Science.gov

Sample records for alkaline phosphatase levels

  1. Elevated serum level of human alkaline phosphatase in obesity.

    PubMed

    Khan, Abdul Rehman; Awan, Fazli Rabbi; Najam, Syeda Sadia; Islam, Mehboob; Siddique, Tehmina; Zain, Maryam

    2015-11-01

    To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass. normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Of the 197 subjects, 97(49%) were obese and 100(51%) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity.

  2. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status

    NASA Astrophysics Data System (ADS)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  3. Serum creatinine and alkaline phosphatase levels are associated with severe chronic periodontitis.

    PubMed

    Caúla, A L; Lira-Junior, R; Tinoco, E M B; Fischer, R G

    2015-12-01

    Periodontitis may alter systemic homeostasis and influence creatinine and alkaline phosphatase levels. Therefore, the aim of this study was to evaluate the relationship between severe chronic periodontitis and serum creatinine and alkaline phosphatase levels. One hundred patients were evaluated, 66 with severe chronic periodontitis (test group) and 34 periodontally healthy controls (control group). Medical, demographic and periodontal parameters were registered. Blood sample was collected after an overnight fast and serum creatinine and alkaline phosphatase levels were determined. There were significant differences between test and control groups in ethnicity, gender and educational level (p < 0.05). Patients with periodontitis showed a lower mean creatinine level (p < 0.05) and higher mean alkaline phosphatase level (p < 0.001) than the control group. There were significant correlations between periodontal parameters and serum creatinine and alkaline phosphatase levels. Severe chronic periodontitis was associated to lower creatinine and higher alkaline phosphatase levels. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The roles of serum alkaline and bone alkaline phosphatase levels in predicting heterotopic ossification following spinal cord injury.

    PubMed

    Citak, M; Grasmücke, D; Suero, E M; Cruciger, O; Meindl, R; Schildhauer, T A; Aach, M

    2016-05-01

    Retrospective chart review. To analyze the usefulness of serum alkaline phosphatase (AP) and bone alkaline phosphatase (BAP), as well as C-reactive protein (CRP) levels in predicting heterotopic ossification (HO). Department of Spinal Cord Injury and Department of General and Trauma Surgery, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Germany. Between January 2003 and December 2013, 87 patients with HO around the hips met the inclusion criteria and were included in the study. Alkaline phosphatase, CRP and BAP were assessed and interpreted at the time of HO diagnosis and after radiation therapy in all patients. At the time of HO diagnosis, 49 out of 87 patients (49.4%) had elevated alkaline phosphatase levels and 39 out of 87 patients (44.8%) had elevated BAP levels. Elevated CRP values were found in 67 patients (77.0%). Within 3 days after single-dose radiation therapy, elevated AP levels persisted in 38 patients (43.7%) and elevated BAP levels in 28 patients (32.2%). The results obtained show that the determination of CRP, AP and BAP levels may not be considered a reliable screening method for early HO detection, subsequent to spinal cord injury.

  5. Alkaline phosphatase: an overview.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  6. [Changes in the activity of alkaline phosphatase and the level of thiamine diphosphatase in simulations of B1 avitaminosis].

    PubMed

    Pron'ko, P S; Gritsenko, E A; Ostrovskiĭ, Iu M

    1975-01-01

    Alimentary B1 avitaminosis was attended by a declining activity of alkaline phosphatase in the brain and spleen of rats. A single administration of oxythiamine to rats in a dose of 400 mg/kg produced during the first hours an increased activity of alkaline phosphatase in the liver, brain and, to a lesser extent, in a number of other organs and reduced the thiamine-diphosphate content in the liver, brain and other tissues. The thiamin-diphosphate level in the brain returned back to normal in 12 hours, and in other tissues-towards the 3--5th day. In 24 hours after introduction of oxythiamine the activity of alkaline phosphatase was up in the liver alone, while in the brain the activity of the enzyme decreased. Thiamine, used in a dose of 400 mg/kg, exerted on the activity of alkaline phosphatase in a number of tissues an action similar to that of oxythiamine. It is suggested that the activation of alkaline phosphatase 3--12 hours following adminstration of a large dose of thiamine or oxythiamine is of a non-specific nature. Subcutaneous introduction of a commercial alkaline phosphatase preparation to rats brought down the thiamine-diphosphate level in all of the tissues under investigation. The presumed mechanisms accounting for the fall of thiamine-diphosphate and the possible part played in this process by alkaline phosphatase are discussed.

  7. Head and neck cancer. Relationship of the prechemotherapy serum alkaline phosphatase levels to response rate of induction chemotherapy.

    PubMed

    Coker, D D; Morris, D; Elias, E G; Didolkar, M S; Zentai, T A

    1982-01-01

    Fifty-one patients with stage III or IV squamous cell carcinoma of the head and neck who received induction chemotherapy with cisplatin and bleomycin sulfate with and without high-dose methotrexate were studied. The relationship of the prechemotherapy levels of serum alkaline phosphatase, lactic dehydrogenase, SGOT, SGPT, BUN, creatinine, calcium, total protein, albumin, hemoglobin, uric acid, and bilirubin and the WBC and platelet counts was correlated with the response rate. The overall response rate was 65%. No notable relationship between any of the laboratory values and the response rate was found. In contrast to an earlier report, patients with a low alkaline phosphatase level responded as well as patients with an elevated serum alkaline phosphatase level.

  8. Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement.

    PubMed

    Alfaqeeh, S A; Anil, S

    2014-06-01

    Gingival Crevicular Fluid (GCF) changes occur during orthodontic tooth movement and this could serve as a potential indicator to the response to active treatment. The objective of the study is to assess the changes in the GCF volume and the levels of Alkaline Phosphatase (ALP) during early phase of tooth movement. 20 patients requiring all first premolar extractions were selected and treated with conventional straight wire mechanotherapy. Canine retraction was done using Nitinol closed coil springs. Maxillary canine on one side acted as experimental site while the contralateral canine acted as control. GCF was collected from around the canines before initiation of retraction, 1 hour after initiating canine retraction, 1 day, 7 days, 14 days and 21 days. GCF volume and the ALP levels were estimated and compared with the control side. The results showed statistically significant changes in the GCF volume and ALP levels on the 7th, 14th and 21st days at the experimental sides. The peak in the activity occurred on the 14th day of initiation of retraction. The GCF volume and ALP levels did not show any significant variations at the control sites where no retraction was done. It can be concluded that GCF volume and ALP levels may serve as an indicator to assess tooth movement dynamics in orthodontic therapy. Based on the available data and further studies, ALP levels in GCF may aid in developing a reliable non-invasive chair side test for assessing the prognosis and progress of orthodontic therapy.

  9. A homozygous PIGO mutation associated with severe infantile epileptic encephalopathy and corpus callosum hypoplasia, but normal alkaline phosphatase levels.

    PubMed

    Zehavi, Yoav; von Renesse, Anja; Daniel-Spiegel, Etty; Sapir, Yonatan; Zalman, Luci; Chervinsky, Ilana; Schuelke, Markus; Straussberg, Rachel; Spiegel, Ronen

    2017-09-13

    We describe two sisters from a consanguineous Arab family with global developmental delay, dystrophy, axial hypotonia, epileptic encephalopathy dominated by intractable complex partial seizures that were resistant to various anti-epileptic treatments. Dysmorphic features comprised low set ears, hypertelorism, upslanting palpebral fissures, a broad nasal bridge, and blue sclera with elongated eyelashes. Brain MRI in both children showed a corpus callosum hypoplasia that was evident already in utero and evolving cortical atrophy. Autozygosity mapping in combination with Whole Exome Sequencing revealed a homozygous missense mutation in the PIGO gene [c.765G > A, NM_032634.3] that affected a highly conserved methionine in the alkaline phosphatase-like core domain of the protein [p.(Met255Ile), NP_116023.2]. PIGO encodes the GPI-ethanolamine phosphate transferase 3, which is crucial for the final synthetic step of the glycosylphosphatidylinositol-anchor that attaches many enzymes to their cell surfaces, such as the alkaline phosphatase and granulocyte surface markers. Interestingly, measurement of serum alkaline phosphatase activities in both children was normal or only slightly elevated. Quantification of granulocyte surface antigens CD16/24/59 yielded reduced levels only for CD59. Phenotype analysis of our and other published patients with PIGO mutations reveals a more severe affectation and predominantly neurological presentation in individuals carrying a mutation in the alkaline phosphatase-like core domain thereby hinting towards a genotype-phenotype relation for PIGO gene mutations.

  10. Alkaline phosphatase level in gingival crevicular fluid during treatment with Quad-Helix.

    PubMed

    Delli Mauri, A; Petrini, M; Vitale, D; Tecco, S; Festa, F; Barbato, E; Spoto, G

    2015-01-01

    The aim of this work is to assess the level of the human alkaline phosphatase enzyme (ALP) during palatal expansion with Quad-Helix (QH) appliance. A total of twenty-two orthodontic patients characterized by contraction of the upper jaw, that needed application of a QH in order to treat their condition, were included in this study. Gingival crevicular fluid (GCF) was collected at four different times: before cementation (T0), after two weeks (T1), after four weeks (T2) and after one year (T3) from application of QH. In each patient maxillary first molars, right (UM-right) and left (UM-left), which were connected with bands to QH, were used for testing; first lower molars were used as Controls (LM-right, LM-left). Data show that ALP level in tension sites was proportional to the average increase of the inter-molar distance; on the contrary, the enzymatic level in compression sites was characterized by an inverse trend. The only exception to this phenomenon was recorded after one year (T3), when the increase of ALP level in both sites of tension and compression was ascribed to a mild inflammation due to bacterial plaque accumulation. The level of ALP in control sites was constant for the whole period of observation. The described ALP fluctuations in accordance with the inter-molar distance increment, shows that the main action of QH on bone remodelling was exerted during the fourth week (T2); for this reason, the monitoring of this enzyme could be used as a marker of effective function of the QH appliance.

  11. Alkaline Phosphatase in Normal Infants

    PubMed Central

    Stephen, Joan M. L.; Stephenson, Pearl

    1971-01-01

    Alkaline phosphatase was measured in plasma from children receiving vitamin D supplements in day nurseries in the London area, and from children exposed to sunlight in the West Indies. The distribution of values showed that there was no precise upper limit which could be used in the diagnosis of subclinical vitamin D deficiency. PMID:5576029

  12. Association between alendronate, serum alkaline phosphatase level, and heterotopic ossification in individuals with spinal cord injury

    PubMed Central

    Ploumis, Avraam; Donovan, Jayne M.; Olurinde, Mobolaji O.; Clark, Dana M.; Wu, Jason C.; Sohn, Douglas J.; O'Connor, Kevin C.

    2015-01-01

    Context/objective Only sparse evidence exists regarding the effectiveness of oral alendronate (ALN) in the prevention of heterotopic ossification (HO) in patients with spinal cord injury (SCI). The objective of this study is to investigate the protective effect of oral ALN intake on the appearance of HO in patients with SCI. Study design Retrospective database review. Setting A Spinal Cord Unit at a Rehabilitation Hospital. Participants Two hundred and ninety-nine patients with SCI during acute inpatient rehabilitation. Interventions Administration of oral ALN. Outcome measures The incidence of HO during rehabilitation was compared between patients with SCI receiving oral ALN (n = 125) and patients with SCI not receiving oral ALN (n = 174). The association between HO and/or ALN intake with HO risk factors and biochemical markers of bone metabolism were also explored. Results HO developed in 19 male patients (6.35%), however there was no significant difference in the incidence of HO in patients receiving oral ALN or not. The mean odds ratio of not developing versus developing HO given ALN exposure was 0.8. Significant correlation was found between abnormal serum alkaline phosphatase (ALP) levels and HO appearance (P < 0.001) as well as normal serum ALP and ALN intake (P < 0.05). Conclusion Even though there was no direct prevention of HO in patients with SCI by oral ALN intake, abnormal serum ALP was found more frequently in patients with HO development and without oral ALN intake. This evidence could suggest that ALN may play a role in preventing HO, especially in patients with acute SCI with increasing levels of serum ALP. PMID:24820653

  13. Combined alkaline phosphatase and phosphorus levels as a predictor of mortality in maintenance hemodialysis patients.

    PubMed

    Chang, Jia-Feng; Feng, Ying-Feng; Peng, Yu-Sen; Hsu, Shih-Ping; Pai, Mei-Fen; Chen, Hung-Yuan; Wu, Hon-Yen; Yang, Ju-Yeh

    2014-10-01

    Hyperphosphatemia-induced vascular calcification and higher alkaline phosphatase (ALP) levels-related high-turnover bone diseases are linked to mortality among patients with chronic kidney disease (CKD). Nonetheless, no large epidemiological study in patients with CKD has been conducted to investigate the interaction and joint effect of hyperphosphatemia and higher ALP levels on mortality.We analyzed 11,912 maintenance hemodialysis patients from January 2005 to December 2010. Unadjusted and adjusted hazard ratios (aHRs) of death were calculated for different categories of serum phosphorus and ALP using the Cox regression model. The modification effect between serum phosphorus and ALP on mortality was determined using an interaction product term.Both hypophosphatemia (<3.0 mg/dL) and hyperphosphatemia (>7.0 mg/dL) were associated with incremental risks of death (aHR: 1.25 [95% confidence intervals (CIs): 1.09-1.44], and 1.15 [95% CI: 1.01-1.31], respectively) compared to the lowest hazard ratio (HR) group (5 mg/dL ≤ phosphorus<6 mg/dL). ALP levels were linearly associated with incremental risks for death (aHR: 1.58 [95% CI: 1.41-1.76] for the category of ALP>150 U/L). In the stratified analysis, patients with combined higher ALP (>150 U/L) and hyperphosphatemia (>7.0 mg/dL) had the greatest mortality risk (aHR: 2.25 [95% CI: 1.69-2.98] compared to the lowest HR group (ALP ≤ 60 U/L and 4 mg/dL ≤ phosphorus<5 mg/dL). Although the effect of hyperphosphatemia on mortality seemed stronger in higher ALP levels, the interaction was not statistically significant (P=0.22).The association between serum phosphorus levels and mortality was not limited to higher ALP levels. Regardless of serum ALP levels, we may control serum phosphorus levels merely toward the normal range. While considering the joint effect of ALP and hyperphosphatemia on mortality, the optimal phosphorus range should be stricter.

  14. Symptomatic and scintigraphic improvement after intravenous pamidronate treatment of Paget's disease of bone in patients with normal serum alkaline phosphatase levels.

    PubMed

    Ang, George; Feiglin, David; Moses, Arnold M

    2003-01-01

    To describe three patients with symptomatic Paget's disease of bone who presented with normal levels of serum alkaline phosphatase. We present three cases of Paget's disease of bone and chronicle the laboratory, scintigraphic, and clinical findings relative to treatment with intravenously administered pamidronate. Although measurement of serum total alkaline phosphatase usually provides a general indication of bone turnover in Paget's disease, about 15% of patients present with normal serum alkaline phosphatase levels. Nonetheless, these patients may have active Paget's disease when assessed with bone scintigraphy or urinary markers of bone resorption. All three study patients had xray findings characteristic of Paget's disease of bone, increased uptake of radiotracer material on bone scans, and elevated levels of urinary markers of bone resorption but normal alkaline phosphatase levels. They were treated with intravenously administered pamidronate, 60 mg once weekly for 2 to 3 consecutive weeks. After treatment, the serum alkaline phosphatase level decreased by 19 to 36%, markers of bone resorption normalized, bone scans showed improvement, and bone pain resolved. Pagetic activity in bone and related clinical manifestations may be present in the setting of a normal serum alkaline phosphatase level. Appropriate therapy should not be withheld because of the normal alkaline phosphatase.

  15. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts.

    PubMed

    Oliveira, Flávia Amadeu de; Matos, Adriana Arruda; Matsuda, Sandra Satiko; Buzalaf, Marília Afonso Rabelo; Bagnato, Vanderley Salvador; Machado, Maria Aparecida de Andrade Moreira; Damante, Carla Andreotti; Oliveira, Rodrigo Cardoso de; Peres-Buzalaf, Camila

    2017-04-01

    Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm(2) or 3.8J/cm(2), respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm(2) promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  17. Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease

    SciTech Connect

    Garnero, P.; Delmas, P.D.

    1993-10-01

    The authors measured serum bone alkaline phosphatase (B-ALP) with a new immunoradiometric assay (IRMA) in a large sample of healthy controls comprising 173 women and 180 men, 20-88 yr of age, and in patients with metabolic bone disease. Using serum samples from patients with liver disease and patients with Paget's disease with elevated total alkaline phosphatase (T-ALP) as a source of, respectively, liver and bone isoenyzmes, they determined a liver cross-reactivity of the IRMA of 16% that was confirmed by electrophoresis of the circulating alkaline phosphatase isoenzymes. The IRMA was linear for serial sample dilutions, the recovery ranged from 89-110%, and the intra- and interassay variations were below 7% and 9%, respectively. B-ALP increased linearly with age in both sexes, and the mean B-ALP serum levels were not significantly different for women and men (11.3 [+-] 4.8 ng/mL for women; 11.0 [+-] 4.0 ng/mL for men). The increase in B-ALP after the menopause was significantly higher than that in T-ALP (+77% vs. +24%; P<0.001). When the values of postmenopausal women were expressed as the SD from the mean of premenopausal women, the mean Z scores were 2.2[+-] 1.8 for B-ALP and 0.9 [+-] 1.3 for T-ALP (P<0.001 between the two).

  18. Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    PubMed Central

    Jurat-Fuentes, Juan Luis; Karumbaiah, Lohitash; Jakka, Siva Rama Krishna; Ning, Changming; Liu, Chenxi; Wu, Kongming; Jackson, Jerreme; Gould, Fred; Blanco, Carlos; Portilla, Maribel; Perera, Omaththage; Adang, Michael

    2011-01-01

    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests. PMID:21390253

  19. Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study.

    PubMed

    Lammers, Willem J; van Buuren, Henk R; Hirschfield, Gideon M; Janssen, Harry L A; Invernizzi, Pietro; Mason, Andrew L; Ponsioen, Cyriel Y; Floreani, Annarosa; Corpechot, Christophe; Mayo, Marlyn J; Battezzati, Pier M; Parés, Albert; Nevens, Frederik; Burroughs, Andrew K; Kowdley, Kris V; Trivedi, Palak J; Kumagi, Teru; Cheung, Angela; Lleo, Ana; Imam, Mohamad H; Boonstra, Kirsten; Cazzagon, Nora; Franceschet, Irene; Poupon, Raoul; Caballeria, Llorenç; Pieri, Giulia; Kanwar, Pushpjeet S; Lindor, Keith D; Hansen, Bettina E

    2014-12-01

    Noninvasive surrogate end points of long-term outcomes of patients with primary biliary cirrhosis (PBC) are needed to monitor disease progression and evaluate potential treatments. We performed a meta-analysis of individual patient data from cohort studies to evaluate whether patients' levels of alkaline phosphatase and bilirubin correlate with their outcomes and can be used as surrogate end points. We performed a meta-analysis of data from 4845 patients included in 15 North American and European long-term follow-up cohort studies. Levels of alkaline phosphatase and bilirubin were analyzed in different settings and subpopulations at different time points relative to the clinical end point (liver transplantation or death). Of the 4845 patients, 1118 reached a clinical end point. The median follow-up period was 7.3 years; 77% survived for 10 years after study enrollment. Levels of alkaline phosphatase and bilirubin measured at study enrollment (baseline) and each year for 5 years were strongly associated with clinical outcomes (lower levels were associated with longer transplant-free survival). At 1 year after study enrollment, levels of alkaline phosphatase that were 2.0 times the upper limit of normal (ULN) best predicted patient outcome (C statistic, 0.71) but not significantly better than other thresholds. Of patients with alkaline phosphatase levels ≤ 2.0 times the ULN, 84% survived for 10 years compared with 62% of those with levels >2.0 times the ULN (P < .0001). Absolute levels of alkaline phosphatase 1 year after study enrollment predicted patient outcomes better than percentage change in level. One year after study enrollment, a bilirubin level 1.0 times the ULN best predicted patient transplant-free survival (C statistic, 0.79). Of patients with bilirubin levels ≤ 1.0 times the ULN, 86% survived for 10 years after study enrollment compared with 41% of those with levels >1.0 times the ULN (P < .0001). Combining levels of alkaline phosphatase and

  20. [Study on levels of serum phosphorus, bone alkaline phosphatase and 25-hydroxyvitamin D in preterm infants with very low birth weight].

    PubMed

    Tian, Yue; Wu, Haixia

    2015-11-01

    To compare the levels of serum phosphorus, bone alkaline phosphatase and 25-hydroxyvitamin D3 in preterm infants with very low birth weight, and provide evidence for early screening, prevention of metabolic bone disease in preterm infants. A total of 110 newborns who met the inclusion criteria were selected in pediatric ward in our hospital. The case group included 60 preterm infants with very low birth weight and control group included 50 full term infants. Fasting blood were taken from the subjects at week 1, 4, and 12 respectively, and ELISA was conducted to quantitatively detect the serum levels of phosphorus, bone alkaline phosphatase and 25-hydroxyvitamin D. The increase of serum 25-hydroxyvitamin D₃in case group was smaller than that in control group; the levels of serum phosphorus had no significant difference between two groups. In case group, the level of bone alkaline phosphatase increased at week 1, 4, and 12, and the 25-hydroxyvitamin D₃level had significant difference at week 12 (P<0.05). The abnormal rate of 25-hydroxyvitamin D3 level was 26.7% for case group and 0% for control group. There were significant differences between case group and control group in levels of bone alkaline phosphatase and 25-hydroxyvitamin D₃, suggesting that detecting the serum levels of bone alkaline phosphatase and 25-hydroxyvitamin D3 would facilitate the early diagnosis of metabolic bone disease in preterm infants.

  1. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  2. Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride.

    PubMed

    Velmurugan, Babu; Selvanayagam, Mariadoss; Cengiz, Elif I; Uysal, Ersin

    2008-12-01

    The freshwater fish, Clarias gariepienus fingerlings, were exposed to sublethal concentrations (1.7 and 3.4 mg/L) of cadmium chloride for 12 days. Aspartate aminotransferase (AAT), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total protein levels were assayed in the gill, brain, and muscle of the fish at regular intervals of 6 and 12 days. The activities of AAT, ALT, and ALP of the treated fishes increased significantly in all the tissues compared with the control fish. Protein level in all the tissues showed a significant decrease in comparison to unexposed controls throughout the experimental periods. These results revealed that cadmium chloride effects the intermediary metabolism of C. gariepienus fingerlings and that the assayed enzymes can work as good biomarkers of contamination.

  3. Multisystemic functions of alkaline phosphatases.

    PubMed

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  4. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  5. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  6. Serum Alkaline Phosphatase Level as a Prognostic Tool in Colorectal Cancer: A Study of 105 patients.

    PubMed

    Saif, M Wasif; Alexander, Dominik; Wicox, Charles M

    2005-01-01

    BACKGROUND: Serum alkaline phosphotase (ALP) levels are frequently elevated in patients with metastatic colorectal cancer (CRC). However, the significance of ALP in terms of detecting hepatic metastasis or prognosis is not well established. MATERIALS AND METHODS: Medical records of patients with CRC seen at University of Alabama at Birmingham (UAB) (1998-2002) were reviewed and statistical analysis was done to evaluate the significance of ALP as a prognostic tool. The normal range for ALP was quantified at 39 U/L to 117 U/L. Change in ALP levels over time (defined as time interval between two cycles; such as 4 weeks for Mayo regimen, 8 weeks for Roswell Park regimen and 6 weeks for IFL regimen) was categorized as large (120+ U/L), medium (20-119 U/L), and minimal (< 20 U/L). RESULTS: A total of 105 patients with eligible medical records were identified (Mean age: 59 yrs; 53% male; Staging: II: 43 patients, III: 31 patients, IV: 32 patients). Increasing ALP levels correlated with increasing stage (Mean: I = 116, II = 219, III = 302; P = 0.0003). ALP levels were elevated in 74% of patients with liver metastases (Mean, 290) and in 33% without liver metastases (Mean, 122) (P = 0.001). Patients with elevated ALP levels at the most recent time of progression were 5.7 (95% CI, 2.4-13.3) times more likely to have a liver metastases compared to patients with normal levels. Additionally, patients with elevated ALP levels at their most recent visit were 4.2 (95% CI, 1.7-10.7) times more likely to have a worse prognosis compared to patients with normal levels. However, after controlling for the effects of liver metastases, the association between elevated levels and prognosis was no longer significant. After controlling for the effects of age, sex, and liver metastases, large changes in AP levels were associated with a 4.4 (95% CI, 1.0-19.1) times greater odds of having a worse prognosis compared to patients with a minimal change. Patients with an ALP level greater than 160

  7. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study.

    PubMed

    Patel, Rufi Murad; Varma, Siddhartha; Suragimath, Girish; Zope, Sameer

    2016-07-01

    In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey's test were applied for statistical analysis. The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  8. A High Level of Intestinal Alkaline Phosphatase Is Protective Against Type 2 Diabetes Mellitus Irrespective of Obesity.

    PubMed

    Malo, Madhu S

    2015-12-01

    Mice deficient in intestinal alkaline phosphatase (IAP) develop type 2 diabetes mellitus (T2DM). We hypothesized that a high level of IAP might be protective against T2DM in humans. We determined IAP levels in the stools of 202 diabetic patients and 445 healthy non-diabetic control people. We found that compared to controls, T2DM patients have approx. 50% less IAP (mean +/- SEM: 67.4 +/- 3.2 vs 35.3 +/- 2.5 U/g stool, respectively; p < 0.000001) indicating a protective role of IAP against T2DM. Multiple logistic regression analyses showed an independent association between the IAP level and diabetes status. With each 25 U/g decrease in stool IAP, there is a 35% increased risk of diabetes. The study revealed that obese people with high IAP (approx. 65 U/g stool) do not develop T2DM. Approx. 65% of the healthy population have < 65.0 U/g stool IAP, and predictably, these people might have 'the incipient metabolic syndrome', including 'incipient diabetes', and might develop T2DM and other metabolic disorders in the near future. In conclusion, high IAP levels appear to be protective against diabetes irrespective of obesity, and a 'temporal IAP profile' might be a valuable tool for predicting 'the incipient metabolic syndrome', including 'incipient diabetes'.

  9. Serum total and bone alkaline phosphatase levels and their correlation with serum minerals over the lifespan of sheep.

    PubMed

    Sousa, Cristina P; Azevedo, Jorge T; Silva, Amélia M; Viegas, Carlos A; Reis, Rui L; Gomes, Manuela E; Dias, Isabel R

    2014-06-01

    This study aimed to assess serum total alkaline phosphatase (ALP) and its bone isoform (BALP) levels during the ageing and in different physiologic states of sheep, in order to expand the knowledge about the variation of these biomarkers over the sheep lifespan. Ninety female sheep were divided into nine groups of various ages and physiological states (dry, lactation and pregnancy). Serum ALP, BALP and mineral levels were determined by commercial immunoassay, molecular absorbance spectrophotometry and chemical luminescence for BALP determination. Serum ALP and BALP decreased as sheep aged, and no statistically significant differences were obtained between ewes in different physiologic states. The continuous decline of serum BALP concentration along the sheep lifespan, namely in mature and old sheep, is a sign of decreasing bone turnover associated with ageing. Serum calcium concentrations increased slightly until 2 years of age and then showed a tenuous but statistically significant decrease in mature sheep, while serum phosphorus maintained an uninterrupted decrease as sheep matured. The knowledge of serum values of bone biomarkers throughout the sheep lifespan may be useful in preclinical orthopaedic research studies and for animal science studies using sheep.

  10. Serum alkaline phosphatase screening for vitamin D deficiency states.

    PubMed

    Shaheen, Shehla; Noor, Syed Shahid; Barakzai, Qamaruddin

    2012-07-01

    To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Cross-sectional, observational study. Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D3 levels of ² 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D3 = 20-29 ng/ml), moderate deficiency (vit. D3 = 5 - 19 ng/ml) and severe deficiency forms (vit. D3 < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D3 levels. P-value < 0.05 was considered to be significant. Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 ± 68.141 U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D3 levels was r =0.05 (p =0.593). Serum vitamin D3 levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency.

  11. Alkaline phosphatase and bone calcium parameters.

    PubMed

    Fauran-Clavel, M J; Oustrin, J

    1986-01-01

    Effects of cadmium, an alkaline phosphatase inhibitor, on the calcium content of rat bone were investigated in vivo by a radioisotopic method. Disturbance of bone metabolism is observed in both the superficial (delta) and slow exchanges (Ve), which are also significantly decreased. The crystallized calcium bone compartment (E) is also strongly affected. It appears that changes in the superficial calcium exchanges cause the observed decrease in the crystallized calcium mass. The slowing of osteogenesis is confirmed by the decrease of serum alkaline phosphatase activity. A statistical examination of the correlation coefficient reveals a close link (P less than 0.01) between serum alkaline phosphatase activity and the influx of superficial calcium (Vo+) and, as a result, the crystallized bone calcium parameters. These results show that cadmium can be used to study the relationship between alkaline phosphatase and calcification. The present observations allow us to consider the possibility that alkaline phosphatase may play a role in determining the calcium content of the crystallized phases in deep bone through its action on the tissue surface.

  12. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  13. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  14. Raised serum alkaline phosphatase and aspartate transaminase levels in two rheumatoid patients treated with sulphasalazine.

    PubMed Central

    Farr, M; Symmons, D P; Bacon, P A

    1985-01-01

    Hepatotoxicity is a rare complication of sulphasalazine therapy in ulcerative colitis. This report describes two rheumatoid patients in whom raised serum levels of liver enzymes occurred soon after starting sulphasalazine treatment for their arthritis. In both cases the serum enzyme levels returned to normal after stopping the drug. Drug-induced hepatotoxicity should be considered in patients with rheumatoid arthritis (RA) who develop raised serum levels of liver enzymes while taking sulphasalazine. PMID:2865931

  15. A High Level of Intestinal Alkaline Phosphatase Is Protective Against Type 2 Diabetes Mellitus Irrespective of Obesity☆

    PubMed Central

    Malo, Madhu S.

    2015-01-01

    Mice deficient in intestinal alkaline phosphatase (IAP) develop type 2 diabetes mellitus (T2DM). We hypothesized that a high level of IAP might be protective against T2DM in humans. We determined IAP levels in the stools of 202 diabetic patients and 445 healthy non-diabetic control people. We found that compared to controls, T2DM patients have approx. 50% less IAP (mean +/− SEM: 67.4 +/− 3.2 vs 35.3 +/− 2.5 U/g stool, respectively; p < 0.000001) indicating a protective role of IAP against T2DM. Multiple logistic regression analyses showed an independent association between the IAP level and diabetes status. With each 25 U/g decrease in stool IAP, there is a 35% increased risk of diabetes. The study revealed that obese people with high IAP (approx. 65 U/g stool) do not develop T2DM. Approx. 65% of the healthy population have < 65.0 U/g stool IAP, and predictably, these people might have ‘the incipient metabolic syndrome’, including ‘incipient diabetes’, and might develop T2DM and other metabolic disorders in the near future. In conclusion, high IAP levels appear to be protective against diabetes irrespective of obesity, and a ‘temporal IAP profile’ might be a valuable tool for predicting ‘the incipient metabolic syndrome’, including ‘incipient diabetes’. PMID:26844282

  16. Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen

    PubMed Central

    Caccia, Silvia; Moar, William J.; Chandrashekhar, Jayadevi; Oppert, Cris; Anilkumar, Konasale J.; Jurat-Fuentes, Juan Luis

    2012-01-01

    Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae. PMID:22685140

  17. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  18. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  19. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    PubMed

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  20. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of

  1. Comparison of salivary calcium, phosphate and alkaline phosphatase levels in children with early childhood caries after administration of milk, cheese and GC tooth mousse: an in vivo study.

    PubMed

    Hegde, Amitha M; Naik, Nischitha; Kumari, Suchetha

    2014-01-01

    This study compares the Salivary Calcium, Phosphate and Alkaline Phosphataselevels in children with Early Childhood Caries after administration of Milk, Cheese and GC Tooth Mousse to a control group of caries resistant children. 90 kindergarten children both males and females aged 5 years, from the South Canara region were included in the study. Based on the dmfs score, children were divided into 3 groups: Control group, ECC group and S-ECC group. The Salivary Calcium, Phosphate and Alkaline Phosphatase levels in the sample were assessed before and after administration of Milk, Cheese and GC Tooth Mousse at three different intervals, i.e within 5 minutes, 30 minutes and 60 minutes by using Spectrophotometry. The mean Salivary Calcium levels were higher in caries free group whereas Phosphate and Alkaline Phosphatase were lower in the caries free group which was statistically highly significant (p < 0.001). The Tooth Mousse group showed higher bioavailability of calcium and phosphate which was statistically highly significant (p < 0.001). Salivary Calcium and Phosphate levels within 5 minutes after application of Milk, Cheese and Tooth Mousse were higher than at 30 and 60 minutes. Salivary Alkaline Phosphatase levels were lower than the baseline values at all the 3 intervals after administration of Milk, Cheese and Tooth Mousse and was statistically not significant (p > 0.05). Saliva should be saturated with Calcium and Phosphate to affect their bioavailability in amounts adequate for remineralizaton. Milk, Cheese and GC Tooth Mousse applicaton were equally beneficial in saturating the saliva with adequate amount of Calcium and Phosphate.

  2. Effect of copper on levels of collagen and alkaline phosphatase activity from chondrocytes in newborn piglets in vitro.

    PubMed

    Yuan, Xue; Wang, Jianguo; Zhu, Xiaoyan; Zhang, Zhigang; Ai, Yongxing; Sun, Guoquan; Wang, Zhe; Liu, Guowen

    2011-12-01

    The effects of different concentrations of copper on collagen content and alkaline phosphatase (AKP) activity from chondrocytes in newborn piglets were measured. Chondrocytes were cultured in media containing 15% fetal calf serum supplemented with 0, 15.6, 31.2, and 62.5 μmol/L copper in a 12-well culture plate. Collagen content and AKP activity from the chondrocyte extracellular matrix increased significantly in the culture media with 15.6, 31.2, and 62.5 μmol/L copper and was the highest at 31.2 μmol/L copper (P < 0.05). Thus, the results indicated that copper could promote AKP activity and collagen production by chondrocytes.

  3. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  4. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  5. Prognostic value of combined preoperative lactate dehydrogenase and alkaline phosphatase levels in patients with resectable pancreatic ductal adenocarcinoma

    PubMed Central

    Ji, Fei; Fu, Shun-Jun; Guo, Zhi-Yong; Pang, Hui; Ju, Wei-Qiang; Wang, Dong-Ping; Hua, Yun-Peng; He, Xiao-Shun

    2016-01-01

    Abstract Serum enzymes, including lactate dehydrogenase (LDH) and alkaline phosphatase (ALP), have recently been reported to play important roles in tumor growth. Increases in LDH and ALP have been confirmed to predict poor prognosis in patients with various cancers. However, their prognostic value in pancreatic cancer has not been well studied. Therefore, we reviewed the preoperative data on LDH and ALP in 185 pancreatic ductal adenocarcinoma (PDAC) patients who underwent surgery between July 2005 and December 2010 to explore the prognostic value of these markers. The cutoff points were determined based on the upper limit of their normal values. The Chi-square test was used to analyze the relationships between LDH/ALP and clinical characteristics. Univariate and multivariate analyses were performed to identify the predictive value of the above factors for disease-free survival (DFS) and overall survival (OS). We found that elevation of LDH was related to carbohydrate antigen 19-9 (CA19-9), lymph node involvement, tumor size, TNM, distant metastasis, and recurrence. Additionally, ALP was correlated to perineural invasion. After multivariate analysis, LDH and ALP were identified as independent prognostic factors for DFS and OS, and elevation of LDH/ALP was correlated with poor DFS and OS. Notably, there was a positive correlation between LDH and ALP. The predictive power of LDH combined with ALP was more sensitive than that of either one alone. Therefore, we conclude that the preoperative LDH and ALP values are prognostic factors for PADC, and the prognostic accuracy of testing can be enhanced by the combination of LDH and ALP PMID:27399091

  6. Effects of carbamazepine on serum parathormone, 25- hydroxyvitamin D, bone specific alkaline phosphatase, C-telopeptide, and osteocalcin levels in healthy rats.

    PubMed

    Kir, Hale Maral; Garip, Sebnem; Sahin, Deniz; Öztaş, Berrin

    2012-11-01

    It is still not completely clear whether carbamazepine causes alterations in vitamin D status and in bone metabolism. The objective of this study was to investigate the effects of carbamazepine on serum levels of 25-hydroxyvitamin D and on biomarkers of bone formation and resorption in healthy rats. Levels of calcium, 25- hydroxyvitamin D, parathormone, C-telopeptide, bone specific alkaline phosphatase and osteocalcin were measured in 3 groups of rats consisting of controls (n=10), isotonic saline solution group (n=10) and carbamazepine group (n=10). Mean calcium levels were found to be significantly lower in healthy controls in comparison to isotonic saline solution and carbamazepine groups (10.0±0.24, 10.81±0.16, 10.93±0.22 mg/dL, respectively, p<0.05). Mean levels of 25- hydroxyvitamin D, were found to be significantly higher in control group compared to isotonic saline solution group (25- hydroxyvitamin D; 25.91±1.12, 19.99±0.99 ng/mL, respectively, p<0.01). Mean levels of parathormone and osteocalcin were found to be significantly higher in control group compared to isotonic saline solution group and carbamazepine group. Parathormone levels were measured as 3.46±0.83, 1.08±0.08, 0.94±0.02 pg/mL, respectively (p<0.01). Osteocalcine levels were measured as 1.66±0.001, 1.32±0.002, 1.32±0.001 ng/mL, respectively (p<0.001). A significant difference in terms of mean serum bone specific alkaline phosphatase and C-telopeptide levels among groups was not observed. The main outcome of this prospective study in healthy rats showed no change in biochemical parameters of bone turnover during treatment with carbamazepine.

  7. Low serum alkaline phosphatase activity in Kikuchi-Fujimoto disease

    PubMed Central

    Inamo, Yasuji

    2017-01-01

    Abstract Various laboratory findings are helpful in making a diagnosis of Kikuchi-Fujimoto disease (KFD); however, they are not specific. We found decreased serum alkaline phosphatase (SAP) activity in children with KFD. The levels of SAP fell in the acute phase and recovered during convalescence. We conclude that low SAP activity is a characteristic of KFD and may be an auxiliary diagnostic marker for the disease. PMID:28248884

  8. Inhibition of renal alkaline phosphatase by cimetidine.

    PubMed

    Minai-Tehrani, Dariush; Khodai, Somayeh; Aminnaseri, Somayeh; Minoui, Saeed; Sobhani-Damavadifar, Zahra; Alavi, Sana; Osmani, Raheleh; Ahmadi, Shiva

    2011-08-01

    Alkaline phosphatase (ALP) belongs to hydrolase group of enzymes. It is responsible for removing phosphate groups from many types of molecules, including nucleotides and proteins. Cimetidine (trade name Tagamet) is an antagonist of histamine H2-receptor that inhibits the production of gastric acid. Cimetidine is used for the treatment of gastrointestinal diseases. In this study the inhibitory effect of cimetidine on mouse renal ALP activity was investigated. Our results showed that cimetidine can inhibit ALP by uncompetitive inhibition. In the absence of inhibitor the V(max) and K(m) of the enzyme were found to be 13.7 mmol/mg prot.min and 0.25 mM, respectively. Both the Vmax and Km of the enzyme decreased with increasing cimetidine concentrations (0- 1.2 mM). The Ki and IC(50) of cimetidine were determined to be about 0.5 mM and 0.52 mM, respectively.

  9. Intestinal alkaline phosphatase to treat necrotizing enterocolitis.

    PubMed

    Biesterveld, Ben E; Koehler, Shannon M; Heinzerling, Nathan P; Rentea, Rebecca M; Fredrich, Katherine; Welak, Scott R; Gourlay, David M

    2015-06-15

    Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury. NEC was induced in Sprague-Dawley pups by delivery preterm followed by formula feedings with lipopolysaccharide (LPS) and hypoxia exposure and continued up to 4 d. IAP was added to feeds on day 2 until being sacrificed on day 4. NEC severity was scored based on hematoxylin and eosin-stained terminal ileum sections, and AP activity was measured using a colorimetric assay. IAP and interleukin-6 expression were measured using real time polymerase chain reaction. NEC pups' alkaline phosphatase (AP) activity was decreased to 0.18 U/mg compared with controls of 0.57 U/mg (P < 0.01). Discontinuation of LPS and hypoxia after 2 d increased AP activity to 0.36 U/mg (P < 0.01). IAP supplementation in matched groups did not impact total AP activity or expression. Discontinuing LPS and hypoxia after NEC onset improved intestinal injury scores to 1.14 compared with continued stressors, score 2.25 (P < 0.01). IAP supplementation decreased interleukin-6 expression two-fold (P < 0.05), though did not reverse NEC intestinal damage (P = 0.5). This is the first work to demonstrate that removing the source of NEC improves intestinal damage and increases AP activity. When used as a rescue treatment, IAP decreased intestinal inflammation though did not impact injury making it likely that IAP is best used preventatively to those neonates at risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  11. Identification of human pulmonary alkaline phosphatase isoenzymes.

    PubMed

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  12. Alkaline Phosphatase, an Unconventional Immune Protein.

    PubMed

    Rader, Bethany A

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  13. Alkaline Phosphatase, an Unconventional Immune Protein

    PubMed Central

    Rader, Bethany A.

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont. PMID:28824625

  14. Probable levetiracetam-related serum alkaline phosphatase elevation

    PubMed Central

    2012-01-01

    Background Levetiracetam (LEV) is an antiepileptic drug with a favorable tolerability and safety profile with little or no effect on liver function. Case presentation Here, we reported an epileptic pediatric patient who developed a significant elevation in serum alkaline phosphatase level (ALP) during LEV monotherapy. Moreover, the serum ALP level was surprisingly decreased to normal after LEV discontinuation. The Naranjo Adverse Drug Reaction Probability Scale score was 6, indicating firstly LEV was a probable cause for the increased serum ALP. Conclusions Cautious usage and concerns of the LEV-associated potential ALP elevation should be considered when levetiracetam is prescribed to epilepsy patients, especially pediatric patients. PMID:22994584

  15. Serum alkaline phosphatase and mortality in African Americans with chronic kidney disease.

    PubMed

    Beddhu, Srinivasan; Ma, Xiulian; Baird, Bradley; Cheung, Alfred K; Greene, Tom

    2009-11-01

    Serum alkaline phosphatase has been associated with increased mortality in hemodialysis patients but its associations with mortality in chronic kidney disease (CKD) stages III and IV are unknown. Design, settings, participants & measurements: In 1094 participants in the African-American Study of Kidney Disease and Hypertension (AASK) database, the associations of serum alkaline phosphatase with mortality and cardiovascular events were examined in Cox models. The mean (+/-SD) age was 54 +/- 11 yr, and 61% were men. The median alkaline phosphatase was 80 IU/L, and interquartile range was 66 to 97 IU/L. The mean follow-up was 4.6 yr. There were 105 (9.6%) all-cause deaths and 149 (13.6%) cardiovascular events. Each doubling of serum alkaline phosphatase was significantly associated with increased hazard [hazard ratio (HR) 1.60, 95% confidence interval (CI) 1.08 -2.36] of all-cause mortality adjusted for demographics, drug and blood pressure groups, and comorbidity. With further adjustment for liver function tests as well as serum calcium and phosphorus, each doubling of serum alkaline phosphatase remained significantly associated with increased mortality (HR 1.55, 95% CI 1.03 to 2.33). Serum alkaline phosphatase was not significantly associated with increased risk of cardiovascular events. Independent of liver function tests and serum calcium and phosphorus, higher levels of serum alkaline phosphatase are associated with increased mortality in the CKD population. Further studies are warranted to identify the potential mechanisms for this association.

