; Laurito-Friend, Debora F; Ferraz, André; Milagres, Adriane M F

    2018-04-26

    Sugarcane bagasses from three experimental sugarcane hybrids and a mill-reference sample were used to compare the efficiency and mode of action of acid and alkaline sulfite pretreatment processes. Varied chemical loads and reaction temperatures were used to prepare samples with distinguished characteristics regarding xylan and lignin removals, as well as sulfonation levels of residual lignins. The pretreatment with low sulfite loads (5%) under acidic conditions (pH 2) provided maximum glucose yield of 70% during enzymatic hydrolysis with cellulases (10 FPU/g) and β-glucosidases (20 UI/g bagasse). In this case, glucan enzymatic conversion from pretreated materials was mostly associated with extensive xylan removal (70-100%) and partial delignification occurred during the pretreatment. The use of low sulfite loads under acidic conditions required pretreatment temperatures of 160°C. In contrast, at a lower pretreatment temperature (120°C), alkaline sulfite process achieved similar glucan digestibility, but required a higher sulfite load (7.5%). Residual xylans from acid pretreated materials were almost completely hydrolysed by commercial enzymes, contrasting with relatively lower xylan to xylose conversions observed in alkaline pretreated samples. Efficient xylan removal during acid sulfite pretreatment and also during enzymatic digestion can be useful to enhance glucan accessibility and digestibility by cellulases. Alkaline sulfite process also provided substrates with high glucan digestibility, mainly associated with delignification and sulfonation of residual lignins. The results demonstrate that temperature, pH and sulfite can be combined for reducing lignocellulose recalcitrance and achieve similar glucan conversion rates in the alkaline and acid sulfite pretreated bagasses. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  12. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.

    PubMed

    Khiewwijit, Rungnapha; Temmink, Hardy; Labanda, Alvaro; Rijnaarts, Huub; Keesman, Karel J

    2015-12-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8-10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7days, gave the highest VFA yield of 440mgVFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Induction of alkaline phosphatase in the inflamed intestine: a novel pharmacological target for inflammatory bowel disease.

    PubMed

    Sánchez de Medina, Fermín; Martínez-Augustin, Olga; González, Raquel; Ballester, Isabel; Nieto, Ana; Gálvez, Julio; Zarzuelo, Antonio

    2004-12-15

    This study demonstrates the upregulation of alkaline phosphatase and the mechanisms involved in experimental colitis. All models of ileal and colonic inflammation examined, which were characterized by significant oxidative stress and neutrophil infiltration, resulted in an increase in alkaline phosphatase activity which was attributable to both epithelial cells and cells of the lamina propria, mainly leukocytes. The increase in alkaline phosphatase sensitivity to the inhibitors levamisole and homoarginine, together with changes in the apparent molecular size and in the sialization of the enzyme, indicated a change in the isoform expressed. An increase in tissue non-specific alkaline phosphatase expression was observed by Western blotting. Treatment with the bone/kidney alkaline phosphatase inhibitor levamisole or a monoclonal antibody resulted in significant protection from colonic inflammation. Taken together, these results indicate that the kidney isoform is a marker of intestinal inflammation and that it might even constitute a target for pharmacological intervention.

  14. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  15. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).