  16. Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone.

    PubMed

    Puri, Basant K; Hakkarainen-Smith, Jaana S; Derham, Anne; Monro, Jean A

    2015-09-01

    While pharmacotherapy with intravenous ceftriaxone, a third-generation cephalosporin, is a potential treatment of Lyme neuroborreliosis, there is concern that it can cause the formation of biliary sludge, leading to hepatobiliary complications such as biliary colic, jaundice and cholelithiasis, which are reflected in changes in serum levels of bilirubin and markers of cholestatic liver injury (alkaline phosphatase and γ-glutamyltranspeptidase). It has been suggested that the naturally occurring substances α-lipoic acid and glutathione may be helpful in preventing hepatic disease. α-Lipoic acid exhibits antioxidant, anti-inflammatory and anti-apoptotic activities in the liver, while glutathione serves as a sulfhydryl buffer. The aim of this study was to determine whether co-administration of α-lipoic acid and glutathione is associated with significant changes in serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase during the treatment of Lyme neuroborreliosis with long-term intravenous ceftriaxone. Serum levels of bilirubin, alkaline phosphatase and γ-glutamyltranspeptidase were measured in 42 serologically positive Lyme neuroborreliosis patients before and after long-term treatment with intravenous ceftriaxone (2-4 g daily) with co-administration of oral/intravenous α-lipoic acid (600 mg daily) and glutathione (100 mg orally or 0.6-2.4 g intravenously daily). None of the patients developed biliary colic and there were no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels over the course of the intravenous ceftriaxone treatment (mean length 75.0 days). Co-administration of α-lipoic acid and glutathione is associated with no significant changes in serum bilirubin, alkaline phosphatase or γ-glutamyltranspeptidase levels during the treatment of neuroborreliosis with intravenous ceftriaxone.

  17. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  18. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice

    PubMed Central

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-01-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota. PMID:26247961

  19. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  20. High levels of both serum gamma-glutamyl transferase and alkaline phosphatase are independent preictors of mortality in patients with stage 4-5 chronic kidney disease.

    PubMed

    Caravaca-Fontán, Fernando; Azevedo, Lilia; Bayo, Miguel Ángel; Gonzales-Candia, Boris; Luna, Enrique; Caravaca, Francisco

    High serum gamma-glutamyl transferase (GGT) levels are associated with increased mortality in the general population. However, this association has scarcely been investigated in patients with chronic kidney disease (CKD). This study aims to investigate the clinical characteristics of CKD patients with abnormally elevated serum GGT, and its value for predicting mortality. Retrospective observational study in a population cohort of adults with stage 4-5 CKD not yet on dialysis. Demographic, clinical, and biochemical parameters of prognostic interest were recorded and used to characterise CKD patients with high levels of GGT (>36 IU/l). Cox proportional hazard regression models were used to analyse the influence of baseline serum GGT and alkaline phosphatase (ALP) levels on mortality for whatever reason. The study group consisted of 909 patients (mean age 65±15 years). Abnormally elevated GGT or ALP levels at baseline were observed in 209 (23%) and 172 (19%) patients, respectively, and concomitant elevations of GGT and ALP in 68 (7%). High GGT levels were associated with higher comorbidity burden, and a biochemical profile characterised by higher serum concentration of uric acid, triglycerides, alanine aminotransferase, ferritin, and C-reactive. During the study period, 365 patients (40%) died (median survival time=74 months). In adjusted Cox regression models, high levels of GGT (hazard ratio [HR]=1.39;CI 95%: 1.09-1.78, P=.009) and ALP (HR=1.31; CI95%: 1.02-1.68, P=.038) were independently associated with mortality. High serum levels of GGT are independent predictors of mortality in CKD patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Serum alkaline phosphatase predicts survival outcomes in patients with skeletal metastatic nasopharyngeal carcinoma.

    PubMed

    Jin, Ying; Yuan, Mei-Qin; Chen, Jun-Qing; Zhang, Yi-Ping

    2015-04-01

    Bone metastasis is frequently associated with nasopharyngeal carcinoma. The diagnosis and follow-up of bone metastatic patients usually relies on skeletal X-ray and bone scintigraphy, which are time-consuming and costly. This study aimed to evaluate whether serum alkaline phosphatase offers clinical value in predicting the clinical response and survival outcome for skeletal metastatic nasopharyngeal carcinoma. Serum alkaline phosphatase was measured at baseline and then before each cycle of treatment in 416 nasopharyngeal carcinoma patients with bone metastasis. The correlations between the pre-treatment and post-treatment alkaline phosphatase levels and the treatment efficacy were analyzed using the chi-square test. Survival was analyzed using the Kaplan-Meier method and then compared using the log-rank test. Patients with elevated pre-treatment alkaline phosphatase (>110 IU/L) had significantly worse progression-free survival (P<0.001) and overall survival (P<0.001) than those with a normal level of this marker (≤110 IU/L). Patients with elevated post-treatment alkaline phosphatase had worse progression-free survival (P<0.001) and overall survival (P<0.001) compared with those with a normal level. Patients with normal pre-treatment and post-treatment alkaline phosphatase showed the most favorable prognosis. The Cox multivariate analysis revealed that only the pre-treatment and post-treatment alkaline phosphatase levels were independent prognostic factors for progression-free survival (HR ϝ 1.656, P<0.001; HR ϝ 2.226, P<0.001) and for overall survival (HR ϝ 1.794, P<0.001; HR ϝ 2.657, P<0.001). Serum alkaline phosphatase appears to be a significant independent prognostic index in patients with skeletal metastatic nasopharyngeal carcinoma, which could reflect the short-term treatment response of palliative chemotherapy and the long-term survival outcomes.

  2. Fever of unknown origin (FUO) due to large B-cell lymphoma: the diagnostic significance of highly elevated alkaline phosphatase and serum ferritin levels.

    PubMed

    Cunha, Burke A; Petelin, Andrew

    2013-01-01

    Determining the cause of fever of unknown origin (FUO) is often a vexing and difficult diagnostic process. In most cases, the signs and symptoms in adult FUOs suggest a malignant, infectious, or rheumatic/inflammatory etiology. The diagnosis of FUO may be narrowed if specific findings are present (eg, hepatosplenomegaly) that limit the diagnostic possibilities. Infectious causes of FUO with hepatosplenomegaly include miliary tuberculosis, typhoid fever, and visceral leishmanosis (kala-azar). However, FUOs with hepatosplenomegaly are most often attributable to malignant neoplasms, ie, Hodgkin lymphoma, non-Hodgkin lymphoma, hepatoma, hypernephroma (renal-cell carcinoma), or preleukemia. We present a middle-aged woman with FUO and hepatosplenomegaly. Inpatient nonspecific laboratory findings included a highly elevated erythrocyte sedimentation rate, and elevated levels of vitamin B12, lactate dehydrogenase, angiotensin-converting enzyme, ferritin, and alkaline phosphatase. These individual findings are nonspecific, but together point to a lymphoma. An important test in differentiating malignant from infectious FUOs is the Naprosyn test, and her Naprosyn test was positive, indicating malignancy. A gallium scan suggested a uterine lymphoma. A computed tomography scan revealed hepatosplenomegaly, but the gallium uptake was not increased in her liver and spleen. Uterine and bone marrow biopsies were negative for lymphoma. We present a case of FUO with hepatosplenomegaly attributable to large B-cell lymphoma as diagnosed via liver biopsy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Alkaline Phosphatase distribution in the inferior vagal ganglion of the cat following vagotomy: a chronological study.

    PubMed

    Glover, R A

    1976-10-07

    The object of this study was to demonstrate sites of alkaline phosphatase activity within the cellular elements of the inferior vagal (nodosal) ganglion of the cat and chronologically observe and describe alterations in enzyme activity following vagotomy. In control tissues alkaline phosphatase activity was localized to the wall of perineuronal blood vessels and the satellite cell cytoplasm which envelops the neuronal perikarya. In the experimental tissues alkaline phosphatase activity was increased in the above locations during the first 20 days following vagotomy then gradually declined to approximate control levels by 60 days post-operatively. The functional significance of changes in alkaline phosphatase activity occurring within an altered metabolic environment induced by vagotomy is discussed.

  4. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.

    PubMed

    O'Brien, Patrick J; Herschlag, Daniel

    2002-03-05

    Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Brønsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of

  5. Characteristics of plasmalemma alkaline phosphatase of rat mesenteric artery.

    PubMed

    Kwan, C Y

    1983-01-01

    General characteristics of alkaline phosphatase activity of the plasma membrane-enriched fraction isolated from rat mesenteric arteries were investigated. The vascular smooth muscle plasmalemma alkaline phosphatase is a metalloenzyme which is strongly inhibited by chelating agents and this inhibition can be completely overcome by addition of Mg2+ or Ca2+. Zn2+ only partially reactivates the enzyme in the presence of low concentrations of EDTA. The enzymatic hydrolysis of p-nitrophenyl phosphate, beta-glycerophosphate, alpha-glycerophosphate, or 3'-adenosine monophosphate showed an optimal activity in the alkaline region between pH 9 and 11. The alkaline phosphatase activity is distinctly different from the plasmalemma ATPase and 5'-nucleotidase activities with respect to their pH dependence, influence by added divalent metal ions and stability against heat inactivation. Vanadate ion, being structurally similar to the transition state analog of the phosphoryl group, potently inhibits alkaline phosphatase with an apparent Ki of 1.5 microM. The altered alkaline phosphatase activity of vascular smooth muscle in relation to its possible physiological function and pathophysiological manifestation associated with hypertensive disease are discussed.

  6. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  7. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.

    PubMed

    Ghosh, Kaushik; Mazumder Tagore, Debarati; Anumula, Rushith; Lakshmaiah, Basanth; Kumar, P P B S; Singaram, Senthuran; Matan, Thangavelu; Kallipatti, Sanjith; Selvam, Sabariya; Krishnamurthy, Prasad; Ramarao, Manjunath

    2013-11-01

    Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active. Expression of rat IAP in Escherichia coli (rIAP-Ec) led to ~200-fold loss of activity that was partially recovered by the addition of external Zn(2+) and Mg(2+) ions. Crystal structures of rIAP-Ec and rIAP-Ic were determined and they provide rationale for the discrepancy in enzyme activities. Rat IAP-Ic retains its activity in presence of both Zn(2+) and Mg(2+) whereas activity of most other alkaline phosphatases (APs) including the cIAP was strongly inhibited by excess Zn(2+). Based on our crystal structure, we hypothesized the residue Q317 in rIAP, present within 7 Å of the Mg(2+) at M3, to be important for this difference in activity. The Q317H rIAP and H317Q cIAP mutants showed reversal in effect of Zn(2+), corroborating the hypothesis. Further analysis of the two structures indicated a close linkage between glycosylation and crown domain stability. A triple mutant of rIAP, where all the three putative N-linked glycosylation sites were mutated showed thermal instability and reduced activity.

  8. Specific Immunoassays for Placental Alkaline Phosphatase As a Tumor Marker

    PubMed Central

    Stinghen, Sérvio T.; Moura, Juliana F.; Zancanella, Patrícia; Rodrigues, Giovanna A.; Pianovski, Mara A.; Lalli, Enzo; Arnold, Dodie L.; Minozzo, João C.; Callefe, Luis G.; Ribeiro, Raul C.; Figueiredo, Bonald C.

    2006-01-01

    Human placental (hPLAP) and germ cell (PLAP-like) alkaline phosphatases are polymorphic and heat-stable enzymes. This study was designed to develop specific immunoassays for quantifying hPLAP and PLAP-like enzyme activity (EA) in sera of cancer patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP antibodies were purified by affinity chromatography with whole hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57–71) of hPLAP (ICA-PEP assay); the working range was 0.1–11 U/L and cutoff value was 0.2 U/L EA for nonsmokers. The intra- and interassay coefficients of variation were 3.7%–6.5% (ICA-PLAP assay) and 9.0%–9.9% (ICA-PEP assay). An insignificant cross-reactivity was noted for high levels of unheated intestinal alkaline phosphatase in ICA-PEP assay. A positive correlation between the regression of tumor size and EA was noted in a child with embryonal carcinoma. It can be concluded that ICA-PEP assay is more specific than ICA-PLAP, which is still useful to detect other PLAP/PLAP-like phenotypes. PMID:17489017

  9. Assessment of the alkaline phosphatase level in gingival crevicular fluid, as a biomarker to evaluate the effect of scaling and root planing on chronic periodontitis: An in vivo study

    PubMed Central

    Kunjappu, Jimly James; Mathew, Vinod Babu; Hegde, Shashikanth; Kashyap, Rajesh; Hosadurga, Rajesh

    2012-01-01

    Context: Clinical evaluation of gingivitis and/or periodontitis does not predict the progression or remission of the disease. Due to this diagnostic constraint, clinicians assume that the pathology has an increased risk of progression and plan treatments, despite the knowledge that all inflamed sites are not necessarily progressing. Extensive research has been carried out on gingival crevicular fluid (GCF) components that might serve as potential diagnostic markers for periodontitis. Among them alkaline phosphatase (ALP) levels in GCF has shown promise as a diagnostic marker. Aim: This study compares the levels of GCF alkaline phosphatase in patients with chronic periodontitis before and after scaling and root planing. Materials and Methods: This study is an in vivo longitudinal study conducted on twenty patients with localized periodontitis. The GCF was collected from the affected site prior to scaling and root planing and ALP level estimated. The probing depth and plaque index at the site were also measured for correlation. Patients were recalled after 7, 30, and 60 days for reassessment. Results: The GCF ALP values showed a sustained, statistically significant decrease after treatment. There was a positive correlation with probing depth but not with plaque index measured at each interval. Conclusion: The assessment of level of periodontal disease and effect of mechanical plaque control on the progression and regression of the disease can be evaluated precisely by the corresponding GCF ALP levels. Thus, alkaline phosphatase level is not only a biomarker for the pathology but also an indicator of prognosis of periodontitis. PMID:22438644

  10. Escherichia coli alkaline phosphatase. Kinetic studies with the tetrameric enzyme.

    PubMed

    Halford, S E; Schlesinger, M J; Gutfreund, H

    1972-03-01

    1. The stability of the tetrameric form of Escherichia coli alkaline phosphatase was examined by analytical ultracentrifugation. 2. The stopped-flow technique was used to study the hydrolysis of nitrophenyl phosphates by the alkaline phosphatase tetramer at pH7.5 and 8.3. In both cases transient product formation was observed before the steady state was attained. Both transients consisted of the liberation of 1mol of nitrophenol/2mol of enzyme subunits within the dead-time of the apparatus. The steady-state rates were identical with those observed with the dimer under the same conditions. 3. The binding of 2-hydroxy-5-nitrobenzyl phosphonate to the alkaline phosphatase tetramer was studied by the temperature-jump technique. The self-association of two dimers to form the tetramer is linked to a conformation change within the dimer. This accounts for the differences between the transient phases in the reactions of the dimer and the tetramer with substrate. 4. Addition of P(i) to the alkaline phosphatase tetramer caused it to dissociate into dimers. The tetramer is unable to bind this ligand. It is suggested that the tetramer undergoes a compulsory dissociation before the completion of its first turnover with substrate. 5. On the basis of these findings a mechanism is proposed for the involvement of the alkaline phosphatase tetramer in the physiology of E. coli.

  11. Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5'-nucleotidase.

    PubMed

    Channar, Pervaiz Ali; Shah, Syed Jawad Ali; Hassan, Sidra; Nisa, Zaib Un; Lecka, Joanna; Sévigny, Jean; Bajorath, Jürgen; Saeed, Aamer; Iqbal, Jamshed

    2017-03-01

    A series of isonicotinohydrazide derivatives was synthesized and tested against recombinant human and rat ecto-5'-nucleotidases (h-e5'NT and r-e5'NT) and alkaline phosphatase isozymes including both bovine tissue-non-specific alkaline phosphatase (b-TNAP) and tissue-specific calf intestinal alkaline phosphatase (c-IAP). These enzymes are implicated in vascular calcifications, hypophosphatasia, solid tumors, and cancers, such as colon, lung, breast, pancreas, and ovary. All tested compounds were active against both enzymes. The most potent inhibitor of h-e5'NT was derivative (E)-N'-(1-(3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethylidene)isonicotinohydrazide (3j), whereas derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) exhibited significant inhibitory activity against r-e5'NT. In addition, the derivative (E)-N'-(4'-chlorobenzylidene)isonicotinohydrazide (3a) was most potent inhibitor against calf intestinal alkaline phosphatase and the derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) was found to be most potent inhibitor of bovine tissue-non-specific alkaline phosphatase. Furthermore, putative binding modes of potent compounds against e5'NT (human and rat e5'NT) and AP (including b-TNAP and c-IAP) were determined computationally. © 2016 John Wiley & Sons A/S.

  12. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  13. [Granulocyte alkaline phosphatase--a biomarker of chronic benzene exposure].

    PubMed

    Khristeva, V; Meshkov, T

    1994-01-01

    In tracing the cellular population status in the peripheral blood of workers, exposed to benzene, was included and cytochemical determination of the alkaline phosphatase activity in leucocytes. This enzyme is accepted as marker of the neutrophilic granulocytes, as maturation of the cells and their antibacterial activity are parallel to the cytochemical activity of the enzyme. 78 workers from the coke-chemical production from state firm "Kremikovtsi" and 41 workers from the production "Benzene" and "Isopropylbenzene"--Oil Chemical Plant, Burgas are included. The benzene concentrations in the air of the working places in all productions are in the range of 5 to 50 mg/m3. For cytochemical determination of the alkaline phosphatase activity is used the method of L. Kaplow and phosphatase index was calculated. It was established that in 98.4% of all examined the alkaline phosphatase activity is inhibited to different rate, as from 46.5% [61 workers] it is zero. In considerably lower percentage of workers were established and other deviations: leucocytosis or leucopenia, neutropenia, increased percent of band neutrophils and toxic granules. The results of the investigation of the granulocyte population show that from all indices, the activity of granulocyte alkaline phosphatase demonstrates most convincing the early myelotoxic effect of benzene.

  14. The catalytic properties of alkaline phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  15. Acid- and alkaline phosphatase in amniotic fluid in normal and complicated pregnancy.

    PubMed

    Beckman, G; Beckman, L; Löfstrand, T

    1978-01-01

    171 samples of amniotic fluid were obtained by abdominal amniocentesis from 67 women with complicated pregnancies (isoimmunization, diabetes mellitus or toxaemia). The levels of heat-labile alkaline phosphatase (HLAP), heat-stable alkaline phosphatase (HSAP) and acid phosphatase (AcP) were determined and compared to the enzyme levels in 179 samples from women with normal pregnancies of corresponding gestational ages. HLAP showed two "peaks" of activity, one in the 5th-22nd week and the other at term. HSAP and AcP showed increased activity at term. HSAP was decreased (p less than 0.01) in isoimmunization between the 36th and 40th week. 11 cases of toxaemia with placental insufficiency showed no differences in the levels of HLAP and HSAP compared with normal pregnancy. AcP showed no differences between normal and complicated pregnancy. Samples contaminated by blood showed no significant increase in the acid- and alkaline phosphatase levels. Samples contaminated by meconium showed a complex pattern. Some samples had normal enzyme levels, some had high levels of HLAP only and some had high levels of HSAP and AcP. The origin of the enzymes is not known with certainty. HSAP in amniotic fluid is most likely not of placental but intestinal origin. Determinations of acid- and alkaline phosphatase in amniotic fluid seem to be of little values in the clinical management of complicated pregnancy.

  16. Inhibition of Alkaline Phosphatase by Several Diuretics

    DTIC Science & Technology

    1980-01-01

    August 20th, 1979) . . Summary , . Acetazolamide, furosemide, ethacrynic acid and chlorothiazide, diuretics of considerable structural diversity, inhibit...Ki is calculated to be 8.4, 7.0, 2.8 and 0.1 mmol/l for acetazolamide, furosemide, ethacrynic acid and chlorothiazide, respectively. Chlorothiazide...is a much more potent inhibitor of alkaline phos- phatase than the other three diuretics. The combination of ethacrynic acid and cysteine, itself an

  17. Plasma alkaline phosphatase activity: a screening test for rickets in preterm neonates.

    PubMed

    Kovar, I; Mayne, P; Barltrop, D

    1982-02-06

    Both rickets and raised plasma alkaline phosphatase activity are common in the preterm infant. Measurement of plasma alkaline phosphatase activity is valuable in screening for active disease and in diagnosis, but normal reference data are not available for preterm babies. In 30 consecutive preterm infants (birthweight 1580 +/- 410 g, gestational age 31 +/- 2.5 weeks) serial measurements of plasma alkaline phosphatase activity, plasma levels of calcium and inorganic phosphorus, and the pattern of alkaline phosphatase isoenzymes were made. Four patterns of changes in plasma alkaline phosphatase activity with time were seen. 4 of the 30 infants were shown to have rickets; these children and 14 of the 26 non-rachitic infants showed an increasing/peak/decreasing pattern with increasing age, but levels were much higher in the rachitic infants. The activity in all 30 was raised above the adult and childhood reference ranges at some point in time. The data suggest that an activity of five times the upper limit of the normal adult reference range is acceptable in the preterm infant but an activity higher than this may suggest rickets.

  18. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  19. Repeated probing of Southwestern blots using alkaline phosphatase stripping.

    PubMed

    Jia, Yinshan; Jiang, Daifeng; Jarrett, Harry W

    2010-11-05

    Southwestern blotting is when a DNA sequence is used to probe DNA-binding proteins on an electrophoretic gel blot. It would be highly desirable to be able to probe a blot repeatedly with different DNA sequences. Alkaline phosphatase can remove 5'-phosphoryl groups from DNA and radiolabeled 5'-(32)P-DNA probes are commonly used in Southwestern blotting. Here is shown that once probed, the radioisotope signal on the blot can be effectively removed by brief digestion with alkaline phosphatase, and the blot can then be repeatedly probed at least six times with different DNA probes. This exceeds the repetitions possible with another commonly used method using SDS. The technique can be used with either one-dimensional or multi-dimensional Southwestern blots and does not have a large effect on the phosphorylation state of the blotted proteins. An alternative method using T4 polynucleotide kinase stripping is also introduced but was less well characterized.

  20. Repeated probing of Southwestern blots using alkaline phosphatase stripping

    PubMed Central

    Jia, Yinshan; Jiang, Daifeng; Jarrett, Harry W.

    2010-01-01

    Southwestern blotting is when a DNA sequence is used to probe DNA-binding proteins on an electrophoretic gel blot. It would be highly desirable to be able to probe a blot repeatedly with different DNA sequences. Alkaline phosphatase can remove 5′-phosphoryl groups from DNA and radiolabeled 5′-32P-DNA probes are commonly used in Southwestern blotting. Here is shown that once probed, the radioisotope signal on the blot can be effectively removed by brief digestion with alkaline phosphatase, and the blot can then be repeatedly probed at least six times with different DNA probes. This exceeds the repetitions possible with another commonly used method using SDS. The technique can be used with either one-dimensional or multi-dimensional Southwestern blots and does not have a large effect on the phosphorylation state of the blotted proteins. An alternative method using T4 polynucleotide kinase stripping is also introduced but was less well characterized. PMID:20926088

  1. Hybrids of chemical derivatives of Escherichia coli alkaline phosphatase.

    PubMed

    Meighen, E; Yue, R

    1975-12-15

    The activities of hybrid dimers of alkaline phosphatase containing two chemically modified subunits have been investigated. One hybrid species was prepared by dissociation and reconstitution of a mixture of two variants produced by chemical modification of the native enzyme with succinic anhydride and tetranitromethane, respectively. The succinyl-nitrotyrosyl hybrid was separated from the other members of the hybrid set by DEAE-Sephadex chromatography and then converted to a succinyl-aminotyrosyl hybrid by reduction of the modified tyrosine residues with sodium dithionite. A comparison of the activities of these two hybrids with the activities of the succinyl, nitrotyrosyl and aminotyrosyl derivatives has shown that either the subunits of alkaline phosphatase function independently or if the subunits turnover alternately in a reciprocating mechanism, then the intrinsic activity of each subunit must be strongly dependent on its partner subunit.

  2. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    PubMed Central

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  3. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Physiological aspects of alkaline phosphatase in selected cyanobacteria.

    PubMed

    Doonan, B B; Jensen, T E

    1980-01-01

    The alkaline phosphatase of Plectonema boryanum shows a considerable increase in activity following placement of the cells in a phosphate free medium. Five days of phosphate starvation result in a 14-fold increase of alkaline phosphatase activity. Growth in the presence of inhibitors of transcription and translation indicate that the synthesis of the enzyme is de novo. Orthophosphate causes an immediate inhibition of enzyme activity. Enzyme was extracted from P. boryanum with lysozyme or polymyxin B treatment in order to make comparative studies of cell bound and cell free enzyme. Of several enzyme specific inhibitors tested, mercuric chloride was the most effective. Temperature studies showed that the cell bound enzyme was most active at 40 degrees C while the cell free enzyme was most active at 70 degrees C. The pH optimum was 9 for the cell free enzyme, and 8.8 for the cell bound. The enzyme was tested to determine if it could hydrolyse a number of different organic compounds. It hydrolysed p-nitrophenol phosphate 100%, fructose-6-phosphate 45%, beta-glycerol phosphate 25% and other compounds to a lesser degree. Of seventeen other Cyanobacteria tested for alkaline phosphatase, all were positive, and of these eleven were inducible for the enzyme. Ten of the isolates released some of the enzyme into the culture medium. Michaelis constants for the enzyme were also determined.

  5. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    PubMed

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  6. Alkaline phosphatase in stallion semen: characterization and clinical applications.

    PubMed

    Turner, R M O; McDonnell, S M

    2003-06-01

    Significant amounts of alkaline phosphatase (AP) activity have been found in semen plasma from numerous species. In species in which the majority of semen plasma AP (SPAP) activity originates from the epididymis and testicle, SPAP activity can be used clinically as a marker to differentiate testicular origin azoospermia or oligospermia from ejaculatory failure. Information on SPAP activity in stallions to date has been limited. In this study, a standard clinical chemistry analyzer was used to determine AP activity in pre-ejaculatory fluid and ejaculates from groups of normal stallions. Additionally, accessory glands, epididymides, testicles and other components of the urogenital tract of normal stallions were assayed to determine which tissues contain SPAP activity. The results indicated that levels of AP activity are low in pre-ejaculatory fluid, but significantly higher in ejaculatory fluid from normal stallions. Spermatozoa were not a significant source of SPAP activity. High levels of SPAP activity were found in the testes and epididymides. These findings suggest that SPAP activity is a candidate for a sperm-independent marker for ejaculation in the stallion. Finally, AP activity was determined in ejaculatory fluid from a stallion with bilaterally blocked ampullae, both before and after relief of the blockage. While the blockage was present, AP activity in ejaculatory fluid was low. However, following relief of the blockage, AP activity in ejaculatory fluid rose dramatically, thus suggesting that AP activity will be useful as an inexpensive, simple clinical assay for differentiating ejaculatory failure or excurrent duct blockages from testicular origin azoospermia and oligospermia.

  7. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase.

    PubMed

    Lorenz, B; Schröder, H C

    2001-06-11

    Recent results revealed that inorganic polyphosphates (polyP), being energy-rich linear polymers of orthophosphate residues known from bacteria and yeast, also exist in higher eukaryotes. However, the enzymatic basis of their metabolism especially in mammalian cells is still uncertain. Here we demonstrate for the first time that alkaline phosphatase from calf intestine (CIAP) is able to cleave polyP molecules up to a chain length of about 800. The enzyme acts as an exopolyphosphatase degrading polyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but inhibit the degradation of polyP. The rate of hydrolysis of short-chain polyP by CIAP is comparable to that of the standard alkaline phosphatase (AP) substrate p-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer both in the alkaline and in the neutral pH range. The K(m) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of AP was not able to hydrolyze polyP under the conditions applied while the placental-type AP and the bacterial (Escherichia coli) AP displayed polyP-degrading activity.

  8. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    PubMed

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo.

  9. Digestive enzyme and alkaline phosphatase activities during the early stages of Silurus soldatovi development.

    PubMed

    Liu, Wei; Zhang, Xiu-Mei; Wang, Li-Bo

    2010-12-01

    To provide a theoretical basis to improve the survival and growth rate and optimize diet of sheatfish (Silurus soldatovi), the activities of certain digestive enzymes and alkaline phosphatases were investigated during larval development of one-ten day old individuals. Results indicated that sheatfish larva (~ three days after hatching) had high levels of alkaline protease activity, which peaked at five days old and dipped by eight days old, although the trend was generally upward. Acid protease activity at one-eight days old was low, after which it increased rapidly. Amylase activity reached the highest value at five days old, after which it began to decline. Lipase activity fluctuated markedly and showed two peaks at three-four days old and six-eight days old. Larval digestive enzyme activity and alkaline phosphatase activity were higher when fed live food than when fed an artificial diet. Throughout the early development process, alkaline protease activity was higher than acid protease, alkaline protease and amylase specific activity decreased significantly for eight-day-old transition larvae, while acid protease activity increased rapidly. These results indicate that the changes in digestive enzyme activity were relevant to digestive function conversion during fish larvae development. Alkaline phosphatase activity showed an upward trend over the first ten days of life, which indicated that the gastrointestinal function of sheatfish improved gradually.

  10. Intestinal Alkaline Phosphatase Attenuates Alcohol-Induced Hepatosteatosis in Mice.

    PubMed

    Hamarneh, Sulaiman R; Kim, Byeong-Moo; Kaliannan, Kanakaraju; Morrison, Sara A; Tantillo, Tyler J; Tao, Qingsong; Mohamed, Mussa M Rafat; Ramirez, Juan M; Karas, Aaron; Liu, Wei; Hu, Dong; Teshager, Abeba; Gul, Sarah Shireen; Economopoulos, Konstantinos P; Bhan, Atul K; Malo, Madhu S; Choi, Michael Y; Hodin, Richard A

    2017-08-01

    Bacterially derived factors from the gut play a major role in the activation of inflammatory pathways in the liver and in the pathogenesis of alcoholic liver disease. The intestinal brush-border enzyme intestinal alkaline phosphatase (IAP) detoxifies a variety of bacterial pro-inflammatory factors and also functions to preserve gut barrier function. The aim of this study was to investigate whether oral IAP supplementation could protect against alcohol-induced liver disease. Mice underwent acute binge or chronic ethanol exposure to induce alcoholic liver injury and steatosis ± IAP supplementation. Liver tissue was assessed for biochemical, inflammatory, and histopathological changes. An ex vivo co-culture system was used to examine the effects of alcohol and IAP treatment in regard to the activation of hepatic stellate cells and their role in the development of alcoholic liver disease. Pretreatment with IAP resulted in significantly lower serum alanine aminotransferase compared to the ethanol alone group in the acute binge model. IAP treatment attenuated the development of alcohol-induced fatty liver, lowered hepatic pro-inflammatory cytokine and serum LPS levels, and prevented alcohol-induced gut barrier dysfunction. Finally, IAP ameliorated the activation of hepatic stellate cells and prevented their lipogenic effect on hepatocytes. IAP treatment protected mice from alcohol-induced hepatotoxicity and steatosis. Oral IAP supplementation could represent a novel therapy to prevent alcoholic-related liver disease in humans.

  11. Alkaline phosphatase vs luciferase as secreted reporter molecules in vivo.

    PubMed

    Hiramatsu, Nobuhiko; Kasai, Ayumi; Meng, Yiman; Hayakawa, Kunihiro; Yao, Jian; Kitamura, Masanori

    2005-04-15

    Secreted alkaline phosphatase (SEAP) and Metridia luciferase (MLuc) are useful reporter molecules in vitro, but little is understood about their usefulness in vivo. In this study, we investigated in vivo activity of recombinant SEAP and MLuc in blood and urine. When SEAP-transfected cells or recombinant SEAP were injected into rats, substantial increase in the level of serum SEAP was observed. In contrast, activity of SEAP was not detected in urine of rats injected with either the SEAP-transfected cells or recombinant SEAP. SEAP activity was also undetectable in urine of SEAP-injected Nagase analbuminemic rats in which glomerular permeability to macromolecules is enhanced. When MLuc-transfected cells were implanted into rats, activity of MLuc was undetectable not only in urine but also in serum. Even immediately after intravenous injection of recombinant MLuc, activity of MLuc was not detected in serum. Subsequent experiments revealed that, in contrast to SEAP, MLuc was rapidly inactivated either by rat serum, fetal bovine serum, or human serum. Albumin was identified as the molecule responsible for the inhibition of MLuc activity. These data elucidated advantages and limitations of secreted reporter molecules SEAP and MLuc under in vivo situations.

  12. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  13. Bone Mineral Density According to Dual Energy X-ray Absorptiometry is Associated with Serial Serum Alkaline Phosphatase Level in Extremely Low Birth Weight Infants at Discharge.

    PubMed

    Lee, Jin; Park, Hyun-Kyung; Kim, Ja Hye; Choi, Yun Young; Lee, Hyun Ju

    2017-06-01

    To examine bone mineral density in extremely low birth weight infants at discharge and investigate whether serial measurements of serum alkaline phosphatase (ALP) and phosphate can predict bone mineralization. The individuals were 70 preterm infants. Serum calcium, phosphate, and ALP were measured at weekly intervals during admission in extremely low birth weight infants (mean gestational age, 25.3±2.1 weeks; birth weight, 812.8±141.1 g). Bone mineral apparent density (BMAD) of the lumbar spine was prospectively evaluated by dual energy X-ray absorptiometry at discharge (n=70). BMAD was classified as poor (< 25(th) percentile) at < 0.014 g/cm(3), fair (25(th)-75(th) percentile) at < 0.014-0.021 g/cm(3), and good (> 75(th) percentile) at > 0.021 g/cm(3), based on the distribution of BMAD values in infants with noncomplicated courses of prematurity (n=43). In a further multivariate analysis, the number of total parenteral nutrition days, phosphate at 2 postnatal weeks and 3 postnatal weeks, and ALP at 4 postnatal weeks and 5 postnatal weeks had an impact on bone mineral density at the lumbar spine, independent of gestational age and body weight. Peak ALP activities exceeding 650 IU/L revealed low bone mineral density with 80% sensitivity and 64% specificity (AUC, 0.70; p=0.005). Serial measurements of serum ALP and phosphate are associated with decreased bone mineralization by dual energy X-ray absorptiometry at discharge in extremely low birth weight infants. Copyright © 2016. Published by Elsevier B.V.

  14. Increase in serum alkaline phosphatase due to fatty meal in undergraduate students of Khyber Medical University, Khyber Pakhtunkhwa.

    PubMed

    Khan, Muhammad Jaseem; Ahmed, Basir; Ahmed, Saeed; Khan, Momin

    2016-04-01

    To evaluate the effect of fatty meal on intestinal alkaline phosphatase. The cross-sectional study was conducted at Khyber Medical University, Peshawar, Pakistan from March to April 2014 and comprised young healthy individuals 18-25 years of age. Whole blood samples were collected from the subjects in ethylenediaminetetraacetic acid anti-coagulated and plane serum tubes. For blood group analysis, blood group anti sera were used, while for serum alkaline phosphatase, a chemistry analyser was used. Alkaline phosphatase levels in the blood before and after breakfast were compared. Of the 177 subjects, there were 139(78.5%) men and 38(21.4%) women. Mean fasting alkaline phosphatise level was 144.22+/-75.57, while mean random value was 174.15+/-96.70 (p=0.001). Serum alkaline phosphatise must be analysed in fasting state early in the morning.

  15. Pre-operative serum alkaline phosphatase as a predictive indicator of post-operative hypocalcaemia in patients undergoing total thyroidectomy.

    PubMed

    Miah, M S; Mahendran, S; Mak, C; Leese, G; Smith, D

    2015-11-01

    This study aimed to evaluate whether a pre-operative elevated serum alkaline phosphatase level is a potential predictor of post-operative hypocalcaemia after total thyroidectomy. Data was retrospectively collected from the case notes of patients who had undergone total thyroidectomy. Patients were divided into Graves' disease and non-Graves' groups. Pre-operative and post-operative biochemical markers, including serum calcium, alkaline phosphatase and parathyroid hormone levels, were reviewed. A total of 225 patients met the inclusion criteria. Graves' disease was the most common indication (n = 134; 59.5 per cent) for thyroidectomy. Post-operative hypocalcaemia developed in 48 patients (21.3 per cent) and raised pre-operative serum alkaline phosphatase was noted in 94 patients (41.8 per cent). Raised pre-operative serum alkaline phosphatase was significantly associated with post-operative hypocalcaemia, particularly in Graves' disease patients (p < 0.05). Pre-operative serum alkaline phosphatase measurements help to predict post-thyroidectomy hypocalcaemia, especially in patients who do not develop hypoparathyroidism. Ascertaining the pre-operative serum alkaline phosphatase level in patients undergoing total thyroidectomy may help surgeons to identify at-risk patients.

  16. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate.

    PubMed

    Moss, Angela K; Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S; Narisawa, Sonoko; Millán, José Luis; Warren, H Shaw; Hohmann, Elizabeth; Malo, Madhu S; Hodin, Richard A

    2013-03-15

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.

  17. Osseous plate alkaline phosphatase is anchored by GPI.

    PubMed

    Pizauro, J M; Ciancaglini, P; Leone, F A

    1994-02-01

    Alkaline phosphatase activity was released up to 100% from the membrane by using 0.1 U of phosphatidylinositol-specific phospholipase C from B. thuringiensis. The M(r) of solubilized enzyme was 145,000 by Sephacryl S-300 gel filtration and 66,000 by SDS-PAGE, suggesting a dimeric structure. Solubilization of the membrane-bound enzyme with phospholipase C did not destroy its ability to hydrolyze p-nitrophenyl phosphate (PNPP) (264.3 mumol min-1 mg-1),ATP (42.0 mumol min-1 mg-1) and pyrophosphate (28.4 mumol min-1 mg-1). The hydrolysis of ATP and PNPP by solubilized enzyme exhibited "Michaelian" kinetics with K0.5 = 70 and 979 microM, respectively. For pyrophosphate, K0.5 was 128 microM and site-site interactions were observed (n = 1.4). Magnesium ions were stimulatory (Kd = 1.5 mM) but zinc ions were powerful non-competitive inhibitors (Kd = 6.2 microM) of solubilized enzyme. Treatment of solubilized alkaline phosphatase with Chellex 100 reduced the original PNPPase activity to 5%. Cobalt (K0.5 = 10.1 microM), magnesium (K0.5 = 29.5 microM) and manganese ions (K0.5 = 5 microM) restored the activity of the apoenzyme with positive cooperativity, suggesting that phosphatidylinositol-specific phospholipase C-solubilized alkaline phosphatase is a metalloenzyme. The stimulation of the apoenzyme by calcium ions (K0.5 = 653 microM) was lower than that observed for the other ions (26%) and exhibited site-site interactions (n = 0.7). Zinc ions had no effect on the apoenzyme of the solubilized enzyme.

  18. Alkaline Phosphatase: A Biomarker of Cardiac Function in Pediatric Patients.

    PubMed

    Makil, Elizabeth S; Tang, Xinyu; Frazier, Elizabeth A; Collins, R Thomas

    2017-02-09

    Myocardial dysfunction and heart failure are common in pediatric patients with congenital and acquired heart disease. Alkaline phosphatase (AP) has been suggested as a biomarker for myocardial dysfunction after Fontan operation. We hypothesized that pediatric patients with myocardial dysfunction requiring orthotopic heart transplant (OHT) have diminished AP compared to normal. A retrospective review was performed in all patients who underwent OHT at Arkansas Children's Hospital between January 2007 and October 2012. Anatomic diagnoses, therapeutic interventions, and ventricular ejection fraction (EF) were recorded. Z scores for AP levels in the study group were determined by comparing the observed AP levels to age- and gender-matched normative values. T tests were performed to compare the mean AP Z score prior to and after OHT. p values <0.05 were considered statistically significant. During the study period, 124 OHTs were performed. Complete study data were available and analyzed from 71/124 patients (mean age at OHT 3.9 years; 51% female). The mean AP Z score was significantly lower in the study group prior to OHT compared to normal (p < 0.0001). The initiation of ACE inhibitor therapy prior to OHT was associated with a significant increase in AP and the ventricular EF (p < 0.001 for both). Treatment with milrinone was associated with an increase in EF. AP is significantly lower in pediatric patients with myocardial dysfunction prior to OHT compared to normal. AP increases significantly after the initiation of therapies to improve myocardial function. Diminished AP is an indicator of myocardial dysfunction in pediatric patients.

  19. A description of alkaline phosphatases from marine organisms

    NASA Astrophysics Data System (ADS)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  20. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    PubMed

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  1. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo.

    PubMed

    Patil, M P; Nagvekar, A S; Ingole, S D; Bharucha, S V; Palve, V T

    2015-03-01

    Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. The levels of SCC (×10(5) cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes.

  2. Somatic cell count and alkaline phosphatase activity in milk for evaluation of mastitis in buffalo

    PubMed Central

    Patil, M. P.; Nagvekar, A. S.; Ingole, S. D.; Bharucha, S. V.; Palve, V. T.

    2015-01-01

    Background and Aim: Mastitis is a serious disease of dairy animals causing great economic losses due to a reduction in milk yield as well as lowering its nutritive value. The application of somatic cell count (SCC) and alkaline phosphatase activity in the milk for diagnosis of mastitis in buffalo is not well documented. Therefore, the present study was conducted to observe the SCC and alkaline phosphatase activity for evaluation of mastitis in buffalo. Materials and Methods: Milk samples of forty apparently healthy lactating buffaloes were selected and categorized into five different groups viz. normal buffaloes, buffaloes with subclinical mastitis with CMT positive milk samples (+1 Grade), (+2 Grade), (+3 Grade), and buffaloes with clinical mastitis with 8 animals in each group. The milk samples were analyzed for SCC and alkaline phosphatase activity. Results: The levels of SCC (×105 cells/ml) and alkaline phosphatase (U/L) in different groups were viz. normal (3.21±0.179, 16.48±1.432), subclinical mastitis with CMT positive milk samples with +1 Grade (4.21±0.138, 28.11±1.013), with +2 Grade (6.34±0.183, 34.50±1.034), with +3 Grade (7.96±0.213, 37.73±0.737) and buffaloes with clinical mastitis (10.21±0.220, 42.37±0.907) respectively, indicating an increasing trend in the values and the difference observed among various group was statistically significant. Conclusion: In conclusion, the results of the present study indicate that the concentration of milk SCC and alkaline phosphatase activity was higher in the milk of buffaloes with mastitis than in the milk of normal buffaloes. PMID:27047098

  3. Alkaline Phosphatase Activity in San Francisco and Monterey Bays

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.

    2002-12-01

    Phosphorus (P) is an essential nutrient utilized by all living organisms, and has been recognized as a limiting nutrient in some oceanic systems (Cotner et al., 1997; Karl et al., 1995; Michaels et al., 1996; Wu et al., 2000). However, relatively little is known about the extent of P limitation in natural environments, how P limitation varies spatially and temporally, and what determines how and when P becomes limiting (Benitez-Nelson, 2000). A more direct estimate of the degree of P limitation in a variety of oceanic systems is needed to better understand P cycling and dynamics within the ocean and how these have and will change in response to global climate and environmental perturbation. Accordingly, the objective this study is to assess the P-status of marine planktonic communities in Monterey and San Francisco Bays using the activity of alkaline phosphatase in the water column. Alkaline phosphatase (AP) is the most widely used enzyme that marine organisms use to hydrolize organic P compounds to biologically available orthophosphate. Accordingly it is expected that in areas where P is a limiting nutrient organisms will produce and release more AP to seawater so they can utilize the dissolved and particulate organic P compounds. Indeed it has been suggested that the AP activity is a reliable indicator of P-availability to planktonic communities (Ammerman and Azam, 1985; Cotner and Wetzel, 1991; Hong et al., 1998). High enzyme activities indicate low dissolved inorganic phosphate (DIP) availability while low levels suggest that DIP supply satisfies the community P-demand. This study examines AP activity in San Francisco and Monterey Bays over a 12 month period, from November, 2001 through November, 2002 using two enzyme assays. The study encompasses data from a three-station transect in Monterey Bay, at depths ranging from 0-60 meters. The stations range from coastal waters to open ocean depths of several thousand meters. In San Francisco Bay, surface water from

  4. Dephosphorylation of endotoxin by alkaline phosphatase in vivo.

    PubMed Central

    Poelstra, K.; Bakker, W. W.; Klok, P. A.; Kamps, J. A.; Hardonk, M. J.; Meijer, D. K.

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin is a substance that contains phosphate groups and is usually present in the extracellular space, we studied whether AP is able to dephosphorylate this bacterial product at physiological pH levels. We tested this in intestinal cryostat sections using histochemical methods with endotoxin from Escherichia coli and Salmonella minnesota R595 as substrate. Results show that dephosphorylation of both preparations occurs at pH 7.5 by AP activity. As phosphate residues in the lipid A moiety determine the toxicity of the molecule, we examined the effect of the AP inhibitor levamisole in vivo using a septicemia model in the rat. The results show that inhibition of endogenous AP by levamisole significantly reduces survival of rats intraperitoneally injected with E. coli bacteria, whereas this drug does not influence survival of rats receiving a sublethal dose of the gram-positive bacteria Staphylococcus aureus. In view of the endotoxin-dephosphorylating properties of AP demonstrated in vitro, we propose a crucial role for this enzyme in host defense. The effects of levamisole during gram-negative bacterial infections and the localization of AP as an ecto-enzyme in most organs as well as the induction of enzyme activity during inflammatory reactions and cholestasis is in accordance with such a protective role. Images Figure 1 Figure 5 PMID:9327750

  5. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    PubMed

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  6. Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP).

    PubMed

    Mehta, Bakul Dhagat; Jog, Sonali P; Johnson, Steven C; Murthy, Pushpalatha P N

    2006-09-01

    Phytic acid is the most abundant inositol phosphate in cells; it constitutes 1-5% of the dry weight of cereal grains and legumes. Phytases are the primary enzymes responsible for the hydrolysis of phytic acid and thus play important roles in inositol phosphate metabolism. A novel alkaline phytase in lily pollen (LlALP) was recently purified in our laboratory. In this paper, we describe the cloning and characterization of LlALP cDNA from lily pollen. Two isoforms of alkaline phytase cDNAs, LlAlp1 and LlAlp2, which are 1467 and 1533 bp long and encode proteins of 487 and 511 amino acids, respectively, were identified. The deduced amino acid sequences contains the signature heptapeptide of histidine phosphatases, -RHGXRXP-, but shares < 25% identity to fungal histidine acid phytases. Phylogenetic analysis reveals that LlALP is most closely related to multiple inositol polyphosphate phosphatase (MINPP) from humans (25%) and rats (23%). mRNA corresponding to LlAlp1 and LlAlp2 were expressed in leaves, stem, petals and pollen grains. The expression profiles of LlAlp isoforms in anthers indicated that mRNA corresponding to both isoforms were present at all stages of flower development. The expression of LlAlp2 cDNA in Escherichia coli revealed the accumulation of the active enzyme in inclusion bodies and confirmed that the cDNA encodes an alkaline phytase. In summary, plant alkaline phytase is a member of the histidine phosphatase family that includes MINPP and exhibits properties distinct from bacterial and fungal phytases.

  7. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  8. Possible functions of alkaline phosphatase in dental mineralization: cadmium effects.

    PubMed

    Wöltgens, J H; Lyaruu, D M; Bervoets, T J

    1991-06-01

    In mineralizing dental tissues the non-specific alkaline phosphatase, using paranitrophenylphosphate (p-NPP) as substrate, is also capable of splitting inorganic pyrophosphate (PPi). In contrast to the p-NPP-ase part of the enzyme, the PPi-ase part requires Zn2+ as a cofactor for its hydrolytic activity. The PPi-ase activity of the enzyme can be inhibited by cadmium ions (Cd2+), perhaps by replacing Zn2+ from the active site of the enzyme molecule. In addition to splitting PPi, the PPi-ase part of the enzyme may also be involved in the phosphorylation process of yet undetermined organic macromolecules. Cd2+ inhibits this phosphorylation process. Inhibition of the PPi-ase activity can also be accomplished by ascorbic acid known for its capacity to complex bivalent cations. Ascorbic acid may accordingly also remove Zn2+ from the active site of the PPi-ase. It is suggested that in developing dental tissues alkaline phosphatase is not only associated with the transport of phosphate ions towards the mineralization front, but is also involved in the phosphorylation of organic macromolecules, a process activated the PPi-ase part of the enzyme.

  9. Isozymes of bovine intestinal alkaline phosphatase. Characterization and functional studies

    SciTech Connect

    Besman, M.J.A.

    1986-01-01

    The membrane-associated alkaline phosphatases of calf and adult bovine small intestines have been isolated to homogeneity by a novel method developed to purify large quantities of enzyme. Chromatofocusing revealed the existence of two isozymes in calf tissue while only one form was present in the adult. The three amphiphilic metallo protein dimers were characterized as to total amino acid and carbohydrate content, zinc stoichiometries and mode of carbohydrate linkage. The molecular relationship between the three enzymes was defined by tryptic peptide HPLC-mapping and N-terminal sequencing, and demonstrated the existence of two calf isozymes of unique primary sequence, only one of which is expressed in the adult animal. In the presence of protease inhibitors, two new, higher M/sub r/ species (66,000 and 62,000 daltons vs 60,000 daltons) of adult bovine alkaline phosphatase were demonstrated by electrophoresis of /sup 32/P/sub i/-labeled tissue, probing gels by autoradiography and Western blotting. The in vivo enzyme was isolated using a modified, rapid procedure; the two higher M/sub r/ species copurified.

  10. Characterization of Schistosome Tegumental Alkaline Phosphatase (SmAP)

    PubMed Central

    Bhardwaj, Rita; Skelly, Patrick J.

    2011-01-01

    Schistosomes are parasitic platyhelminths that currently infect over 200 million people globally. The parasites can live for years in a putatively hostile environment - the blood of vertebrates. We have hypothesized that the unusual schistosome tegument (outer-covering) plays a role in protecting parasites in the blood; by impeding host immunological signaling pathways we suggest that tegumental molecules help create an immunologically privileged environment for schistosomes. In this work, we clone and characterize a schistosome alkaline phosphatase (SmAP), a predicted ∼60 kDa glycoprotein that has high sequence conservation with members of the alkaline phosphatase protein family. The SmAP gene is most highly expressed in intravascular parasite life stages. Using immunofluorescence and immuno-electron microscopy, we confirm that SmAP is expressed at the host/parasite interface and in internal tissues. The ability of living parasites to cleave exogenous adenosine monophosphate (AMP) and generate adenosine is very largely abolished when SmAP gene expression is suppressed following RNAi treatment targeting the gene. These results lend support to the hypothesis that schistosome surface enzymes such as SmAP could dampen host immune responses against the parasites by generating immunosuppressants such as adenosine to promote their survival. This notion does not rule out other potential functions for the adenosine generated e.g. in parasite nutrition. PMID:21483710

  11. Effect of aluminum phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria.

    PubMed

    Ramalingam, N; Prasanna, B Gowtham

    2006-09-01

    The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h(-1) mg(-1) protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.

  12. Salivary Alkaline Phosphatase as a Noninvasive Marker for Periodontal Disease in Children with Uncontrolled Type 1 Diabetes Mellitus.

    PubMed

    Sridharan, Srirangarajan; Sravani, Paruchuri; Satyanarayan, Aparna; Kiran, K; Shetty, Varun

    The aim of this pilot study was to determine whether salivary alkaline phosphatase levels can be a non invasive marker for early inflammatory periodontal disease in children with uncontrolled type 1 diabetes mellitus. 10 healthy children (group 1), 10 children with recently diagnosed type 1 diabetes mellitus (group 2) and 10 children with type 1 diabetes mellitus for more than 4 years (group 3) were recruited for the study. All three groups were matched for age, gender and socioeconomic status. Periodontal health was assessed by plaque index, gingival index and probing pocket depth. Metabolic status was assessed by glycosylated hemoglobin levels, salivary alkaline phosphatase levels were determined by spectrophotometer. Data was analyzed by Kruskal Wallis ANOVA, Mann-Whitney U test and Spearman's rank correlation method. Salivary alkaline phosphatase levels correlated significantly with the periodontal parameters in the diabetic group. An increase in salivary alkaline phosphatase levels increased with increased values of gingival index and probing pocket depth. Group 3 showed greater correlation than group 2 and group 1. At p value p<0.05. The glycemic status of the children affects the periodontal disease parameters. Salivary alkaline phosphatase levels could be a useful tool in analyzing periodontal status of children with uncontrolled type I diabetes mellitus.

  13. Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people.

    PubMed

    McKenna, M J; Freaney, R; Meade, A; Muldowney, F P

    1985-01-01

    The vitamin D status of 181 elderly Irish community-dwelling and institutionalized subjects was studied during Winter-Spring. The mean serum 25-hydroxyvitamin D level was 10 nmol/L (95% range less than 5.0-59 nmol/L); values were below 25 nmol/L in 79 percent of subjects. A significant seasonal variation of serum 25-hydroxyvitamin D levels was noted in elderly community-dwelling subjects. The previously documented age-related increase in serum alkaline phosphatase activity was significantly less in vitamin D replete subjects than in vitamin D deplete subjects in this study (P less than 0.005). The higher serum alkaline phosphatase values found in the vitamin D deplete subjects may represent mild secondary hyperparathyroidism or osteomalacia. The relationship of vitamin D status to both dietary intake and effective sunlight (latitude) is examined.

  14. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  15. Deletion map of the Escherichia coli structural gene for alkaline phosphatase, phoA.

    PubMed Central

    Sarthy, A; Michaelis, S; Beckwith, J

    1981-01-01

    Lambda transducing phages containing portions of the phoA gene have been isolated and used to construct a deletion map of the phoA gene. The isolation of a plaque-forming lambda transducing phage carrying the entire phoA gene is also described. Two new methods for screening or selection of mutants that have altered levels of alkaline phosphatase activity are reported. PMID:6450745

  16. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization.

    PubMed

    Hoemann, C D; El-Gabalawy, H; McKee, M D

    2009-06-01

    In trabecular bone fracture repair in vivo, osteogenesis occurs through endochondral ossification under hypoxic conditions, or through woven bone deposition in the vicinity of blood vessels. In vitro osteogenesis assays are routinely used to test osteoblastic responses to drugs, hormones, and biomaterials for bone and cartilage repair applications. These cell culture models recapitulate events that occur in woven bone synthesis, and are carried out using primary osteoblasts, osteoblast precursors such as bone marrow-derived mesenchymal stromal cells (BMSCs), or various osteoblast cell lines. With time in culture, cell differentiation is typically assessed by examining levels of alkaline phosphatase activity (an early osteoblast marker) and by evaluating the assembly of a collagen (type I)-containing fibrillar extracellular matrix that mineralizes. In this review, we have made a comparative analysis of published osteogenic assays using calvarial cells, calvaria-derived cell lines, and bone marrow stromal cells. In all of these cell types, alkaline phosphatase activity shows similar progression over time using a variety of osteogenic and mineralizing media conditions; however, levels of alkaline phosphatase activity are not proportional to observed mineralization levels.

  17. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  18. Purification and characterization of Ulva pertusa Kjellm alkaline phosphatase.

    PubMed

    Yang, Dong; Wang, Jingyun; Bao, Yongming; An, Lijia

    2003-05-01

    The activity of alkaline phosphatase (ALP, EC 3.1.3.1.) was found in seaweeds, including five kinds of green alga, eighteen kinds of red alga, and six kinds of brown alga, collected from the seaside of Dalian in China. The enzyme was purified 1230-fold from Ulva pertusa Kjellm. It had a specific activity of 48.6 U/mg protein and was proven to be homogeneous by SDS-PAGE with a subunit molecular mass of 19.5 kDa. The activity of ALP peaked at pH9.8, and was completely inhibited by DTT and partly by NBS. The Michaelis-Menten constant Km and the maximum reaction velocity Vmax, at pH 9.8 and 37 degrees C were 0.950 mM and 5.00 microM/min, respectively.

  19. Dephosphorylation of bovine casein by milk alkaline phosphatase.

    PubMed

    Lorient, D; Linden, G

    1976-02-01

    The pH of optimum activity of alkaline phosphatase from cow's milk depended on the substrate, being 10-1 for rho-nitrophenylphosphate, 8-6 for phosphoserine, 8-0 for phosvitin and 6-8 for casein. Individual casein components were dephosphorylated more rapidly than mixtures of alphas- and beta-caseins or of alphas-, beta-and kappa-caseins and micellar casein. Mixtures of 2 components involving kappa-casein were more readily dephosphorylated than alphas- and beta-casein mixtures. At pH 6-8, lactose, whey proteins and phosphate ions had an inhibitory effect. beta-Lactoglobulin had an inhibitory effect only when the pH of the reaction was lower than the optimum pH value of the enzyme. Mg2+ and Zn2+ were not inhibitory. The optimum conditions for dephosphorylation of casein are described.

  20. Intestinal alkaline phosphatase prevents metabolic syndrome in mice.

    PubMed

    Kaliannan, Kanakaraju; Hamarneh, Sulaiman R; Economopoulos, Konstantinos P; Nasrin Alam, Sayeda; Moaven, Omeed; Patel, Palak; Malo, Nondita S; Ray, Madhury; Abtahi, Seyed M; Muhammad, Nur; Raychowdhury, Atri; Teshager, Abeba; Mohamed, Mussa M Rafat; Moss, Angela K; Ahmed, Rizwan; Hakimian, Shahrad; Narisawa, Sonoko; Millán, José Luis; Hohmann, Elizabeth; Warren, H Shaw; Bhan, Atul K; Malo, Madhu S; Hodin, Richard A

    2013-04-23

    Metabolic syndrome comprises a cluster of related disorders that includes obesity, glucose intolerance, insulin resistance, dyslipidemia, and fatty liver. Recently, gut-derived chronic endotoxemia has been identified as a primary mediator for triggering the low-grade inflammation responsible for the development of metabolic syndrome. In the present study we examined the role of the small intestinal brush-border enzyme, intestinal alkaline phosphatase (IAP), in preventing a high-fat-diet-induced metabolic syndrome in mice. We found that both endogenous and orally supplemented IAP inhibits absorption of endotoxin (lipopolysaccharides) that occurs with dietary fat, and oral IAP supplementation prevents as well as reverses metabolic syndrome. Furthermore, IAP supplementation improves the lipid profile in mice fed a standard, low-fat chow diet. These results point to a potentially unique therapy against metabolic syndrome in at-risk humans.

  1. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    PubMed Central

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  2. [Cellular components and placental alkaline phosphatase in Trypanosoma cruzi infection ].

    PubMed

    Sartori, Maria José; Mezzano, Luciana; Lin, Susana; Repossi, Gastón; Fabro, Sofía P

    2005-01-01

    Trypanosoma cruzi induces changes in the protein pattern of human placenta syncytiotrophoblast. Placental alkaline phosphatase (PLAP) is a glycoenzyme anchored to the membrane by a glycosyl-phosphatidylinositol molecule. PLAP activity and its presence was altered by the parasite in cultures of human placental villi and HEp2 cells with T.cruzi. The cells treated before the cultures with agents which affect PILAP or glycosyl-phosphatidylinositol (antibodies, PL-C, genistein, lithium) presented less parasitic invasion than the control ones. It was also observed a modification in the pattern of actine filaments of the host cells infected. We concluded that PLAP would participate in the process of T. cruzi invasion into placental syncitiotrophoblast cells, by a mechanism that involves hydrolysis of the glycosyl-phosphatidylinositol molecules, the activation of tyrosine kinase proteins, the increase of cytosolic calcium and the rearrangement of actine filaments of the host cells.

  3. Acute chlordane toxicity on the serum alkaline phosphatase activity of Meriones hurrianae Jerdon.

    PubMed

    Karel, A K

    1976-02-01

    Different acute doses of chlordane enhance the serum alkaline phosphatase activity in Indian desert gerbils. The damage to parenchymal cells of liver, and hepatic microsomal enzyme induction as a result of chlordane treatment are discussed as the possible reasons for the increase in serum alkaline phosphatase activity.

  4. Spatial Patterns of Alkaline Phosphatase Expression within Bacterial Colonies and Biofilms in Response to Phosphate Starvation

    PubMed Central

    Huang, Ching-Tsan; Xu, Karen D.; McFeters, Gordon A.; Stewart, Philip S.

    1998-01-01

    The expression of alkaline phosphatase in response to phosphate starvation was shown to be spatially and temporally heterogeneous in bacterial biofilms and colonies. A commercial alkaline phosphatase substrate that generates a fluorescent, insoluble product was used in conjunction with frozen sectioning techniques to visualize spatial patterns of enzyme expression in both Klebsiella pneumoniae and Pseudomonas aeruginosa biofilms. Some of the expression patterns observed revealed alkaline phosphatase activity at the boundary of the biofilm opposite the place where the staining substrate was delivered, indicating that the enzyme substrate penetrated the biofilm fully. Alkaline phosphatase accumulated linearly with time in K. pneumoniae colonies transferred from high-phosphate medium to low-phosphate medium up to specific activities of 50 μmol per min per mg of protein after 24 h. In K. pneumoniae biofilms and colonies, alkaline phosphatase was initially expressed in the region of the biofilm immediately adjacent to the carbon and energy source (glucose). In time, the region of alkaline phosphatase expression expanded inward until it spanned most, but not all, of the biofilm or colony depth. In contrast, expression of alkaline phosphatase in P. aeruginosa biofilms occurred in a thin, sharply delineated band at the biofilm-bulk fluid interface. In this case, the band of activity never occupied more than approximately one-sixth of the biofilm. These results are consistent with the working hypothesis that alkaline phosphatase expression patterns are primarily controlled by the local availability of either the carbon and energy source or the electron acceptor. PMID:9546188

  5. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    PubMed

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Disposition of preformed mineral in matrix vesicles. Internal localization and association with alkaline phosphatase

    SciTech Connect

    McLean, F.M.; Keller, P.J.; Genge, B.R.; Walters, S.A.; Wuthier, R.E.

    1987-08-05

    Studies were made on the disposition of mineral ions in matrix vesicles (MV) and their relationship to alkaline phosphatase by treatment of MV-enriched microsomes (MVEM) with graded levels of Ca2+-chelating agents to complex accessible ions, fractionation of MVEM on hypertonic sucrose gradients at two different pH values (7.5 and 8.0) to evaluate for the presence of calcium phosphate mineral, and passage of MVEM through cation-exchange columns to determine the accessibility of the Ca2+. The effect of removal of Ca2+ and Pi on subsequent ability of MVEM to induce mineral formation from synthetic cartilage lymph was also determined. Passage through cation-exchange columns revealed that MV Ca2+ was not freely exchangeable, but coeluted in the void volume with alkaline phosphatase. However, upon incubation in synthetic cartilage lymph, progressively more Ca2+ was retained by the column. These findings indicate that, initially, the majority of Ca2+ in MVEM is internal and not readily exchangeable, but as Ca2+ accumulates, progressively more becomes external. The mineral in MV is labile and readily susceptible to loss; treatment with graded levels of EGTA removed major portions of the original Ca2+ and Pi. 45Ca uptake by these mineral-depleted MV was markedly reduced, even in the presence of alkaline phosphatase substrates. Sucrose gradient fractionation of MVEM caused extensive loss of Pi, but not Ca2+, from the low-density alkaline phosphatase-rich fractions. This reveals that Ca2+ and Pi are not initially coupled together: Pi is largely soluble, whereas Ca2+ must be tightly bound. In the high-density vesicles, large amounts of both Ca2+ and Pi are present.

  7. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  8. Influence of bone and soft-tissue operations on serum concentrations of growth hormone, somatomedin C and alkaline phosphatase.

    PubMed

    Casser, H R; Zilkens, K W; Forst, R; Brüggemann, A

    1990-01-01

    After animal experiments suggested there was an interaction between growth hormone and bone healing, our aim in this paper was to ascertain whether there were any changes or possible interaction between the serum level of growth hormone, somatomedin C and alkaline phosphatase while a fractured bone was healing. To this end, the serum concentrations of growth hormone, somatomedin C, alkaline phosphatase and calcium were ascertained both pre- and post-operatively in two groups of patients--one with bone operations, the other with soft-tissue operations--and the results were compared. Comparing the groups, we found that after bone operations there was no increase in the serum level of growth hormone, nor of somatomedin C. An increase would have implied that these two hormones are directly involved in bone regeneration. There was no change in the serum level of alkaline phosphatase or calcium after either bone or soft-tissue operations.

  9. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    SciTech Connect

    Ayyagari, M.; Kamtekar, S.; Pande, R.; Marx, K.; Kumar, J.

    1994-12-31

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalyst both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.

  10. Nutrient Limitation Dynamics of a Coastal Cape Cod Pond: Seasonal Trends in Alkaline Phosphatase Activity

    DTIC Science & Technology

    2000-11-13

    Swift, 1980) and freshwater algal cultures (Healey and Hendzel, 1979), and bacterial cultures (Whitton et al., 1991) have indicated that alkaline...alkaline phosphatases in cultured diatoms using a fluorescent tag (ELF-97) that interacts with alkaline phosphatases, however, they were unable to...this assumption has been derived from the work of Healey and Hendzel (1979), who demonstrated that five algal species in culture responded with

  11. Serum alkaline phosphatase: a potential marker in the progression of periodontal disease in cirrhosis patients.

    PubMed

    Jaiswal, Gagan; Deo, Vikas; Bhongade, Manohar; Jaiswal, Shraddha

    2011-04-01

    As a consequence of their liver dysfunction, cirrhotic patients have elevated levels of serum alkaline phosphatase (ALP). Increased ALP activity is seen in periodontal tissues during the progression of periodontitis. The present study was carried out to compare ALP levels in cirrhosis patients with and without periodontitis and to correlate ALP levels with the severity of periodontitis. Both the test and control groups consisted of 30 liver cirrhosis patients with or without periodontitis. The parameters recorded were modified OHI-S Index, Gingival Index (GI), and clinical attachment level (CAL). All patients underwent standardized panoramic radiographs to assess alveolar bone height. The total serum ALP was determined with the kinetic method (R.A 50). Alveolar bone loss (ABL) was 1.62 ± 0.32 mm in the test group and 0.28 ± 0.04 mm in the control group. Mean clinical attachment level (CAL) for the test group was greater than the control group: 2.34 ± 0.67 mm and 0.43 ± 0.14 mm, respectively. The mean serum alkaline phosphatase level in the test group was higher (39.94 ± 3.34) than the control group (29.42 ± 6.11) and the differences was statistically significant (P > .05). When comparison was made between age group (20 to 40 years and 41 to 60 years), the older age group liver cirrhosis patients exhibited significantly higher values for bone loss, clinical attachment level, and serum ALP level. There is strong positive correlation between periodontal breakdown and serum alkaline phosphatase level in liver cirrhosis patients.

  12. Observations on the alkaline phosphatase isoenzyme distribution in maternal and amniotic fluid compartments in Nigerian parturients.

    PubMed

    Okpere, E; Okorodudu, A; Gbinigie, O

    1988-01-01

    Estimation of the alkaline phosphates isoenzymes in paired maternal serum and amniotic fluids in term uncomplicated pregnancies and in patients with pre-eclampsia, showed poor correlation coefficients between the levels of both heat stable and heat labile isoenzymes. There was a statistically significant fall in AF (P less than .05) HSAP in pre-eclampsia and a highly significant rise of HLAP in meconial liquor. It is concluded that the poor correlation between the levels of HSAP in maternal serum and amniotic fluid (despite their common source of origin), the normal levels of HLAP in maternal serum in the presence of significantly high levels of HSAP in maternal serum in the presence of significantly diminished levels in amniotic fluid point to a state of relatively diminished permeability of the chorioamniotic membranes to the alkaline phosphatase isoenzymes in Nigerians.

  13. The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach.

    PubMed

    Cheung, Ching-Lung; Tan, Kathryn C B; Lam, Karen S L; Cheung, Bernard M Y

    2013-09-01

    Serum alkaline phosphatase plays a role in vascular calcification. It is found in various tissues, whereas bone-specific alkaline phosphatase (BAP) more specifically reflects mineral metabolism. The relationship of serum alkaline phosphatase (total and bone-specific) with diabetes and metabolic syndrome (MetS), 2 major risk factors of vascular calcification, is largely unknown. We aimed to investigate the relationships between glucose metabolism, components of the MetS, and alkaline phosphatase. This was a cross-sectional study of a nationally representative sample of the U.S. population in 1999 through 2004. Participants were 3773 nondiabetic participants of the National Health and Nutrition Examination Survey 1999-2004. We measured serum BAP and total alkaline phosphatase. In multivariable linear regression, updated homeostasis model assessment (HOMA2) for insulin resistance (β = 0.068), HOMA2 for β-cell function (β = 0.081), insulin (β = 0.065), mean arterial pressure (β = 0.15), and high-density lipoprotein (HDL)-cholesterol (β = 0.209) were positively associated with BAP, whereas HOMA2 for insulin sensitivity (β = -0.065) was negatively associated with BAP. On the other hand, only mean arterial pressure and HDL-cholesterol were significantly associated with total alkaline phosphatase. Moreover, a structural equation model revealed that hypertension, low HDL, and insulin resistance had significant direct effects on serum BAP levels, whereas obesity and inflammation might have indirect effects on serum BAP levels. The overall model showed very good fit to the data (comparative fit index = 0.995, root mean square error of approximation = 0.037, and standardized root mean square residual = 0.006). Glucose metabolism and MetS are significantly related to serum BAP levels. How BAP mediates vascular calcification in diabetes and MetS warrants further studies.

  14. A macro-enzyme cause of an isolated increase of alkaline phosphatase.

    PubMed

    Cervinski, Mark A; Lee, Hong Kee; Martin, Isabella W; Gavrilov, Dimitar K

    2015-02-02

    Macroenzyme complexes of serum enzymes and antibody can increase the circulating enzymatic activity and may lead to unnecessary additional testing and procedures. Laboratory physicians and scientists need to be aware of techniques to identify macroenzyme complexes when suspected. To investigate the possibility of a macro-alkaline phosphatase in the serum of a 74 year old male with persistently increased alkaline phosphatase we coupled a protein A/G agarose affinity chromatography technique with isoenzyme electrophoresis to look for the presence of macro-alkaline phosphatase. The majority of the alkaline phosphatase activity in the patient's serum sample was bound to the column and only a minor fraction (25%) of alkaline phosphatase activity was present in the column flow-through. The alkaline phosphatase activity was also found to co-elute with the immunoglobulins in the patient sample. The alkaline phosphatase activity in a control serum sample concurrently treated in the same manner did not bind to the column and was found in the column flow-through. The use of protein A/G agarose affinity chromatography is a rapid and simple method that can be applied to the investigation of other macro-enzyme complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase.

    PubMed

    Brun, Lucas R; Brance, María L; Lombarte, Mercedes; Lupo, Maela; Di Loreto, Verónica E; Rigalli, Alfredo

    2014-07-01

    Intestinal alkaline phosphatase is a brush border enzyme that is stimulated by calcium. Inhibition of intestinal alkaline phosphatase increases intestinal calcium absorption. We hypothesized that intestinal alkaline phosphatase acts as a minute-to-minute regulatory mechanism of calcium entry. The aim of this study was to evaluate the mechanism by which intestinal luminal calcium controls intestinal calcium absorption. We performed kinetic studies with purified intestinal alkaline phosphatase and everted duodenal sacs and showed that intestinal alkaline phosphatase modifies the luminal pH as a function of enzyme concentration and calcium luminal content. A decrease in pH occurred simultaneously with a decrease in calcium absorption. The inhibition of intestinal alkaline phosphatase by l-phenylalanine caused an increase in calcium absorption. This effect was also confirmed in calcium uptake experiments with isolated duodenal cells. Changes in luminal pH arising from intestinal alkaline phosphatase activity induced by luminal calcium concentration modulate intestinal calcium absorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Peripartal changes in serum alkaline phosphatase activity and lactate dehydrogenase activity in dairy cows.

    PubMed Central

    Peter, A T; Bosu, W T; MacWilliams, P; Gallagher, S

    1987-01-01

    Peripartal serum alkaline phosphatase activity and lactate dehydrogenase activity were measured in 30 dairy cows in order to examine the association between retained fetal membranes and enzyme activity. Daily blood samples were obtained from pregnant cows, starting 15 days before the expected day of calving until eight days after parturition. Sera from 15 cows which retained fetal membranes longer than 24 hours and 15 cows which shed fetal membranes within six hours after parturition were analyzed for alkaline phosphatase and lactate dehydrogenase enzyme activities. Mean alkaline phosphatase enzyme activities ranged from 15.93 to 32.6 U/L in retained and nonretained placenta cows. There was a trend towards higher serum alkaline phosphatase activities in retained placenta cows but the differences were not significant among the groups (P greater than 0.05). Mean lactate dehydrogenase activities ranged from 307.2 to 438.86 U/L in nonretained and retained placenta cows. Lactate dehydrogenase enzyme activities in nonretained and retained placenta cows were similar (P greater than 0.05). The alkaline phosphatase and lactate dehydrogenase enzyme activities peaked at the time of parturition in both groups. However, the differences in alkaline phosphatase and lactate dehydrogenase activities on different days within non-retained and retained placenta cows were significant (P less than 0.05). Results indicate that prepartal changes in alkaline phosphatase and lactate dehydrogenase enzyme activities are not predictive of placental retention postpartum. PMID:3453274

  17. The measurement of alkaline phosphatase at nanomolar concentration within 70 s using a disposable microelectrochemical transistor.

    PubMed

    Astier, Y; Bartlett, P N

    2004-08-01

    We report a new approach to the measurement of alkaline phosphatase concentration based on the use of a disposable poly(aniline) microelectrochemical transistor. The measurement is carried out in a two cell configuration in which the poly(aniline) microelectrochemical transistor operates in acid solution and is connected to the alkaline buffer solution containing the analyte by a salt bridge. Disposable microelectrochemical transistors were reproducibly fabricated by electrochemical deposition of poly(aniline) onto photolithographically fabricated gold microband arrays. Using these devices alkaline phosphatase was detected by employing p-aminophenyl phosphate as the substrate for the enzyme and using glucose and glucose oxidase to recycle the p-aminophenol generated upon enzyme catalysed hydrolysis of the phosphate. Recycling the p-aminophenol with glucose and glucose oxidase amplified the detection of alkaline phosphatase approximately tenfold. Using this approach we obtain linear calibration curves for alkaline phosphatase up to 5 nM within 70 s on single use devices.

  18. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.

    PubMed

    López-Canut, Violeta; Roca, Maite; Bertrán, Juan; Moliner, Vicent; Tuñón, Iñaki

    2011-08-10

    We here present a theoretical study of the alkaline hydrolysis of a phosphodiester (methyl p-nitrophenyl phosphate or MpNPP) in the active site of Escherichia coli alkaline phosphatase (AP), a monoesterase that also presents promiscuous activity as a diesterase. The analysis of our simulations, carried out by means of molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials, shows that the reaction takes place through a D(N)A(N) or dissociative mechanism, the same mechanism employed by AP in the hydrolysis of monoesters. The promiscuous activity observed in this superfamily can be then explained on the basis of a conserved reaction mechanism. According to our simulations the specialization in the hydrolysis of phosphomonoesters or phosphodiesters, developed in different members of the superfamily, is a consequence of the interactions established between the protein and the oxygen atoms of the phosphate group and, in particular, with the oxygen atom that bears the additional alkyl group when the substrate is a diester. A water molecule, belonging to the coordination shell of the Mg(2+) ion, and residue Lys328 seem to play decisive roles stabilizing a phosphomonoester substrate, but the latter contributes to increase the energy barrier for the hydrolysis of phosphodiesters. Then, mutations affecting the nature or positioning of Lys328 lead to an increased diesterase activity in AP. Finally, the capacity of this enzymatic family to catalyze the reaction of phosphoesters having different leaving groups, or substrate promiscuity, is explained by the ability of the enzyme to stabilize different charge distributions in the leaving group using different interactions involving either one of the zinc centers or residues placed on the outer side of the catalytic site.

  19. Alkaline Phosphatase Assay for Freshwater Sediments: Application to Perturbed Sediment Systems

    PubMed Central

    Sayler, Gary S.; Puziss, Marla; Silver, Martin

    1979-01-01

    The p-nitrophenyl phosphate hydrolysis-phosphatase assay was modified for use in freshwater sediment. Laboratory studies indicated that the recovery of purified alkaline phosphatase activity was 100% efficient in sterile freshwater sediments when optimized incubation and sonication conditions were used. Field studies of diverse freshwater sediments demonstrated the potential use of this assay for determining stream perturbation. Significant correlations between phosphatase and total viable cell counts, as well as adenosine triphosphate biomass, suggested that alkaline phosphatase activity has utility as an indicator of microbial population density and biomass in freshwater sediments. PMID:16345464

  20. An Alkaline Phosphatase Paradox in a Shelf Sea

    NASA Astrophysics Data System (ADS)

    Davis, C. E.; Mahaffey, C.

    2016-02-01

    Alkaline phosphatase (AP) is an ubiquitous hydrolytic phosphoenzyme that hydrolyses phosphomonester bonds. In the open ocean, the generally accepted paradigm is that when phosphate concentrations are sufficiently depleted (less than 50 nM), AP is produced by organisms to enable utilisation of dissolved organic phosphorus to meet the phosphorus demands of biological processes such as growth and carbon fixation. At higher phosphate concentrations (greater than 100 nM), AP is repressed implying that the excess product competes for active sites at enzyme surfaces. However, our ongoing work on phosphorus cycling in the Celtic Sea, a temperate shelf sea, has challenged this paradigm. We find elevated rates of AP below the thermocline where phosphate concentrations are greater than 700 nM, and a significant correlation between AP and total dissolved phosphorus. Using enzyme labelled fluorescence (ELF) and particle concentrate bioassays, we show that the AP is associated with large detrital and sinking particulate matter, suggesting that rather than AP being induced by the lack of phosphate, it plays an important role in organic matter cycling in this nitrogen limited environment. At the shelf edge, AP was found to be associated with diatoms, which have been found in culture studies to express AP under silica limitation. Our study highlights the need to consider the environmental conditions under which AP is induced or repressed and presents an opportunity to use AP as an indicator of organic phosphorus recycling in high phosphate environments.

  1. Responses of alkaline phosphatase activity in Daphnia to poor nutrition.

    PubMed

    Wagner, Nicole D; Frost, Paul C

    2012-09-01

    The use of biochemical and molecular indices of nutritional stress have recently been promoted for their potential ability to assess the in situ nutritional state of zooplankton. The development and application of these indicators should at least consider the cross-reactivity with other nutritional stressors. We examined the potential usefulness of body alkaline phosphatase activity (APA) as an indicator of dietary phosphorus (P) stress in Daphnia. We measured growth rate, body P-content, and body APA of two species of Daphnia (D. magna, D. pulex) grown for different periods under diverse dietary conditions. We found P-poor food reduced daphnid growth rates and body P-content, while body APA increased in both species. However, body APA increased in P-sufficient D. magna and D. pulex that were feeding on cyanobacterial compared to green algal food, despite no differences in animal body P content. Body APA increased in D. magna fed P-poor food whether cyanobacterial or algal. Body APA also varied with age and other nutritional stresses (low food quantity, nitrogen-poor algae) in both daphnid species. Our results demonstrate that whole body homogenate APA in Daphnia is not singularly responsive to P-poor food, which will complicate or limit its future usefulness and application as an indicator of dietary P-stress in metazoans.

  2. Changes of serum alkaline phosphatase isoenzymes in fasted rats.

    PubMed

    Wada, H; Niwa, N; Hayakawa, T; Tsuge, H

    1996-10-01

    Changes of serum alkaline phosphatase (sALP) isoenzymes under fasting conditions were examined using polyacrylamide gel electrophoresis (PAGE), amino-acids (L-phenylalanine (L-Phe), L-homoarginine (L-HArg)) inhibition and wheat germ agglutinin (WGA) treatment. The sALP of non-fasted rats was separated into three bands (S1, S2, S3) by PAGE. The molecular weight (M.W.) of S1 corresponded to that of an isoenzyme found in the ileum. By the addition of L-Phe, the staining intensity of S1 was weakened, S2 and S3 remained unchanged and the total activity of the isoenzymes extracted from intestine decreased. On the other hand, the activity of isoenzymes extracted from kidney and bone decreased by the addition of L-HArg. Therefore, S1 was judged to be derived from intestine. The activities of total sALP and S1 decreased from 16 h of fasting. Total sALP activity and sALP activity of the supernatant prepared by WGA treatment decreased, whereas the ALP activity of the precipitate (difference between total sALP activity and supernatant sALP activity) did not change. The activity band of the precipitate corresponded to that of S3 by PAGE. Therefore, S3 was judged to be derived from bone. In conclusion, under fasting conditions, the activity of S1 decreased while the activities of S2 and S3 remained unchanged.

  3. Purification and characterization of alkaline phosphatase from Bacillus stearothermophilus.

    PubMed

    Mori, S; Okamoto, M; Nishibori, M; Ichimura, M; Sakiyama, J; Endo, H

    1999-06-01

    Soluble alkaline phosphatase from the thermophilic bacterium Bacillus stearothermophilus was purified by a combination of chromatographic methods, and its properties were examined. The purified enzyme had specific activity of 4.43 micromol p-nitrophenol/min per mg of protein and seemed to be a single band on SDS/PAGE with a molecular mass of 32 kDa. Its apparent Km for p-nitrophenyl phosphate was 1.114 mM. The enzyme exhibited an optimal pH of approx. 9.0 and exhibited its highest activity at 60-70 degrees C. It also showed a bivalent cation requirement for activity, with maximal enhancement in the presence of Mg2+. In addition, significant thermal stability was observed in comparison with counterparts from mesophiles. Its partial N-terminal sequence was T1FSIVAFDPATGELGIAVQ19 as estimated by automated Edman degradation method. A search on the SwissProt database did not reveal any similar protein sequences from other sources.

  4. Extremely high maternal alkaline phosphatase serum concentration with syncytiotrophoblastic origin

    PubMed Central

    Boronkai, A; Than, N G; Magenheim, R; Bellyei, S; Szigeti, A; Deres, P; Hargitai, B; Sumegi, B; Papp, Z; Rigo, J

    2005-01-01

    An extremely high alkaline phosphatase (AP) concentration (3609 IU/litre) was found in a 20 year old primigravida at 37 week’s gestation, prompting an examination of its histological and cellular origin. Immunohistochemistry and western blots using antibodies against AP, Ki-67, phospho-protein kinase B (Akt), phospho-p44/42 mitogen activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/Erk1/2), phospho-glycogen synthase kinase-3β (GSK-3β), phospho-stress activated protein kinase/c-Jun N-terminal kinase, total-Akt, total-GSK-3β, and phospho-p38-MAPK were carried out on index and control placental samples of the same gestational age. Compared with controls, staining of the index placenta showed minimal AP labelling of the brush border and remarkable positivity of the intervillous space. Cytotrophoblastic proliferation was 8–10% in the index placenta compared with 1–2% in controls. The index placenta also had raised concentrations of protein kinases with important roles in cell differentiation. The proliferation and differentiation rates of the cytotrophoblasts were found to be five times higher in index samples than in controls. It is hypothesised that loss of syncytial membranes in immature villi led to increased AP concentrations in the maternal circulation and decreased AP staining of the placenta. Loss of the syncytium might also stimulate increased proliferation of villous cytotrophoblasts, which would then fuse and maintain the syncytium. PMID:15623487

  5. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    PubMed

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  6. Alkaline Phosphatase from Venom of the Endoparasitoid Wasp, Pteromalus puparum

    PubMed Central

    Zhu, Jia-Ying; Yin Ye, Gong; Fang, Qi; Hu, Cui

    2010-01-01

    Using chromogenic substrates 5-bromo-4-chloro-3′-indolyl phosphate and nitro blue tetrazolium, alkaline phosphatase (ALPase) was histochemically detected in the venom apparatus of an endoparasitoid wasp, Pteromalus puparum L. (Hymenoptera: Pteromalidae). Ultrastructural observations demonstrated its presence in the secretory vesicles and nuclei of the venom gland secretory cells. Using p-nitrophenyl phosphate as substrate to measure enzyme activity, the venom ALPase was found to be temperature dependent with bivalent cation effects. The full-length cDNA sequence of ALPase was amplified from the cDNA library of the venom apparatus of P. puparum, providing the first molecular characterization of ALPase in the venom of a parasitoid wasp. The cDNA consisted of 2645 bp with a 1623 bp open reading frame coding for 541 deduced amino acids with a predicted molecular mass of 59.83 kDa and pI of 6.98. Using multiple sequence alignment, the deduced amino acid sequence shared high identity to its counterparts from other insects. A signal peptide and a long conserved ALPase gene family signature sequence were observed. The amino acid sequence of this venom protein was characterized with different potential glycosylation, myristoylation, phosphorylation sites and metal ligand sites. The transcript of the ALPase gene was detected by RT-PCR in the venom apparatus with development related expression after adult wasp emergence, suggesting a possible correlation with the oviposition process. PMID:20575745

  7. Ozone inhalation in rats: effects on alkaline phosphatase and lactic dehydrogenase isoenzymes in lavage and plasma

    SciTech Connect

    Nachtman, J.P.; Moon, H.L.; Miles, R.C.

    1988-10-01

    Ozone is found in urban and rural atmospheres and is produced from a variety of natural and man-made sources. Animal studies conducted at typical ambient levels result in reproducible morphological, biochemical and functional effects. Ozone damages type I epithelial cells, induces proliferation of type II cells and produces inflammation of the terminal bronchiolar-alveolar duct region. Ozone increases lung oxygen utilization and increases glutathione metabolism. Ozone increases airway resistance. The authors measured lactic dehydrogenase (LD) isoenzymes to ascertain the tissue giving rise to the increased LD activity in lavage. They also assayed acid phosphatase, alkaline phosphatase, creatine kinase activities, and protein levels since these parameters were increased in rat lung lavage after particulate exposure. They determined white cell differential and red cell morphology parameters because previous investigators reported that ozone increased neutrophil/lymphocyte ratio.