    PubMed

    Carvalho, Cleoni dos Santos; Bernusso, Vanessa Aline; Fernandes, Marisa Narciso

    2015-10-01

    We analyzed the effect of exposure to 25% 96 h-LC50 of copper at low (24.5 μg L(-1) Cu, pH 4.5), neutral (7.25 μg L(-1) Cu, pH 7.0) and high pH (4.0 μg L(-1) Cu, pH 8.0) at 20 °C on antioxidant defenses and oxidative stress in the liver, gills and white muscle of the fish Prochilodus lineatus. Water at pH 4.5 and 8.0 affected the enzymatic and non-enzymatic antioxidant systems of the liver and gills, but not of the white muscles of P. lineatus, when compared to water at pH 7.0. After Cu exposure, SOD (superoxide dismutase), GPx (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) activities increased and CAT (catalase) activity decreased in the liver at water at pH 4.5 and 8.0. Meanwhile, the activities of SOD, CAT, GPx, GR and GST increased in the gills at these pHs. SOD and CAT activities increased in the white muscle after Cu exposure at pH 8.0 and GPx, GR and GST activities decreased after Cu exposure at pH 4.5 and 8.0. LPO levels decreased in the liver and gills of fish that were exposed to water at pH 4.5 and 8.0 and, after Cu exposure, the LPO level increased in the liver, gills and white muscle of fish that were exposed to water at pH 4.5 and 8.0, when compared to the control group at pH 7.0. The metallothionein (MT) concentration increased in the liver of fish in water at pH 4.5 and 8.0 and the gill of fish in water at pH 8.0. After Cu exposure, MT in the liver and gills was significantly elevated in fish exposed to water at pH 4.5 and 8.0, but remained at levels similar to the control group in the white muscle. These results indicate a differing sensitivity of fish organs and tissues to essential metals, such as copper, and that toxicity may be relevant at environmental concentrations. These results indicate that the effect of Cu on the response of antioxidant defense systems is determined by water pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sulfide stress cracking failures of 12Cr and 17-4PH stainless steel wellhead equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.M.; Kohut, G.B.; Canfield, D.R.

    1991-03-01

    In this paper sulfide stress cracking case histories of 12 Cr and 17-4PH stainless steel tubing hangers are presented along with the results of NACE Standard TM0177 laboratory tests performed on the failed material. Even though the hangers both met NACE Standard MR0175-88 hardness requirements, failure still occurred. These failures demonstrate the limitations of these alloys in high H{sub 2}S service even when MR0175 requirements are met. The need for better usage guidelines is discussed.

  17. Phosphorus Imaging as a Tool for Studying the pH Metabolism in Living Insects

    NASA Astrophysics Data System (ADS)

    Skibbe, U.; Christeller, J. T.; Eccles, C. D.; Laing, W. A.; Callaghan, P. T.

    1995-09-01

    Comparative 31P NMR and 1H NMR imaging experiments at submillimeter pixel resolution were carried out, using a specially constructed solenoidal RF coil. Chemical-shift imaging is used to provide pH maps from the midgut of a Lepidopteran larvae and to demonstrate physiological dependence in the resulting images, The titration curve of pH versus chemical shift for inorganic phosphate is extended beyond the "normal" biological range to the strong alkaline limit.

  18. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry.

    PubMed

    Vicherová, Eliška; Hájek, Michal; Šmilauer, Petr; Hájek, Tomáš

    2017-02-15

    Sphagnum expansion to alkaline fens has accelerated during the last decades in Europe, leading to changes in diversity, habitat distributions and carbon storage. The causes are still not clearly understood and involve an interplay between climate change, hydrology, nutrient supply and Sphagnum physiology. We conducted a 4-year field experiment in eight fens in Central European highlands and assessed survival and establishment of individual apical shoot fragments of S. flexuosum, S. warnstorfii and S. squarrosum transplanted along the microtopographical gradient. In a laboratory experiment, we tested combined effects of desiccation and high calcium bicarbonate concentration on Sphagnum survival. We found that in unflooded positions, living shoots of Sphagnum and brown mosses lowered [Ca 2+ ] and pH in their capillary water, in contrast to dead fragments; yet without differences between species. Survival and expansion of Sphagnum fragments, which did not die of acute calcium toxicity during first weeks/months, was negatively affected by dry weather and alkaline water chemistry, reflecting Sphagnum intolerance to desiccation and to combined high [Ca 2+ ] and pH. Shoot fragments expanded to patches only when precipitation was high. Interestingly, non-toxic concentration of calcium bicarbonate reduced desiccation damage in Sphagnum, probably through protection of membranes or other cell components. This mechanism would facilitate Sphagnum survival in elevated, frequently desiccated microhabitats of calcareous fens such as brown-moss hummocks. However, since water-retaining capacity of few Sphagnum shoots is insufficient to change water chemistry in its surroundings, surface acidification may occur only once the environment (e.g. sufficient humidity) enabled expansion to larger mats. Then, the retained rainwater together with hardly decomposable Sphagnum litter would separate mire surface from groundwater, speeding up successional shift towards poor fens. Sphagnum