  8. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  9. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease

    PubMed Central

    López-Valverde, Antonio; Gómez-de-Diego, Rafel; Arias-Santiago, Salvador; de Vicente-Jiménez, Joaquín

    2013-01-01

    Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin. Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation. Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth. Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin. Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin. PMID:23524437

  10. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

    PubMed Central

    Lin, Xin; Wang, Lu; Shi, Xinguo; Lin, Senjie

    2015-01-01

    Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment. PMID:26379645

  11. Production, secretion, and stability of human secreted alkaline phosphatase in tobacco NT1 cell suspension cultures.

    PubMed

    Becerra-Arteaga, Alejandro; Mason, Hugh S; Shuler, Michael L

    2006-01-01

    Tobacco NT1 cell suspension cultures secreting active human secreted alkaline phosphatase (SEAP) were generated for the first time as a model system to study recombinant protein production, secretion, and stability in plant cell cultures. The SEAP gene encodes a secreted form of the human placental alkaline phosphatase (PLAP). During batch culture, the highest level of active SEAP in the culture medium (0.4 U/mL, corresponding to approximately 27 mg/L) was observed at the end of the exponential growth phase. Although the level of active SEAP decreased during the stationary phase, the activity loss did not appear to be due to SEAP degradation (based on Western blots) but due to SEAP denaturation. The protein-stabilizing agents polyvinylpirrolidone (PVP) and bacitracin were added extracellularly to test for their ability to reduce the loss of SEAP activity during the stationary phase. Bacitracin (100 mg/L) was the most effective treatment at sustaining activity levels for up to 17 days post-subculture. Commercially available human placental alkaline phosphatase (PLAP) was used to probe the mechanism of SEAP deactivation. Experiments with PLAP in sterile and conditioned medium corroborated the denaturation of SEAP by factors generated by cell growth and not due to simple proteolysis. We also show for the first time that the factors promoting activity loss are heat labile at 95 degrees C but not at 70 degrees C, and they are not inactivated after a 5 day incubation period under normal culture conditions (27 degrees C). In addition, there were no significant changes in pH or redox potential when comparing sterile and cell-free conditioned medium during PLAP incubation, indicating that these factors were unimportant.

  12. Cloning and sequencing of human intestinal alkaline phosphatase cDNA

    SciTech Connect

    Berger, J.; Garattini, E.; Hua, J.C.; Udenfriend, S.

    1987-02-01

    Partial protein sequence data obtained on intestinal alkaline phosphatase indicated a high degree of homology with the reported sequence of the placental isoenzyme. Accordingly, placental alkaline phosphatase cDNA was cloned and used as a probe to clone intestinal alkaline phosphatase cDNA. The latter is somewhat larger (3.1 kilobases) than the cDNA for the placental isozyme (2.8 kilobases). Although the 3' untranslated regions are quite different, there is almost 90% homology in the translated regions of the two isozymes. There are, however, significant differences at their amino and carboxyl termini and a substitution of an alanine in intestinal alkaline phosphatase for a glycine in the active site of the placental isozyme.

  13. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    SciTech Connect

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-08-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G (IgG) complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table.

  14. Dephosphorylation of purine mononucleotides by alkaline phosphatases. Substrate specificity and inhibition patterns.

    PubMed

    Jensen, M H

    1979-11-09

    Three purine mononucleotides, adenosine-, inosine- and guanosine monophosphate, were used as substrates at pH 7.4 and at 10.4 for three alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.1) containing similar phosphate-binding serine groups at their esteratic sites. Substrate specificity was found for the enzymes from calf intestine and bovine liver. Alkaline phosphatase from Escherichia coli was nonspecific. A substrate-dependent and pronounced inhibition with the purine analogue 1,3-dimethyl xanthine was found for the enzymes from intestine and liver, but not for alkaline phosphatase from E. coli. A substrate-independent and pronounced inhibition was found for all three enzymes with the phosphomonoester p-nitrophenol phosphate as the inhibitor. Alkaline phosphatases may play an important role in the regulation of the intracellular content of purine mononucleotides.

  15. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  16. Modeling catalytic promiscuity in the alkaline phosphatase superfamily.

    PubMed

    Duarte, Fernanda; Amrein, Beat Anton; Kamerlin, Shina Caroline Lynn

    2013-07-21

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  17. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  18. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity

    PubMed Central

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-01-01

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP’s role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP’s ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP’s ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP’s ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium. PMID:25400448

  19. Cinacalcet Lowers Serum Alkaline Phosphatase in Maintenance Hemodialysis Patients

    PubMed Central

    Belozeroff, Vasily; Goodman, William G.; Ren, Lulu; Kalantar-Zadeh, Kamyar

    2009-01-01

    Background and objectives: Studies suggest an association between elevated serum alkaline phosphatase (AP) and increased mortality in hemodialysis patients, but the effect of existing therapies on AP is not fully understood. We assessed the effects of cinacalcet on AP in a secondary analysis of controlled trial data. Design, setting, participants, & measurements: This was a post hoc analysis of data from three 26-wk randomized, double-blind, placebo-controlled, phase 3 trials and a 26-wk double-blind, placebo-controlled extension trial that investigated cinacalcet in secondary hyperparathyroidism treatment in dialysis patients. Hemodialysis patients (n = 890) with intact parathyroid hormone ≥300 pg/ml and serum calcium ≥8.4 mg/dl received cinacalcet plus standard therapy or standard therapy alone for up to 52 wk. Total, not bone-specific, AP was assessed (proportion of cinacalcet/control subjects achieving a ≥20% or any AP reduction from baseline; the proportion of subjects with AP ≥120 U/L) at baseline; the end of titration; and study weeks 26, 42, and 52. Results: At 52 wk, a greater proportion of cinacalcet-treated patients had either a ≥20% (39 versus 18%) or any (58 versus 36%) AP reduction compared with control subjects, respectively. The likelihood of achieving either a ≥20% or any AP reduction (determined by relative proportion) was 2.33 (95% confidence interval 1.50 to 3.61) and 1.74 (95% confidence interval 1.31 to 2.31), respectively, at week 52. Cinacalcet treatment tended toward a decreased percentage of patients with AP ≥120 U/L (baseline, 42.6%; week 52, 30.6%) compared with control (35.0 to 48.6%, respectively). Conclusions: In this combined analysis of controlled trials of patients who were receiving hemodialysis, cinacalcet lowered total serum AP. PMID:19261825

  20. Small interfering RNA of alkaline phosphatase inhibits matrix mineralization.

    PubMed

    Kotobuki, Noriko; Matsushima, Asako; Kato, Youichi; Kubo, Yoko; Hirose, Motohiro; Ohgushi, Hajime

    2008-05-01

    To investigate the cascade of matrix mineralization, cells expressing high and low alkaline phosphatase (ALP) were separated from human osteoblast-like (HOS) cells by fluorescence-activated cell sorting with an ALP antibody. After these cells had been recloned from single cells and then cultured under osteogenic conditions, high-ALP-expressing HOS (H-HOS) cells showed matrix mineralization, but low-ALP-expressing HOS (L-HOS) cells did not. The interaction among osteogenic-related genes, such as runt-related transcription factor 2 (RUNX2), collagen type I alpha1 chain (COL1A1), tissue non-specific ALP, and osteocalcin (OCN), is well known as being related to matrix mineralization. Quantitative real-time polymerase chain reaction revealed that the gene expression of ALP was higher in H-HOS cells than in L-HOS, whereas the gene expression of RUNX2, COL1A1, and OCN was lower in H-HOS cells than in L-HOS cells. When small interfering RNAs (siRNAs) of these osteogenic-related genes were introduced into H-HOS cells by transfection, only ALP siRNA inhibited matrix mineralization. Furthermore, the expression of not only the ALP gene, but also the COL1A1 and RUNX2 genes was influenced by the inhibition of ALP, although the expression of OCN was not affected by the inhibition of ALP. We have been able to confirm that the ALP gene is a strong candidate as the trigger of matrix mineralization. These results indicate the usefulness of cloned osteogenic cells in investigating the molecular mechanisms of matrix mineralization, the function of which can be modulated by using a variety of siRNAs.

  1. Modeling catalytic promiscuity in the alkaline phosphatase superfamily

    PubMed Central

    Duarte, Fernanda; Amrein, Beat Anton

    2013-01-01

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  2. Imaging of Alkaline Phosphatase Activity in Bone Tissue

    PubMed Central

    Gade, Terence P.; Motley, Matthew W.; Beattie, Bradley J.; Bhakta, Roshni; Boskey, Adele L.; Koutcher, Jason A.; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  3. Alkaline phosphatase encapsulated in gellan-chitosan hybrid capsules.

    PubMed

    Fujii, Toshihiro; Ogiwara, Daisuke; Ohkawa, Kousaku; Yamamoto, Hiroyuki

    2005-05-23

    Alkaline phosphatase (ALP) was encapsulated in gellan-chitosan polyion complex (PIC) capsules using a convenient procedure. The recovery of ALP was about 50% when the capsules were prepared by dropping a solution of ALP and gellan mixture (ALP/gellan) into a chitosan solution. When p-nitrophenyl phosphate (p-NPP) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) were incubated with ALP/gellan-chitosan capsules as substrates for ALP, the transparent colorless capsules changed to yellow and blue, respectively. The encapsulation of ALP into the PIC capsules was also confirmed by SDS-PAGE and immunoblot analyses. The ALP and polypeptides of more than 30 kDa remained without release even after incubation at 4 degrees C for 14 d. The biochemical properties of the encapsulated ALP activity were similar to those of the intact enzyme. When the solution containing p-NPP was loaded on a column packed with ALP/gellan-chitosan capsules at 27 degrees C, approximately 75% of p-NPP was hydrolyzed by passing through the column. No significant leakage of ALP was observed during the procedure, indicating that the capsules were resistant to pressure in the chromatographic operation. Furthermore, 70% of the hydrolytic activity of the packed capsules remained after storage at 4 degrees C for one month. These results suggest that the polyion complex capsules could be useful materials for protein fixation without chemical modification. [Diagram: see text] Encapsulation of ALP into PIC capsules and the morphological changes seen in the absence of the ALP substrate and in the presence of p-NPP and BICP.

  4. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN EWING'S SARCOMA

    PubMed Central

    Baptista, André Mathias; Zumárraga, Juan Pablo; dos Santos, Renan Pires Negrão; Haubert, Guilherme de Oliveira; de Camargo, Olavo Pires

    2016-01-01

    ABSTRACT Objective: To study the relationship between the serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) in patients with Ewing´s Sarcoma (ES). Methods: This is a case series with retrospective evaluation of patients with diagnosis of ES divided into 2 groups: Group 1, patients whose serum levels of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were obtained in the staging phase before preoperative chemotherapy (CT), and Group 2, patients whose values were measured after completion of the preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens extracted in surgery was also evaluated. Results: Eighty four medical records from 1995 to 2015 were included. Both AP as LDH decreased in the patients studied, the pre CT value being higher than the post CT value. The average decrease of LHD was 272.95 U/L and AP was 10.17 U/L. The average tumor necrosis was 65.12 %. There was no statistical correlation between serums levels and the tumor necrosis percentage. Conclusion: The serum levels values of AP and LDH are not predictors for chemotherapy-induced necrosis in patients with ES. Level of Evidence IV, Case Series. PMID:28243173

  5. Isolation and Characterization of an Alkaline Phosphatase from Pea Thylakoids 1

    PubMed Central

    Kieleczawa, Jan; Coughlan, Sean J.; Hind, Geoffrey

    1992-01-01

    Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme. ImagesFigure 2Figure 3 PMID:16668967

  6. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  7. Preventive effects of zinc on cadmium-induced inhibition of alkaline phosphatase activity and mineralization activity in osteoblast-like cells, MC3T3-E1.

    PubMed

    Suzuki, Y; Morita, I; Yamane, Y; Murota, S

    1989-02-01

    In order to determine the specific action of cadmium on bone metabolism, the effect of cadmium on alkaline phosphatase activity, a marker enzyme of osteoblasts, was compared with that of other divalent heavy metal ions, i.e., zinc, manganese, lead, copper, nickel and mercury (10 microM each), using cloned osteoblast-like cells, MC3T3-E1. Cadmium had the strongest inhibitory effect on alkaline phosphatase activity of the cells among the metals tested. At the same dose, however, cadmium failed to inhibit cellular glucose-6-phosphatase and lactate dehydrogenase activities, suggesting that the inhibitory effect of cadmium on alkaline phosphatase was specific and was not dependent on cell injury. Cadmium treatment caused a significant decrease in cellular zinc level, but mercury treatment had no such effect at the dose inhibiting alkaline phosphatase activity. There was a good correlation between decrease of cellular zinc level and inhibition of alkaline phosphatase activity in cadmium-treated cells. Concomitant treatment of the cells with zinc prevented the cadmium-induced inhibition of alkaline phosphatase activity. However, this was not the case in the mercury-induced inhibition. Cadmium also inhibited the mineralization of osteoblasts. When 10 or 20 microM zinc was concomitantly added to the cultures, the inhibition of mineralization was prevented. These data suggest that the inhibitory effect of cadmium in osteoblasts may be closely related to its influence on the cellular zinc metabolism.

  8. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  9. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  10. [Changes of serum alkaline phosphatase and electrolytes during 21 d head down bed-rest].

    PubMed

    Yao, Yong-jie; Sun, Xi-qing; Wang, Zhong-bo; Zhao, Shuang-bao; Yang, Chang-bin; Wu, Xing-yu

    2002-06-01

    Objective. To investigate the effect of simulated weightlessness on serum alkaline phosphatase (ALP), calcium, magnesium, chlorine and phosphorus. Method. 6 healthy males, aged 24.8 +/- 6.1, were exposed to -6 degrees HDT bed rest for 21 d. Activity of serum alkaline phosphatase, serum contents of calcium (Ca), magnesium (Mg), chlorine (Cl) and phosphorus (P) ions were assayed before HDT (d-3), on the 3rd, 10th and 21st day during HDT and after HDT (d+2). Ca was measured by methyl thymol blue method, P was determined with ultraviolet spectrophotography, determination of Mg and Cl were made with enzyme method, ALP was examined with 4-nitrobenzene phosphate method. Result. Serum Ca2+ levels were significantly higher at d10, d2l and d+2 than the value of d-3 (P<0.01). P3+ levels declined significantly on d2l as compared with d-3 (P<0.01). During the HDT and after HDT, Mg2+ declined to a level below that before HDT (P<0.05 or P<0.01). Cl- were significantly higher at d2l and d+2 than the value of d-3 (P<0.01). ALP level was higher on d2l than on d-3 (P<0.01). Conclusion. 21 d HDT induced increase of Ca, Cl, ALP, and decline of Mg and P. The changes may reflect the imbalance of metabolism.

  11. The influence of dietary boron supplementation on egg quality and serum calcium, inorganic phosphorus, magnesium levels and alkaline phosphatase activity in laying hens.

    PubMed

    Eren, M; Uyanik, F; Küçükersan, S

    2004-06-01

    This study was performed to investigate the influence of dietary boron (B) supplementation on egg production, interior and exterior egg quality and serum parameters related to egg formation in laying hens. Two hundred and twenty four, 18 week old, Hyline Brown 98 strain hens were assigned to 7 groups with 4 replicates. After 10 days of adaptation the hens were fed for 8 weeks on diets supplemented with 0, 5, 10, 50, 100, 200 and 400 mg/kg (diet) B (H(3)BO(3)). Live weight, feed consumption and egg production were reduced in the 400 mg/kg B supplemented group. Increases were determined in serum Ca, inorganic P and Mg levels and serum ALP activity was not influenced by supplemental B. Boron changed the interior and exterior quality of eggs. In particular, high level of B supplementation reduced live weight, feed consumption and egg production and changed some blood metabolites.

  12. The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts.

    PubMed

    San Miguel, S M; Goseki-Sone, M; Sugiyama, E; Watanabe, H; Yanagishita, M; Ishikawa, I

    1998-10-01

    Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum. ALP activity was determined by the rate of hydrolysis of p-nitrophenyl phosphate and was also assayed in the presence of specific inhibitors. In order to identify the TNSALP mRNA type expressed by HPDL, a set of oligonucleotide primers corresponding to 2 types of human TNSALP mRNA (i.e. bone-type and liver-type) were designed, and mRNA isolated from HPDL was amplified by means of reverse transcription-polymerase chain reaction (RT-PCR). After treatment with RA (10(-6) M) for 4 d, there was a significant increase in the ALP activity of HPDL cells. The use of inhibitors and thermal inactivation experiments showed that the increased ALP activity had properties of the TNSALP type. RT-PCR analysis revealed that bone-type mRNA was highly stimulated in HPDL cells by RA treatment, but the expression of liver-type mRNA was not detected. These results indicated that the upregulation of ALP activity in HPDL cells by RA was due to the increased transcription of bone-type mRNA of the TNSALP gene.

  13. Alkaline Phosphatase Revisited:  Hydrolysis of Alkyl Phosphates (†).

    PubMed

    O'Brien, Patrick J; Herschlag, Daniel

    2002-03-05

    Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound ∼4 Å apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (Pi) in excess of its inhibition constant (K i ≈ 1 μM). This tight binding by Pi has affected the majority of published kinetic constants. Furthermore, binding limits k cat/K m for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k cat/K m. The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK a of ≤5.5 in the free enzyme. An inactivating pK a of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k cat/K m on the pK a of the leaving group follows a Brønsted correlation with a slope of βlg = -0.85 ± 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of phosphate monoesters. The new (32)P

  14. High Serum Alkaline Phosphatase, Hypercalcaemia, Race, and Mortality in South African Maintenance Haemodialysis Patients

    PubMed Central

    Duarte, Raquel; Naicker, Saraladevi

    2017-01-01

    Objective. To determine the association between serum total alkaline phosphatase (TAP) and mortality in African maintenance haemodialysis patients (MHD). Patients and Methods. The study enrolled a total of 213 patients on MHD from two dialysis centers in Johannesburg between January 2009 and March 2016. Patients were categorized into a low TAP group (≤112 U/L) versus a high TAP group (>112 U/L) based on a median TAP of 112 U/L. Results. During the follow-up period of 7 years, there were 55 (25.8%) deaths. After adjusting for cofounders such as age, other markers of bone disorder, and comorbidity (diabetes mellitus), patients in the high TAP group had significantly higher risk of death compared to patients in the low TAP group (hazard ratio, 2.50; 95% CI 1.24–5.01, P = 0.01). Similarly, serum calcium >2.75 mmol/L was associated with increased risk of death compared to patients within levels of 2.10–2.37 mmol/L (HR 6.34, 95% CI 1.40–28.76; P = 0.02). The HR for death in white patients compared to black patients was 6.88; 95% CI 1.82–25.88; P = 0.004. Conclusion. High levels of serum alkaline phosphatase, hypercalcaemia, and white race are associated with increased risk of death in MHD patients. PMID:28168054

  15. Increased Serum Alkaline Phosphatase and Serum Phosphate as Predictors of Mortality after Stroke

    PubMed Central

    S, Pratibha; JB, Agadi

    2014-01-01

    Context: Serum Alkaline phosphatase (ALP) & phosphate are considered to be indicators of vascular calcification. Link between bone metabolism, vascular calcification, cardiovascular events have been well studied in chronic kidney disease and ischemic heart disease. Aims: To determine that increased serum phosphate and alkaline phosphatase are predictors of mortality rates and recurrent vascular events in stroke. Materials and Methods: Sixty patients admitted with acute stroke (ischemic & haemorrhagic) were included in the study. Their baseline clinical characteristics and biochemical parameters including serum ALP and phosphate were noted. All patients were followed up for a period of one year. The all- cause mortality, the mortality due to cardiovascular events and recurrent vascular events without death were noted during the follow up. Statistical analyses were done to look for any correlation between mortality and baseline levels of serum ALP and phosphate. Results: Of the 60 patients, 8 (13.3%) patients were lost for follow up. Fourteen (26.9%) patients died; of which 12 deaths were due to vascular causes and 2 deaths were due to non vascular causes. Increasing levels of serum ALP and phosphate correlated with all cause mortality and recurrent vascular events without death Conclusion: Serum ALP and phosphate prove to be cost effective prognostic indicator of mortality and recurrent vascular events in stroke. This finding has to be confirmed with studies including larger population. Further research on ALP inhibitors, Vitamin D analogues and phosphate binders to improve mortality in stroke population can be encouraged. PMID:25300293

  16. Increased serum alkaline phosphatase and serum phosphate as predictors of mortality after stroke.

    PubMed

    S, Pratibha; S, Praveen-Kumar; Jb, Agadi

    2014-08-01

    Serum Alkaline phosphatase (ALP) & phosphate are considered to be indicators of vascular calcification. Link between bone metabolism, vascular calcification, cardiovascular events have been well studied in chronic kidney disease and ischemic heart disease. To determine that increased serum phosphate and alkaline phosphatase are predictors of mortality rates and recurrent vascular events in stroke. Sixty patients admitted with acute stroke (ischemic & haemorrhagic) were included in the study. Their baseline clinical characteristics and biochemical parameters including serum ALP and phosphate were noted. All patients were followed up for a period of one year. The all- cause mortality, the mortality due to cardiovascular events and recurrent vascular events without death were noted during the follow up. Statistical analyses were done to look for any correlation between mortality and baseline levels of serum ALP and phosphate. Of the 60 patients, 8 (13.3%) patients were lost for follow up. Fourteen (26.9%) patients died; of which 12 deaths were due to vascular causes and 2 deaths were due to non vascular causes. Increasing levels of serum ALP and phosphate correlated with all cause mortality and recurrent vascular events without death Conclusion: Serum ALP and phosphate prove to be cost effective prognostic indicator of mortality and recurrent vascular events in stroke. This finding has to be confirmed with studies including larger population. Further research on ALP inhibitors, Vitamin D analogues and phosphate binders to improve mortality in stroke population can be encouraged.

  17. High Serum Alkaline Phosphatase, Hypercalcaemia, Race, and Mortality in South African Maintenance Haemodialysis Patients.

    PubMed

    Waziri, Bala; Duarte, Raquel; Naicker, Saraladevi

    2017-01-01

    Objective. To determine the association between serum total alkaline phosphatase (TAP) and mortality in African maintenance haemodialysis patients (MHD). Patients and Methods. The study enrolled a total of 213 patients on MHD from two dialysis centers in Johannesburg between January 2009 and March 2016. Patients were categorized into a low TAP group (≤112 U/L) versus a high TAP group (>112 U/L) based on a median TAP of 112 U/L. Results. During the follow-up period of 7 years, there were 55 (25.8%) deaths. After adjusting for cofounders such as age, other markers of bone disorder, and comorbidity (diabetes mellitus), patients in the high TAP group had significantly higher risk of death compared to patients in the low TAP group (hazard ratio, 2.50; 95% CI 1.24-5.01, P = 0.01). Similarly, serum calcium >2.75 mmol/L was associated with increased risk of death compared to patients within levels of 2.10-2.37 mmol/L (HR 6.34, 95% CI 1.40-28.76; P = 0.02). The HR for death in white patients compared to black patients was 6.88; 95% CI 1.82-25.88; P = 0.004. Conclusion. High levels of serum alkaline phosphatase, hypercalcaemia, and white race are associated with increased risk of death in MHD patients.

  18. Biochemical Localization of Alkaline Phosphatase in the Cell Wall of a Marine Pseudomonad

    PubMed Central

    Thompson, Linda M. M.; MacLeod, Robert A

    1974-01-01

    The various layers of the cell envelope of marine pseudomonad B-16 (ATCC 19855) have been separated from the cells and assayed directly for alkaline phosphatase activity under conditions established previously to be optimum for maintenance of the activity of the enzyme. Under conditions known to lead to the release of the contents of the periplasmic space from the cells, over 90% of the alkaline phosphatase was released into the medium. Neither the loosely bound outer layer nor the outer double-track layer (cell wall membrane) showed significant activity. A small amount of the alkaline phosphatase activity of the cells remained associated with the mureinoplasts when the outer layers of the cell wall were removed. Upon treatment of the mureinoplasts with lysozyme, some alkaline phosphatase was released into the medium and some remained with the protoplasts formed. Cells washed and suspended in 0.5 M NaCl were lysed by treatment with 2% toluene, and 95% of the alkaline phosphatase in the cells was released into the medium. Cells washed and suspended in complete salts solution (0.3 M NaCl, 0.05 M MgSO4, and 0.01 M KCl) or 0.05 M MgSO4 appeared intact after treatment with toluene but lost 50 and 10%, respectively, of their alkaline phosphatase. The results suggest that the presence of Mg2+ in the cell wall is necessary to prevent disruption of the cells by toluene and may also be required to prevent the release of alkaline phosphatase by toluene when disruption of the cells by toluene does not take place. PMID:4811547

  19.  Alkaline phosphatase normalization is a biomarker of improved survival in primary sclerosing cholangitis.

    PubMed

    Hilscher, Moira; Enders, Felicity B; Carey, Elizabeth J; Lindor, Keith D; Tabibian, James H

    2016-01-01

     Introduction. Recent studies suggest that serum alkaline phosphatase may represent a prognostic biomarker in patients with primary sclerosing cholangitis. However, this association remains poorly understood. Therefore, the aim of this study was to investigate the prognostic significance and clinical correlates of alkaline phosphatase normalization in primary sclerosing cholangitis. This was a retrospective cohort study of patients with a new diagnosis of primary sclerosing cholangitis made at an academic medical center. The primary endpoint was time to hepatobiliaryneoplasia, liver transplantation, or liver-related death. Secondary endpoints included occurrence of and time to alkaline phosphatase normalization. Patients who did and did not achieve normalization were compared with respect to clinical characteristics and endpoint-free survival, and the association between normalization and the primary endpoint was assessed with univariate and multivariate Cox proportional-hazards analyses. Eighty six patients were included in the study, with a total of 755 patient-years of follow-up. Thirty-eight patients (44%) experienced alkaline phosphatase normalization within 12 months of diagnosis. Alkaline phosphatase normalization was associated with longer primary endpoint-free survival (p = 0.0032) and decreased risk of requiring liver transplantation (p = 0.033). Persistent normalization was associated with even fewer adverse endpoints as well as longer survival. In multivariate analyses, alkaline phosphatase normalization (adjusted hazard ratio 0.21, p = 0.012) and baseline bilirubin (adjusted hazard ratio 4.87, p = 0.029) were the only significant predictors of primary endpoint-free survival. Alkaline phosphatase normalization, particularly if persistent, represents a robust biomarker of improved long-term survival and decreased risk of requiring liver transplantation in patients with primary sclerosing cholangitis.

  20. Role of placental alkaline phosphatase in the interaction between human placental trophoblast and Trypanosoma cruzi.

    PubMed

    Sartori, M J; Lin, S; Frank, F M; Malchiodi, E L; de Fabro, S P

    2002-02-01

    Congenital Chagas disease, due to the intracellular parasite Trypanosoma cruzi, is associated with premature labor, miscarriage, and placentitis. Human enzyme placental alkaline phosphatase (PLAP) (EC 3.1.3.1.) is membrane-anchored through glycosylphosphatidylinositol (GPI). PLAP is present in plasma in late pregnancy, 36 to 40 weeks; there are lower levels in maternal Chagas disease. Infants born to such mothers may have congenital Chagas disease. Human placental villi (PV) were treated with phospholipase-C (PL-C) and then cultured with T. cruzi to determine the effect of the parasites on PLAP activity as an in vitro model. There is less PLAP activity after treatment by PL-C and during culture with T. cruzi. Pretreatment of PV with PL-C before culture with T. cruzi yielded essentially normal specific activity of PLAP and prevented or greatly reduced infective penetration of villi by parasites. The results are consistent with a pathogenetic role for placental alkaline phosphatase in congenital Chagas disease. Receptor activation of membrane attachment to PLAP may be a device used by T. cruzi to enable parasite invasion of human trophoblast. Copyright 2002 Elsevier Science.

  1. Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy.

    PubMed

    Arun, Peethambaran; Oguntayo, Samuel; Albert, Stephen Van; Gist, Irene; Wang, Ying; Nambiar, Madhusoodana P; Long, Joseph B

    2015-11-16

    Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated from Alzheimer's disease (AD) patients' brains have been shown to form microtubule assemblies with tubulin only after treatment with TNAP or protein phosphatase-2A, 2B and -1, suggesting that Tau protein in the PHFs of neurons in AD brain is hyperphosphorylated, which prevents microtubule assembly. Using blast or weight drop models of traumatic brain injury (TBI) in rats, we observed pTau accumulation in the brain as early as 6h post-injury and further accumulation which varied regionally by 24h post-injury. The pTau accumulation was accompanied by reduced TNAP expression and activity in these brain regions and a significantly decreased plasma total alkaline phosphatase activity after the weight drop. These results reveal that both blast- and impact acceleration-induced head injuries cause an acute decrease in the level/activity of TNAP in the brain, which potentially contributes to trauma-induced accumulation of pTau and the resultant tauopathy. The regional changes in the level/activity of TNAP or accumulation of pTau after these injuries did not correlate with the accumulation of amyloid precursor protein, suggesting that the basic mechanism underlying tauopathy in TBI might be distinct from that associated with AD.

  2. Electrophoretic separation of alkaline and acid phosphatase isoenzymes from the pulp of monkey teeth.

    PubMed

    Franzén, A; Hasselgren, G

    1978-01-01

    Monkey pulps were homogenized in a Triton tris solution. After three centrifugation steps (800, 20000, and 105000 g) the supernatant was applied on acryl amide columns at pH 7.5 in a tris-diethyl barbituric acid buffer. Electrophoresis was performed at a constant current of 2.5 mA per gel column at 18--20 degrees C. Incubations for alkaline phosphatase (E.C. 3.1.3.1) were carried out at pH 8.3 using naphthol-AS-MX-phosphate as substrate and Fast Red Violet LB salt as coupler. Incubations for acid phosphatase (E.C. 3.1.3.2) were undertaken at pH 5.0 using alpha-naphtyl phosphate as substrate and hexazotized pararosanilin as coupling agent. After the incubations for alkaline phosphatase as well as acid phosphatase two bands showing enzyme activity were demonstrated. By means of treatment with heat (56 degrees C) prior to incubation or addition of vanadate or pyrophosphate to the incubation medium it was shown that the main part of the fast moving alkaline phosphatase band was sensitive to these procedures. The alkaline phosphatase of the slow moving band appeared to be resistant to heat or the addition of inhibitors.

  3. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  4. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients.

    PubMed

    Peters, Esther; Heemskerk, Suzanne; Masereeuw, Rosalinde; Pickkers, Peter

    2014-06-01

    Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well.

  5. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-25

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases.

  6. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    PubMed

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R(2) =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Separation of Alkaline Phosphatase Isoenzymes from Various Rat Tissues Using Flat-Bed Acrylamide Gel Isoelectric Focusing,

    DTIC Science & Technology

    1981-12-22

    Technical Bulletin No. 104. Alkaline phosphatase activity was expressed as 1 micromole of p- nitrophenol hydrolyzed per hour and specific alkaline... phosphatase activity was defined as the number of micromoles of p- nitrophenol hydrolyzed per hour per microgram of protein. The total protein was determined... phosphatase activity is known or suspected. Importantly, the procedure is easily adapted for acid phosphatase examination by merely changing the pH and

  8. Acid and alkaline phosphatase localization in the digestive tract mucosa of the Hemisorubim platyrhynchos.

    PubMed

    Faccioli, Claudemir Kuhn; Chedid, Renata Alari; Mori, Ricardo Hideo; Amaral, Antônio Carlos do; Franceschini-Vicentini, Irene Bastos; Vicentini, Carlos Alberto

    2016-09-01

    This cytochemical study investigated the acid and alkaline phosphatase of the digestive tract of Hemisorubim platyrhynchos. Acid phosphatase was detected in the lining epithelium throughout the digestive tract, whereas alkaline phosphatase was only observed in the intestine. In the esophagus, an acid phosphatase reaction occurred in the apical cytoplasm of the epithelial cells and was related to epithelial protection and freeing of superficial cells for sloughing. Similar results were also observed in epithelial cells of gastric epithelium. In the gastric glands, acid phosphatase occurred in lysosomes of the oxynticopeptic cells acting in the macromolecule degradation for use as an energy source, whereas in the vesiculotubular system, its presence could be related to secretion processes. Furthermore, acid phosphatase in the intestine occurred in microvilli and lysosomes of the enterocytes and was correlated to absorption and intracellular digestion. However, no difference was reported among the regions of the intestine. However, alkaline phosphatase reaction revealed a large number of reaction dots in the anterior intestine, with the number decreasing toward the posterior intestine. This enzyme has been related to several functions, highlighting its role in the nutrient absorption primarily in the anterior intestine but also being essential in pH regulation because this is a carnivorous species with many gastric glands with secretions that could damage the intestine.

  9. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed

    Weinberg, R A; Zusman, D R

    1990-05-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  10. Osteomalacia with low alkaline phosphatase: a not so rare condition with important consequences.

    PubMed

    Belkhouribchia, Jamal; Bravenboer, Bert; Meuwissen, Marije; Velkeniers, Brigitte

    2016-01-28

    Hypophosphatasia is a genetic disorder, characterised by a dysfunctional tissue-non-specific isoenzyme of alkaline phosphatase that impacts bone metabolism and predisposes to osteomalacia or rickets. The clinical presentation is very diverse, depending on the age of onset and the severity of the disease. Several forms of hypophosphatasia are recognised. We present a case of a 50-year-old woman with low impact fractures and loss of teeth at a young age. She also had a low alkaline phosphatase and was diagnosed with adult hypophosphatasia. Although the severe forms of hypophosphatasia are rather rare, the adult form is thought to occur quite frequently. As this condition is not well known by healthcare professionals, the time to diagnosis and initiation of adequate treatment is often postponed. When encountering a patient with low alkaline phosphatase, low bone density or a history of bone fractures, the possibility of hypophosphatasia should be considered. 2016 BMJ Publishing Group Ltd.

  11. Application of Intracellular Alkaline Phosphatase Activity Measurement in Detection of Neutrophil Adherence In Vitro

    PubMed Central

    Bednarska, Katarzyna; Klink, Magdalena; Sulowska, Zofia

    2006-01-01

    We have proposed the use of the fluorimetric method with 4-methylumbelliferyl phosphate (4-MUP) specific substrate for the alkaline phosphatase determination in the neutrophil adhesion assay. We provide evidence that the endogenous neutrophil alkaline phosphatase (NAP) activity evaluation is reliable to quantify neutrophil adhesion at a wide range of cell numbers (104−106). The results obtained by fluorimetric NAP activity test correlate to the results of adherence evaluated using the MTT reduction assay. The fluorimetric NAP activity test may be applied for resting as well as activated neutrophils without the risk of the activators interferences into the test. The alkaline phosphatase survey with the use of 4-MUP substrate is recommended herein as a sensitive, repeatable, simple, and reliable method of the neutrophil adherence determination in vitro. PMID:17047286

  12. L-Phenylalanine inhibition of human alkaline phosphatases with p-nitrophenyl phosphate as substrate.

    PubMed

    Komoda, T; Hokari, S; Sonoda, M; Sakagishi, Y; Tamura, T

    1982-12-01

    With p-nitrophenyl phosphate as the substrate, there reportedly is no organ-specific inhibition of alkaline phosphatase (EC 3.1.3.1) activity by L-phenylalanine. However, we found that at pH 10.0, with p-nitrophenyl phosphate as the substrate, L-phenylalanine obviously inhibits the alkaline phosphatase isoenzyme from human placenta, whereas there is little if any inhibition of the isoenzyme from human intestine. Because of the differing effects of substrates (p-nitrophenyl phosphate and phenyl phosphate) and their enzymic products (p-nitrophenol and phenol) for L-phenylalanine action on the placental alkaline phosphatase isoenzyme, we suggest that the isoenzyme--inhibitor--substrate complex and the effect of released phosphate on L-phenylalanine inhibition of the isoenzyme activity differ from each other.

  13. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  14. Identification of novel chromone based sulfonamides as highly potent and selective inhibitors of alkaline phosphatases.

    PubMed

    al-Rashida, Mariya; Raza, Rabia; Abbas, Ghulam; Shah, Muhammad Shakil; Kostakis, George E; Lecka, Joanna; Sévigny, Jean; Muddassar, Muhammad; Papatriantafyllopoulou, Constantina; Iqbal, Jamshed

    2013-08-01

    A new series of structurally diverse chromone containing sulfonamides has been developed. Crystal structures of three representative compounds (2a, 3a and 4a) in the series are reported. All compounds were screened for their inhibitory potential against alkaline phosphatases (ALPs). Two main classes of ALP isozymes were selected for this study, the tissue non-specific alkaline phosphatase (TNALP) from bovine and porcine source and the tissue-specific intestinal alkaline phosphatases (IALPs) from bovine source. All sulfonamide compounds had a marked preference for IALP (K(i), up to 0.01 ± 0.001 μM) over TNALPs. Kinetics studies of the compounds showed competitive mode of inhibition. Molecular docking studies were carried out in order to characterize the selective inhibition of the compounds. An additional interesting aspect of these chromone sulfonamides is their inhibitory activity against ecto-5'-nucleotidase enzyme. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. The significance of inhibitor-resistant alkaline phosphatase in the cytochemical demonstration of transport adenosine triphosphatase.

    PubMed

    Firth, J A; Marland, B Y

    1975-08-01

    The hydrolysis of disodium p-nitrophenyl phosphate at pH 9.0 by slices of formaldehydee-fixed rat renal cortex was investigated by colorimetric estimation of the nitrophenol liberated. It was found that three types of activity could be identified on the basis of their responses to inhibitors and cations: (a) alkaline phosphatase sensitive to inhibition by L-tetramisole; (b) potassium-dependent phosphatase, probably identifiable with the phosphatase component of sodium-potassium-dependent transport adenosine triphosphatase (?Na-K-ATPase); and (c) alkaline phosphatase insensitive to L-tetramisole. It was found that in the presence of strontium ions, as used in Na-K-ATPase cytochemistry, the activities of the second and third types of enzyme were approximately equal. The implications of these findings for the cytochemical demonstration of Na-K-ATPase are discussed.

  16. Quantitative method for determining serum alkaline phosphatase isoenzyme activity II. Development and clinical application of method for measuring four serum alkaline phosphatase isoenzymes.

    PubMed Central

    Shephard, M D; Peake, M J; Walmsley, R N

    1986-01-01

    A method for quantitating the liver, bone, intestinal and placental alkaline phosphatase activity of serum, using an algorithm for converting selective inactivation by guanidine hydrochloride, L-phenylalanine, and heat into equivalent isoenzyme activity is described. The method can individually quantify mixtures of isoenzymes to within a margin of 3%; it has acceptable reproducibility and has been used to develop both age and sex related reference ranges. Analysis time is about 30 minutes. The clinical reliability of this method has been shown in a study of 101 patients, in 79% of whom isoenzyme results were compatible with the final clinical diagnosis; in 10% a clinical diagnosis resulted from isoenzyme analysis, and in a further 11% the source of the increased alkaline phosphatase activity was identified and supported by electrophoresis, with a definite clinical diagnosis yet to be made. PMID:3760234

  17. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae.

    PubMed

    Vlahović, Milena; Lazarević, Jelica; Perić-Mataruga, Vesna; Ilijin, Larisa; Mrdaković, Marija

    2009-05-01

    Biochemical analyses can point to toxicant presence before its effects can be detected at higher organizational levels. We investigated responses of larval mass and alkaline phosphatase (ALP) to different cadmium treatments in 4th instar gypsy moth larvae from 20 full-sib families. Changes in trait values and trait plasticities as well as their variation were monitored after acute and chronic exposure or recovery from two cadmium concentrations (Cd(1)=10microg and Cd(2)=30microg Cd/g dry food). Larval mass only decreased, without returning to the control level at recovery stage following chronic cadmium challenge. Acute stress did not change trait value but increased genetic variance of larval mass. Significant ALP activity changes, sensitivity of isozyme patterns (Mr of 60, 64, and 85kDa) and increased variation in ALP plasticity during acute exposure to cadmium point to its possible aplication as an exposure biomarker.

  18. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase.

    PubMed Central

    Tommassen, J; Lugtenberg, B

    1980-01-01

    Outer membrane protein e is induced in wild-type cells, just like alkaline phosphatase and some other periplasmic proteins, by growth under phosphatase limitation. nmpA and nmpB mutants, which synthesize protein e constitutively, are shown also to produce the periplasmic enzyme alkaline phosphatase constitutively. Alternatively, individual phoS, phoT, and phoR mutants as well as pit pst double mutants, all of which are known to produce alkaline phosphatase constitutively, were found to be constitutive for protein e. Also, the periplasmic space of most nmpA mutants and of all nmpB mutants grown in excess phosphate was found to contain, in addition to alkaline phosphatase, at least two new proteins, a phenomenon known for individual phoT and phoR mutants as well as for pit pst double mutants. The other nmpA mutants as well as phoS mutants lacked one of these extra periplasmic proteins, namely the phosphate-binding protein. From these data and from the known positions of the mentioned genes on the chromosomal map, it is concluded that nmpB mutants are identical to phoR mutants. Moreover, some nmpA mutants were shown to be identical to phoS mutants, whereas other nmpA mutants are likely to contain mutations in one of the genes phoS, phoT, or pst. Images PMID:6995425

  19. Separation and purification of the alkaline phosphatase and a phosphodiesterase from Halobacterium cutirubrum.

    PubMed Central

    Fitt, P S; Baddoo, P

    1979-01-01

    1. Halobacterium cutirubrum alkaline phosphatase is associated in crude extracts with a phosphodiesterase. 2. The enzymes were stabilized in buffers containing both (NH4)2SO4 and 10 mM-Mn2+. 3. Adsorption chromatography on Sepharose 6B/agarose-gel columns in the presence of 1.4M-(NH4)2SO4 gave a phosphatase-free phosphodiesterase and the alkaline phosphatase associated with some phosphodiesterase activity. 4. Further chromatography of the separated enzymes gave a good recovery of greater than 600-fold purified phosphodiesterase and greater than 3000-fold purified alkaline phosphatase. 5. The requirements of these enzymes and their relationship to each other was examined. 6. A detailed study showed that the alkaline phosphatase was adsorbed at least partially to agarose and dextran columns at all (NH4)2SO4 concentrations from 0.25 to 2M. 7. In contrast, no adsorption of the enzyme or protein standards was evident in 2.5M-KCl/l M-NaCl or 0.25 M-KCl/0.1 M-NaCl, in agreement with previous studies by Louis, Peterkin & Fitt [(1971) Biochem. J. 121, 635-641], thus confirming the validity of gel filtration in 2.5 M-KCl/1 M-NaCl as a method for determining the approximate molecular weights of extremehalophile proteins. PMID:227360

  20. Comparative Analysis of Salivary Alkaline Phosphatase in Post menopausal Women with and without Periodontitis

    PubMed Central

    Sophia, Khumukcham; Sudhakar, Uma; Jayakumar, Parvathee; Mathew, Danny

    2017-01-01

    Introduction Alkaline phosphatase is an intracellular destruction enzyme in the periodontium, and it takes part in the normal turnover of the periodontal ligament, alveolar bone, and root cementum formation and maintenance. Aim The aim of this case control study was to evaluate the enzyme Alkaline Phosphatase (ALP) level in saliva of post menopausal women with and without chronic periodontitis. Materials and Methods In this study, 40 individuals, satisfying the study inclusion and exclusion criteria, were recruited. They were categorically divided, on the basis of gingival index, probing pocket depth and clinical attachment level, into two groups: Group I (post menopausal women with a clinically healthy periodontium, n=20); and Group II (post menopausal women with generalized chronic periodontitis, n=20). Clinical parameters assessed were Plaque Index (PI), Gingival Index (GI), Clinical Attachment Level (CAL) and Probing Pocket Depth (PPD). Unstimulated salivary samples were obtained in which the ALP concentration was measured using p-Nitrophenylphosphate, and 2-amino-2-methyl-1-propanol reagents in Beckman and Coulter, AU 480 auto analyser. Mann-Whitney U test was used to find statistical difference with respect to all clinical parameters such as PI, GI, CAL, PPD and salivary ALP levels. Results The mean ALP in saliva was found to be higher in Group II compared to Group I and the difference was statistically significant with the p-value of 0.008. Conclusion A noteworthy increase in the ALP concentration was seen in saliva in our study (Group II) may be due to increased periodontal inflammation in post menopausal women. Thus salivary ALP can be taken as an additional biomarker to early diagnosis, development and progression of periodontitis especially among post menopausal women. PMID:28274061

  1. Stereochemistry of phospho group transfer catalyzed by a mutant alkaline phosphatase

    SciTech Connect

    Butler-Ransohoff, J.E.; Kendall, D.A.; Freeman, S.; Knowles, J.R.; Kaiser, E.T.