  19. Medium pH in submerged cultivation modulates differences in the intracellular protein profile of Fusarium oxysporum.

    PubMed

    da Rosa-Garzon, Nathália Gonsales; Laure, Hélen Julie; Souza-Motta, Cristina Maria de; Rosa, José César; Cabral, Hamilton

    2017-08-09

    Fusarium oxysporum is a filamentous fungus that damages a wide range of plants and thus causes severe crop losses. In fungal pathogens, the genes and proteins involved in virulence are known to be controlled by environmental pH. Here, we report the influence of culture-medium pH (5, 6, 7, and 8) on the production of degradative enzymes involved in the pathogenesis of F. oxysporum URM 7401 and on the 2D-electrophoresis profile of intracellular proteins in this fungus. F. oxysporum URM 7401 was grown in acidic, neutral, and alkaline culture media in a submerged bioprocess. After 96 hr, the crude extract was processed to enzyme activity assays, while the intracellular proteins were obtained from mycelium and analyzed using 2D electrophoresis and mass spectrometry. We note that the diversity of secreted enzymes was changed quantitatively in different culture-medium pH. Also, the highest accumulated biomass and the intracellular protein profile of F. oxysporum URM 7401 indicate an increase in metabolism in neutral-alkaline conditions. The differential profiles of secreted enzymes and intracellular proteins under the evaluated conditions indicate that the global protein content in F. oxysporum URM 7401 is modulated by extracellular pH.

  20. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    USDA-ARS?s Scientific Manuscript database

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  1. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses.

    PubMed

    Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe

    2015-01-01

    In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP(+)) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP(+) I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP(+) and AP(-) I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP(+) I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP(+) I-MEFs. Together with sestrin 1 upregulation, we found that AP(+) I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP(+) I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP(+) phenotype and achieve a quiescent state characterized by a new transcriptional network.

  2. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  3. Biological treatment of refinery spent caustics under halo-alkaline conditions.

    PubMed

    de Graaff, Marco; Bijmans, Martijn F M; Abbas, Ben; Euverink, Gert-J W; Muyzer, Gerard; Janssen, Albert J H

    2011-08-01

    The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5 days. Sulfide was completely converted into sulfate by the haloalkaliphilic sulfide-oxidizing bacteria belonging to the genus Thioalkalivibrio. Influent benzene concentrations ranged from 100 to 600 μM. At steady state, benzene was removed by 93% due to high stripping efficiencies and biodegradation. Microbial community analysis revealed the presence of haloalkaliphilic heterotrophic bacteria belonging to the genera Marinobacter, Halomonas and Idiomarina which might have been involved in the observed benzene removal. The work shows the potential of halo-alkaliphilic bacteria in mitigating environmental problems caused by alkaline waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Removal of six pesticide residues in cowpea with alkaline electrolysed water.

    PubMed

    Han, Yongtao; Song, Le; An, Quanshun; Pan, Canping

    2017-06-01

    Reduction of six pesticide residues (isoprocarb, chlorpyrifos, bifenthrin, beta-cypermethrin, difenoconazole and azoxystrobin) in cowpea by alkaline electrolysed water (AlEW) solutions with different pH was investigated. The commonly used washing treatments in household processing were used for comparison. The residue magnitudes were determined by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Results showed that the removal effect of AlEW solution on the six pesticides was superior to tap water, 5% sodium chloride, 5% sodium carbonate and 5% acetic acid solution. AlEW with pH 12.2 had more potential to eliminate the six pesticides in cowpeas. Moreover, the reduction of pesticide residues gradually increased with the increase of washing time. This study demonstrated that AlEW solution with pH of 12.2 could be used to reduce pesticide residues on fresh cowpea samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy.

    PubMed

    Reyngoudt, Harmen; Turk, Suna; Carlier, Pierre G

    2018-01-01

    In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (P i ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T 2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent P i -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T 2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline P i pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the

  7. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    PubMed

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  8. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    PubMed

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  9. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  10. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  11. The acid test of fluoride: how pH modulates toxicity.

    PubMed

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A; Bartlett, John D

    2010-05-28

    It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F(-) into cells. Here, we asked if F(-) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F(-) at low pH reduced the threshold dose of F(-) required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(-) dose and pH. Luciferase secretion significantly decreased within 2 hr of F(-) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(-) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH approximately 7.2). Intriguingly, F(-)-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. The low pH environment of maturation stage ameloblasts facilitates the uptake of F(-), causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

  12. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46

  13. Involvement of Potassium Transport Systems in the Response of Synechocystis PCC 6803 Cyanobacteria to External pH Change, High-Intensity Light Stress and Heavy Metal Stress.

    PubMed

    Checchetto, Vanessa; Segalla, Anna; Sato, Yuki; Bergantino, Elisabetta; Szabo, Ildiko; Uozumi, Nobuyuki

    2016-04-01

    The unicellular photosynthetic cyanobacterium, able to survive in varying environments, is the only prokaryote that directly converts solar energy and CO2 into organic material and is thus relevant for primary production in many ecosystems. To maintain the intracellular and intrathylakoid ion homeostasis upon different environmental challenges, the concentration of potassium as a major intracellular cation has to be optimized by various K(+)uptake-mediated transport systems. We reveal here the specific and concerted physiological function of three K(+)transporters of the plasma and thylakoid membranes, namely of SynK (K(+)channel), KtrB (Ktr/Trk/HKT) and KdpA (Kdp) in Synechocystis sp. strain PCC 6803, under specific stress conditions. The behavior of the wild type, single, double and triple mutants was compared, revealing that only Synk contributes to heavy metal-induced stress, while only Ktr/Kdp is involved in osmotic and salt stress adaptation. With regards to pH shifts in the external medium, the Kdp/Ktr uptake systems play an important role in the adaptation to acidic pH. Ktr, by affecting the CO2 concentration mechanism via its action on the bicarbonate transporter SbtA, might also be responsible for the observed effects concerning high-light stress and calcification. In the case of illumination with high-intensity light, a synergistic action of Kdr/Ktp and SynK is required in order to avoid oxidative stress and ensure cell viability. In summary, this study dissects, using growth tests, measurement of photosynthetic activity and analysis of ultrastructure, the physiological role of three K(+)transporters in adaptation of the cyanobacteria to various environmental changes. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Arrestin-related proteins mediate pH signaling in fungi.

    PubMed

    Herranz, Silvia; Rodríguez, José M; Bussink, Henk-Jan; Sánchez-Ferrero, Juan C; Arst, Herbert N; Peñalva, Miguel A; Vincent, Olivier

    2005-08-23

    Metazoan arrestins bind to seven-transmembrane (7TM) receptors to regulate function. Aspergillus nidulans PalF, a protein involved in the fungal ambient pH signaling pathway, contains arrestin N-terminal and C-terminal domains and binds strongly to two different regions within the C-terminal cytoplasmic tail of the 7TM, putative pH sensor PalH. Upon exposure to alkaline ambient pH, PalF is phosphorylated and, like mammalian beta-arrestins, ubiquitinated in a signal-dependent and 7TM protein-dependent manner. Substitution in PalF of a highly conserved arrestin N-terminal domain Ser residue prevents PalF-PalH interaction and pH signaling in vivo. Thus, PalF is the first experimentally documented fungal arrestin-related protein, dispelling the notion that arrestins are restricted to animal proteomes. Epistasis analyses demonstrate that PalF posttranslational modification is partially dependent on the 4TM protein PalI but independent of the remaining pH signal transduction pathway proteins PalA, PalB, and PalC, yielding experimental evidence bearing on the order of participation of the six components of the pH signal transduction pathway. Our data strongly implicate PalH as an ambient pH sensor, possibly with the cooperation of PalI.

  15. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.

  16. Regulation of gene expression in roots of the pH-sensitive Vaccinium corymbosum and the pH-tolerant Vaccinium arboreum in response to near neutral pH stress using RNA-Seq.