    1988-06-28

    The stereochemical course of the phospho group transfer catalyzed by mutant (S102C) alkaline phosphatase from Escherichia coli was investigated by using /sup 31/P nuclear magnetic resonance spectroscopy. Transphosphorylation from 4-nitrophenyl (R/sub P/)-/sup 17/O, /sup 16/O, /sup 18/O)phosphate to (S)-propane-1,2-diol occurs with overall retention of configuration at phosphorus. This result is consistent with the view that the hydrolysis of substrates by this mutant enzyme proceeds by way of a covalent phosphoenzyme intermediate in the same manner as the wild-type alkaline phosphatase.

  2. Induction of alkaline phosphatase in Escherichia coli: effect of procaine hydrochloride.

    PubMed Central

    Tribhuwan, R C; Pradhan, D S

    1977-01-01

    The effect of procaine hydrochloride, an anesthetic known to alter membrane structure, on the induced formation of alkaline phosphatase, a periplasmic enzyme, in Escherichia coli was investigated. Procaine hydrochloride specifically arrested the appearance of active alkaline phosphatase while permitting the induction of another enzyme, beta-galactosidase, which is internally localized. Evidence has been obtained to show that procaine hydrochloride does not arrest synthesis of inactive monomer subunits of the enzyme, indicating that the drug interferes in the conversion of monomer subunits to an active dimer enzyme. Images PMID:328482

  3. Hexosaminidase and alkaline phosphatase activities in articular chondrocytes and relationship to cell culture conditions.

    PubMed

    Mokonjimobe, E; Hecquet, C; Robic, D; Bourbouze, R; Adolphe, M

    1992-04-15

    Hexosaminidase and alkaline phosphatase activities in rabbit articular chondrocytes have been studied under different cell culture conditions. Chondrocytes were cultured in monolayer primary culture, monolayer subcultured to the fifth passage (in vitro aging) and cultured within a collagen gel; enzymatically released cartilage cells were used as control. Under these conditions, the two enzymes behave quite differently in relationship to alteration of the chondrocyte phenotype in culture. Increased lysosomal hexosaminidase activity could be considered to be a marker of the dedifferentiated phenotype in monolayer subculture; membrane alkaline phosphatase activity could be used as a marker of non-proliferating cells.

  4. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  5. Alkaline phosphatase activity of Escherichia coli starved in sterile lake water microcosms.

    PubMed

    Ozkanca, R; Flint, K P

    1996-03-01

    Escherichia coli grown in high or low phosphate medium was inoculated into a lake water starvation medium. The viable count decreased at 37 degrees C but not at the lower temperatures over 70 d. Alkaline phosphatase was monitored using a colorimetric assay with pNPP as the substrate. Derepression of the enzyme occurred in cultures starved for > 30 d in the lake water and within 5 d in lake water microcosms supplemented with carbon and nitrogen sources where there was rarely an increase in viable count. Chloramphenicol prevented the synthesis of alkaline phosphatase suggesting that, even under starvation conditions, de novo synthesis of the enzyme occurs.

  6. Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharide and Prevents Inflammation in Response to the Gut Microbiota

    PubMed Central

    Bates, Jennifer M.; Akerlund, Janie; Mittge, Erika; Guillemin, Karen

    2009-01-01

    SUMMARY Vertebrates harbor abundant lipopolysaccharide (LPS) or endotoxin in their gut microbiota. Here we demonstrate that the brush border enzyme intestinal alkaline phosphatase (Iap), which dephosphorylates LPS, is induced during establishment of the microbiota and plays a crucial role in promoting mucosal tolerance to gut bacteria in zebrafish. We demonstrate that Iap deficient animals are hypersensitive to LPS toxicity through a mechanism mediated by Myd88 and Tumor Necrosis Factor Receptor (Tnfr). We further show that the endogenous microbiota establish the normal homeostatic level of neutrophils in the intestine through a process involving Myd88 and Tnfr. Iap deficient animals exhibit excessive intestinal neutrophil influx, similar to wild type animals exposed to LPS. When reared germ-free, however, the intestines of Iap deficient animals are devoid of neutrophils, demonstrating that Iap functions to prevent inflammatory responses to resident gut bacteria. PMID:18078689

  7. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    PubMed

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity. © 2015 Wiley Periodicals, Inc.

  8. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner.

    PubMed

    Mikami, Yoshikazu; Tsuda, Hiromasa; Akiyama, Yuko; Honda, Masaki; Shimizu, Noriyoshi; Suzuki, Naoto; Komiyama, Kazuo

    2016-11-01

    Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.

  9. A smart fluorescence nanoprobe for the detection of cellular alkaline phosphatase activity and early osteogenic differentiation.

    PubMed

    Cao, Feng-Yi; Fan, Jin-Xuan; Long, Yue; Zeng, Xuan; Zhang, Xian-Zheng

    2016-07-01

    In the past decades, biomaterials were designed to induce stem cell toward osteogenic differentiation. However, conventional methods for evaluation osteogenic differentiation all required a process of cell fixation or lysis, which induce waste of a large number of cells. In this study, a fluorescence nanoprobe was synthesized by combining phosphorylated fluoresceinamine isomer I (FLA) on the surface of mesoporous silica-coated superparamagnetic iron oxide (Fe3O4@mSiO2) nanoparticles. In the presence of alkaline phosphatase (ALP), the phosphorylated FLA on the nanoprobe would be hydrolyzed, resulting in a fluorescence recovery of FLA. During early osteogenic differentiation, a high-level expression of cellular ALP was induced, which accelerated the hydrolysis of phosphorylated FLA, resulting in an enhancement of cellular fluorescence intensity. This fluorescence nanoprobe provides us a rapid and non-toxic method for the detection of cellular ALP activity and early osteogenic differentiation.

  10. Osteocalcin and bone-specific alkaline phosphatase in Asian elephants (Elephas maximus) at different ages.

    PubMed

    Arya, Nlin; Moonarmart, Walasinee; Cheewamongkolnimit, Nareerat; Keratikul, Nutcha; Poon-Iam, Sawinee; Routh, Andrew; Bumpenpol, Pitikarn; Angkawanish, Taweepoke

    2015-11-01

    Bone turnover markers could offer a potential alternative means for the early diagnosis of metabolic bone disease in young growing elephants although the baseline of bone turnover markers in elephant is not well established. The aim of this study was to determine any relationship between the age of captive Asian elephants (Elephas maximus) and markers of bone formation. Serum samples from 24 female Asian elephants were collected to evaluate levels of two bone formation markers, namely, osteocalcin (OC) and bone-specific alkaline phosphatase (BAP). Both intact and N-terminal midfragment OC and BAP were negatively correlated with age. The findings demonstrate that younger elephants have a higher rate of bone turnover than older elephants. Use of these and additional bone markers could lead to the establishment of validated protocols for the monitoring of bone disease in elephants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development and application of West Nile virus subgenomic replicon RNA expressing secreted alkaline phosphatase.

    PubMed

    Moritoh, Kanako; Maeda, Akihiko; Nishino, Tomohiro; Sasaki, Nobuya; Agui, Takashi

    2011-05-01

    We have developed a West Nile virus (WNV) subgenomic replicon harboring the secreted alkaline phosphatase (SEAP) reporter gene instead of viral structural genes (designated repWNV/SEAP). The repWNV/SEAP allowed easy evaluation of viral replication efficiency by direct measurement of SEAP secretion in the cell culture medium in physical containment level 2 facilities. Furthermore, we validated the availability of this system using a known anti-flavivirus gene, mouse oligoadenylate synthetase 1b (Oas1b). The Oas1b-transfected cells were more resistant to repWNV/SEAP replication than the original cells. Thus, this system not only affords a useful tool for identification/evaluation of anti-flavivirus genes/drugs in terms of safety, ease of use and reliability, but should be able to reduce or replace the bioassay using laboratory animals.

  12. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  13. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Associations between serum bone-specific alkaline phosphatase activity, biochemical parameters, and functional polymorphisms of the tissue-nonspecific alkaline phosphatase gene in a Japanese population.

    PubMed

    Sogabe, Natsuko; Tanabe, Rieko; Haraikawa, Mayu; Maruoka, Yutaka; Orimo, Hideo; Hosoi, Takayuki; Goseki-Sone, Masae

    2013-01-01

    We had demonstrated that single nucleotide polymorphism (787T>C) in the tissue-nonspecific ALP (TNSALP) gene was associated with the bone mineral density (BMD). BMD was the lowest among TNSALP 787T homozygotes (TT-type) and highest among TNSALP 787T>C homozygotes (CC-type) in postmenopausal women. In the present study, we investigated the effects of the TNSALP genotype on associations among serum bonespecific alkaline phosphatase (BAP), serum calcium, and phosphorus in healthy young Japanese subjects. Young healthy adult subjects (n=193) were genotyped for the polymorphism, and we measured the levels of serum BAP, serum calcium, and phosphorus. Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Grouped by the TNSALP genotype, a significant negative correlation between serum BAP and phosphorus was observed in 787T>C homozygotes (CC-type), but not in heterozygotes (TCtype), nor in 787T homozygotes (TT-type). In the present study, we revealed that the single nucleotide polymorphism 787T>C in the TNSALP gene had effects on the correlation between serum BAP and phosphorus in young adult subjects. These results suggest that variation in TNSALP may be an important determinant of phosphate metabolism. Our data may be useful for planning strategies to prevent osteoporosis.

  15. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia

    PubMed Central

    Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  16. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. Differential effect of dietary spermine on alkaline phosphatase activity in jejunum and ileum of unweaned rats.

    PubMed

    Peulen, Olivier; Gharbi, Myriam; Powroznik, Brigitte; Dandrifosse, Guy

    2004-07-01

    Spermine is a low molecular weight polyamine involved in the postnatal maturation of the gut. When it is administered orally to suckling rats it induces the maturation of their spleen, liver, pancreas, and small intestine. We showed that this polyamine modulates differently the activity of alkaline phosphatase in jejunum and ileum in suckling rat. In 14-day-old rat which had received spermine orally for 3 days, once daily, an increase of alkaline phosphatase activity in the jejunum and a decrease of this activity in the ileum was observed. Alkaline phosphatase was located at the bottom of the villus in the control jejunum and in the whole length of the villus in spermine-treated rats. On the contrary, in ileum of controls, this enzyme was present in the whole length of the villus but disappeared in the spermine-treated animals. An enzyme mass shift was observed in the small intestine after spermine administration. Spermine administration did not change the expression of genes coding for alkaline phosphatase, suggesting a post-transcriptional modification.

  18. Nature of immobilization surface affects antibody specificity to placental alkaline phosphatase.

    PubMed

    Kumar, Mukesh; Khan, Imran; Sinha, Subrata

    2015-01-01

    Retention of native conformation of immobilized protein is essential for various applications including selection and detection of specific recombinant antibodies (scFvs). Placental alkaline phosphatase (PAP), an onco-fetal antigen expressed on the surface of several tumors, was immobilized on supermagnetic particles for selection of recombinant antibodies from a human phage display antibody library. The isolated antibodies were found to be cross-reactive to either of the isozymes of alkaline phosphatase, i.e., bone alkaline phosphatase (BAP) or intestinal alkaline phosphatase (IAP) and could not be used for tumor targeting. A specific anti-PAP monoclonal antibody H17E2 was tested for retention of specificity under these conditions. Binding of the antibody to magnetic beads conjugated IAP and BAP along with PAP and the ability of the two isozymes to inhibit its binding to PAP depicted the loss of isozyme specificity of the antibody. However, the antibody retained its specificity to PAP immobilized on polyvinyl chloride (PVC) surface. Enzyme activity was observed on both surfaces. This demonstrates that nature of immobilization may affect antigen-antibody binding in subtle ways, resulting in alteration of conformation of the epitopes. This may have consequences for determining the specificity of antibody binding for proteins that share a high degree of homology.

  19. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition.

  20. Heat stable alkaline phosphatase from thermophiles. Final report, March-October 1993

    SciTech Connect

    Combie, J.D.; Runnion, K.N.; Williamson, M.L.

    1994-07-01

    Alkaline phosphatase has been the most widely used enzyme for colorimetric immunoassays. The current potential for this enzyme lies in biosensors, fieldable assay kits, biotechnology applications, degradation of certain nerve agents and pesticides and detoxification of heavy metal waste streams. While the commercial source of this enzyme is predominantly from mammalian tissues, expanded commercial application is restricted by the enzyme's instability at elevated temperatures. Although alkaline phosphatases are ubiquitous in nature, two isolates out of 44 alkaline phosphatase producing isolates occurring in habitats at 50 deg C and above have been isolated possessing extremely stable enzymes. One enzyme retained 98% of original activity following boiling for 1 hr. The secretion of the enzyme by the organism is an added benefit promoting efficient and economical production capability. Procedures for the screening, isolation, and optimal growth and fermentation of organisms acquired from geothermal sources located in Yellowstone National Park, WY are described. Purification was most effectively achieved using size exclusion chromatography where 101% of the activity and 33% of the crude mother liquor protein were recovered. Although the presence of manganese in the assay buffer was observed to significantly elevate the enzyme's catalytic activity, a precipitate incompatibility with calcium chloride, a requirement for high temperature stability, prohibits its use. Bacteria, Fermentation, Alkaline phosphatase, Biosensors, Biotechnology, Heat stable enzymes, Biochemistry, Bioremediation, Thermophilic microorganisms.

  1. Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase.

    PubMed

    Simão, Ana Maria S; Beloti, Marcio M; Rosa, Adalberto L; de Oliveira, Paulo T; Granjeiro, José Mauro; Pizauro, João M; Ciancaglini, Pietro

    2007-11-01

    The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of approximately 120 kDa that could be solubilized by phospholipase C or Polidocanol.

  2. Effect of polyphenols on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro.

    PubMed

    Yamaguchi, M; Jie, Z

    2001-12-01

    The effect of various polyphenols on calcium content and alkaline phosphatase activity in the femoral-diaphyseal and -metaphyseal tissues of young rats in vitro was investigated. Bone tissues were cultured for 24 h in serum-free Dulbecco's modified Eagle's medium containing either vehicle or various polyphenols (10(-7) - 10(-4) M). The presence of genistein (10(-6) - 10(-4) M) caused a significant increase in calcium content and alkaline phosphatase activity in the femoral-diaphyseal and -metaphyseal tissues. Resveratrol (10(-4) m) decreased metaphyseal calcium content significantly, and it (10(-6) - 10(-4) M) had a significant inhibitory effect on diaphyseal enzyme activity. Epigallocatechin gallate (EGCg; 10(-4) M) significantly inhibited alkaline phosphatase activity in the diaphyseal and metaphyseal tissues. EGCg (10(-7) - 10(-4) M) had no effect on bone calcium content. Meanwhile, glycitein, quercetin, or catechin in the range of 10(-7) to 10(-4) ml did not have an effect on calcium content and alkaline phosphatase activity in the femoral-diaphyseal and -metaphyseal tissues. The present study suggests that a phytoestrogen genistein has a unique anabolic effect on bone calcification in vitro.

  3. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  4. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  5. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  6. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  7. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  8. Arsanilic acid modified superparamagnetic iron oxide nanoparticles for Purification of alkaline phosphatase from hen's egg yolk.

    PubMed

    Farzi-Khajeh, Hamed; Safa, Kazem D; Dastmalchi, Siavoush

    2017-09-01

    Recent studies of magnetic carrier technology have focused on its applications in separation and purification technologies, due to easy separation of the target from the reaction medium by applying an external magnetic field. In the present study, Fe3O4 superparamagnetic nanoparticles were prepared to utilize a chemical co-precipitation method, then the surfaces of the nanoparticles were modified with arsanilic acid derivatives which were used as the specific nanocarriers for the affinity purification of alkaline phosphatase from the hen's egg yolk. The six different types of magnetic nanocarriers with varied lengths of the linkers were obtained. All samples were characterized step by step and validated using FTIR, SEM, EDX, VSM and XRD analysis methods As the results were shown, the use of inflexible tags with long linkers on the surface of the nanocarrier could lead to better results for separation of alkaline phosphatase from the hen's egg yolk with 76.2% recovery and 1361.7-fold purification. The molecular weight of the purified alkaline phosphatase was estimated to be 68kDa by SDS-PAGE. The results of this study showed that the novel magnetic nanocarriers were capable of purifying alkaline phosphatase in a practically time and cost effective way. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Serum calcium and phosphorus concentration and alkaline phosphatase activity in healthy children during growth and development].

    PubMed

    Savić, Ljiljana; Savić, Dejan

    2008-01-01

    Many changes happen during growth and development in an organism as a result of important hormon changes, especially biohumoral ones. These changes make a problem when interpreting biochemical results in pediatric population. The most important changes are intensive calcium and phosphorus metabolic turnover in bone tissue with changes in alkaline phosphatase activity as a result of osteoblast activity. The aim of this study was to follow the serum calcium and phosphorus concentration and alkaline phosphatase activity in children 1-15 years old in different growth and development period and of different sexes and to fortify the influence of growth and development dynamics on biohumoral status in healthy male and female children. We evaluated 117 healthy children of both sexes from 1-15 years of age and divided them into three age groups: 1-5, 6-10 and 11-15 years. We followed the serum calcium and phosphorus concentration and alkaline phosphatase activity in different groups and in different sexes. Our investigation found significantly higher values of serum calcium in boys than in girls with no important changes between the age groups and significantly higher values of serum phosphorus in the youngest age group in all children and in different sexes with no important sex differences. Alkaline phosphatase activity followed the growth spurt and was the biggest in 6-10 years group in girls and in 11-15 years group in boys.

  10. Alkaline phosphatase-polyresorcinol complex: characterization and application to seed coating.

    PubMed

    Pilar, María C; Ortega, Natividad; Perez-Mateos, Manuel; Busto, María D

    2009-03-11

    An alkaline phosphatase (EC 3.1.3.1) from Escherichia coli ATCC27257 was immobilized by copolymerization with resorcinol. The phosphatase-polyresorcinol complex synthesized retained about 74% of the original enzymatic activity. The pH and temperature profile of the immobilized and free enzyme revealed a similar behavior. Kinetic parameters were determined: K(m) and K(i) values were 2.44 and 0.423 mM, respectively, for the phosphatase-polyresorcinol complex and 1.07 and 0.069 mM, respectively, for free phosphatase. The thermal and storage stabilities of the immobilized phosphatase were higher than those of the native one. On addition to soil, free enzyme was completely inactivated in 4 days, whereas the phosphatase-polyresorcinol complex was comparatively stable. Barley seed coated with the immobilized enzyme exhibited higher rhizosphere phosphatase activity. Under pot culture conditions, an increase in the soil inorganic phosphorus was detected when the seed was encapsulated with the phosphatase-polyresorcinol complex, and a positive influence on biomass and inorganic phosphorus concentration of shoot was observed.

  11. Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification.

    PubMed

    Bobryshev, Yuri V; Orekhov, Alexander N; Sobenin, Igor; Chistiakov, Dimitry A

    2014-01-01

    Matrix vesicle (MV)-mediated mineralization is important for bone ossification. However, under certain circumstances such as atherosclerosis, mineralization may occur in the arterial wall. Bone-type tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes inorganic pyrophosphate (PPi) and generates inorganic phosphate (Pi), which is essential for MV-mediated hydroxyapatite formation. MVs contain another phosphatase, PHOSPHO1, that serves as an additional supplier of Pi. Activation of bone-type tissue-nonspecific alkaline phosphatase (TNAP) in vascular smooth muscle cells precedes vascular calcification. By degrading PPi, TNAP plays a procalcific role changing the Pi/PPi ratio toward mineralization. A pathologic role of bone-type TNAP and PHOSPHO1 make them to be attractive targets for cardiovascular therapy.

  12. Immobilized E. coli alkaline phosphatase. Its properties, stability, and utility in studying the dephosphorylation of proteins.

    PubMed

    Basheeruddin, K; Rothman, V; Margolis, S

    1985-04-01

    We have immobilized E. coli alkaline phosphatase (EC 3.1.3.1) by linking it covalently to sepharose 4B. This preparation has several advantages over the soluble enzyme. The immobilized enzyme is easily separable from other constituents in incubation mixtures. The immobilized enzyme can be reused repeatedly and is more stable than the soluble enzyme to heat treatment in the presence of 10 mM Mg2+. The insoluble and soluble phosphatases removed 75 and 77%, respectively, of the inorganic phosphorus from casein. The immobilized enzyme inactivated two enzymes believed to be active in the phosphorylated state, acyl-CoA:cholesterol acyltransferase (ACAT) by 39% and NADPH-cytochrome P-450 reductase by 89%. The utility of immobilized alkaline phosphatase for studying the phosphorylation and dephosphorylation of soluble or membrane-bound enzymes and proteins is discussed.

  13. Evaluation of alkaline phosphatase detection in dairy products using a modified rapid chemiluminescent method and official methods.

    PubMed

    Albillos, S M; Reddy, R; Salter, R

    2011-07-01

    Alkaline phosphatase is a ubiquitous milk enzyme that historically has been used to verify adequate pasteurization of milk for public health purposes. Current approved methods for detection of alkaline phosphatase in milk include the use of enzyme photoactivated substrates to give readings in milliunits per liter. The U.S. and European public health limit for alkaline phosphatase in pasteurized drinks is 350 mU/liter. A modified chemiluminescent method, fast alkaline phosphatase, was compared with the approved fluorometric and chemiluminescent alkaline phosphatase methods to determine whether the modified method was equivalent to the approved methods and suitable for detecting alkaline phosphatase in milk. Alkaline phosphatase concentrations in cow's, goat's, and sheep's milk and in flavored drinks and cream were determined by three methods. Evaluations in each matrix were conducted with pasteurized samples spiked with raw milk to produce alkaline phosphatase concentrations of 2 to 5,000 mU/liter. The tests were performed by the method developer and then reproduced at a laboratory at the National Center for Food Safety and Technology following the criteria for a single laboratory validation. The results indicated that the fast alkaline phosphatase method was not significantly different from the approved chemiluminescent method, with a limit of detection of 20 to 50 mU/liter in all the studied matrices. This modified chemiluminescent method detects alkaline phosphatase in the 350 mU/liter range with absolute differences from triplicate data that are lower and within the range of the allowed intralaboratory repeatability values published for the approved chemiluminescent method. Copyright ©, International Association for Food Protection

  14. Effect of sex and age on the activities of lactate dehydrogenase and alkaline phosphatase in the lungs of rats.

    PubMed Central

    Lopez, A; Yong, S; Sharma, A; Morwood-Clark, M; Lillie, L E; Albassam, M

    1986-01-01

    Since toxicity studies among different laboratories generally involve rats of different sex and age, this study was conducted to investigate the effect of sex, age and animal to animal variation in the activities of lactate dehydrogenase and alkaline phosphatase from bronchoalveolar lavage fluid, bronchoalveolar cell lysate and lung homogenate. Correlation between numbers of bronchoalveolar cells recovered from lungs and enzyme activity in bronchoalveolar cell lysate or lung homogenate supernatant were also investigated. Male rats showed significantly (p less than 0.05) higher activities of alkaline phosphatase in the bronchoalveolar lavage fluid and lung homogenate. Animal to animal variation for lactate dehydrogenase and alkaline phosphatase was higher in lungs than in serum. The number of bronchoalveolar cells recovered from lungs revealed a significant (p less than 0.01) positive correlation with the activities of both enzymes in the supernatant of cell lysates but not in the bronchoalveolar fluid. These results indicated that in an inhalation study interindividual variation in the levels of pulmonary enzymes should be considered in order to minimize the numerous possible sources of experimental error. PMID:3742377

  15. Hysteresis on heating and cooling of E. coli alkaline phosphatase.

    PubMed

    Uto, Innocent S; Brewer, John M

    2008-01-01

    Measurements of [theta](222) of E. coli phosphatase on heating from 20 degrees to 90 degrees and subsequent cooling to 20 degrees shows a gradual increase in [theta](222) on heating, while cooling shows a symmetric transition centered at 45 degrees . Reheating and cooling shows the same phenomenon. Enzyme heated and cooled once is fully active. The activity of the enzyme depends on its storage conditions (buffer and pH for example), but such changes are least to some extent reversible, especially by heating in different solvents. We conclude the enzyme exists in several forms which are in slow equilibrium with each other, so that the enzyme responds slowly when heated and hence is not at equilibrium during heating/cooling experiments.

  16. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  17. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  18. [Comparative effects of fluoride on three enzymes, hydrolyzing pyrophosphate - acid and alkaline phosphatases and inorganic pyrophosphatase].

    PubMed

    Kasho, V N; Baĭkov, A A; Avaeva, S M

    1982-08-01

    The effects of fluoride on the activities of acid phosphatase (EC 3.1.3.2) from potato and alkaline phosphatase (EC 3.1.3.1) from E. coli during pyrophosphate and p-nitrophenylphosphate hydrolysis and on the activities of inorganic pyrophosphatase (EC 3.6.1.1) from baker's yeast during pyrophosphate hydrolysis were compared. For both phosphatases the type of interaction was found to be independent on the nature of substrate. For acid phosphatase and inorganic pyrophosphatase the inhibition was of non-competitive and uncompetitive types, respectively. In the case of alkaline phosphatase fluoride increased the rate of p-nitrophenol release during p-nitrophenylphosphate hydrolysis at pH greater than or equal to 7.9 without affecting the rate of phosphate release, which is indicative of fluorophosphate formation in the course of the transphosphorylation reaction. The data obtained suggest the existence of essential differences in the mechanisms of fluoride effects on the three enzymes under study.

  19. Ontogeny and distribution of alkaline and acid phosphatases in the digestive system of California halibut larvae (Paralichthys californicus).

    PubMed

    Zacarias-Soto, Magali; Barón-Sevilla, Benjamín; Lazo, Juan P

    2013-10-01

    Studies aimed to assess the digestive physiology of marine fish larvae under culture conditions are important to further understand the functional characteristics and digestive capacities of the developing larvae. Most studies to date concentrate on intestinal lumen digestion and little attention to the absorption process. Thus, the objectives of this study were to histochemically detect and quantify some of the enzymes responsible for absorption and intracellular digestion of nutrients in the anterior and posterior intestine of California halibut larvae. Alkaline and acid phosphatases were detected from the first days post-hatch (dph). Alkaline phosphatase maintained a high level of activity during the first 20 dph in both intestinal regions. Thereafter, a clear intestinal regionalization of the activity was observed with the highest levels occurring in the anterior intestine. Acid phosphatase activity gradually increased in both intestinal regions during development, and a regionalization of the activity was not observed until late in development, once the ocular migration began. Highest levels were observed in the anterior intestine at the end of metamorphosis concomitant with the stomach development. The results from this study show some morphological and physiological changes are occurring during larval development and a clear regionalization of the absorption process as the larvae develops. These ontological changes must be considered in the elaboration of diets according to the digestive capacity of the larvae.

  20. Evaluation of serum sialic acid, heat stable alkaline phosphatase and fucose as markers of breast carcinoma.

    PubMed

    Patel, P S; Baxi, B R; Adhvaryu, S G; Balar, D B

    1990-01-01

    Serum levels of total sialic acid (TSA), lipid bound sialic acid (LSA), heat stable alkaline phosphatase (HSAP) and fucose were measured in 39 patients with breast carcinoma, 14 patients with benign breast diseases and 35 healthy female individuals. Elevated levels of the four biomarkers in breast carcinoma were significant when compared with controls (p less than 0.001). Fucose levels were most sensitive (71.8%), while TSA levels were most specific (64.3%) for breast carcinoma. Sensitivity and specificity were 100% when combinations of LSA with fucose and TSA with HSAP were studied respectively. LSA was significantly elevated in infiltrating duct carcinoma patients compared with lobular carcinoma (p less than 0.001). TSA, HSAP and fucose also had lower mean values in lobular carcinoma as compared to infiltrating duct carcinoma. Increase in the levels of LSA and HSAP after surgical removal of the tumor in breast carcinoma occurred prior to the clinical evidence of the recurrence. The results indicate that the combination of the markers studied might be useful in breast cancer diagnosis and treatment monitoring.

  1. Intestinal lactase, sucrase, and alkaline phosphatase in 373 patients with coeliac disease.

    PubMed Central

    O'Grady, J G; Stevens, F M; Keane, R; Cryan, E M; Egan-Mitchell, B; McNicholl, B; McCarthy, C F; Fottrell, P F

    1984-01-01

    Lactase, sucrase, and alkaline phosphatase activities were measured in 833 peroral small intestinal biopsies from 373 patients with coeliac disease. Enzyme activities decreased with increasing degrees of mucosal damage. Enzyme activities in mucosae of patients with coeliac disease in remission were lower than in control groups matched for age, sex, and site of biopsy. Enzyme activities were measured in 81 patients when the mucosa was severely damaged and later when considerable improvement had occurred. Lactase activity remained low in 13% of patients under the age of 18 and in 33% of those over 18 years. Sucrase activity usually improved with histological recovery, but alkaline phosphatase activity tended to remain depressed in patients in whom lactase activity failed to improve. PMID:6421895

  2. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    NASA Astrophysics Data System (ADS)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  3. Bio-nanocapsules for signal enhancement of alkaline phosphatase-linked immunosorbent assays.

    PubMed

    Iijima, Masumi; Yamamoto, Mikako; Yoshimoto, Nobuo; Niimi, Tomoaki; Kuroda, Shun'ichi

    2013-01-01

    The bio-nanocapsules displaying about 240 molecules of immunoglobulin G Fc-binding Z domains (ZZ-BNCs) enhanced the signals of enzyme-linked immunosorbent assay by tethering the Fc regions of secondary antibodies (Abs), which were eliminated using high-molecular mass enzymes (e.g., alkaline phosphatase). By way of optimizing the distance between enzymes and Abs, ZZ-BNCs improved sensitivity independently of enzymes.

  4. Expression of the gene encoding secreted placental alkaline phosphatase (SEAP) by a nondefective adenovirus vector.

    PubMed

    Doronin, K K; Zakharchuk, A N; Grinenko, N F; Yurov, G K; Krougliak, V A; Naroditsky, B S

    1993-04-30

    A nondefective recombinant human adenovirus 5 (Ad5) carrying the SEAP gene, encoding human secreted placental alkaline phosphatase, in the E3 region of the Ad5 genome was obtained. The expression of SEAP at the early and late stages of Ad5 infection was demonstrated in permissive and semi-permissive cell cultures. The amount of SEAP in the culture medium of the 293 cells was 13.6% of the total protein.

  5. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico.

    PubMed

    Valdespino-Castillo, Patricia M; Alcántara-Hernández, Rocio J; Alcocer, Javier; Merino-Ibarra, Martín; Macek, Miroslav; Falcón, Luisa I

    2014-11-01

    Dissolved organic phosphorus utilization by different members of natural communities has been closely linked to microbial alkaline phosphatases whose affiliation and diversity is largely unknown. Here we assessed genetic diversity of bacterial alkaline phosphatases phoX and phoD, using highly diverse microbial consortia (microbialites and bacterioplankton) as study models. These microbial consortia are found in an oligo-mesotrophic soda lake with a particular geochemistry, exhibiting a low calcium concentration and a high Mg : Ca ratio relative to seawater. In spite of the relative low calcium concentration in the studied system, our results highlight the diversity of calcium-based metallophosphatases phoX and phoD-like in heterotrophic bacteria of microbialites and bacterioplankton, where phoX was the most abundant alkaline phosphatase found. phoX and phoD-like phylotypes were more numerous in microbialites than in bacterioplankton. A larger potential community for DOP utilization in microbialites was consistent with the TN : TP ratio, suggesting P limitation within these assemblages. A cross-system comparison indicated that diversity of phoX in Lake Alchichica was similar to that of other aquatic systems with a naturally contrasting ionic composition and trophic state, although no phylotypes were shared among systems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Khan, Shafi Ullah; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2017-01-27

    New and convenient methods for the functionalization of the 4-quinolone scaffold at positions C-1, C-3 and C-6 were developed. The 4-quinolone derivatives were evaluated for their inhibitory potential on alkaline phosphatase isozymes. Most of the compounds exhibit excellent inhibitory activity and moderate selectivity. The IC50 values on tissue non-specific alkaline phosphatase (TNAP) were in the range of 1.34 ± 0.11 to 44.80 ± 2.34 μM, while the values on intestinal alkaline phosphatase (IAP) were in the range of 1.06 ± 0.32 to 192.10 ± 3.78 μM. The most active derivative exhibits a potent inhibition on IAP with a ≈14 fold higher selectivity as compared to TNAP. Furthermore, molecular docking calculations were performed for the most potent inhibitors to show their binding interactions within the active site of the respective enzymes.

  7. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily.

    PubMed

    Lassila, Jonathan K; Herschlag, Daniel

    2008-12-02

    The nucleotide phosphodiesterase/pyrophosphatase from Xanthomonas axonopodis (NPP) is a structural and evolutionary relative of alkaline phosphatase that preferentially hydrolyzes phosphate diesters. With the goal of understanding how these two enzymes with nearly identical Zn(2+) bimetallo sites achieve high selectivity for hydrolysis of either phosphate monoesters or diesters, we have measured a promiscuous sulfatase activity in NPP. Sulfate esters are nearly isosteric with phosphate esters but carry less charge, offering a probe of electrostatic contributions to selectivity. NPP exhibits sulfatase activity with k(cat)/K(M) value of 2 x 10(-5) M(-1) s(-1), similar to the R166S mutant of alkaline phosphatase. We further report the effects of thio-substitution on phosphate monoester and diester reactions. Reactivities with these noncognate substrates illustrate a reduced dependence of NPP reactivity on the charge of the nonbridging oxygen situated between the Zn(2+) ions relative to that in alkaline phosphatase. This reduced charge dependence can explain about 10(2) of the 10(7)-fold differential catalytic proficiency for the most similar monoester and diester substrates in the two enzymes. The results further suggest that active site contacts to substrate oxygen atoms that do not contact the Zn(2+) ions may play an important role in defining the selectivity of the enzymes.

  8. Repeated immunostaining of the same tissue section using alkaline phosphatase as a reporter.

    PubMed

    Smith, A A

    2016-08-01

    One can determine the best dilution of a primary antibody for immunohistochemistry that uses horseradish peroxidase conjugated to a secondary antibody by testing increasing concentrations sequentially on the same tissue section. When the same tissue section is incubated repeatedly with increasing concentrations of primary antibodies to epithelial membrane antigen, smooth muscle α-actin, or vimentin using alkaline phosphatase conjugated to a secondary antibody as the reporter, the best staining was obtained with a less concentrated primary antibody than was optimal for a single staining test. The best concentration of primary antibody for single run staining using an alkaline phosphatase reporting system is usually four times the best concentration for staining with multiple runs. The optimal concentration can be determined by denaturing the residual alkaline phosphatase and extracting residual stain by incubating the section in 4:1 diglyme:phosphate buffered saline for 20 min at 80(o) C between tests of primary antibody concentrations. I tested the method for four chromogens from one supplier and one chromogen from a different supplier.

  9. Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation.

    PubMed

    Basu, Swarna; Campagnola, Paul J

    2004-01-01

    We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.

  10. Improved absorption of caseinophosphopeptide-bound iron: role of alkaline phosphatase.

    PubMed

    Ani-Kibangou, Bertille; Bouhallab, Saïd; Mollé, Daniel; Henry, Gwénaële; Bureau, François; Neuville, Dominique; Arhan, Pierre; Bouglé, Dominique

    2005-07-01

    Hydrolysis of proteins could lessen their inhibiting effect on the poor absorption of cow's milk iron (Fe), which is responsible for the high incidence of Fe deficiency worldwide. When bound to Fe, caseinophosphopeptides (CPP) derived from milk proteins resist luminal digestion, enhance Fe solubility and could improve its bioavailability; brush border enzyme alkaline phosphatase activity could influence iron absorption by releasing free Fe; this study assessed its role in the absorption of CPP-bound Fe. Rat duodenal loops were perfused with Fe gluconate or Fe bound to the CPP of beta casein [beta-CN (1-25)], with or without the addition of an inhibitor of alkaline phosphatase, Na2WO4. The uptake of Fe-beta-CN (1-25) was greater than Fe gluconate. Na2WO4 enhanced the uptake of Fe-beta-CN (1-25) and not of Fe gluconate. So the release of free, insoluble Fe, by alkaline phosphatase seems to be prevented by providing Fe in the Fe-beta-CN (1-25) complex form. Its good disappearance rate makes beta-CN (1-25)-bound Fe a candidate for food fortification.

  11. A conserved domain of alkaline phosphatase expression in the Malpighian tubules of dipteran insects.

    PubMed

    Cabrero, Pablo; Pollock, Valerie P; Davies, Shireen A; Dow, Julian A T

    2004-09-01

    Malpighian (renal) tubules are key components of the insect osmoregulatory system and show correspondingly great diversity in both number and length. Recently, the organisation of the Drosophila melanogaster tubule has been elucidated by enhancer trapping, and an array for functional properties has been shown to align with the functional domains. In Drosophila, there is a lower tubule domain, which coincides with expression of alkaline phosphatase and delineates the absorptive region of the tubule. Here, these observations are extended to three dipteran vectors of disease (Aedes aegypti, Anopheles stephensii and Glossina morsitans) and a non-dipteran out-group, Schistocerca gregaria (Orthoptera). Despite a huge range in cell number and size, alkaline phosphatase was found on the apical surface of the lower 10% of each of the dipteran tubules but nowhere within the orthopteran tubule. An alkaline phosphatase lower tubule domain is thus conserved among Diptera. Cell counts are also provided for each species. As in Drosophila, stellate cells are not found in the lower tubule domain of Anopheles or Aedes tubules, confirming the unique genetic identity of this domain. As previously reported, we failed to find stellate cells in Schistocerca but, remarkably, also failed to find them in Glossina, the dipteran most closely related to Drosophila. The orthodoxy that stellate cells are unique to, and general among, Diptera may thus require revision.

  12. Responses of phosphate transporter gene and alkaline phosphatase in Thalassiosira pseudonana to phosphine.

    PubMed

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton.

  13. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  14. Decreased mucosal expression of intestinal alkaline phosphatase in children with coeliac disease.

    PubMed

    Molnár, Kriszta; Vannay, Adám; Sziksz, Erna; Bánki, Nóra Fanni; Győrffy, Hajnalka; Arató, András; Dezsőfi, Antal; Veres, Gabor

    2012-02-01

    A major function of the enzyme intestinal alkaline phosphatase (iAP) is the detoxification of lipopolysaccharide (LPS), the ligand of Toll-like receptor 4 (TLR4). Hence, iAP has a role in the defence of maintaining intestinal barrier integrity. As intestinal barrier integrity is impaired in coeliac disease (CD), we tested the expression and localization of iAP in duodenal mucosa specimens from children with newly diagnosed CD (n = 10), with CD on gluten-free diet (GFD) (n = 5) and compared to those from ten healthy children. The mRNA and protein expression was determined by RT-PCR and Western blot analysis, respectively. Tissue localization of iAP and TLR4 was determined by immunofluorescence staining. iAP protein expression level was significantly lower than normal in newly diagnosed CD, while it was normalised in children on GFD. iAP and TLR4 colocalized at the epithelial surface of duodenal mucosa in each group of subjects enrolled. The finding of decreased iAP protein levels in newly diagnosed CD is consistent with its role in decreased intestinal barrier integrity. The latter may be the result of decreased LPS-detoxifying ability.

  15. Higher serum bone alkaline phosphatase as a predictor of mortality in male hemodialysis patients.

    PubMed

    Kobayashi, Ikue; Shidara, Kaori; Okuno, Senji; Yamada, Shinsuke; Imanishi, Yasuo; Mori, Katsuhito; Ishimura, Eiji; Shoji, Shigeichi; Yamakawa, Tomoyuki; Inaba, Masaaki

    2012-01-30

    Higher serum alkaline phosphatase predicts lower mortality in chronic kidney disease and hemodialysis patients without liver dysfunction because it reflects high bone turnover. The purpose of our study was to compare the significance of serum bone alkaline phosphatase (BAP) with that of other bone markers in prediction of all-cause mortality(ACM) in male hemodialysis patients. The study was performed for 5 years. Serum BAP, intact osteocalcin (iOC), ß-CrossLaps (CTX), and intact parathyroid hormone (iPTH) were measured in 196 male hemodialysis patients without radiographic fracture. Their day-to-day variation during 5 consecutive days and diurnal variation were determined in 13 healthy males. The patients were divided into higher and lower groups based on serum levels of bone markers(mean±SD: iPTH 218.6±214.5 pg/ml, BAP 23.6±12.2 U/L, iOC 42.8±45.2 ng/ml, CTX 1.71±1.23 nmol/L BCE). In Kaplan-Meier analysis, the higher BAP group had significantly higher ACM than the lower BAP group (P=0.013), whereas mortality did not differ between the higher and lower groups in other markers. Cox regression hazard analysis identified higher log BAP as a significant independent predictor [hazard ratio(HR) 8.32(95%CI:1.18-58.98)] for ACM after adjustment for various factors including pre-existing cardiovasucular disease, presence of DM. The significant association of mortality with serum BAP alone, in contrast with other markers including CTX [HR0.64 (95%CI:0.16-2.47)], iOC [HR0.97(95%CI:0.36-2.64)], iPTH [HR0.84(95%CI:0.44-1.60)], it may be due to the narrower day-to-day variation and the absence of diurnal variation in serum BAP compared to other markers. Higher serum BAP may be a predictor of ACM in male hemodialysis patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Toxic impact of aldrin on acid and alkaline phosphatase activity of penaeid prawn, Metapenaeus monoceros: In vitro study

    SciTech Connect

    Reddy, M.S.; Jayaprada, P.; Rao, K.V.R. )

    1991-03-01

    The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).

  17. Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine.

    PubMed Central

    Hummer, C; Millán, J L

    1991-01-01

    The catalytic activity of human placental alkaline phosphatase (PLAP) and germ cell alkaline phosphatase (GCAP) can be inhibited, through an uncompetitive mechanism, by L-Phe. GCAP is also selectively inhibited by L-Leu. Site-directed mutagenesis of five of the 12 residues which are different in PLAP and GCAP revealed that Gly429 is the primary determinant of GCAP inhibition by L-Leu, and Ser84 and Leu297 play a modulatory role in the inhibition. PMID:2001256

  18. [Recovery of the sensitivity of J-41 cells to Coxsackie B3 virus by treatment with exogenous alkaline phosphatase].

    PubMed

    Voronina, F V; Gulevich, N E; Khesin, Ia E

    1980-12-01

    It has been shown that injection of G-41 cell cultures, deficient as regards alkaline phosphatase and resistant to Coxsackie B3 virus, in conjunction with exposure to an alkaline phosphatase preparation from the calf intestine results in virus reproduction. Depending on the dose administered and multiplicity of infection there occur either complete destruction of the monolayer or death of some cells with the development of cytopathic changes specific for Coxackie virus.

  19. Growth and alkaline phosphatase activity of Chattonella marina and Heterosigma akashiwo in response to phosphorus limitation.

    PubMed

    Wang, Zhao-Hui; Liang, Yu

    2015-02-01

    The growth and alkaline phosphatase activity (APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus (DIP, NaH2PO4) and two dissolved organic phosphorus (DOP) compounds: guanosine 5-monophosphate (GMP) and triethyl phosphate (TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes (Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions. Copyright © 2014. Published by Elsevier B.V.

  20. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet.

    PubMed

    Lallès, Jean-Paul

    2010-06-01

    The diverse nature of intestinal alkaline phosphatase (IAP) functions has remained elusive, and it is only recently that four additional major functions of IAP have been revealed. The present review analyzes the earlier literature on the dietary factors modulating IAP activity in light of these new findings. IAP regulates lipid absorption across the apical membrane of enterocytes, participates in the regulation of bicarbonate secretion and of duodenal surface pH, limits bacterial transepithelial passage, and finally controls bacterial endotoxin-induced inflammation by dephosphorylation, thus detoxifying intestinal lipopolysaccharide. Many dietary components, including fat, protein, and carbohydrate, modulate IAP expression or activity and may be combined to sustain a high level of IAP activity. In conclusion, IAP has a pivotal role in intestinal homeostasis and its activity could be increased through the diet. This is especially true in pathological situations (e.g., inflammatory bowel diseases) in which the involvement of commensal bacteria is suspected and when intestinal AP is too low to detoxify a sufficient amount of bacterial lipopolysaccharide.

  1. Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase

    SciTech Connect

    Terao, M.; Mintz, B.

    1987-10-01

    Mouse alkaline phosphatase was partially purified from placenta. Data obtained by immunoblotting analysis suggested that the primary structure of this enzyme has a much greater homology to that of human and bovine liver ALPs than to the human placental isozyme. Therefore, a full-length cDNA encoding human liver-type ALP was used as a probe to isolate the mouse placental ALP cDNA. The cloned mouse cDNA is 2459 base pairs long and is composed of an open reading frame encoding a 524-amino acid polypeptide that contains a putative signal peptide of 17 amino acids. Homology at the amino acid level of the mouse placental ALP is 90% to the human liver isozyme but only 55% to the human placental counterpart. RNA blot hybridization results indicate that the mouse placental ALP is encoded by a gene identical to the gene expressed in mouse liver, kidney, and teratocarcinoma stem cells. This gene is therefore evolutionarily highly conserved in mouse and human.

  2. Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase.

    PubMed

    Ghosh, Siddhartha S; Gehr, Todd W B; Ghosh, Shobha

    2014-12-02

    Curcumin, an active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa), has significant anti-inflammatory properties. Chronic kidney disease (CKD), an inflammatory disease, can lead to end stage renal disease resulting in dialysis and transplant. Furthermore, it is frequently associated with other inflammatory disease such as diabetes and cardiovascular disorders. This review will focus on the clinically relevant inflammatory molecules that play a role in CKD and associated diseases. Various enzymes, transcription factors, growth factors modulate production and action of inflammatory molecules; curcumin can blunt the generation and action of these inflammatory molecules and ameliorate CKD as well as associated inflammatory disorders. Recent studies have shown that increased intestinal permeability results in the leakage of pro-inflammatory molecules (cytokines and lipopolysaccharides) from gut into the circulation in diseases such as CKD, diabetes and atherosclerosis. This change in intestinal permeability is due to decreased expression of tight junction proteins and intestinal alkaline phosphatase (IAP). Curcumin increases the expression of IAP and tight junction proteins and corrects gut permeability. This action reduces the levels of circulatory inflammatory biomolecules. This effect of curcumin on intestine can explain why, despite poor bioavailability, curcumin has potential anti-inflammatory effects in vivo and beneficial effects on CKD.

  3. Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments.

    PubMed

    Schmidt, Yvonne; Biniossek, Martin; Stark, G Björn; Finkenzeller, Günter; Simunovic, Filip

    2015-03-01

    Vascularization is essential in bone tissue engineering and recent research has focused on interactions between osteoblasts (hOBs) and endothelial cells (ECs). It was shown that cocultivation increases the stability of osteoblastic alkaline phosphatase (ALP) mRNA. We investigated the mechanisms behind this observation, focusing on mRNA binding proteins. Using a luciferase reporter assay, we found that the 3'-untranslated region (UTR) of ALP mRNA is necessary for human umbilical vein endothelial cells (HUVEC)-mediated stabilization of osteoblastic ALP mRNA. Using pulldown experiments and nanoflow-HPLC mass spectrometry, vimentin was identified to bind to the 3'-UTR of ALP mRNA. Validation was performed by Western blotting. Functional experiments inhibiting intermediate filaments with iminodipropionitrile and specific inhibition of vimentin by siRNA transfection showed reduced levels of ALP mRNA and protein. Therefore, ALP mRNA binds to and is stabilized by vimentin. This data add to the understanding of intracellular trafficking of ALP mRNA, its function, and have possible implications in tissue engineering applications.

  4. Ambroxol reduces LPS toxicity mediated by induction of alkaline phosphatases in rat lung.

    PubMed

    Koyama, Iwao; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Kikuno, Akira; Hokari, Shigeru; Komoda, Tsugikazu

    2004-08-01

    Alkaline phosphatases (APs) have been suggested to detoxify lipopolysaccharide (LPS) by dephosphorylation. Ambroxol, a bronchial expectorant, is known to accelerate the secretion of pulmonary surfactant particles including AP molecules as a pharmacological action. In the present study, some beneficial effects of ambroxol on LPS toxicity in the rat lung were investigated. In an experiment using the rat lung organ culture, AP activities were enhanced in a time-dependent manner by incubation with 25 microM of ambroxol in both the tissue and the medium. Western blot analysis indicated that AP activity was elevated by the treatment with ambroxol, due to the induction of surfactant proteins (SPs) and AP molecules. In the in vivo experiment, the serum LPS content was markedly increased after LPS administration to rats by intratracheal instillation of 20 mg/kg. However, when the rats were pretreated with oral ambroxol (1.0 mg/kg) at 1 h before LPS challenge, the area under the concentration--time curve (AUC) of serum LPS was significantly decreased. These results suggest that ambroxol inhibits the translocation of LPS from the lung into the circulation as well as its detoxification effect via the elevation of AP activity. Bromhexine, another expectorant, is less effective than ambroxol as an LPS detoxificant. Maintenance of high AP activity level in the lung suggests APs to have physiological significant effects against the inflammatory events induced by LPS.

  5. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  6. Comparative Evaluation of Efficacy of Three Different Herbal Toothpastes on Salivary Alkaline Phosphatase and Salivary Acid Phosphatase - A Randomized Controlled Trial

    PubMed Central

    Dodamani, Arun; Karibasappa, G. N.; Deshmukh, Manjiri; Naik, Rahul

    2016-01-01

    Introduction Very few researches in the past have tried to evaluate the effect of herbal toothpaste on saliva and salivary constituents like alkaline phosphatase and acid phosphatase which play an important role in maintaining oral health. Aim To evaluate and compare the effect of three different herbal toothpastes on Salivary Alkaline Phosphatase (ALP) and salivary Acid Phosphatase (ACP). Material and Methods The present study was a preliminary study conducted among 45 dental students (15 subjects in each group) in the age group of 19-21 years. Subjects in each group were randomly intervened with three different herbal toothpastes respectively (Group A – Patanjali Dant Kanti, Group B - Himalaya Complete Care and Group C – Vicco Vajradanti). Unstimulated saliva sample were collected before and after brushing and salivary ACP and salivary ALP levels were assessed at an interval of one week each for a period of four weeks starting from day one. Compiled data was analyzed using chi square test, paired t-test and ANOVA based on the nature of the obtained data. Results All the three toothpastes showed significant (p<0.001) reduction in ACP and ALP levels at each interval. For patanjali toothpaste, the mean reduction was in the range of 2.55 – 2.62 IU/L for ACP and 2.94 – 2.99 IU/L for ALP. For Himalaya toothpaste, the mean reduction was in the range of 1.39 – 1.47 IU/L for ACP and 1.55 – 1.61 IU/L for ALP. For Vicco toothpaste, the mean reduction was in the range of 2.46 – 2.50 IU/L for ACP and 2.64 – 2.77 IU/L for ALP. Patanjali and Vicco toothpaste were significantly effective in reducing the levels of salivary ACP and ALP more than Himalaya toothpaste (p<0.05). Conclusion Herbal toothpastes, especially Dant Kanti and Vicco Vajradanti, showed significant reduction in levels of ACP and ALP resulting in overall improvement towards the oral health. PMID:27790584

  7. The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.

    PubMed Central

    Ahlers, J

    1975-01-01

    1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995

  8. The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.

    PubMed

    Ahlers, J

    1975-09-01

    1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector.

  9. Alterations in activities of acid phosphatase, alkaline phosphatase, ATPase and ATP content in response to seasonally varying Pi status in okra (Abelmoschus esculentus).

    PubMed

    Sen, Supatra; Mukherji, S

    2004-04-01

    Phosphorus (P) is the second most important macronutrient for plant growth. Plants exhibit numerous physiological and metabolic adaptations in response to seasonal variations in phosphorus content. Activities of acid and alkaline phosphatases, ATPase and ATP content were studied in summer, rainy and winter seasons at two different developmental stages (28 and 58 days after sowing) in Okra. Activities of both acid and alkaline phosphatases increased manifold in winter to cope up with low phosphorus content. ATP content and ATPase activity were high in summer signifying an active metabolic period. Phosphorus deficiency is characterized by low ATP content and ATPase activity (which are in turn partly responsible for a drastic reduction in growth and yield) and enhanced activities of acid and alkaline phosphatases which increase the availability of P in P-deficient seasons.

  10. Characterization of human foetal intestinal alkaline phosphatase. Comparison with the isoenzymes from the adult intestine and human tumour cell lines.

    PubMed Central

    Behrens, C M; Enns, C A; Sussman, H H

    1983-01-01

    The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line. Images Fig. 1. PMID:6882358

  11. Prevention of antibiotic-associated metabolic syndrome in mice by intestinal alkaline phosphatase.

    PubMed

    Economopoulos, K P; Ward, N L; Phillips, C D; Teshager, A; Patel, P; Mohamed, M M; Hakimian, S; Cox, S B; Ahmed, R; Moaven, O; Kaliannan, K; Alam, S N; Haller, J F; Goldstein, A M; Bhan, A K; Malo, M S; Hodin, R A

    2016-05-01

    To examine whether co-administration of intestinal alkaline phosphatase (IAP) with antibiotics early in life may have a preventive role against metabolic syndrome (MetS) in mice. A total of 50 mice were allocated to four treatment groups after weaning. Mice were treated with azithromycin (AZT) ± IAP, or with no AZT ± IAP, for three intermittent 7-day cycles. After the last treatment course, the mice were administered a regular chow diet for 5 weeks and subsequently a high-fat diet for 5 weeks. Body weight, food intake, water intake, serum lipids, glucose levels and liver lipids were compared. 16S rRNA gene pyrosequencing was used to determine the differences in microbiome composition. Exposure to AZT early in life rendered mice susceptible to MetS in adulthood. Co-administration of IAP with AZT completely prevented this susceptibility by decreasing total body weight, serum lipids, glucose levels and liver lipids to the levels of control mice. These effects of IAP probably occur as a result of changes in the composition of specific bacterial taxa at the genus and species levels (e.g. members of Anaeroplasma and Parabacteroides). Co-administration of IAP with AZT early in life prevents mice from susceptibility to the later development of MetS. This effect is associated with alterations in the composition of the gut microbiota. IAP may represent a novel treatment against MetS in humans. © 2016 John Wiley & Sons Ltd.

  12. Prevention of antibiotic-associated metabolic syndrome in mice by intestinal alkaline phosphatase

    PubMed Central

    Economopoulos, K. P.; Ward, N. L.; Phillips, C. D.; Teshager, A.; Patel, P.; Mohamed, M. M.; Hakimian, S.; Cox, S. B.; Ahmed, R.; Moaven, O.; Kaliannan, K.; Alam, S. N.; Haller, J. F.; Goldstein, A. M.; Bhan, A. K.; Malo, M. S.; Hodin, R. A.

    2016-01-01

    Aims Early childhood exposure to antibiotics has been implicated in the pathogenesis of metabolic syndrome (MetS) later on in adulthood. Intestinal alkaline phosphatase (IAP) preserves the normal homeostasis of intestinal microbiota and restores the normal microbiota upon cessation of antibiotic treatment. We aim to examine whether co-administration of IAP with antibiotics early in life may have a preventive role against MetS in mice. Materials and Methods Fifty mice were allocated to four treatment groups after weaning. Mice were treated with azithromycin±IAP, or with no azithromycin±IAP, for three intermittent 7-day cycles. After the last treatment course, the mice were administered regular chow diet for five weeks and subsequently high-fat diet for five weeks. Animal body weight, food intake, water intake, serum lipids, glucose levels and liver lipids were compared. 16S rRNA gene pyrosequencing was used to determine differences in microbiome composition. Results Azithromycin exposure early in life rendered mice susceptible to MetS in adulthood. Co-administration of IAP with azithromycin completely prevented this susceptibility by decreasing total body weight, serum lipids, glucose levels and liver lipids to the levels of control mice. These effects of IAP likely occur due to changes in the composition of specific bacterial taxa at the genus and species levels (e.g. members of Anaeroplasma and Parabacteroides). Conclusions Co-administration of IAP with azithromycin early in life prevents mice from susceptibility to the later development of MetS. This effect is associated with alterations in the composition of the gut microbiota. IAP may represent a novel treatment against MetS in humans. PMID:26876427

  13. Roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated calcification. Effect of selective release of membrane-bound alkaline phosphatase and treatment with isosmotic pH 6 buffer.

    PubMed

    Register, T C; McLean, F M; Low, M G; Wuthier, R E

    1986-07-15

    The roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated mineralization have been studied by selectively releasing the enzyme from a wide variety of matrix vesicle preparations using treatment with a bacterial phosphatidylinositol-specific phospholipase C and by demineralization of the vesicles using isosmotic pH 6 buffer. Following depletion of 50-90% of the alkaline phosphatase activity or treatment with citrate buffer, the vesicles were tested for their ability to accumulate 45Ca2+ and 32Pi from a synthetic cartilage lymph. Removal of alkaline phosphatase by phospholipase C treatment caused two principal effects, depending on the matrix vesicle preparation. In rapidly mineralizing vesicle fractions which did not require organic phosphate esters (Po) to accumulate mineral ions, release of alkaline phosphatase had only a minor effect. In slowly mineralizing vesicles preparations or those dependent on Po substrates for mineral ion uptake, release of alkaline phosphatase caused significant loss of mineralizing activity. The activity of rapidly calcifying vesicles was shown to be dependent on the presence of labile internal mineral, as demonstrated by major loss in activity when the vesicles were decalcified by various treatments. Ion uptake by demineralized vesicles or those fractionated on sucrose step gradients required Po and was significantly decreased by alkaline phosphatase depletion. Uptake of Pi, however, was not coupled with hydrolysis of the Po substrate. These findings argue against a direct role for alkaline phosphatase as a porter in matrix vesicle Pi uptake, contrary to previous postulates. The results emphasize the importance of internal labile mineral in rapid uptake of mineral ions by matrix vesicles.

  14. In vivo effects of microinjected alkaline phosphatase and its low molecular weight substrates on the first meiotic cell division in Xenopus laevis oocytes.

    PubMed Central

    Hermann, J; Mulner, O; Bellé, R; Marot, J; Tso, J; Ozon, R

    1984-01-01

    Xenopus laevis oocytes were microinjected with low molecular weight phosphoesters such as 2-glycerophosphate, phosphotyrosine, phosphoserine, phosphothreonine, 4-nitrophenyl phosphate, and orthophosphate. These compounds were able to induce a considerable reduction in the time course of progesterone-induced maturation, with 2-glycerophosphate being the most effective. The basal level of cAMP and its drop during maturation were not affected by the microinjection of 2-glycerophosphate. The injection of alkaline phosphatase (EC 3.1.3.1.) from calf intestine at a low concentration (10 ng per oocyte) was able to decrease or abolish the effect of 2-glycerophosphate. At higher concentration (25 ng per oocyte) this enzyme totally blocked progesterone- or maturation-promoting factor-induced maturation. Alkaline phosphatase might behave in vivo as a phosphoprotein phosphatase active towards phosphotyrosine-containing proteins. In addition, our results indicate that phosphate or phosphoester-containing buffers should be avoided in the course of maturation-promoting factor purification. PMID:6089179

  15. Alkaline phosphatase in nasal secretion of cattle: biochemical and molecular characterisation.

    PubMed

    Ghazali, M Faizal; Koh-Tan, H H Caline; McLaughlin, Mark; Montague, Paul; Jonsson, Nicholas N; Eckersall, P David

    2014-09-05

    Nasal secretion (NS) was investigated as a source of information regarding the mucosal and systemic immune status of cattle challenged by respiratory disease. A method for the collection of substantial volumes (~12 ml) of NS from cattle was developed to establish a reference range of analytes that are present in the NS of healthy cattle. Biochemical profiles of NS from a group of 38 healthy Holstein-Friesian cows revealed high alkaline phosphatase (AP) activity of up to 2392 IU/L. The character and source of the high activity of AP in bovine NS was investigated. Histochemical analysis confirmed the localization of the AP enzyme activity to epithelial cells and serous glands of the nasal respiratory mucosa. Analysis of mRNA levels from nasal mucosa by end point RT-PCR and PCR product sequencing confirmed that the AP was locally produced and is identical at the nucleotide level to the non-specific AP splice variant found in bovine liver, bone and kidney. Analysis by isoelectric focussing confirmed that AP was produced locally at a high level in nasal epithelium demonstrating that AP from nasal secretion and nasal mucosa had similar pI bands, though differing from those of the liver, kidney, bone and intestine, suggesting different post-translational modification (PTM) of AP in these tissues. A nasal isozyme of AP has been identified that is present at a high activity in NS, resulting from local production and showing distinctive PTM and may be active in NS as an anti-endotoxin mediator.

  16. New, improved lanthanide-based methods for the ultrastructural localization of acid and alkaline phosphatase activity.

    PubMed

    Halbhuber, K J; Zimmermann, N; Linss, W

    1988-01-01

    New, improved techniques for the ultrastructural localization of acid and alkaline phosphatase activity using lanthanide cations as the trapping agent were developed. Delayed penetration of the capture ions and the incubation constituents into cellular compartments was prevented by pretreating specimens with borohydride/saponin. Both the concentration of the capture agent in the incubation medium and the incubation time of the tissue specimens were optimized to achieve a satisfactory cytochemical reaction and to avoid precipitation artefacts caused by local matrix effects. The conversion of cerium phosphate into the almost insoluble cerium fluoride minimized losses of the reaction product during postincubation processing. Moreover, lanthanum itself as well as lanthanides other than cerium, e.g., gadolinium and didymium (praseodymium, neodymium), were successfully applied and can be recommended as capture agents for phosphatase cytochemistry.

  17. The Association of Endothelin-1 Signaling with Bone Alkaline Phosphatase Expression and Protumorigenic Activities in Canine Osteosarcoma.

    PubMed

    Neumann, Z L; Pondenis, H C; Masyr, A; Byrum, M L; Wycislo, K L; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is an aggressive sarcoma characterized by pathologic skeletal resorption and pulmonary metastases. A number of negative prognostic factors, including bone alkaline phosphatase, have been identified in dogs with OS, but the underlying biologic factors responsible for such observations have not been thoroughly investigated. Endothelin-1-mediated signaling is active during bone repair, and is responsible for osteoblast migration, survival, proliferation, and bone alkaline phosphatase expression. The endothelin-1 signaling axis is active in canine OS cells, and this pathway is utilized by malignant osteoblasts for promoting cellular migration, survival, proliferation, and bone alkaline phosphatase activities. 45 dogs with appendicular OS. The expressions of endothelin-1 and endothelin A receptor were studied in OS cell lines and in samples from spontaneously occurring tumors. Activities mediated by endothelin-1 signaling were investigated by characterizing responses in 3 OS cell lines. In 45 dogs with OS, bone alkaline phosphatase concentrations were correlated with primary tumor osteoproductivity. Canine OS cells express endothelin-1 and endothelin A receptor, and this signaling axis mediates OS migration, survival, proliferation, and bone alkaline phosphatase activities. In OS-bearing dogs, circulating bone alkaline phosphatase activities were positively correlated with primary tumor relative bone mineral densities. Canine OS cells express endothelin-1 and functional endothelin A receptors, with the potential for a protumorigenic signaling loop. Increases in bone alkaline phosphatase activity are associated with osteoblastic OS lesions, and might be an epiphenomenon of active endothelin-1 signaling or excessive osteoproduction within the localized bone microenvironment. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  18. Alkaline phosphatase predicts response in polycystic liver disease during somatostatin analogue therapy: a pooled analysis.

    PubMed

    Gevers, Tom J G; Nevens, Frederik; Torres, Vicente E; Hogan, Marie C; Drenth, Joost P H

    2016-04-01

    Somatostatin analogues reduce liver volumes in polycystic liver disease. However, patients show considerable variability in treatment responses. Our aim was to identify specific patient, disease or treatment characteristics that predict response in polycystic liver disease during somatostatin analogue therapy. We pooled the individual patient data of four trials that evaluated long-acting somatostatin analogues (120 mg lanreotide or 40 mg octreotide) for 6-12 months in polycystic liver disease patients. We performed uni- and multivariate linear regression analysis with preselected patient, disease and drug variables to identify independent predictors of response, defined as per cent change in liver or kidney volume (in ADPKD subgroup). All analyses were adjusted for baseline liver volume and centre. We included 153 polycystic liver disease patients (86% female, median liver volume 4974 ml) from three international centres, all treated with octreotide (n = 70) or lanreotide (n = 83). Mean reduction in liver volume was 4.4% (range -31.6 to +9.4%). Multivariate linear regression revealed that elevated baseline alkaline phosphatase was associated with increased liver volume reduction during therapy (-2.7%, 95% CI -5.1 to -0.2%, P = 0.04), independently of baseline liver volume. Somatostatin analogue type, underlying diagnosis and eGFR did not affect response. In our ADPKD subpopulation (n = 100), elevated alkaline phosphatase predicted liver volume reduction (-3.2%, P = 0.03) but did not predict kidney volume reduction (+0.1%, P = 0.97). Total gastro-intestinal symptom severity decreased with therapy in a subgroup analysis (n = 95; P < 0.001). Alkaline phosphatase is a liver-specific, independent predictor of response in polycystic liver disease during somatostatin analogue therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Initial activity and inactivation of alkaline phosphatase in different lots of buffer.

    PubMed

    Pekelharing, J M; Leijnse, B

    1978-05-02

    Alkaline phosphatase activities were determined in six lots of 2-amino-2-methyl-1-propanol (AMP) and in six lots of diethanolamine (DEA) buffers without preincubation of the sample. There appeared to be differences between the lot numbers in both cases, resulting in a variation in initial activity. When serum samples are preincubated with buffer a loss of activity was observed in 4 out of the 6 AMP buffers. Four human isoenzymes showed varying inactivation during preincubation with AMP buffer. No loss of activity was observed when the preincubation was done with the six DEA buffers. These results indicate that the purity of the commercially-available buffers is quite unsatisfactory.

  20. Structural comparisons of two allelic variants of human placental alkaline phosphatase.

    PubMed

    Millán, J L; Stigbrand, T; Jörnvall, H

    1985-01-01

    A simple immunosorbent purification scheme based on monoclonal antibodies has been devised for human placental alkaline phosphatase. The two most common allelic variants, S and F, have similar amino acid compositions with identical N-terminal amino acid sequences through the first 13 residues. Both variants have identical lectin binding properties towards concanavalin A, lentil-lectin, wheat germ agglutinin, phytohemagglutinin and soybean agglutinin, and identical carbohydrate contents as revealed by methylation analysis. CNBr fragments of the variants demonstrate identical high performance liquid chromatography patterns. The carbohydrate containing fragment is different from the 32P-labeled active site fragment and the N-terminal fragment.

  1. [Effect of dental alloys on salivary alkaline and acid phosphatase, alpha amylase K+, Na+, and Cl-].

    PubMed

    Todorov, I; Saprjanova, M

    1977-04-01

    Comparative studied were performed in healthy subjects without metals in their oral cavities and in individuals having different metal alloys (gold, steel, amalgam) in their mouths and presenting with various complaints such as xerostomia, burning mucosa, etc. It was found that the contents of alkaline and acid phosphatases, alpha-amylase, K+, Na+ and Cl- in saliva increased significantly with the increase in total corrosion potential when non-precious metal alloys, especially different types of alloys, were present. Parallel to this, the frequency and the intensity of the complaints increased.

  2. Intestinal alkaline phosphatase: a summary of its role in clinical disease.

    PubMed

    Fawley, Jason; Gourlay, David M

    2016-05-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2012-08-30

    In this work, a solid phase extraction sequential injection methodology for the determination of alkaline phosphatase activity in dynamic water systems was developed. The determination of the enzymatic activity was based on the spectrophotometric detection of a coloured product, p-nitrophenol, at 405 nm. The p-nitrophenol is the product of the catalytic decomposition of p-nitrophenyl phosphate, a non-coloured substrate. Considering the low levels expected in natural waters and exploiting the fact of alkaline phosphatase being a metalloprotein, the enzyme was pre-concentrated in-line using a NTA Superflow resin charged with Zn(2+) ions. The developed sequential injection method enabled a quantification range of 0.044-0.441 unit mL(-1) of enzyme activity with a detection limit of 0.0082 unit mL(-1) enzyme activity (1.9 μmol L(-1) of pNP) and a determination rate of 17 h(-1). Recovery tests confirmed the accuracy of the developed sequential injection method and it was effectively applied to different natural waters and to plant root extracts.

  4. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer

    PubMed Central

    Rao, S R; Snaith, A E; Marino, D; Cheng, X; Lwin, S T; Orriss, I R; Hamdy, F C; Edwards, C M

    2017-01-01

    Background: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. Methods: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. Results: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. Conclusions: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression. PMID:28006818

  5. Serum alkaline phosphatase and bilirubin are early surrogate markers for ischemic cholangiopathy and graft failure in liver transplantation from donation after circulatory death.

    PubMed

    Halldorson, J B; Rayhill, S; Bakthavatsalam, R; Montenovo, M; Dick, A; Perkins, J; Reyes, J

    2015-03-01

    Liver transplantation with the use of donation after circulatory death (DCD) is associated with ischemic cholangiopathy (IC) often leading to graft loss. We hypothesized that serial postoperative analysis of alkaline phosphatase and bilirubin might identify patients who would later on develop ischemic cholangiopathy and/or graft loss, allowing early recognition and potentially retransplantation. The University of Washington DCD experience totals 89 DCD liver transplantations performed from 2003 to 2011 with Kaplan-Meier estimated 5-year patient and graft survival rates of 81.6% and 75.6%, respectively; 84/89 patients transplanted with DCD livers lived ≥ 60 days after transplantation and were analyzed. Serum bilirubin and alkaline phosphatase levels at 1 week, 2 week, 1 month, and 2 months after transplantation were analyzed. Two-month serum bilirubin and alkaline phosphatase proved to have the strongest associations with development of IC and graft failure. Two-month alkaline phosphatase of <100 U/L had a negative predictive value of 97% for development of IC. Two-month alkaline phosphatase demonstrated an inflection starting at >300 U/L strongly associated with development of IC (P < .0001). Serum bilirubin at 2 months was most strongly associated with graft failure within the 1st year with a strong inflection point at 2.5 mg/dL (P = .0001). All jaundiced recipients at 60 days after transplantation (bilirubin >2.5 mg/dL) developed graft failure within the 1st year (P < .0001). Use of these early surrogate markers could facilitate prioritization and early retransplantation for DCD liver recipients with allografts destined for failure.

  6. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed.

  7. Responses of alkaline phosphatase activity to phosphorus stress in Daphnia magna.

    PubMed

    McCarthy, S D S; Rafferty, S P; Frost, P C

    2010-01-15

    We examined how alkaline phosphatase (AP) activity within the bodies and in the materials released by the crustacean Daphnia magna responds to variable algal food phosphorus (P)-content. We found that Daphnia eating P-poor food (C:P approximately 700) had significantly higher AP activity in their bodies on a mass-specific basis compared with individuals eating P-rich food (C:P approximately 100). This dietary P effect on AP activity was not altered by Daphnia starvation but was partially related to differences in the P concentration of animal body homogenates. By contrast, poor P-nutrition of Daphnia lowered AP activity in released materials compared with that measured from their P-sufficient conspecifics. Moreover, AP activity in Daphnia release was lowest in animals consuming P-poor food for longer time periods. Our results support the hypothesis that AP activity increases inside P-limited Daphnia as a mechanism to increase P-acquisition and retention from ingested algae in these nutritionally stressed animals. The lower level of AP activity present in the water of P-deprived animals could reflect a change from largely free to membrane-bound AP isotypes in the digestive tracts of P-starved animals or a decrease in the shedding of membrane-anchored AP from their intestinal lining. These results supplement accumulating evidence that P-poor algal food reduces the dietary mineral P available to Daphnia. In addition, animal body AP activity measurements, with some refinement, may prove useful as an in situ indicator of P-stress in aquatic consumers.

  8. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  9. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter.

    PubMed

    Hu, Qiong; Zhou, Baojing; Dang, Pengyun; Li, Lianzhi; Kong, Jinming; Zhang, Xueji

    2017-01-15

    We report a versatile approach for the colorimetric assay of alkaline phosphatase (ALP) activity based on the distinctive metal-to-ligand charge-transfer (MLCT) absorption properties of Fe(II)-phenanthroline reporter. In the presence of ALP, the applied substrate ascorbic acid 2-phosphate is enzymatically hydrolyzed to produce ascorbic acid, which then reduces Fe(3+) to Fe(2+). The complexation of Fe(2+) with the bathophenanthroline disulfonate (BPS) ligand generates a blood-red Fe(BPS)3(4-) reporter, which is characterized by an intense MLCT absorption band at 535 nm in the visible range. Under optimal conditions, the spectral output exhibits a good quantitative relationship with ALP activity over the range of 0-220 mU mL(-1) with a detection limit of 0.94 mU mL(-1). Moreover, the activity of ALP can also be conveniently judged through naked-eye observations. Results indicate that it is highly selective and can be applied to the screening of ALP inhibitors. In addition, it has been successfully employed to detect the endogenous ALP level of undiluted human serum samples, with a detection limit of 1.05 mU mL(-1) being achieved. This approach avoids any elaborately designed substrates and holds considerable simplicity and flexibility for reporter design. This study broadens the horizon of the applications of phenanthroline-based transition metal complexes. Furthermore, an efficient and practical method like this has the potential to be widely used in clinical applications and in the point-of-care testing.

  10. Bone-specific alkaline phosphatase activity is inhibited by bisphosphonates: role of divalent cations.

    PubMed

    Vaisman, Diego N; McCarthy, Antonio D; Cortizo, Ana M

    2005-05-01

    Bisphosphonates (BPs) are drugs widely used in the treatment of various bone diseases. BPs localize to bone mineral, and their concentration in resorption lacunae could reach almost millimolar levels. Bone alkaline phosphatase (ALP) is a membrane-bound exoenzyme that has been implicated in bone formation and mineralization. In this study, we investigated the possible direct effect of three N-containing BPs (alendronate, pamidronate, and zoledronate) on the specific activity of bone ALP obtained from an extract of UMR106 rat osteosarcoma cells. Enzymatic activity was measured by spectrophotometric detection of p-nitrophenol product and by in situ visualization of ALP bands after an electrophoresis on cellulose acetate gels. Because ALP is a metalloprotein that contains Zn2+ and Mg2+, both of which are necessary for catalytic function, we also evaluated the participation of these divalent cations in the possible effect of BPs on enzymatic activity. All BPs tested were found to dose-dependently inhibit spectrophotometrically measured ALP activity (93-42% of basal) at concentrations of BPs between 10-5 M and 10-4 M, the order of potency being zoledronate approximately equals alendronate > pamidronate. However, coincubation with excess Zn2+ or Mg2+ completely abolished this inhibitory effect. Electrophoretic analysis rendered very similar results: namely a decrease in the enzymatic activity of the bone-ALP band by BPs and a reversion of this inhibition by divalent cations. This study shows that N-containing BPs directly inhibit bone-ALP activity, in a concentration range to which this exoenzyme is probably exposed in vivo. In addition, this inhibitory effect is most possibly the result of the chelation of Zn2+ and Mg2+ ions by BPs.

  11. Role of lysophosphatidylcholine in brush-border intestinal alkaline phosphatase release and restoration.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Alpers, David H; Akiba, Yasutada; Katayama, Shigehiro; Shinozaki, Rina; Kaunitz, Jonathan D; Ohshima, Susumu; Akita, Masumi; Takahashi, Seiichiro; Koyama, Iwao; Matsushita, Makoto; Komoda, Tsugikazu

    2009-07-01

    Intestinal alkaline phosphatase (IAP) is a brush-border membrane ectoenzyme (BBM-IAP) that is released into the lumen (L-IAP) after a high-fat diet. We examined the effects of oil feeding and the addition of mixed-lipid micelles on the formation of L-IAP in oil-fed rat intestine, Caco-2 cell monolayers, and mouse intestinal loops. We localized IAP in the duodenum of rats fed corn oil using fluorescence microscopy with enzyme-labeled fluorescence-97 as substrate. Four hours after oil feeding, L-IAP increased approximately 10-fold accompanied by the loss of BBM-IAP, consistent with BBM-IAP release. Rat IAP isozyme mRNAs progressively increased 4-6 h after oil feeding, followed by the increase of IAP activity in the subapical location at 6 h, consistent with the restoration of IAP protein. Postprandial lipid-micelle components, sodium taurocholate with or without oleic acid, mono-oleylglycerol, cholesterol, or lysophosphatidylcholine (lysoPC) were applied singly or as mixed-lipid micelles to the apical surface of polarized Caco-2 cell monolayers. LysoPC increased L-IAP >10-fold over basal release. LysoPC released IAP into the apical medium more than other intestinal brush-border enzymes, 5'-nucleotidase, sucrase, aminopeptidase N, and lactase, without comparable lactate dehydrogenase release or cell injury. LysoPC increased human IAP mRNA levels by 1.5-fold in Caco-2 cells. Luminally applied lysoPC also increased release of IAP preferentially in mouse intestinal loops. These data show that lysoPC accelerates the formation of L-IAP from BBM-IAP, followed by enhanced IAP synthesis, suggesting the role that lysoPC might play in the turnover of brush-border proteins.

  12. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  13. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions.

  14. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  15. Clinical utility of a wheat-germ precipitation assay for determination of bone alkaline phosphatase concentrations in patients with different metabolic bone diseases.

    PubMed

    Braga, V; Dorizzi, R; Brocco, G; Rossini, M; Zamberlan, N; Gatti, D; Adami, S

    1995-07-01

    Bone alkaline phosphatase was evaluated by wheat-germ lectin precipitation in several clinical conditions. The study included 33 premenopausal healthy women, 46 postmenopausal apparently healthy women, 19 growing children, 24 patients with Paget's disease, 31 patients with primary hyperparathyroidism and 66 patients with hepatobiliary diseases. In postmenopausal women the mean T score (i.e.: the number of SD below or above the mean for premenopausal women) was 2.6 +/- 1.3 (SD) for bone alkaline phosphatase and 1.61 +/- 1.21 for total alkaline phosphatase (p < 0.001). The T score for bone alkaline phosphatase provided a better discrimination from normals for both Paget's disease (22.1 +/- 27.8 versus 12.8 +/- 16 p < 0.001) and primary hyperparathyroidism (8.2 +/- 4.3 versus 4.6 +/- 3.7 p < 0.005 for bone alkaline phosphatase and total alkaline phosphatase respectively). After treatment with intravenous bisphosphonate the percent decrease of bone alkaline phosphatase was larger than that of total alkaline phosphatase both in patients with Paget's disease (-46% versus -72% p < 0.01) and in patients with primary hyperparathyroidism (-21% versus -47% p < 0.02) and an estimate of the precision (delta mean/SD of the delta mean) for bone alkaline phosphatase was 1.9-3.7 times higher than that of total alkaline phosphatase. In twelve osteoporotic patients treated for six months with oral alendronate the decrease in bone turnover was detected with significantly higher precision with bone alkaline phosphatase than with total alkaline phosphatase (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Detection of salmonellas by DNA hybridization with a fluorescent alkaline phosphatase substrate.

    PubMed

    Cano, R J; Torres, M J; Klem, R E; Palomares, J C; Casadesus, J

    1992-05-01

    This study evaluates a DNA hybridization assay for salmonella with AttoPhos (JBL Scientific, San Luis Obispo, CA), a fluorescent substrate for alkaline phosphatase. The probe used (50 ng/ml) was a biotinylated 600 bp fragment consisting of a tandem repeat of an insertion sequence (IS200) found in most Salmonella spp. evaluated. The hybridization was carried out at 65 degrees C for 2 h without prior prehybridization and hybrids were detected by the addition of a streptavidin-alkaline phosphatase conjugate. Circles (5 mm) were cut from the membrane and placed in a cuvette containing 1 ml of 1 mmol/l AttoPhos. The reaction was evaluated after 30 min at 37 degrees C with a fluorometer with an excitation wavelength of 440 nm and an emission wavelength of 550 nm. The sensitivity of the probe was estimated to be 10,000 copies of target DNA or 5 x 10(-20) mol of DNA. All 74 salmonella strains tested reacted with the probe but none of the 98 heterologous species tested gave positive results. The results of this study indicate that our assay method, which employs a biotinylated tandem repeat of IS200 and AttoPhos, is a specific and highly sensitive quantitative method for the detection of salmonellas.

  17. Ultrastructural localization of alkaline phosphatase in the eggs of Hydatigera taeniaeformis (Taenia taeniaeformis).

    PubMed

    Ajayi, S T; Smith, B F; LeFlore, W B

    1985-01-01

    Freshly shed gravid proglottids from a three-month-old infection of Hydatigera taeniaeformis collected from the faecal droppings of infected cats were used for this study. They were treated for transmission electron microscopy (TEM) followed by incubation using the lead precipitate method. Control sections were incubated in a substrate-free medium, a substrate medium containing 1.0 mM sodium fluoride (NaF) (an inhibitor), and the last sections were denatured at 90 degrees C for 1 min prior to incubation. Intensive alkaline phosphatase activity in the embryophoric blocks and the outer embryophoric membrane was revealed. The reaction products were also indicated in the oncospheral membrane. However, no enzyme activity was seen in any other part of the egg. The enzyme was also absent in the control sections. The presence of alkaline phosphatase activity in the outer embryophoric and oncospheral membranes suggested that this enzyme may be involved in carbohydrate metabolism and nutritional absorption, and also may play a role in the transport of nutrients and other substances from the adult to the developing embryo, respectively.

  18. A ratiometric fluorescent probe for alkaline phosphatase via regulation of excited-state intramolecular proton transfer.

    PubMed

    Fan, Chunlei; Luo, Shengxu; Qi, Haiping

    2016-03-01

    A ratiometric fluorescent probe 2-(benzimidazol-2-yl)phenyl phosphoric acid (1) for alkaline phosphatase (ALP) is designed and synthesized. The method employs the modulation of the excited-state intramolecular proton transfer (ESIPT) process of 2-(2'-hydroxyphenyl)benzimidazole (HPBI) through the hydroxyl group protection/deprotection reaction. Upon phosphorylated with POCl3 , HPBI shows only an emission peak at 363 nm due to the blockage of ESIPT. However, once selective enzymatic hydrolysis with alkaline phosphatase (ALP) in Tris-HCl buffer occurs, the probe 1 is returned to HPBI and the ESIPT process is switched on, which results in a decrease in the emission band at 363 nm and an increase in a new fluorescence peak around 430 nm. The fluorescence intensity ratio at 430 and 360 nm (I430/I360) increases linearly with the activity of ALP up to 0.050 U/mL and the detection limit is 0.0013 U/mL. The proposed probe shows excellent specificity toward ALP.

  19. Lectin histochemistry and alkaline phosphatase activity in the pia mater vessels of spontaneously hypertensive rats (SHR).

    PubMed

    Szumańska, G; Gadamski, R

    1992-01-01

    Some lectins were used to study the localization of sugar residues on the endothelial cell surface in the pia mater blood vessels of control (WKY) and hypertensive rats (SHR). The lectins tested recognized the following residues: beta-D-galactosyl (Ricinus communis agglutinin 120, RCA-1), alpha-L-fucosyl (Ulex europaeus agglutinin, UEA-1), N-acetylglucosaminyl and sialyl (Wheat germ agglutinin, WGA), N-glycolyl-neuraminic acid (Limax flavus agglutinin, LFA), and N-acetyl-D-galactosaminyl (Helix pomatia agglutinin, HPA). Several differences were revealed in the presence of sugar receptors on the surface of endothelial cells between the control and the hypertensive rats. Our studies showed also differences in the localization of the tested glycoconjugates between pial capillaries, small, medium-size and large pial arteries. The histochemical evaluation of alkaline phosphatase revealed an increased activity of the enzyme in the pial vessels of SHRs as compared with control rats with a similar localization of the enzyme activity. Some differences in the distribution of lectin binding sites and alkaline phosphatase activity could be associated with the different functions of particular segments of the pial vascular network.

  20. Flow screen-printed amperometric detection of p-nitrophenol in alkaline phosphatase-based assays.

    PubMed

    Fanjul-Bolado, Pablo; González-García, María Begoña; Costa-García, Agustín

    2006-08-01

    p-Nitrophenyl phosphate is one of the most widely used substrates for alkaline phosphatase in ELISAs because its yellow, water-soluble product, p-nitrophenol, absorbs strongly at 405 nm. p-Nitrophenol is also electroactive; an oxidative peak at 0.97 V (vs. an Ag pseudoreference electrode) is obtained when a bare screen-printed carbon electrode is used. When an amperometric detector was coupled to a flow-injection analysis system the detection limit achieved for p-nitrophenol was 2x10(-8) mol L(-1), almost two orders of magnitude lower than that obtained by measuring the absorbance of the compound. By use of this electrochemical detection method, measurement of 7x10(-14) mol L(-1) alkaline phosphatase was achieved after incubation for 20 min. The feasibility of coupling immunoassay to screen-printed carbon electrode amperometric detection has been demonstrated by performing an ELISA for detection of pneumolysin, a toxin produced by Streptococcus pneumoniae, which causes respiratory infections. The method is simple, reproducible, and much more sensitive than traditional spectrophotometry.

  1. Comparison of methods for following alkaline phosphatase catalysis: spectrophotometric versus amperometric detection.

    PubMed

    Thompson, R Q; Barone, G C; Halsall, H B; Heineman, W R

    1991-01-01

    An amperometric method for alkaline phosphatase is described and compared to the most widely used spectrophotometric method. Catalytic hydrogenation of 4-nitrophenylphosphate (the substrate in the spectrophotometric method) gives 4-aminophenylphosphate (the substrate in the amperometric method). The latter substrate has the formula C6H6NO4PNa2.5H2O and a Mr of 323. The Michaelis constant for 4-aminophenylphosphate in 0.10 M, pH 9.0. Tris buffer is 56 microM, while it is 82 microM for 4-nitrophenyl phosphate. The amperometric method has a detection limit of 7 nM for the product of the enzyme reaction, which is almost 20 times better than the spectrophotometric method. Similarly, with a 15-min reaction at room temperature and in a reaction volume of 1.1 ml, 0.05 microgram/l alkaline phosphatase can be detected by electrochemistry, almost an order of magnitude better than by absorption spectrophotometry. Amperometric detection is ideally suited for small-volume and trace immunoassay.

  2. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase.

    PubMed

    Wojciechowski, Cheryl L; Kantrowitz, Evan R

    2003-06-26

    Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp(51). The D153E enzyme had an increased k(cat) in the presence of high concentrations of Mg(2+), along with a decreased Mg(2+) affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn(1) site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn(2+), dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.

  3. Transformation of glucocorticoid receptors bound to the antagonist RU 486: Effects of alkaline phosphatase

    SciTech Connect

    Gruol, D.J.; Wolfe, K.A. )

    1990-08-28

    RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition was significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.