    PubMed

    Payá-Milans, Miriam; Nunez, Gerardo H; Olmstead, James W; Rinehart, Timothy A; Staton, Margaret

    2017-08-07

    Blueberries are one of the few horticultural crops adapted to grow in acidic soils. Neutral to basic soil pH is detrimental to all commonly cultivated blueberry species, including Vaccinium corymbosum (VC). In contrast, the wild species V. arboreum (VA) is able to tolerate a wider range of soil pH. To assess the molecular mechanisms involved in near neutral pH stress response, plants from pH-sensitive VC (tetraploid) and pH-tolerant VA (diploid) were grown at near neutral pH 6.5 and at the preferred pH of 4.5. Transcriptome sequencing of root RNA was performed for 4 biological replications per species x pH level interaction, for a total of 16 samples. Reads were mapped to the reference genome from diploid V. corymbosum, transforming ~55% of the reads to gene counts. A quasi-likelihood F test identified differential expression due to pH stress in 337 and 4867 genes in VA and VC, respectively. Both species shared regulation of genes involved in nutrient homeostasis and cell wall metabolism. VA and VC exhibited differential regulation of signaling pathways related to abiotic/biotic stress, cellulose and lignin biosynthesis, and nutrient uptake. The specific responses in VA likely facilitate tolerance to higher soil pH. In contrast, response in VC, despite affecting a greater number of genes, is not effective overcoming the stress induced by pH. Further inspection of those genes with differential expression that are specific in VA may provide insight on the mechanisms towards tolerance.

  17. Recommended oral sodium bicarbonate administration for urine alkalinization did not affect the concentration of mitomycin-C in non-muscle invasive bladder cancer patients.

    PubMed

    Seo, Ho Kyung; Kim, Sung Han; Ahn, Kyung-Ohk; Lee, Sang-Jin; Park, Weon Seo; Kim, Sohee; Hwang, Sang-Hyun; Lee, Do Hoon; Joung, Jae Young; Chung, Jinsoo; Joo, Jungnam; Jeong, Kyung-Chae

    2017-11-10

    Sodium bicarbonate has been reported to maximize the efficacy of intravesical instillation of mitomycin-C (IVI-MMC) therapy by urine alkalinization in non-muscle-invasive bladder cancer (NMIBC). This study aimed to analyze the changes in MMC concentration according to urinary pH and evaluate the efficacy of sodium bicarbonate to maintain the concentration of active form of MMC during IVI-MMC. We prospectively enrolled 26 patients with NMIBC after transurethral resection of bladder tumor. Patients with very high-risk and low-risk NMIBC were excluded. Urinary creatinine, volume, pH, and concentrations of MMC and its degraded form were measured immediately before and after IVI-MMC. The patients were administered 1.5 g of oral sodium bicarbonate during the preceding evening, in the morning, and immediately before the fourth cycle of the six-cycle IVI-MMC. The correlation between MMC concentration and urinary pH changes was explored with or without oral bicarbonate therapy. Recurrence without progression to muscle-invasive disease was noted in 4 of 26 patients in a 23.7-month follow-up. The mean urinary pH before and after the therapy increased from 6.03 to 6.50, and 6.46 to 7.24, without or with oral SB therapy, respectively. Despite this increase, the concentration of active form of MMC did not change significantly. No correlation was found between urinary pH and MMC concentration. Urine alkalinization by SB administration did not maintain the high concentration of urinary MMC. Urine alkalinization by sodium bicarbonate administration for IVI-MMC did not maintain the high concentration of active urinary MMC in NMIBC.

  18. Use of electrochemical potential noise to detect initiation and propagation of stress corrosion cracks in a 17-4 PH steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Rodriguez, J.G.; Salinas-Bravo, V.M.; Garcia-Ochoa, E.

    1997-09-01

    Corrosion potential transients were associated with nucleation and propagation of stress corrosion cracks in a 17-4 precipitation-hardenable (PH) martensitic stainless steel (SS) during slow strain rate tests (SSRT) at 90 C in deaerated sodium chloride (NaCl) solutions, Test solutions included 20 wt% NaCl at pH 3 and 7, similar to normal and faulted steam turbine environments, respectively. Time series were analyzed using the fast Fourier transform method. At the beginning of straining, the consistent noise behavior was perturbed with small potential transients, probably associated with rupture of the surface oxide layer. After yielding, these transients increased in intensity. At maximummore » load, the transients were still higher in intensity and frequency. These potential transients were related to crack nucleation and propagation. When the steel did not fail by stress corrosion cracking (SCC), such transients were found only at the beginning of the test. The power spectra showed some differences in all cases in roll-off slope and voltage magnitude, but these were not reliable tools to monitor the initiation and propagation of stress corrosion cracks.« less

  19. An acid/alkaline stress and the addition of amino acids induce a prolonged viability of Lactobacillus plantarum loaded into alginate gel.