  4. Subunits of the alkaline phosphatase of Bacillus licheniformis: chemical, physicochemical, and dissociation studies.

    PubMed

    Hulett, F M; Schaffel, S D; Campbell, L L

    1976-11-01

    The alkaline phosphatase (orthophosphoric monoester phosphydrolase, EC 3.1.3.1) of Bacillus licheniformis MC14 was studied in an attempt to determine the number of subunits contained in the 120,000-molecular-weight native enzyme. Two moles of arginine was liberated per mole of native enzyme by carboxypeptidases A and B in the presence of sodium dodecyl sulfate. The effect on the native enzyme of progressively lowering the solvent buffer pH was monitored by determining the molecular weight by sedimentation equilibrium analysis, the sedimentation coefficient, the frictional coefficient, and the percent alpha-helix content of the enzyme. The alkaline phosphatase dissociates into two subunits around pH 4. At pH 2.8 a further decrease in S value, but no change in molecular weight, is observed, indicating a change in conformation. The frictional coefficients and percent alpha-helix content agree with this interpretation. A subunit molecular weight of 59,000 was calculated from sodium dodecyl sulfate gels.

  5. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection.

    PubMed

    Homaei, Ahmad

    2017-02-01

    Biotechnology of enzyme has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. The work describes the original application of biosensors based on Penaeus merguiensis alkaline phosphatase (PM ALP) immobilized on gold nanorods (GNRs) to heavy metal determination. Penaeus merguiensis alkaline phosphatase (PM ALP) was immobilized on gold nanorods (GNRs) by ionic exchange and hydrophobic interactions. The optimum pH and temperature for maximum enzyme activity for the immobilized PM ALP are identified to be 11.0 and 60°C, respectively, for the hydrolysis of para-Nitrophenylphosphate (p-NPP). The kinetic studies confirm the Michaelis-Menten behavior and suggests overall slightly decrease in the performance of the immobilized enzyme with reference to the free enzyme. Km and Vmax values were 0.32µm and 54µm. min(-1) for free and 0.39µm and 48µmmin(-1) for immobilized enzymes, respectively. Similarly, the thermal stability, storage stability and stability at extreme pH of the enzyme is found to increase after the immobilization. The inhibitory effect heavy metal ions was studied on free and immobilized PM ALP. The bi-enzymatic biosensor were tested to study the influence of heavy metal ions and pesticides on the corresponding enzyme. The obtained high stability and lower decrease in catalytic efficiency suggested the great potential and feasibility of immobilized PM ALP nanobiocatalyst in efficient and apply the biosensor in total toxic metal content determination.

  6. Effects of various salts on the steady-state enzymatic activity of E. coli alkaline phosphatase.

    PubMed

    Poe, R W; Sangadala, V S; Brewer, J M

    1993-05-15

    Seventeen salts were tested at various concentrations for their effects on E. coli alkaline phosphatase steady-state activity. Three effects were distinguished: a general ionic strength effect, and weaker cation and anion effects. 1. All salts tested, including those with "noninteracting" cations and anions, stimulate alkaline phosphatase activity usually ca. 100% at moderate (0.05-0.3 M) concentrations. 2. Cations such as Na+ and Li+ produce further increases in activity at concentrations up to 1 M. The noninteracting cations tetramethylammonium and tetrapropylammonium produce lower activities at these concentrations. These do not provide the secondary stimulatory effect of cations such as Na+ or Li+. 3. Anions associated with greater "salting in" effectiveness such as thiocyanate also reduce activity at ca. 1 M concentrations. These latter effects are not dependent on protein concentration so they probably do not involve subunit dissociation. There is little effect on the fluorescence or fluorescence-polarization spectrum of the enzyme so there is no general effect of 1 M salts on the conformation of the protein. The Michaelis constant for the substrate, p-nitrophenylphosphate, and inhibition constant for inorganic phosphate are increased to some extent by salts, but the increase in activity is due to an increase in Vmax. Our working hypothesis is that increased ionic strength weakens electrostatic interactions, enabling noncovalently bound phosphate to dissociate more rapidly.

  7. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  8. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation.

  9. Intestinal Alkaline Phosphatase Is Protective to the Preterm Rat Pup Intestine

    PubMed Central

    Heinzerling, Nathan P.; Liedel, Jennifer L.; Welak, Scott R.; Fredrich, Katherine; Biesterveld, Ben E.; Pritchard, Kirkwood A.; Gourlay, David M.

    2014-01-01

    Background Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Methods Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNF-a, IL-6 and iNOS and permeability and cytokine expression after LPS. exposure. Results There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Conclusions Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. PMID:24888842

  10. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively.

  11. The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase.

    PubMed

    Anderson, R A; Kennedy, F S; Vallee, B L

    1976-08-24

    Alkaline phosphatase of Escherichia coli, isolated by procedures which do not alter its intrinsic metal content, contains 1.3 +/- 0.3 g-atom(s) of magnesium and 4.0 +/- 0.2 g-atoms of zinc per mol of molecular weight 89 000 (Bosron et al., 1975). Substitution of Co(II) for Zn(II) and/or Mg(II) results in spectral properties which can be correlated with enzymatic activity. Magnesium does not activate the apoenzyme but augments the activity of 2-Co(II) enzyme almost 3-fold and that of the 4-Co(II) enzyme 1.3-fold. The magnesium-induced increase in activity of the 2-Co(II) enzyme is accompanied by spectral changes which are consistent with an alteration from largely octahedral-like to pentacoordinate-like coordination geometry. Magnesium increases the intensity of the absorption and magnetic circular dichroism (MCD) signals of the 4-Co(II) enzyme but without evidence of changes in coordination geometry. Cobalt when bound to the magnesium sites results in octahedral-like EPR spectra, unperturbed by phosphate which significantly affects cobalt at the pentacoordinate-like sites. In the absence of magnesium, 6 g-atoms of cobalt are required to maximize the spectral properties, but activity does not increase further after the addition of only 4 g-atoms of cobalt, while activity is optimal with only 2 g-atoms of cobalt. Hydrogen-tritium exchange measurements indicate that magnesium also stabilizes the dynamic structural properties of the apo- and 2-Co(II) enzymes but has little effect on the structure of 4-Co(II) phosphatase. The response to magnesium of both the spectral properties and enzymatic activities of cobalt alkaline phosphatase demonstrates that magnesium regulates cobalt (and zinc) binding and modulates the activity of the resultant products.

  12. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter

    PubMed Central

    2013-01-01

    Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has

  13. [Effect of different environmental factors on the activities of digestive enzymes and alkaline phosphatase of Macrobrochium nipponense].

    PubMed

    Wang, Weina; Sun, Ruyong; Wang, Anli; Bao, Lei; Wang, Peng

    2002-09-01

    The activities of digestive enzymes and alkaline phosphatase from the hepatopancreas of Macrobrochium nipponense were determined under different environmental factors (calcium concentrations 20 mg.L-1, 35 mg.L-1, 60 mg.L-1, 80 mg.L-1, 150 mg.L-1; salinity 7@1000, 14@1000, pH 7.6, 8.8, 9.8). The results showed that higher Ca2+ concentration could enhance the pepsin activity, but inhibit the trysin-like activity in hepatopancreas of M. nipponense. The activities of pepsin, trysin-like, alkaline phosphatase in hepatopancreas of M. nipponense were higher under salinity of 14@1000 than under salinity of 7@1000 and 20@1000. It showed that the activities of digestive enzymes and alkaline phosphatase of shrimp increased gradually with increasing pH value from 7.6 to 9.8.

  14. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    SciTech Connect

    Henthorn, P.; Zervos, P.; Raducha, M.; Harris, H.; Kadesch, T.

    1988-09-01

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity.

  15. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum.

    PubMed

    Mizumori, Misa; Ham, Maggie; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2009-07-15

    Regulation of localized extracellular pH (pH(o)) maintains normal organ function. An alkaline microclimate overlying the duodenal enterocyte brush border protects the mucosa from luminal acid. We hypothesized that intestinal alkaline phosphatase (IAP) regulates pH(o) due to pH-sensitive ATP hydrolysis as part of an ecto-purinergic pH regulatory system, comprised of cell-surface P2Y receptors and ATP-stimulated duodenal bicarbonate secretion (DBS). To test this hypothesis, we measured DBS in a perfused rat duodenal loop, examining the effect of the competitive alkaline phosphatase inhibitor glycerol phosphate (GP), the ecto-nucleoside triphosphate diphosphohydrolase inhibitor ARL67156, and exogenous nucleotides or P2 receptor agonists on DBS. Furthermore, we measured perfusate ATP concentration with a luciferin-luciferase bioassay. IAP inhibition increased DBS and luminal ATP output. Increased luminal ATP output was partially CFTR dependent, but was not due to cellular injury. Immunofluorescence localized the P2Y(1) receptor to the brush border membrane of duodenal villi. The P2Y(1) agonist 2-methylthio-ADP increased DBS, whereas the P2Y(1) antagonist MRS2179 reduced ATP- or GP-induced DBS. Acid perfusion augmented DBS and ATP release, further enhanced by the IAP inhibitor l-cysteine, and reduced by the exogenous ATPase apyrase. Furthermore, MRS2179 or the highly selective P2Y(1) antagonist MRS2500 co-perfused with acid induced epithelial injury, suggesting that IAP/ATP/P2Y signalling protects the mucosa from acid injury. Increased DBS augments IAP activity presumably by raising pH(o), increasing the rate of ATP degradation, decreasing ATP-mediated DBS, forming a negative feedback loop. The duodenal epithelial brush border IAP-P2Y-HCO(3-) surface microclimate pH regulatory system effectively protects the mucosa from acid injury.

  16. THE OOGONIA OF MACROALGA UNDARIA PINNATIFIDA ARE ALKALINE-PHOSPHATASE POSITIVE AND CONTAIN GERMINAL BODY-LIKE STRUCTURES(1).

    PubMed

    Alexandrova, Ya N; Reunov, A A

    2008-06-01

    It was observed that in the female gametophyte of Undaria pinnatifida (Harv.) Suringar (Phaeophyta, Laminariales) gametangial initials and maturing oogonia demonstrated different levels of alkaline-phosphatase activity (APA). The oogonia exhibited a higher level of APA than in its initials. Electron-dense granular ovoid structures ∼0.5-0.6 μm were present in the cytoplasm of oogonia. These inclusions were not membrane bound and do not appear to be associated with any particular organelles. The number of the inclusions was 1 to 2 in a single section of the cell. In essential details, the specific APA and subcellular germinal body-like structure of the developing female gamete in U. pinnatifida were very similar to those in metazoan oocytes.

  17. Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms.

    PubMed

    Magnusson, P; Sharp, C A; Magnusson, M; Risteli, J; Davie, M W; Larsson, L

    2001-07-01

    Biochemical markers of bone turnover are used to monitor metabolic bone disease associated with renal failure. We have applied a comprehensive panel of markers to patients with chronic renal failure (CRF), with particular focus on the isoforms of bone alkaline phosphatase (BALP). Twenty CRF patients undergoing hemodialysis (N = 9) and peritoneal dialysis (N = 11) were measured for serum parathyroid hormone (PTH), osteocalcin, total ALP, and four BALP isoforms (B/I, B1x, B1, and B2) by high-performance liquid chromatography. These BALP isoforms were also compared with BALP measured by three commercial immunoassays (Alkphase-B, Tandem-R Ostase, and Tandem-MP Ostase). Type I collagen turnover was assessed by serum samples using the type I procollagen intact amino- and carboxy-terminal propeptides (PINP and PICP) and two fragments (ICTP and CrossLaps) derived from the carboxy-terminal telopeptide of mature matrix collagen by different degradative pathways. Mean levels of bone turnover markers were elevated in CRF, with marked increases in those markers, osteocalcin, ICTP, and CrossLaps, cleared by the kidney. Total ALP activities were increased corresponding to elevated B/I and B2 isoform levels. The B1 isoform level was not significantly different from healthy controls. B1x was detected in 60% of the patients but was not resolved in healthy individuals. Kendall's tau rank correlation showed that B1x correlated significantly (P < 0.05) with B1 (0.53) and PINP (0.55), and was the only marker to correlate with PTH (0.49). B1x was not significantly correlated with any of the commercial BALP immunoassays. Interestingly, the immunoassay calibrators contained high activities of the B/I peak (39 to 80%) compared with human serum (4%). There are selective differences between the BALP isoforms in CRF compared with healthy adults. The commercial BALP immunoassays are comparable with each other but are unable to distinguish the BALP isoform-specific differences in CRF patients.

  18. Phosphodiesterase activity is a novel property of alkaline phosphatase from osseous plate.

    PubMed Central

    Rezende, A A; Pizauro, J M; Ciancaglini, P; Leone, F A

    1994-01-01

    Phosphodiesterase activity is a novel property of the still-enigmatic alkaline phosphatase from osseous plate. Bis-(p-nitrophenyl) phosphate was hydrolysed at both pH 7.5 and 9.4 with an apparent dissociation constant (K0.5) of 1.9 mM and 3.9 mM respectively. The hydrolysis of p-nitrophenyl-5'-thymidine phosphate followed hyberbolic kinetics with a K0.5 of 500 microM. For p-nitrophenyl phenylphosphonate, site-site interactions [Hill coefficient (h) = 1.3] were observed in the range between 0.2 and 100 microM, and K0.5 was 32.8 mM. The hydrolysis of cyclic AMP by the enzyme followed more complex kinetics, showing site-site interactions (h = 1.7) and K0.5 = 300 microM for high-affinity sites. The low-affinity sites, representing 85% of total activity, also showed site-site interactions (h = 3.8) and a K0.5 of about 22 mM. ATP and cyclic AMP were competitive inhibitors of bis-(p-nitrophenyl) phosphatase activity of the enzyme and Ki values (25 mM and 0.6 mM for cyclic AMP and ATP respectively) very close to those of the K0.5 (22 mM and 0.7 mM for cyclic AMP and ATP respectively), determined by direct assay, indicated that a single catalytic site was responsible for the hydrolysis of both substrates. Non-denaturing PAGE of detergent-solubilized enzyme showed coincident bands on the gel for phosphomonohydrolase and phosphodiesterase activities. Additional evidence for a single catalytic site was the similar pKa values (8.5 and 9.7) found for the two ionizing groups participating in the hydrolysis of bis-(p-nitrophenyl) phosphate and p-nitrophenyl phosphate. The alkaline apparent pH optima, the requirement for bivalent metal ions and the inhibition by methylxanthines, amrinone and amiloride demonstrated that rat osseous-plate alkaline phosphatase was a type I phosphodiesterase. Considering that there is still confusion as to which is the physiological substrate for the enzyme, the present results describing a novel property for this enzyme could be of relevance in

  19. Pre-treatment serum lactate dehydrogenase and alkaline phosphatase as predictors of metastases in extremity osteosarcoma

    PubMed Central

    Marais, Leonard C.; Bertie, Julia; Rodseth, Reitze; Sartorius, Benn; Ferreira, Nando

    2015-01-01

    Background The prognosis of patients with metastatic osteosarcoma remains poor. However, the chance of survival can be improved by surgical resection of all metastases. In this study we investigate the value of serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in predicting the presence of metastatic disease at time of diagnosis. Methods Sixty-one patients with histologically confirmed conventional osteosarcoma of the extremity were included in the study. Only 19.7% of cases presented without evidence of systemic spread of the disease. Pre-treatment serum ALP and LDH were analysed in patients with and without skeletal or pulmonary metastases. Results Serum LDH and ALP levels were not significantly different in patients with or without pulmonary metastases (p=0.88 and p=0.47, respectively). The serum LDH and ALP levels did however differ significantly in patients with or without skeletal metastases (p<0.001 and p=0.02, respectively). The optimal breakpoint for serum LDH as a marker of skeletal metastases was 849 IU/L (AUC 0.839; Sensitivity=0.88; Specificity=0.73). LDH >454 IU/L equated to 100% sensitivity for detected bone metastases (positive diagnostic likelihood ratio (DLR)=1.32). With a cut-off of 76 IU/L a sensitivity of 100% was reached for serum ALP predicting the presence of skeletal metastases (positive DLR=1.1). In a multivariate analysis both LDH ≥850 IU/L (odds ratio [OR]=9; 95% confidence interval (CI) 1.8–44.3) and ALP ≥280 IU/L (OR=10.3; 95% CI 2.1–50.5) were predictive of skeletal metastases. LDH however lost its significance in a multivariate model which included pre-treatment tumour volume. Conclusion In cases of osteosarcoma with LDH >850 IU/L and/or ALP >280 IU/L it may be prudent to consider more sensitive staging investigations for detection of skeletal metastases. Further research is required to determine the value and the most sensitive cut-off points of serum ALP and LDH in the prediction of skeletal metastases. PMID

  20. Skeletal alkaline phosphatase as a serum marker of bone metastases in the follow-up of patients with breast cancer.

    PubMed

    Reale, M G; Santini, D; Marchei, G G; Manna, A; Del Nero, A; Bianco, V; Marchei, P; Frati, L

    1995-01-01

    Immunoradiometric determination of the bone isoenzyme of alkaline phosphatase with a method provided by Hybritech Inc., San Diego CA (USA) was carried out in 145 female patients, 97 of whom with radically operated breast cancer and 48 with benign mammary cysts, in order to evaluate the correlation of serum levels with the metabolic process of bone rearrangement in patients with bone metastases. This study shows that skeletal ALP, having high specificity (86.48%) and sensitivity (78.6%) for early progression (the average anticipation time compared to scintigraphic detection was 101 days) could represent a valid marker for bone metastases in association with mucinous markers in the follow-up of patients operated for breast cancer. In addition, dynamic serum determination of skeletal ALP could be a valid help in monitoring the efficacy of therapy in patients with bone progression.

  1. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2014-01-01

    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 μM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water. PMID:24569772

  2. Spatial variability of dissolved phosphorous concentrations and alkaline phosphatase activity in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chang, J.; Ho, T.; Gong, G.

    2010-12-01

    The concentrations of dissolved inorganic phosphorus (DIP) and alkaline phosphatase activity (APA) have been determined at about 25 sampling stations in the East China Sea since 2003. The stations are mainly distributed from the Changjiang river mouth to northern Taiwan and east to the shelf break. In addition to the Changjiang discharge, we have found a specific nutrient source around a coastal site (122° 2’30’’ E, 28° 40’ N). Elevated DIP and nitrate concentrations have been constantly observed around the sampling station for 8 years, where the surface DIP concentrations are generally around 0.3 µM. The nutrient source may either originate from ground water discharge or coastal upwelling, where lower temperature has been observed in the water column around the station. In general, APA has been negatively correlated with DIP concentrations in the studies sites, with lowest APA around the high DIP station and the Changjiang river mouth.

  3. Purification of human adult and foetal intestinal alkaline phosphatases by monoclonal antibody immunoaffinity chromatography.

    PubMed Central

    Vockley, J; Harris, H

    1984-01-01

    We have used the technique of monoclonal antibody immunoaffinity chromatography to purify adult and foetal intestinal alkaline phosphatases. Pure adult intestinal enzyme was obtained from a crude tissue extract with a single immunoaffinity chromatographic step in yields exceeding 95%. An additional ion-exchange chromatographic step was necessary for purification of the foetal enzyme, but yields still exceeded 70%. Experiments to optimize the efficiency of the monoclonal antibody immunoaffinity chromatography procedure suggest that the relative strength of binding of an antibody to its antigen is the most important factor to consider when constructing such columns. A column made from an antibody of too low an avidity will not retain the enzyme, while one of too high an avidity will make elution of enzyme in the active state difficult. A scheme is suggested for the application of this technique to a general approach to enzyme purification. Images Fig. 2. PMID:6365087

  4. Fingerprint deposition on nitrocellulose and polyvinylidene difluoride membranes using alkaline phosphatase.

    PubMed

    Kurien, Biji T; Danda, Debashish; Scofield, R Hal

    2015-01-01

    Dactyloscopy or fingerprint identification is a vital part of forensic evidence. Identification with fingerprints has been known since the finding of finger impressions on the clay surface of Babylonian legal contracts almost 4,000 years ago. The skin on the fingers and palms appears as grooves and ridges when observed under a microscope. A unique fingerprint is produced by the patterns of these friction skin ridges. Visible fingerprints can be deposited on solid surfaces. Colored inks have been used to deposit fingermarks on documents. Herein, we show that alkaline phosphatase can be used to transfer prints from fingers or palm to nitrocellulose or polyvinylidene difluoride membranes. The prints can be detected by using the nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate method of detection.

  5. Fluoride stimulates ( sup 3 H)thymidine incorporation and alkaline phosphatase production by human osteoblasts

    SciTech Connect

    Khokher, M.A.; Dandona, P. )

    1990-11-01

    The effect of sodium fluoride on alkaline phosphatase (ALP) release and ({sup 3}H)thymidine uptake by human osteoblasts in culture was investigated. Sodium fluoride stimulated both ALP release and ({sup 3}H)thymidine uptake at concentrations of sodium fluoride greater than 250 mumol/L. This stimulation was similar in magnitude to that induced by 1,25-dihydroxycholecalciferol. The fluoride-induced increase in ALP was inhibited by verapamil, a calcium channel blocker. We conclude that sodium fluoride stimulates osteoblasts to proliferate and to release ALP. This stimulation by fluoride is dependent on calcium influx. Fluoride-induced stimulation of human osteoblasts may be relevant to its effect in enhancing bone formation in patients with osteoporosis.

  6. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism.

    PubMed

    Chen, Shi-Lu; Liao, Rong-Zhen

    2014-08-04

    Alkaline phosphatase (AP) is a trinuclear metalloenzyme that catalyzes the hydrolysis of a broad range of phosphate monoesters to form inorganic phosphate and alcohol (or phenol). In this paper, by using density functional theory with a model based on a crystal structure, the AP-catalyzed hydrolysis of phosphate monoesters is investigated by calculating two substrates, that is, methyl and p-nitrophenyl phosphates, which represent alkyl and aryl phosphates, respectively. The calculations confirm that the AP reaction employs a "ping-pong" mechanism involving two chemical displacement steps, that is, the displacement of the substrate leaving group by a Ser102 alkoxide and the hydrolysis of the phosphoseryl intermediate by a Zn2-bound hydroxide. Both displacement steps proceed via a concerted associative pathway no matter which substrate is used. Other mechanistic aspects are also studied. Comparison of our calculations with linear free energy relationships experiments shows good agreement.

  7. Activity of alkaline phosphatase in water-in-oil microemulsions containing vegetable oil.

    PubMed

    Gupta, S; Mukhopadhyay, L; Moulik, S P

    1995-10-01

    The hydrolysis of p-nitrophenyl phosphate by the enzyme alkaline phosphatase has been studied in vegetable oil containing water-in-oil (W/O) microemulsions of six different compositions at four different (water)/(surfactant) mole ratios of 10, 17.6, 24.7 and 37. The vegetable oils used are ricebran oil (RO) and clove oil (CO) and the amphiphiles used are Aerosol OT (AOT), cinnamic alcohol (CA) and Tween-20 (T-20). The hydrolytic process does not follow conventional Michaelis Menten equation normally observed for enzymatic process. In the water/vegetable oil microemulsions, the enzyme seems to lose its activity when AOT is the amphiphile. The amount of p-nitrophenol generated as a result of hydrolysis is independent of the presence of the enzyme. With Tween-20 as the amphiphile, the microemulsion produces an initial retarding effect which ultimately gets appreciably compensated.

  8. pH-metric detection of alkaline phosphatase activity as a novel biosensing platform.

    PubMed

    Koncki, Robert; Rozum, Beata; Głab, Stanisław

    2006-01-15

    A detection of alkaline phosphatase (ALP, EC 3.1.3.1) activity by the monitoring of pH changes caused by the biocatalytic action of the enzyme has been experimentally examined. Enzymatically catalyzed hydrolysis of monofluorophosphate has been found to be the best basis for such measurements. Protolytic equilibria connected with the developed biosensing system were recognized and the optimal conditions for the assay have been found. Advantages and disadvantages of the developed (bio)sensing scheme have been discussed. The prototype of pH-ALP based enzyme electrode has been demonstrated. Potential utility of such substrate-enzyme-sensor system for the development of a new group of biosensors has been announced.

  9. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.

    PubMed

    Douglas, Timothy E L; Messersmith, Philip B; Chasan, Safak; Mikos, Antonios G; de Mulder, Eric L W; Dickson, Glenn; Schaubroeck, David; Balcaen, Lieve; Vanhaecke, Frank; Dubruel, Peter; Jansen, John A; Leeuwenburgh, Sander C G

    2012-08-01

    Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG/fumaric acid copolymer OPF. After incubation in Ca-GP solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES, and von Kossa staining confirm CaP formation. The amount of mineral formed decreases in the order cPEG > collagen > OPF. The mineral:polymer ratio decreases in the order collagen > cPEG > OPF. Mineralization increases Young's modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel/CaP composites may find application as bone regeneration materials.

  10. Further characterization of serum alkaline phosphatase from male and female beagle dogs.

    PubMed

    Amacher, D E; Higgins, C V; Schomaker, S J; Clay, R J

    1989-01-01

    Alkaline phosphatase (AP) from the sera of both male and female beagle dogs was partially purified and then analyzed for the presence of AP isoenzymes having intestinal or osseous characteristics as detected by bromotetramisole inhibition or wheat germ lectin agarose electrophoresis, respectively. The sera from both sexes were similar in regard to the presence of AP isoenzymes with intestinal (16 vs. 20%) or osseous (19 vs. 23%) characteristics, but serum AP from the male had a greater sialic acid content and only the male serum contained a detectable constitutive acidic (pI = 3.4) AP isoenzyme. This was similar to a serum AP isoenzyme previously found elevated in the sera of dogs afflicted with hyperadrenocorticalism or of dogs treated with certain corticosteroids.

  11. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase

    PubMed Central

    Douglas, Timothy E.L.; Messersmith, Philip B.; Chasan, Safak; Mikos, Antonios G.; de Mulder, Eric L.W.; Dickson, Glenn; Schaubroeck, David; Balcaen, Lieve; Vanhaecke, Frank; Dubruel, Peter; Jansen, John A.

    2013-01-01

    Alkaline Phosphatase (ALP), an enzyme involved in mineralization of bone, was incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These were collagen type I, a mussel protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG-fumaric acid copolymer OPF. After incubation in calcium glycerophosphate (Ca-GP) solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES and von Kossa staining confirmed CaP formation. The amount of mineral formed decreased in the order cPEG > collagen > OPF. Mineral:polymer ratio decreased in the order collagen > cPEG > OPF. Mineralization increased Young’s modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel-CaP composites could find application as bone regeneration materials. PMID:22648976

  12. A ten-week biochemistry lab project studying wild-type and mutant bacterial alkaline phosphatase.

    PubMed

    Witherow, D Scott

    2016-11-12

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important techniques, students acquire novel biochemical data in their kinetic analysis of mutant enzymes. The experiments are designed to build on students' work from week to week in a way that requires them to apply quantitative analysis and reasoning skills, reinforcing traditional textbook biochemical concepts. Students are assessed through lab reports focused on journal style writing, quantitative and conceptual question sheets, and traditional exams. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):555-564, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Canine serum thermostable alkaline phosphatase isoenzyme from a dog with hepatocellular carcinoma.

    PubMed

    Fukui, Yu-ichi; Sato, Jun; Sato, Reeko; Yasuda, Jun; Naito, Yoshihisa

    2006-10-01

    A dog histopathologically diagnosed with hepatocellular carcinoma (HCC) showed very high serum alkaline phosphatase (ALP) activity. A supernatant of ascitic fluid and tumor tissue extracted from the dog also showed much higher ALP activity than normal. ALP isoenzyme analysis of samples was performed using polyacrylamide gel disk electrophoresis, and a wide, broad abnormal band was observed. By various treatments, the abnormal band showed thermostability, which is a characteristic of tumor-associated ALP that has only been reported in humans. The thermostable ALP isoenzyme was not found in sera from 39 dogs with several types of tumor that originated from the liver, except for HCC, nor was it found in 10 dogs with hepatic diseases that did not include hepatic tumors. The thermostable ALP isoenzyme seemed to be associated with canine HCC.

  14. A disposable alkaline phosphatase-based biosensor for vanadium chronoamperometric determination.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2014-02-24

    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.

  15. Quantum-Mechanical Study on the Catalytic Mechanism of Alkaline Phosphatases.

    PubMed

    Borosky, Gabriela L

    2017-02-21

    Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. The catalytic mechanism was examined by quantum-mechanical calculations using an active-site model based on the X-ray crystal structure of the human placental AP. Free energies of activation and of reaction for the catalytic steps were evaluated for a series of aryl and alkyl phosphate esters, and the computational results were compared with experimental values available in the literature. Mechanistic observations previously reported in experimental works were rationalized by the present theoretical study, particularly regarding the difference in the rate-determining step between aryl and alkyl phosphates. The formation rate of the covalent phosphoserine intermediate followed a linear free energy relationship (LFER) with the pKa of the leaving group. This LFER, which could be experimentally determined only for less reactive alkyl phosphates, was verified by the present calculations to apply for the entire set of aryl and alkyl phosphate substrates.

  16. Alkaline phosphatase based amperometric biosensor immobilized by cysteamine-glutaraldehyde modified self-assembled monolayer.

    PubMed

    Yorganci, Emine; Akyilmaz, Erol

    2011-10-01

    Alkaline phosphatase (ALP) was immobilized with cross-linking agents glutaraldehyde and cysteamine by forming a self-assembled monolayer on a screen printed gold electrode. ALP converts p-nitrophenyl phosphate to p-nitrophenol and phosphate. p-Nitrophenol loses H(+) ion and turns into the negatively charged compound p-nitrophenolate at medium pH. As a result, the unstable product formed is measured chronoamperometrically at an application potential of + 0.95 V. The biosensor response depends linearly on p-nitrophenyl phosphate concentration between 0.05 - 0.6 mM with a response time of 40 seconds. Detection limit of the biosensor is 0.033 mM.

  17. The Detection of Alkaline Phosphatase Using an Electrochemical Biosensor in a Single-Step Approach

    PubMed Central

    Wang, Joanne H.; Wang, Kevin; Bartling, Brandon; Liu, Chung-Chiun

    2009-01-01

    A one-step, single use, disposable Alkaline Phosphatase (ALP) biosensor has been developed. It is based on the detection of phenol produced by an ALP enzymatic reaction. It can operate at 25 °C in a pH 10 medium. It measures ALP of 0–300 IU/L. The permissible concentrations of glucose, ascorbic acid and urea without interference are 10 mM/L, 5 mg/L and 400 mg/L, respectively. Experimental results are compared to those obtained by spectrophotometric measurements in bovine serum. Excellent linearity between the biosensor outputs and the ALP concentrations exists. The agreement between the measurements of this biosensor and the spectrophotometer is also outstanding. PMID:22291532

  18. MRI-based detection of alkaline phosphatase gene reporter activity using a porphyrin solubility switch

    PubMed Central

    Westmeyer, Gil G.; Emer, Elena G.; Lintelmann, Jutta; Jasanoff, Alan

    2014-01-01

    SUMMARY The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with magnetic resonance imaging (MRI) could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by post mortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets. PMID:24613020

  19. Affinity purification of secreted alkaline phosphatase produced by baculovirus expression vector system.

    PubMed

    Zhang, F; Wolff, M W; Williams, D; Busch, K; Lang, S C; Murhammer, D W; Linhardt, R J

    2001-02-01

    Human secreted alkaline phosphatase (SEAP) was produced in a stably-transformed Spodoptera frugiperda Sf-9 insect cell line (Sfb4GalT) following infection with a recombinant Autographa californica multiple nuclear polyhedrovirus containing the SEAP gene under control of the polyhedrin promoter. An affinity chromatographic column prepared by linking 4-amino-benzylphosphonic acid to histidyl-expoxy-Sepharose was used to isolate SEAP from the cell supernatant following removal of cells and virus and 10-fold concentration through ultrafiltration. We found that the binding of SEAP on the affinity matrix follows the Langmuir isotherm model. In addition, either recycling SEAP sample through the column for 24 h or loading high SEAP concentrations resulted in a high-purity product. Some nonspecific binding of protein on the matrix occurred when low concentrations of SEAP sample were loaded. Finally, we found that SEAP binding occurs rapidly, i.e., within 30 min of adding the SEAP sample to the affinity matrix.

  20. Trypanosoma cruzi: modification of alkaline phosphatase activity induced by trypomastigotes in cultured human placental villi.

    PubMed

    Fretes, R E; de Fabro, S P

    1990-01-01

    Human term placental villi cultured "in vitro" were maintained with bloodstream forms of Trypanosoma cruzi during various periods of time. Two different concentrations of the parasite were employed. Controls contained no T. cruzi. The alkaline phosphatase activity was determined in placental villi by electron microscopy and its specific activity in the culture medium by biochemical methods. Results showed that the hemoflagellate produces a significant decrease in enzyme activity as shown by both ultracytochemical and specific activity studies and this activity was lower in cultures with high doses of parasites. The above results indicate that the reduction in enzyme activity coincides with the time of penetration and proliferation of T. cruzi in mammalian cells. These changes may represent an interaction between human trophoblast and T. cruzi.

  1. A human monoclonal antibody specific to placental alkaline phosphatase, a marker of ovarian cancer

    PubMed Central

    Ravenni, Niccolò; Weber, Marcel; Neri, Dario

    2014-01-01

    Placental alkaline phosphatase (PLAP) is a promising ovarian cancer biomarker. Here, we describe the isolation, affinity-maturation and characterization of two fully human monoclonal antibodies (termed B10 and D9) able to bind to human PLAP with a dissociation constant (Kd) of 10 and 30 nM, respectively. The ability of B10 and D9 antibodies to recognize the native antigen was confirmed by Biacore analysis, FACS and immunofluorescence studies using ovarian cancer cell lines and freshly-frozen human tissues. A quantitative biodistribution study in nude mice revealed that the B10 antibody preferentially localizes to A431 tumors, following intravenous administration. Anti-PLAP antibodies may serve as a modular building blocks for the development of targeted therapeutic products, armed with cytotoxic drugs, radionuclides or cytokines as payloads. PMID:24247025

  2. [Delivery of secreted placental alkaline phosphatase (SEAP) gene in vitro and in vivo as a component of recombinant avian adenovirus (CELO)].

    PubMed

    Logunov, D Iu; Cherenova, L V; Shmarov, M M; Shashkova, E V; Verkhovskaia, L V; Doronin, K K; Naroditskiĭ, B S

    2002-01-01

    Recombinant adenoviruses capable of expressing the gene of secreted placentary alkaline phosphatase (SEAP) under control of CMV-promoter was obtained on the basis of CELO avian adenovirus and human adenovirus-5 (Ad5) genomes. The efficiency of the CELO vector was determined in experiments with transduction of human (293, A549, and H1299), mouse (B16), and avian (LMH) cell cultures. It was shown in C57BL/6 mice in vivo that SEAP gene is expressed under conditions of intravenous, intranasal, and intratumoral application of recombinant adenovirus CELO-SEAP. The duration of expression of the alkaline phosphatase CELO = SEAP gene in immunocompetent mouse body was 21 days. The level of SEAP gene expression was measured in the allantois fluid of chicken embryo infected with recombinant adenovirus CELO-SEAP.

  3. Trypanosoma rangeli: an alkaline ecto-phosphatase activity is involved with survival and growth of the parasite.

    PubMed

    Dos-Santos, André L A; Dick, Claudia F; Silveira, Thaís S; Fonseca-de-Souza, André L; Meyer-Fernandes, José R

    2013-10-01

    The aim of this work was to investigate whether an alkaline ecto-phosphatase activity is present in the surface of Trypanosoma rangeli. Intact short epimastigote forms were assayed for ecto-phosphatase activity to study kinetics and modulators using β-glycerophosphate (β-GP) and p-nitrophenyl phosphate (pNPP) as substrates. Its role in parasite development and differentiation was also studied. Competition assays using different proportions of β-GP and pNPP evidenced the existence of independent and non-interacting alkaline and acid phosphatases. Hydrolysis of β-GP increased progressively with pH, whereas the opposite was evident using pNPP. The alkaline enzyme was inhibited by levamisole in a non-competitive fashion. The Ca(2+) present in the reaction medium was enough for full activity. Pretreatment with PI-PLC decreased the alkaline but not the acid phosphatase evidence that the former is catalyzed by a GPI-anchored enzyme, with potential intracellular signaling ability. β-GP supported the growth and differentiation of T. rangeli to the same extent as high orthophosphate (Pi). Levamisole at the IC50 spared significantly parasite growth when β-GP was the sole source of Pi and stopped it in the absence of β-GP, indicating that the alkaline enzyme can utilize phosphate monoesters present in serum. These results demonstrate the existence of an alkaline ecto-phosphatase in T. rangeli with selective requirements and sensitivity to inhibitors that participates in key metabolic processes in the parasite life cycle.

  4. Alkaline phosphatase activity in gingival crevicular fluid during human orthodontic tooth movement.

    PubMed

    Perinetti, Giuseppe; Paolantonio, Michele; D'Attilio, Michele; D'Archivio, Domenico; Tripodi, Domenico; Femminella, Beatrice; Festa, Felice; Spoto, Giuseppe

    2002-11-01

    Bone remodeling that occurs during orthodontic tooth movement is a biologic process involving an acute inflammatory response in periodontal tissues. A sequence characterized by periods of activation, resorption, reversal, and formation has been recently described as occurring in both tension and compression tooth sites during orthodontic tooth movement. We used a longitudinal design to investigate alkaline phosphatase (ALP) activity in gingival crevicular fluid (GCF) to assess whether it can serve as a diagnostic aid in orthodontics. Sixteen patients (mean age, 15.5 years) participated in the study. The maxillary first molars under treatment served as the test teeth (TT) in each patient; in particular, 1 first molar was to be retracted and hence was considered the distalized molar (DM), whereas the contralateral molar (CM) was included in the fixed orthodontic appliance but was not subjected to the distal forces. The DM antagonist first molar (AM), free from any orthodontic appliance, was used as the baseline control. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance activation, 1 hour after, and weekly over the following 4 weeks. The clinical gingival condition was evaluated at the baseline and at the end of the experimental term. ALP activity was determined spectrophotometrically at 30 degrees C, and the results were expressed as total ALP activity (mUnits/sample). GCF ALP activity was significantly elevated in the DMs and the CMs as compared with the AMs at 1, 2, 3, and 4 weeks; conversely, in the AMs, GCF ALP activity remained at baseline levels throughout the experiment. Moreover, the enzyme activity in the DMs was significantly greater than in the CMs. In the DMs, a significantly greater ALP activity was observed in sites of tension compared with sites of compression. This difference was not seen with the CMs, in which the enzyme activity increased to the same extent in tension and compression

  5. Tissue Nonspecific Alkaline Phosphatase (TNAP) Regulates Cranial Base Growth and Synchondrosis Maturation

    PubMed Central

    Nam, Hwa K.; Sharma, Monika; Liu, Jin; Hatch, Nan E.

    2017-01-01

    Hypophosphatasia is a rare heritable disorder caused by inactivating mutations in the gene (Alpl) that encodes tissue nonspecific alkaline phosphatase (TNAP). Hypophosphatasia with onset in infants and children can manifest as rickets. How TNAP deficiency leads to bone hypomineralization is well explained by TNAP's primary function of pyrophosphate hydrolysis when expressed in differentiated bone forming cells. How TNAP deficiency leads to abnormalities within endochondral growth plates is not yet known. Previous studies in hypophosphatemic mice showed that phosphate promotes chondrocyte maturation and apoptosis via MAPK signaling. Alpl−/− mice are not hypophosphatemic but TNAP activity does increase local levels of inorganic phosphate. Therefore, we hypothesize that TNAP influences endochondral bone development via MAPK. In support of this premise, here we demonstrate cranial base bone growth deficiency in Alpl−/− mice, utilize primary rib chondrocytes to show that TNAP influences chondrocyte maturation, apoptosis, and MAPK signaling in a cell autonomous manner; and demonstrate that similar chondrocyte signaling and apoptosis abnormalities are present in the cranial base synchondroses of Alpl−/− mice. Micro CT studies revealed diminished anterior cranial base bone and total cranial base lengths in Alpl−/− mice, that were prevented upon injection with mineral-targeted recombinant TNAP (strensiq). Histomorphometry of the inter-sphenoidal synchondrosis (cranial base growth plate) demonstrated significant expansion of the hypertrophic chondrocyte zone in Alpl−/− mice that was minimized upon treatment with recombinant TNAP. Alpl−/− primary rib chondrocytes exhibited diminished chondrocyte proliferation, aberrant mRNA expression, diminished hypertrophic chondrocyte apoptosis and diminished MAPK signaling. Diminished apoptosis and VEGF expression were also seen in 15 day-old cranial base synchondroses of Alpl−/− mice. MAPK signaling was

  6. Shedding light on the paradox of high alkaline phosphatase utilization at high end-product concentrations

    NASA Astrophysics Data System (ADS)

    Baltar, F.; Lundin, D.; Palovaara, J.; Reinthaler, T.; Herndl, G. J.; Pinhassi, J.

    2016-02-01

    Alkaline phosphatase (APase) activity is supposed to be regulated by the concentration of its endproduct, decreasing with increasing inorganic phosphate (Pi) concentrations. Since Pi is readily available in the deep ocean, APase activity would be expected to be low. However, high APase activities at high Pi concentrations have been found in the deep Indian and Atlantic Ocean. To understand how APase activities are regulated and what mechanisms are responsible for its regulation we performed microcosm experiments with mesopelagic North Atlantic waters. Treatments consisted of enrichment with either ammonium or organic carbon, and were compared to unamended controls. We assessed changes in prokaryotic abundance, APase, leucine aminopeptidase, heterotrophic production, dark CO2 fixation and community gene expression (metatranscriptomics) between treatments and control. In the organic matter enrichments, APase increased along with all measured rates, whereas only dark CO2 fixation and APase were enhanced in the ammonium enrichment. In the organic matter enrichment, genes for heterotrophic metabolism were strongly upregulated, whereas genes for ammonia oxidation and CO2 fixation were upregulated in the ammonium treatment. In both treatments, the Pho regulon -a global regulatory mechanism involved in bacterial Pi management- was also upregulated, including genes encoding alkaline phosphatases. The activation of the Pho regulon seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. Increased C or N bioavailability thus appear to elicit a Pi deficiency inside cells and activate the Pho regulon. These results indicate possible ways (e.g. pulses of C or N or changes in elemental ratios) in which APase can be activated irrespectively of the environmental Pi concentration.

  7. Alkaline phosphatase activity in the western English Channel: Elevations induced by high summertime rainfall

    NASA Astrophysics Data System (ADS)

    Rees, Andrew P.; Hope, Sam B.; Widdicombe, Claire E.; Dixon, Joanna L.; Woodward, E. Malcolm S.; Fitzsimons, Mark F.

    2009-03-01

    Alkaline phosphatase activity (APA) was determined in bulk particulate material and in a single-cell (ELF) assay at station L4 in the western English Channel during the summer of 2007. Throughout this period, the UK experienced its heaviest summertime rainfall since records began in 1914; with the result that riverine run-off into coastal waters was also elevated relative to long-term averages. Between May and August 2007, three distinct periods of elevated river run-off were observed which resulted in salinity minima at L4 on days 141, 190 and 232. An extended period of high river run-off between days 170 and 210 was responsible for decreases in near-surface salinity at L4 from 35.2068 to a minimum on day 190 of 34.7422. This contributed to the development of haline stratification which supported the development of an intense bloom of the centric diatom Chaetoceros debelis, with maximum observed chlorophyll a concentration of 8.69 μg l -1. Minima in salinity, and maxima in chlorophyll concentration on day 190 were coincident with a peak in river-derived dissolved inorganic nitrogen (DIN) of 1.9 μmol l -1 which was >5 times greater than the summertime mean and 24 times the concentrations experienced at L4 on weeks immediately before and after. There was no accompanying increase in dissolved inorganic phosphorus (DIP), and the DIN:DIP ratio increased to 49. With the inherent phosphorus stress that this caused, rates of APA increased from <4 to 42.4 nmolP l -1 h -1. ELF analysis on day 197 identified two taxa actively expressing alkaline phosphatase: the dinoflagellate Prorocentrum micans and ciliate Tiarana sp.