    PubMed

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2010-08-15

    This study reports on the investigation on the effects of the conditions used throughout the step of biomass production on the survival of Lactobacillus plantarum loaded into alginate gels. L. plantarum was grown under different conditions (MRS or a laboratory medium-LB(2)-at acidic or alkaline pHs, with NaCl, phenols, vitamins or amino acids) and immobilized in sodium alginate; cell number was evaluated throughout the storage and death (delta(stand)) and first-reduction times (delta) were calculated. The storage of alginate gels at 4 degrees C prolonged cell viability up to 60 days (ca. 20 days for cells produced in MRS and stored at 30 degrees C); however, a similar prolongation was achieved for cells produced in LB(2) adjusted to pH 5.0 and 9.0 or added with amino acids (death time>50-60 days). Copyright 2010 Elsevier B.V. All rights reserved.

  20. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.

  1. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  2. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  3. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    NASA Astrophysics Data System (ADS)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  4. [Variation characteristics of farmland soil pH in the past 30 years of Enshi Autonomous Prefecture, Hubei, China].

    PubMed

    Hu, Min; Xiang, Yong Sheng; Zhang, Zhi; Cong, Ri Huan; Huang, Fei Yue; Zhang, Jun Qiang; Shang, Li Li; Lu, Jian Wei

    2017-04-18

    In order to explore temporal-spatial variability of farmland soil pH at Enshi Antonomous Prefecture, Hubei, China, soil pH during the past three decades was analyzed, using the datasets of the Second National Soil Survey (1980-1983) and the Cultivated Land Quality Evaluation (2010-2013). The natural and human factors inducing the change of soil pH were evaluated to provide theoretical guidance for further soil acidification management. Results showed that acidic soil (i.e., pH<6.5) and neutral and alkaline soil (i.e., pH 6.5-8.5) were accounted for 98.4% and 1.6% in the farmland during the period of 2010-2013, respectively. The ratio increased 61.4% for the acidic soil but decreased 61.2% for the neutral and alkaline soil as compared with the period of 1980-1983. In addition, there was no alkaline soil (pH>8.5) in the region in 2010-2013. According to the dataset of the Second National Soil Survey (1980-1983), acidic soil was mainly distributed at Laifeng, Lichuan, Xuanen and Xianfeng counties, with the area ratio of 74.4%, 63.5%, 61.3% and 60.7%, respectively. For the period of 2010-2013, the ratio of acidic soil enhanced widely which was above 96% for each county. At Enshi Autonomous Prefecture, farmland soil showed an obvious acidification trend during the past three decades, with spatial variation of higher in the eastern part and lower in the western part of the region. Furthermore, soil pH decline occurred among different land use types in different areas. Overall, farmland soil pH declined 0.90 on average, with 1.14 decrease for upland and 0.87 for paddy soil, respectively. Clearly, upland soil acidification was severe than paddy soil. Factors related to soil acidification in the Enshi Autonomous Prefecture were mainly human factors such as unreasonable fertilizer combination, fertilizer ratio change, and more base cations taking away by high crop yield.

  5. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  6. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  7. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  8. The Acid Test of Fluoride: How pH Modulates Toxicity

    PubMed Central

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A.; Bartlett, John D.

    2010-01-01

    Background It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F− into cells. Here, we asked if F− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings Treatment of ameloblast-derived LS8 cells with F− at low pH reduced the threshold dose of F− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F− dose and pH. Luciferase secretion significantly decreased within 2 hr of F− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions The low pH environment of maturation stage ameloblasts facilitates the uptake of F−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis. PMID:20531944

  9. The α-Arrestin Bul1p Mediates Lactate Transporter Endocytosis in Response to Alkalinization and Distinct Physiological Signals.

    PubMed

    Talaia, Gabriel; Gournas, Christos; Saliba, Elie; Barata-Antunes, Cláudia; Casal, Margarida; André, Bruno; Diallinas, George; Paiva, Sandra

    2017-11-24

    Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H + symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less

  11. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    NASA Astrophysics Data System (ADS)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  12. Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature.

    PubMed

    Ma, Jie; Li, Haiyan; Chi, Liping; Chen, Hongkun; Chen, Changzhao

    2017-12-01

    Persulfate (peroxydisulfate, S 2 O 8 2- ) is the newest oxidant used for the in situ chemical oxidation (ISCO) remediation of soil and groundwater. The present study investigated impacts of solution pH, temperature, and persulfate concentration on the reaction rate constant (k 1 ), activation energy (E a ), and reaction order of the heat-activated persulfate process. Phenol was chosen as the model organic contaminant. As temperature increased from 30 °C to 70 °C, k 1 exhibited a significant increase from 0.003 h -1 ∼0.962 h -1 (pH 1.3-13.9) to 1.184 h -1 ∼9.91 h -1 (pH 1.3-13.9), which corroborated with the activation of persulfate using heat. As pH increased from 1.3 to 13.9, k 1 exhibited a 4.3-fold increase at 70 °C and a 320-fold increase at 30 °C, thereby suggesting that: 1) the phenol oxidation rate increased under alkaline conditions, and 2) the enhancement of reaction rate due to alkaline activation was more pronounced at a lower temperature. Increasing pH significantly reduced E a from 139.7 ± 1.3 kJ/mol at pH 1.3 to 52.0 ± 3.3 kJ/mol at pH 13.9. In contrast to changing pH, increasing persulfate concentration from 20 to 320 mM significantly increased k 1 but did not affect E a . Changes in E a suggest that persulfate oxidation of phenol experienced different reaction pathways or elementary reaction sequences as the pH changed from 1.3 to 13.9. In addition, the k 1 and E a data also suggest that a minimal pH threshold of ∼11 was required for the effective alkaline activation of persulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake

    PubMed Central

    2013-01-01

    Background Amur ide (Leuciscus waleckii) is an economically and ecologically important cyprinid species in Northern Asia. The Dali Nor population living in the soda lake Dali Nor can adapt the extremely high alkalinity, providing us a valuable material to understand the adaptation mechanism against extreme environmental stress in teleost. Results In this study, we generated high-throughput RNA-Seq data from three tissues gill, liver and kidney of L. waleckii living in the soda lake Dali Nor and the fresh water lake Ganggeng Nor, then performed parallel comparisons of three tissues. Our results showed that out of assembled 64,603 transcript contigs, 28,391 contigs had been assigned with a known function, corresponding to 20,371 unique protein accessions. We found 477, 2,761 and 3,376 differentially expressed genes (DEGs) in the gill, kidney, and liver, respectively, of Dali Nor population compared to Ganggeng Nor population with FDR ≤ 0.01and fold-change ≥ 2. Further analysis revealed that well-known functional categories of genes and signaling pathway, which are associated with stress response and extreme environment adaptation, have been significantly enriched, including the functional categories of “response to stimulus”, “transferase activity”, “transporter activity” and “oxidoreductase activity”, and signaling pathways of “mTOR signaling”, “EIF2 signaling”, “superpathway of cholesterol biosynthesis”. We also identified significantly DEGs encoding important modulators on stress adaptation and tolerance, including carbonic anhydrases, heat shock proteins, superoxide dismutase, glutathione S-transferases, aminopeptidase N, and aminotransferases. Conclusions Overall, this study demonstrated that transcriptome changes in L. waleckii played a role in adaptation to complicated environmental stress in the highly alkalized Dali Nor lake. The results set a foundation for further analyses on alkaline-responsive candidate genes, which help

  14. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  15. Regulating the local pH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis.

    PubMed

    Li, Qianwen; Wang, Donghui; Qiu, Jiajun; Peng, Feng; Liu, Xuanyong

    2018-05-01

    Hard tissue implant materials which can cause a suitable alkaline microenvironment are thought to be beneficial for stimulating osteoblast differentiation while suppressing osteoclast generation. To make the local pH around the interface between materials and cells controllable, we prepared a series of Mg-Fe layered double hydroxide (LDH) films on acid-etched pure titanium surfaces via hydrothermal treatment. By adjusting the Mg/Fe proportion ratio, the interlayer spacing of Mg-Fe LDHs was regulated, making their OH- exchange abilities adjustable, and this ultimately resulted in a microenvironment with a controllable pH value. In vitro experiments demonstrated that the Mg-Fe LDH film-modified titanium surface possessed good biocompatibility and osteogenic activity, especially the Mg-Fe LDH film with Mg/Fe proportion ratio of 4, which could form a suitable alkaline microenvironment for the growth and osteogenetic differentiation of stem cells. These results demonstrate the potential application of the prepared Mg-Fe LDH films in enhancing the osteogenesis of implant materials while providing a new way into the design of controllable alkaline environment.

  16. The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury.

    PubMed

    Peters, Esther; Masereeuw, Rosalinde; Pickkers, Peter

    2014-01-01

    Sepsis-associated acute kidney injury (AKI) is associated with a high attributable mortality and an increased risk of developing chronic kidney failure in survivors. As a successful therapy is, as yet, unavailable, a pharmacological treatment option is clearly warranted. Recently, two small phase II clinical trials demonstrated beneficial renal effects of bovine-derived alkaline phosphatase administration in critically ill patients with sepsis-associated AKI. The rationale behind the renal protective effects remains to be fully elucidated, but is likely to be related to dephosphorylation and thereby detoxification of detrimental molecules involved in the pathogenesis of sepsis-associated AKI. A potent candidate target molecule might be endotoxin (lipopolysaccharide) from the cell wall of Gram-negative bacteria, which is associated with the development of sepsis and becomes nontoxic after being dephosphorylated by alkaline phosphatase. Another target of alkaline phosphatase could be adenosine triphosphate, a proinflammatory mediator released during cellular stress, which can be converted by alkaline phosphatase into the tissue-protective and anti-inflammatory molecule adenosine. Human recombinant alkaline phosphatase, a recently developed replacement for bovine-derived alkaline phosphatase, has shown promising results in the preclinical phase. As its safety and tolerability were recently confirmed in a phase I clinical trial, the renal protective effect of human recombinant alkaline phosphatase in sepsis-associated AKI shall be investigated in a multicenter phase II clinical trial starting at the end of this year. 2014 S. Karger AG, Basel.

  17. Response to Long-Term NaHCO3-Derived Alkalinity in Model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic Profiling and Physiological Characterization

    PubMed Central

    Rocco, Rubén; Bordenave, Cesar D.; Escaray, Francisco J.; Antonelli, Cristian; Calzadilla, Pablo; Gárriz, Andrés; Serna, Eva; Carrasco, Pedro; Menendez, Ana B.

    2014-01-01

    The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and

  18. The constitutive production of pectinase by the CT1 mutant of Penicillium occitainis is modulated by pH.

    PubMed

    Romdhane, Zamen Ben; Tounsi, Hajer; Hadj-Sassi, Azza; Hadj-Taieb, Noomen; Gargouri, Ali

    2013-01-01

    The aim of the present study was to investigate pectinases production by CT1 mutant of Penicillium occitanis on glucose based media. Two main groups of pectinases were followed: lyases (pectin and pectate lyases) and hydrolases (polygalacturonases and polymethylgalacturonases). When cultivated in different liquid media, where either the starting glucose concentration or the nature of nitrogen sources used was varied, the CT1 mutant secreted either lyases or hydrolases. In fact, the pH of these various media seemed to correlate with the activity produced: The lyases were highly and exclusively produced at neutral or alkaline ambient pH, whereas hydrolases were highly produced on acidic ambient pH. Such conclusion was confirmed by following pectinase production in the same culture medium (with the same glucose concentration and the same nitrogen source) set at two initial pH of 4 and 7. Altogether, these results suggest that the pectinases control by PacC signaling pathway of P. occitanis should resemble to that of Aspergillus and its ability to "activate the expression of alkaline-expressed genes and repress acid-expressed genes" remains intact in the CT1 over-producing and constitutive strain. Enzymes produced at acidic pH (hydrolases) and at neutral pH (lyases) were applied in the hydrolysis of orange peel and gave results comparable to commercial enzymes.

  19. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palacios, M.; Houst, Y.F.; Bowen, P.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to concludemore » that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.« less

  20. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.