  8. Impaired Calcification Around Matrix Vesicles of Growth Plate and Bone in Alkaline Phosphatase-Deficient Mice

    PubMed Central

    Anderson, H. Clarke; Sipe, Joseph B.; Hessle, Lovisa; Dhamyamraju, Rama; Atti, Elisa; Camacho, Nancy P.; Luis Millán, José

    2004-01-01

    The presence of skeletal hypomineralization was confirmed in mice lacking the gene for bone alkaline phosphatase, ie, the tissue-non-specific isozyme of alkaline phosphatase (TNAP). In this study, a detailed characterization of the ultrastructural localization, the relative amount and ultrastructural morphology of bone mineral was carried out in tibial growth plates and in subjacent metaphyseal bone of 10-day-old TNAP knockout mice. Alizarin red staining, microcomputerized tomography (micro CT), and FTIR imaging spectroscopy (FT-IRIS) confirmed a significant overall decrease of mineral density in the cartilage and bone matrix of TNAP-deficient mice. Transmission electron microscopy (TEM) showed diminished mineral in growth plate cartilage and in newly formed bone matrix. High resolution TEM indicated that mineral crystals were initiated, as is normal, within matrix vesicles (MVs) of the growth plate and bone of TNAP-deficient mice. However, mineral crystal proliferation and growth was inhibited in the matrix surrounding MVs, as is the case in the hereditary human disease hypophosphatasia. These data suggest that hypomineralization in TNAP-deficient mice results primarily from an inability of initial mineral crystals within MVs to self-nucleate and to proliferate beyond the protective confines of the MV membrane. This failure of the second stage of mineral formation may be caused by an excess of the mineral inhibitor pyrophosphate (PPi) in the extracellular fluid around MVs. In normal circumstances, PPi is hydrolyzed by the TNAP of MVs’ outer membrane yielding monophosphate ions (Pi) for incorporation into bone mineral. Thus, with TNAP deficiency a buildup of mineral-inhibiting PPi would be expected at the perimeter of MVs. PMID:14982838

  9. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.

    PubMed Central

    Hung, H C; Chang, G G

    2001-01-01

    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N <--> I(1) <--> I(2) <--> I(3) <--> I(4) <--> I(5) <--> D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally

  10. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily

    PubMed Central

    2015-01-01

    It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design. PMID:26091851

  11. Reduced activity of alkaline phosphatase due to host-guest interactions with humic superstructures.

    PubMed

    Mazzei, Pierluigi; Oschkinat, Hartmut; Piccolo, Alessandro

    2013-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy was applied to directly study the interactions between the alkaline phosphatase enzyme (AP) and two different humic acids from a volcanic soil (HA-V) and a Lignite deposit (HA-L). Addition of humic matter to enzyme solutions caused signals broadening in (1)H-NMR spectra, and progressive decrease and increase of enzyme relaxation (T1 and T2) and correlation (τC) times, respectively. Spectroscopic changes were explained with formation of ever larger weakly-bound humic-enzyme complexes, whose translational and rotational motion was increasingly restricted. NMR diffusion experiments also showed that the AP diffusive properties were progressively reduced with formation of large humic-enzyme complexes. The more hydrophobic HA-L affected spectral changes more than the more hydrophilic HA-V. (1)H-NMR spectra also showed the effect of progressively greater humic-enzyme complexes on the hydrolysis of an enzyme substrate, the 4-nitrophenyl phosphate disodium salt hexahydrate (p-NPP). While AP catalysis concomitantly decreased NMR signals of p-NPP and increased those of nitrophenol, addition of humic matter progressively and significantly slowed down the rate of change for these signals. In agreement with the observed spectral changes, the AP catalytic activity was more largely inhibited by HA-L than by HA-V. Contrary to previous studies, in which humic-enzyme interactions were only indirectly assumed from changes in spectrophotometric behavior of enzyme substrates, the direct measurements of AP behavior by NMR spectroscopy indicated that humic materials formed weakly-bound host-guest complexes with alkaline phosphatase, and the enzyme catalytic activity was thereby significantly inhibited. These results suggest that the role of extracellular enzymes in soils may be considerably reduced when they come in contact with organic matter dissolved in the soil solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.

    PubMed

    Hung, H C; Chang, G G

    2001-12-01

    Alkaline phosphatase is an enzyme with a typical alpha/beta hydrolase fold. The conformational stability of the human placental alkaline phosphatase was examined with the chemical denaturant urea. The red shifts of fluorescence spectra show a complex unfolding process involving multiple equilibrium intermediates indicating differential stability of the subdomains of the enzyme. None of these unfolding intermediates were observed in the presence of 83 mM NaCl, indicating the importance of ionic interactions in the stabilization of the unfolding intermediates. Guanidinium chloride, on the other hand, could stabilize one of the unfolding intermediates, which is not a salt effect. Some of the unfolding intermediates were also observed in circular dichroism spectroscopy, which clearly indicates steady loss of helical structure during unfolding, but very little change was observed for the beta strand content until the late stage of the unfolding process. The enzyme does not lose its phosphate-binding ability after substantial tertiary structure changes, suggesting that the substrate-binding region is more resistant to chemical denaturant than the other structural domains. Global analysis of the fluorescence spectral change demonstrated the following folding-unfolding process of the enzyme: N <--> I(1) <--> I(2) <--> I(3) <--> I(4) <--> I(5) <--> D. These discrete intermediates are stable at urea concentrations of 2.6, 4.1, 4.7, 5.5, 6.6, and 7.7 M, respectively. These intermediates are further characterized by acrylamide and/or potassium iodide quenching of the intrinsic fluorescence of the enzyme and by the hydrophobic probes, 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid. The stepwise unfolding process was interpreted by the folding energy landscape in terms of the unique structure of the enzyme. The rigid central beta-strand domain is surrounded by the peripheral alpha-helical and coil structures, which are marginally

  13. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  14. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  15. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.

    PubMed

    Chung, Thomas D Y

    2013-01-01

    Laboratory automation and robotics have "industrialized" the execution and completion of large-scale, enabling high-capacity and high-throughput (100 K-1 MM/day) screening (HTS) campaigns of large "libraries" of compounds (>200 K-2 MM) to complete in a few days or weeks. Critical to the success these HTS campaigns is the ability of a competent assay development team to convert a validated research-grade laboratory "benchtop" assay suitable for manual or semi-automated operations on a few hundreds of compounds into a robust miniaturized (384- or 1,536-well format), well-engineered, scalable, industrialized assay that can be seamlessly implemented on a fully automated, fully integrated robotic screening platform for cost-effective screening of hundreds of thousands of compounds. Here, we provide a review of the theoretical guiding principles and practical considerations necessary to reduce often complex research biology into a "lean manufacturing" engineering endeavor comprising adaption, automation, and implementation of HTS. Furthermore we provide a detailed example specifically for a cell-free in vitro biochemical, enzymatic phosphatase assay for tissue-nonspecific alkaline phosphatase that illustrates these principles and considerations.

  16. Zein as biodegradable material for effective delivery of alkaline phosphatase and substrates in biokits and biosensors.

    PubMed

    Jornet-Martínez, N; Campíns-Falcó, P; Hall, E A H

    2016-12-15

    A biodegradable material, zein, is proposed as a reagent delivery platform for biokits and biosensors based on alkaline phosphatase (ALP) activity/inhibition in the presence of phosphatase substrates. The immobilization and release of both the substrate and/or the active ALP, in a biodegradable and low-cost material such as zein, a prolamin from maize, and in combination with glycerol as plasticizer have been investigated. Three zein-based devices are proposed for several applications: (1) inorganic phosphorus estimation in water of different sources (river, lake, coastal water and tap water) with a detection limit of 0.2mg/L - compared to at least 1mg/L required by legislation, (2) estimation of ALP in saliva and (3) chlorpyrifos control in commercial preparations. The single-use kits developed are low cost, easy and fast to manufacture and are stable for at least 20 days at -20°C, so the zein film can preserve and deliver both the enzyme and substrates.

  17. Changes in Bone Alkaline Phosphatase and Procollagen Type-1 C-Peptide after Static and Dynamic Exercises

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Yuki, Kazuhito; Ikebukuro, Toshihiro

    2012-01-01

    We investigated the effects of two types of nonweight-bearing exercise on changes in bone-specific alkaline phosphatase (BAP) and pro-collagen type 1 C-peptide (P1P). BAP is a specific marker of bone synthesis, whereas P1P reflects synthesis of type 1 collagen in other organs as well as bone. Eight participants performed static and dynamic…

  18. Intestinal lactase, sucrase and alkaline phosphatase in relation to age, sex and site of intestinal biopsy in 477 Irish subjects

    PubMed Central

    Keane, R; O'Grady, J G; Sheil, J; Stevens, F M; Egan-Mitchell, B; McNicholl, B; McCarthy, C F; Fottrell, P F

    1983-01-01

    Small intestinal lactase, sucrase and alkaline phosphatase activities were measured in histologically normal peroral intestinal biopsies from 477 individuals. Enzyme activities varied with age, sex, site of biopsy, and were lowest in post-weaning children and highest in young adults. Lactase activity does not decrease with advancing age. PMID:6401773

  19. Changes in Bone Alkaline Phosphatase and Procollagen Type-1 C-Peptide after Static and Dynamic Exercises

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Yuki, Kazuhito; Ikebukuro, Toshihiro

    2012-01-01

    We investigated the effects of two types of nonweight-bearing exercise on changes in bone-specific alkaline phosphatase (BAP) and pro-collagen type 1 C-peptide (P1P). BAP is a specific marker of bone synthesis, whereas P1P reflects synthesis of type 1 collagen in other organs as well as bone. Eight participants performed static and dynamic…

  20. Cloning & Characterization of the Cry1Ac-binding Alkaline Phosphatase (HvALP) from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Membrane bound alkaline phosphatases (mALPs) in the insect midgut have been reported as functional receptors for Cry toxins from the bacterium Bacillus thuringiensis. We previously reported the identification of HvALP in the midgut of Heliothis virescens larvae as a Cry1Ac binding protein that is d...

  1. Extractive fermentation for enhanced production of alkaline phosphatase from Bacillus licheniformis MTCC 1483 using aqueous two-phase systems.

    PubMed

    Pandey, S K; Banik, R M

    2011-03-01

    A study was made to find out maximum partitioning of Bacillus licheniformis alkaline phosphatase in different ATPSs composed of different molecular weight of PEG X (X=2000, 4000, 6000) with salts (magnesium sulphate, sodium sulphate, sodium citrate) and polymers (dextran 40, dextran T500). Physicochemical factors such as effect of system pH, system temperature and production media were evaluated for partitioning of alkaline phosphatase. PEG 4000 [9.0% (w/v)] and dextran T500 [9.6% (w/v)] were selected as most suitable system components for alkaline phosphatase production by B. licheniformis based on greater partition coefficient (k=5.23). The two-phase system produced fewer enzymes than the homogeneous fermentation (control) in early stage of fermentation, but after 72 h the enzyme produced in the control system was less than that in the ATPS. Total alkaline phosphatase yield in ATPS fermentation was 3907.01 U/ml and in homogeneous fermentation 2856.50 U/ml.

  2. On the influence of reaction conditions in activity determination of alkaline phosphatase on the molar absorptivity of 4-nitrophenol.

    PubMed

    Jung, K; Köhler, A

    1980-02-14

    In activity determination of alkaline phosphatase (AP), measuring temperature, type and concentration of buffer, and protein concentration in the test influence the molar absorptivity of 4-nitrophenol. Thus systematic errors of up to 3% may occur in activity determinations of AP if these influences are not taken into account.

  3. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases.

  4. Establishment of hybridomas secreting monoclonal antibodies to placental alkaline phosphatase and development of an enzyme immunoassay for its determination.

    PubMed

    Kinoshita, Y; Okamoto, T; Mano, H; Furuhashi, Y; Goto, S; Tomoda, Y

    1990-06-01

    We established seven hybridomas secreting murine IgG monoclonal antibodies (MoAbs) to placental alkaline phosphatase (PLAP). The seven hybridomas were designated (1) 7C6, (2) 6G10, (3) 5B9, (4) 6D5, (5) 6B5, (6) 11G6 and (7) 3E10, respectively. The characteristics of these hybridomas were evaluated by radioimmunoassay (RIA) with 125I-PLAP. Their reactivity with the intestinal alkaline phosphatase, one of the alkaline phosphatase isozymes, was (1) 0.04, (2) 0.2, (3) 1.4, (4) 1.8, (5) 0, (6) 4.0 and (7) 6.2(%), respectively. None of them showed signs of cross-reactivity with the liver-type alkaline phosphatase, also one of the alkaline phosphatase isozymes, within a PLAP concentration of 2,000 IU/l. The subtype of 5B9 was IgG1, and that of the others was IgG2a. We then used 7C6, to develop a sensitive, specific and convenient enzyme immunoassay (EIA) for the determination of PLAP, and assayed sera from patients with various gynecologic diseases. The incidence of increased PLAP was 6.4% in patients with benign diseases, 21.5% in cervical cancer, 36.4% in endometrial carcinoma, and 39.5% in malignant ovarian tumors. The specificity for malignant diseases seemed to be higher than that of CA125. Among endometrial carcinomas, well-differentiated adenocarcinoma had the highest incidence of an increased concentration. Among malignant ovarian tumors, serous cystadenocarcinoma, endometrioid carcinoma, dysgerminoma and Krukenberg's tumor showed a higher incidence than the other types.

  5. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  6. Endogenous alkaline phosphatase interference in cardiac troponin I and other sensitive chemiluminescence immunoassays that use alkaline phosphatase activity for signal amplification.

    PubMed

    Herman, Daniel S; Ranjitkar, Pratistha; Yamaguchi, Diane; Grenache, David G; Greene, Dina N

    2016-10-01

    False positive cardiac troponin results can lead to inappropriate diagnosis. Our laboratory workflow includes systematic quality practices to identify false positive cardiac troponin I (cTnI) results reported by the DxI AccuTnI+3 assay, which uses alkaline phosphatase (ALP) for signal amplification. Recently, a sample with elevated cTnI failed our quality standards and was found to have extremely elevated endogenous ALP activity. The objective of this study was to determine the true cTnI concentration and evaluate whether ALP was the source of interference. The suspicious cTnI result was evaluated by repeat analyses, dilution, heterophile blocking treatment, alternative methodology (Vista), and heat treatment. Purified ALP was added to reference serum and we quantified DxI cTnI and human chorionic gonadotropin (hCG). Next, cTnI and/or hCG was measured in specimens with normal (N=20) or elevated (N=26) ALP using DxI and Vista assays. Finally, cTnI was quantified using a prototype, ALP-dependent high-sensitivity assay. The sentinel sample's DxI-cTnI results were imprecise on repeat, linear on dilution, unaffected by heterophile blocking antibodies, and correlated with ALP lability following heat treatment. The Vista-cTnI concentrations were ~7-fold lower. Addition of purified ALP to reference serum linearly increased the DxI-cTnI results. DxI-hCG results also appeared affected by ALP. Several independent patients' specimens with elevated ALP appeared to have falsely elevated DxI-cTnI and DxI-hCG. Elevated ALP can interfere with contemporary, ALP-dependent immunoassays, including DxI-cTnI and DxI-hCG. The validation of such methods should include evaluations for endogenous ALP interference. Specimens with ALP >1000U/L and elevated DxI-cTnI should be evaluated for ALP interference. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  7. The preparation of monoclonal antibodies to human bone and liver alkaline phosphatase and their use in immunoaffinity purification and in studying these enzymes when present in serum.

    PubMed Central

    Bailyes, E M; Seabrook, R N; Calvin, J; Maguire, G A; Price, C P; Siddle, K; Luzio, J P

    1987-01-01

    1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the

  8. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  9. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  10. Enzymatic study of tonsil tissue alkaline and acid phosphatase in children with recurrent tonsillitis and tonsil hypertrophy.

    PubMed

    Jesic, Snezana; Stojiljkovic, Ljuba; Stosic, Svetlana; Nesic, Vladimir; Milovanovic, Jovica; Jotic, Ana

    2010-01-01

    Indications for tonsillectomy in recurrent tonsillitis are defined according to the number of episodes of acute bacterial infections in a year. However, little is known about the tonsil immune competence status in patients presenting with recurrent tonsillitis with either hypertrophied or atrophied tonsils, or in patients presenting with obstructive sleep apnoea. In this study we examined the tonsil immune status in children with 3-5 acute recurrent infections a year and in children with obstructive sleep apnoea by comparing the activity of tonsil and adenoid tissue nonspecific alkaline and acid phosphatase. Specific activity of tonsil and adenoid tissue nonspecific alkaline and acid phosphatase was investigated in children who underwent tonsillectomy and adenoidectomy for recurrent infection (72 children) and for obstructive sleep apnoea (10 children). Tissue enzyme activities were measured using p-nitrophenylphosphate as a substrate. Tissue samples were examined by the haematoxylin-eosin histological technique. Statistical analyses were performed using SPSS v. 16 software. The tissue nonspecific alkaline phosphatase activity was similar in hypertrophied tonsils in the recurrent infection group and in the obstructive sleep apnoea group (3.437+/-1.226 and 3.978+/-0.762 U/mg of protein, respectively). The enzyme activity in both hypertrophied tonsil groups was significantly higher as compared to atrophied tonsils in the recurrent tonsillitis group, p=0.021 and p=0.006, respectively. The enzyme activity was significantly higher in the adenoids compared to the tonsils from all three groups. Contrary to this, no significant differences were noticed for tonsil and adenoid acid phosphatase activities among the groups. Similar acid phosphatase activity in all three groups implies that all three groups have preserved antigen presenting cell activity. In patients with hypertrophied tonsils similar tissue nonspecific alkaline phosphatase activity suggests preserved B cell

  11. Assessment of the colorimetric and fluorometric assays for alkaline phosphatase activity in cow's, goat's, and sheep's milk.

    PubMed

    Klotz, V; Hill, Art; Warriner, K; Griffiths, M; Odumeru, J

    2008-09-01

    Raw milk is a well-established vehicle for the carriage of human pathogens, and many regulatory bodies have consequently mandated compulsory pasteurization as a food safety intervention. The residual activity of alkaline phosphatase (ALP) has historically been used to verify the adequacy of pasteurization of cow's milk. However, there is uncertainty on how the current ALP standards and methods of analysis can be applied to sheep's and goat's milk, which naturally contain different levels of the enzyme than that found in cow's milk. The official ALP methods applied in Canada (colorimetric assay; MFO-3) and in the United States (Fluorophos) were assessed for their ability to detect enzyme activity in raw and pasteurized milk derived from cows, sheep, and goats. The detection limit and the limit of quantitation were 0.8 and 2.02 microg/ml phenol, respectively, for the MFO-3 method and 43 and 85 mU/liter, respectively, for the Fluorophos method. The average ALP levels in raw goat's, cow's, and sheep's milk were 165, 1,562, and 3,512 microg/ml phenol, respectively. Raw milk detection limits, which correspond to raw milk phosphatase levels, were 0.051, 0.485, and 0.023% in cow's, goat's, and sheep's milk, respectively, for the MFO-3 method and 0.007, 0.070, and 0.004%, respectively, for the Fluorophos method. Although both methods can be used for ALP determination in cow's, goat's, and sheep's milk, the Fluorophos assay was superior to the colorimetric MFO-3 method based on sensitivity and time required to complete the analysis.

  12. Acid and alkaline phosphatases of Capnocytophaga species. II. Isolation, purification, and characterization of the enzymes from Capnocytophaga ochracea.

    PubMed

    Poirier, T P; Holt, S C

    1983-10-01

    Capnocytophaga ochracea acid (AcP; EC 3.1.3.2) and alkaline (AlP; EC 3.1.3.1) phosphatase was isolated by Ribi cell disruption and purified by sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE.) Both phosphatases eluted from Sephadex G-150 consistent with molecular weights (migration) of 140 000 and 110 000. SDS-PAGE demonstrated a 72 000 and 55 000 subunit molecular migration for AcP and AlP, respectively. The kinetics of activity of purified AcP and AlP on p-nitrophenol phosphate and phosphoseryl residues of the phosphoproteins are presented.

  13. Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase.

    PubMed

    Walker, K W; Gilbert, H F

    1994-11-11

    The oxidative folding mechanisms of two Escherichia coli periplasmic proteins, alkaline phosphatase and RTEM-1 beta-lactamase, have been examined in vitro and in vivo. In contrast to eukaryotic proteins, which require a relatively reducing environment for optimal folding rates, both alkaline phosphatase and beta-lactamase fold fastest under very oxidizing conditions. For example, bovine pancreatic ribonuclease exhibits an optimal folding rate in a redox buffer consisting of 1 mM GSH and 0.2 mM GSSG (Lyles, M. M., and Gilbert, H. F. (1991) Biochemistry 30, 613-619); however, both E. coli alkaline phosphatase and beta-lactamase exhibit optimal in vitro folding rates at low concentrations of GSH (< 0.4 mM) and very high concentrations of GSSG (4-8 mM). For both bacterial proteins, GSH inhibits oxidative folding. Under optimal redox conditions, the rate-limiting step for the in vitro oxidative folding of alkaline phosphatase depends on the concentration of the protein, consistent with a mechanism involving rapid oxidation followed by slow dimerization. With beta-lactamase, the oxidative folding mechanism involves a competition between disulfide bond formation and folding of the molecule into a catalytically active conformation that buries the 2 reduced cysteines in the core of the enzyme. The effects of including a thiol reductant in the growth medium on the in vivo folding of alkaline phosphatase and beta-lactamase are similar to the effects observed during in vitro folding of these enzymes. The levels of both oxidized proteins are decreased by GSH in the growth medium. However, addition of a disulfide oxidant to the growth medium does not positively affect the production of either enzyme. These observations are consistent with the idea that the oxidative folding mechanisms of E. coli periplasmic proteins and, by inference, proteins of the eukaryotic endoplasmic reticulum have evolved to accommodate constraints placed on the folding reaction by the folding environment

  14. Cloning and Overexpression of Alkaline Phosphatase PhoK from Sphingomonas sp. Strain BSAR-1 for Bioprecipitation of Uranium from Alkaline Solutions▿

    PubMed Central

    Nilgiriwala, Kayzad S.; Alahari, Anuradha; Rao, Amara Sambasiva; Apte, Shree Kumar

    2008-01-01

    Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 ± 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions. PMID:18641147

  15. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients

    PubMed Central

    Hessen, Dag O.; Hafslund, Ola T.; Andersen, Tom; Broch, Catharina; Shala, Nita K.; Wojewodzic, Marcin W.

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes. PMID:28167934

  16. Changes in Stoichiometry, Cellular RNA, and Alkaline Phosphatase Activity of Chlamydomonas in Response to Temperature and Nutrients.

    PubMed

    Hessen, Dag O; Hafslund, Ola T; Andersen, Tom; Broch, Catharina; Shala, Nita K; Wojewodzic, Marcin W

    2017-01-01

    Phytoplankton may respond both to elevated temperatures and reduced nutrients by changing their cellular stoichiometry and cell sizes. Since increased temperatures often cause increased thermal stratification and reduced vertical flux of nutrients into the mixed zone, it is difficult to disentangle these drivers in nature. In this study, we used a factorial design with high and low levels of phosphorus (P) and high and low temperature to assess responses in cellular stoichiometry, levels of RNA, and alkaline phosphatase activity (APA) in the chlorophyte Chlamydomonas reinhardtii. Growth rate, C:P, C:N, N:P, RNA, and APA all responded primarily to P treatment, but except for N:P and APA, also temperature contributed significantly. For RNA, the contribution from temperature was particularly strong with higher cellular levels of RNA at low temperatures, suggesting a compensatory allocation to ribosomes to maintain protein synthesis and growth. These experiments suggest that although P-limitation is the major determinant of growth rate and cellular stoichiometry, there are pronounced effects of temperature also via interaction with P. At the ecosystem level, nutrients and temperature will thus interact, but temperatures would likely exert a stronger impact on these phytoplankton traits indirectly via its force on stratification regimes and vertical nutrient fluxes.

  17. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

    PubMed

    Roman, Ioan; Trusca, Roxana Doina; Soare, Maria-Laura; Fratila, Corneliu; Krasicka-Cydzik, Elzbieta; Stan, Miruna-Silvia; Dinischiotu, Anca

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Neutrophil alkaline phosphatase score in chronic granulocytic leukaemia: effects of splenectomy and antileukaemic drugs.

    PubMed Central

    Spiers, A S; Liew, A; Baikie, A G

    1975-01-01

    Staining with naphthol AS phosphate and Fast Blue BB salt has been used for the estimation of neutrophil alkaline phosphatase (NAP) scores in patients with chronic granulocytic leukaemia (CGL). The very low scores found at diagnosis rise when the disease is treated, and there is some inverse correlation between the NAP score and the absolute neutrophil count. Patients treated intensively developed high NAP scores. Elective splenectomy performed during the chronic phase of CGL is followed by a pronounced but transient neutrophilia and a concurrent striking rise in the NAP score. Similar changes were observed in patients without CGL who underwent splenectomy. These observations can be explained by assuming that newly formed neutrophils in CGL have a normal content of NAP but are rapidly sequestered in non-circulating extramedullary pools, whereas the circulating neutrophil with a typically low NAP content is a relatively aged cell which has lost enzyme activity. In subjects with or without CGL, removal of the spleen, a major site of such pooling, temporarily permits the circulation of newly formed neutrophils but eventually other organs assume the sequestering functions of the spleen. Thus the aberrations of NAP score seen in CGL might be attributable not to an intrinsic cellular defect but to an exaggeration of the granulocyte storage phenomena which also occur in subjects without CGL. PMID:1056940

  19. A folding study of Antarctic krill (Euphausia superba) alkaline phosphatase using denaturants.

    PubMed

    Wang, Zhi-Jiang; Lee, Jinhyuk; Si, Yue-Xiu; Wang, Wei; Yang, Jun-Mo; Yin, Shang-Jun; Qian, Guo-Ying; Park, Yong-Doo

    2014-09-01

    To gain insight into the structural and folding mechanisms of Antarctic krill alkaline phosphatase (ALP), the enzyme was properly purified by (NH4)2SO4 fractionation and by both Sephadex G-75 and DEAE anion exchange chromatography. The purified enzyme (62.6 kDa; 2.62 unit/mg) was unstable at temperatures exceeding 30°C. Denaturants, such as sodium dodecyl sulfate (SDS), guanidine HCl, and urea, were applied to evaluate the folding mechanism, including kinetics and thermodynamics, of krill ALP. Sodium dodecyl sulfate elicited no significant effect on ALP activity even at excessively high concentrations (300 mM), whereas guanidine HCl and urea effectively inactivated the enzyme at concentrations of 2 and 3.5 M, respectively. Kinetic studies showed that the enzymatic inhibition by guanidine HCl and urea represented a first-order reaction that was a monophasic unfolding process. This process was found to be associated with conformational changes without significant transient free-energy changes. Additionally, the overall structural changes occurred proximally to the active site pocket. Our study provides new insight into ALP of the Antarctic krill, which lives in extreme environmental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Caffeine alters mitochondrial dehydrogenase and alkaline phosphatase activity of human gingival fibroblasts in vitro.

    PubMed

    Bozchaloei, Shabnam Soltani; Gong, Siew-Ging; Dehpour, Ahmad R; Farrokh, Parisa; Khoshayand, Mohammad R; Oskoui, Mahvash

    2013-11-01

    Caffeine is one of the most widely consumed behaviorally active substances in the world. Although its effects on the central nervous system and bone metabolism have been documented, as yet there is no report on its effect on tissues in the oral cavity. In this study we analyzed the viability of human gingival fibroblasts (HGF) and alkaline phosphatase (ALP) enzyme activity after exposure to different concentrations of caffeine for different exposure time periods. The HGF were cultured with different concentrations of caffeine. Viability of cells exposed to caffeine was analyzed by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay to assess mitochondrial dehydrogenase activity. The activity of ALP was analyzed at specific time intervals after caffeine addition. Our results showed that caffeine of concentrations <1 mm did not affect the viability of HGF and the ALP enzyme activity. Nevertheless, caffeine at 5 and 10 mm dramatically decreased the viability and ALP activity of the cells after 4 days such that, by day 9, the viability of cells declined to near zero in the 10 mm group. These results provided evidence that caffeine in high concentrations can decrease cellular viability and ALP activity in HGF. © 2012 Wiley Publishing Asia Pty Ltd.

  1. Intestinal Alkaline Phosphatase Prevents Antibiotic-Induced Susceptibility to Enteric Pathogens

    PubMed Central

    Alam, Sayeda Nasrin; Yammine, Halim; Moaven, Omeed; Ahmed, Rizwan; Moss, Angela K.; Biswas, Brishti; Muhammad, Nur; Biswas, Rakesh; Raychowdhury, Atri; Kaliannan, Kanakaraju; Ghosh, Sathi; Ray, Madhury; Hamarneh, Sulaiman; Barua, Soumik; Malo, Nondita S.; Bhan, Atul K.; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Objective To determine the efficacy of oral supplementation of the gut enzyme intestinal alkaline phosphatase (IAP) in preventing antibiotic-associated infections from Salmonella enterica serovar Typhimurium (S. Typhimurium) and Clostridium difficile. Summary background data The intestinal microbiota plays a pivotal role in human health and well-being. Antibiotics inherently cause dysbiosis, an imbalance in the number and composition of intestinal commensal bacteria, which leads to susceptibility to opportunistic bacterial infections. Previously, we have shown that IAP preserves the normal homeostasis of intestinal microbiota and that oral supplementation with calf IAP (cIAP) rapidly restores the normal gut flora. We hypothesized that oral IAP supplementation would protect against antibiotic-associated bacterial infections. Methods C57BL/6 mice were treated with antibiotic(s) +/− cIAP in the drinking water followed by oral gavage of S. Typhimurium or C. difficile. Mice were observed for clinical conditions and mortality. After a defined period of time mice were sacrificed and investigated for hematological, inflammatory and histological changes. Results We observed that oral supplementation with cIAP during antibiotic treatment protects mice from infections with S. Typhimurium as well as C. difficile. Animals given IAP maintained their weight, had reduced clinical severity and gut inflammation, and improved survival. Conclusion Oral IAP supplementation protected mice from antibiotic-associated bacterial infections. We postulate that oral IAP supplementation could represent a novel therapy to protect against antibiotic-associated diarrhea (AAD), C. difficile-associated disease (CDAD), and other enteric infections in humans. PMID:23598380

  2. Effects of macromolecular crowding on alkaline phosphatase unfolding, conformation and stability.

    PubMed

    Jia, Jiajia; Peng, Xin; Qi, Wei; Su, Rongxin; He, Zhimin

    2017-03-23

    The interior of the cell is tightly packed with various biological macromolecules, which affects physiological processes, especially protein folding process. To explore how macromolecular crowding may influence protein folding process, alkaline phosphatase (ALP) was chosen as a model protein, and the unfolding process of ALP induced by GdnHCl was studied in the presence of crowding agents such as PEG 4000, Dextran 70 and Ficoll 70. The effect of macromolecular crowding on the denatured state of ALP was directly probed by measuring enzyme activities, fluorescence spectroscopy and circular dichroism. From the results of circular dichroism, GdnHCl induced a biphasic change, suggesting that a three-state unfolding mechanism was involved in the denaturation process irrespective of the absence or presence of crowding agents. It was also found that crowding agents had a little impact on the unfolding process of ALP. The results of phase diagrams also demonstrated that the unfolding process of ALP induced by GdnHCl was three-state mechanism. Moreover, the results of fluorescence spectra demonstrated that with the increase of GdnHCl concentration, the structure of protein had changed, but existence of crowding agents can make protein structure more stable. Our results can provide valuable information for understanding the protein folding in vivo.

  3. Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase.

    PubMed

    Jackson, Derek A; Mabury, Scott A

    2012-09-01

    The hydrolysis kinetics of three polyfluorinated alkyl phosphate monoesters (monoPAPs), differing in fluorinated chain length, were measured using bovine intestinal alkaline phosphatase to catalyze the reaction. Kinetic values were also measured for analogous hydrogenated phosphate monoesters to elucidate the effects of the fluorinated chain on the rate of enzymatic hydrolysis. Michaelis constants (K(m)) were obtained by a competition kinetics technique in the presence of p-nitrophenyl phosphate (PNPP) using UV-vis spectroscopy. Compared with K(m) (PNPP), Michaelis constants for monoPAPs ranged from 0.9 to 2.1 compared with hydrogenated phosphates, which ranged from 4.0 to 13.0. Apparent bimolecular rate constants (k(cat)/K(m)) were determined by monitoring rates of product alcohol formation at low substrate concentrations using gas chromatography-mass spectrometry. The experimental values for k(cat)/K(m) averaged as 1.1 × 10(7) M(-1) s(-1) for monoPAPs compared with 3.8 × 10(5) M(-1) s(-1) for hexyl phosphate. This suggests that the electron-withdrawing nature of the fluorinated chain enhanced the alcohol leaving group ability. The results were used in a simple model to suggest that monoPAPs in a typical mammalian digestive tract would hydrolyze in approximately 100 s, supporting a previous study that showed its absence after a dosing study in rats.

  4. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase catalyzed DNPP hydrolysis.

    PubMed

    Champion, D; Blond, G; Le Meste, M; Simatos, D

    2000-10-01

    The hydrolysis of disodium p-nitrophenyl phosphate catalyzed by alkaline phosphatase was chosen as a model to study the kinetics of changes in frozen food products. The initial reaction rate was determined in concentrated sucrose solutions down to -24 degrees C, and the enzymatic characteristics K(M) and V(max) were calculated. The experimental data were compared to the kinetics predicted by assuming that the reaction was viscosity dependent. Indeed, an analysis of the enzymatic reaction demonstrated that both the diffusion of the substrate and the flexibility of the enzyme segments were controlled by the high viscosity of the media. When the temperature was too low for the viscosity to be measured simply, the Williams-Landel-Ferry equation was used to predict the viscosity, taking, as reference temperature, the glass transition temperature (T(g)) corresponding to the concentration of the freeze-concentrated phase at the test temperature. Predicted values of the reaction rate were very close to the experimental ones in the studied temperature range.

  5. Purification and characterization of an extracellular alkaline phosphatase from Penicillium chrysogenum.

    PubMed

    Politino, M; Brown, J; Usher, J J

    1996-01-01

    An extracellular alkaline phosphatase from Penicillium chrysogenum was purified to homogeneity using DEAE ion-exchange chromatography and size exclusion chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 58,000. The mobility of the native enzyme on a Superose 12 column suggests that the active form of the enzyme is a monomer. The enzyme catalyzes the hydrolysis of phosphate from a variety of substrates including p-nitrophenyl phosphate, alpha-naphthyl phosphate and the anti-tumor compound etoposide phosphate. The apparent K(m) for the substrate p-nitrophenyl phosphate is 1.3 mM and the enzyme is inhibited by inorganic phosphate. The pH optimum of the enzyme is 9.0 with a broad optimal temperature range between 40 and 50 degrees C. The isoelectric point of the enzyme is approximately 5.5. The enzyme is a glycoprotein; digestion with endoglycosidase H indicates that the protein consists primarily of N-linked carbohydrates. Enzymatic activity is enhanced by the addition of divalent cations such as Mg+2 and Mn+2 and inhibited by addition of a chelator such as EDTA suggesting a metal ion requirement. The enzyme was found to be an inexpensive catalyst for the conversion of etoposide phosphate to etoposide in the manufacture of this anti-tumor compound.

  6. Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease.

    PubMed Central

    Warnes, T W; Hine, P; Kay, G

    1976-01-01

    Acrylamide gel disc electrophoresis provides a reliable and reasonably rapid method of differentiating the raised serum alkaline phosphatase (AP) of bone origin from that of liver origin. The technique has been placed for the first time on a semiquantitative basis. Measurement of both band width and band position effectively distinguishes the bone from the liver isoenzyme, but band width provides superior discrimination. An origin band was seen in none of the normal subjects and in only 7% of patients with bone disease but was present in 78% of patients with liver disease, a highly significant increase. Fifty percent of normal individuals had a small-intestinal band in serum taken two hours after a meal, as did 35% of patients with liver disease, but the incidence of intestinal bands in bone disease was only 11%, significantly less than in the other two groups. The genetic control of small-intestinal AP in serum has been confirmed, but it has been demonstrated that the decrease of intestinal AP in bone disorders is not genetically determined. Images PMID:977779

  7. Sensitive terbium probes for luminescent determination of both alkaline phosphatase and codeine phosphate.

    PubMed

    Duerkop, Axel; Aleksandrova, Darya; Scripinets, Yuliya; Yegorova, Alla; Vityukova, Ekateryna

    2008-01-01

    New terbium complexes of 2-oxo-4-hydroxy-quinoline-3-carboxylic acid derivatives are reported for determination of alkaline phosphatase (aPase) and codeine phosphate (CP). Complexation with terbium occurs by way of the oxygen atoms of the 4-hydroxyl group and the carbonyl group of the 3-carboxy function, respectively. The complexes are highly luminescent and do not require luminescence enhancers. The excitation maxima of the terbium chelates are at 320 nm. The assay is based on the quenching of the hypersensitive 545-nm luminescence of the terbium complexes with the ligands 4-hydroxy-1-methyl-2-oxo-1,2-dihydro-quinoline-3-carboxylic acid (5-ethyl-[1,3,4]thiadiazol-2-yl)-amide (L(1)) and 1-ethyl-4-hydroxy-2-oxo-1,2-dihydro-quinoline-3-carboxylic acid (4-trifluoromethyl-phenyl)-amide (L(2)) by phosphate ions. The assays require equimolar (1.0 microM) concentrations of Tb(3+) and of the ligand at pH 8.0 (Tris-HCl buffer). The luminescence quenching is proportional to the concentration of aPase and CP within the range of 0.1-70 mU mL(-1) and 0.3-20 microg mL(-1), respectively. The detection limits were 0.05 mU mL(-1)=40.0 pmol L(-1) of aPase and 0.120 microg mL(-1) of CP.

  8. Acid inactivation of and incorporation of phosphate into alkaline phosphatase from Escherichia coli

    PubMed Central

    Pigretti, M. M.; Milstein, C.

    1965-01-01

    1. Alkaline phosphatase of Escherichia coli undergoes below pH 6·0 a reversible acid inactivation that has been studied and related to the extent of uptake of inorganic phosphate occurring below pH 6·0. 2. The rate of inactivation is rapid in the first few minutes but later it decreases markedly. Temperature, pH, composition of buffer and other factors have an important effect on the inactivation. 3. About 60% of the activity lost at pH values above 3·5 is rapidly recovered when the enzyme is taken back to pH 8·0, independently (within certain limits) of the extent of the inactivation. 4. Phosphate and Zn2+, although very good protectors of the inactivation by acid, are not by themselves able to reverse the acid inactivation. 5. Inorganic phosphate seems not to be incorporated into the acid-inactivated enzyme. 6. Incorporation of more than one mole of phosphate/mole of enzyme has been obtained, but the phosphate residues seem to be incorporated to serine residues with a common sequence, suggesting two identical active serine residues/molecule of active enzyme. ImagesFig. 3.Fig. 4. PMID:14342215

  9. Purification and properties of molecular-weight variants of human placental alkaline phosphatase

    PubMed Central

    Ghosh, Nimai K.; Fishman, William H.

    1968-01-01

    1. Alkaline phosphatase of human placenta was purified by a procedure involving homogenization with tris buffer, pH8·6, extraction with butanol, ammonium sulphate fractionation, exposure to heat, ethanol fractionation, gel filtration, triethylaminoethylcellulose anion-exchange chromatography, continuous curtain electrophoresis on paper and equilibrium dialysis. Methods for both laboratory-scale and large-scale preparation were devised. 2. Two major molecular-weight variants designated A and B were separated by molecular sieving with Sephadex G-200 and variant A was purified 4000-fold. 3. Variant B, which comes off the Sephadex G-200 column before variant A, is the electrophoretically slower-moving species on starch gel and is quite heterogeneous. 4. Purified variant A was fairly homogeneous on the basis of electrophoretic studies on starch gel and Sephadex gel, ultracentrifugation and immunodiffusion. 5. The respective molecular weights for variants A and B were 70000 and over 200000 on the basis of sucrose-density-gradient ultracentrifugation. Variant A exhibited a sedimentation coefficient of 4·2s. 6. Crystalline variant B could be converted into fast-moving variant A and vice versa. 7. Kinetic studies indicated no difference between the two variants. These include linear rates of hydrolysis, pH optimum, Michaelis constants and uncompetitive stereospecific l-phenylalanine inhibition. 8. The amino acid compositions of variants A and B and of placental albumin were determined. ImagesFig. 3.Fig. 5.Fig. 7.Fig. 8.Fig. 9. PMID:4970595

  10. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    PubMed

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  11. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate.

    PubMed

    Liu, Yan; Schanze, Kirk S

    2008-11-15

    The fluorescence of the anionic, carboxylate-substituted poly(phenylene ethynylene) polymer PPECO2 is quenched very efficiently via the addition of 1 equiv of Cu(2+). Addition of pyrophosphate (PPi) into the weakly fluorescent solution of PPECO2 and Cu(2+) induces recovery of the polymer's fluorescence; the recovery occurs because PPi complexes with Cu(2+), effectively sequestering the ion so it cannot bind to the carboxylate groups of the polymer. A calibration curve was developed that relates the extent of fluorescence recovery to [PPi], making the PPECO2-Cu(2+) system a sensitive and selective turn-on sensor for PPi. Using the PPECO2-Cu(2+) system as the signal transducer, a real-time fluorescence turn-off assay for the enzyme alkaline phosphatase (ALP) using PPi as the substrate is developed. The assay operates with [PPi] in the micromolar range, and it offers a straightforward and rapid detection of ALP activity with the enzyme present in the nanomolar concentration range, operating either in an end point or real-time format. Kinetic and product inhibition parameters are derived by converting time-dependent fluorescence intensity into PPi (substrate) concentration, thus allowing calculation of the initial reaction rates (v(o)). Weak, nonspecific fluorescence responses are observed concomitant to addition of other proteins to the assay solution; however, the signal response to ALP is demonstrated to arise from the ALP catalyzed hydrolysis of PPi to phosphate (Pi).

  12. Effects of polyethylene glycol on bovine intestine alkaline phosphatase activity and stability.

    PubMed

    Sekiguchi, Satoshi; Yasukawa, Kiyoshi; Inouye, Kuniyo

    2011-01-01

    In this study, we evaluated the effects of polyethylene glycol (PEG) on bovine intestine alkaline phosphatase (BIALP) activity and stability. In the hydrolysis of p-nitrophenylphosphate (pNPP) at pH 9.8 at 20 °C, the k(cat)/K(m) values of BIALP plus 5-15% w/v free PEG with molecular masses of 1, 2, 6, and 20 kDa (PEG1000, PEG2000, PEG6000, and PEG20000 respectively) were 120-140%, 180-300%, 130-170%, and 110-140% respectively of that of BIALP without free PEG (1.8 µM(-1) s(-1)), indicating that activation by PEG2000 was the highest. Unmodified BIALP plus 5% PEG2000 and BIALP pegylated with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine exhibited 1.3-fold higher activity on average than that of BIALP without free PEG under various conditions, including pH 7.0-10.0 and 20-65 °C. The temperatures reducing initial activity by 50% in 30-min incubation of unmodified BIALP plus 5% PEG2000 and pegylated BIALP were 51 and 47 °C respectively, similar to that of BIALP without free PEG (49 °C). These results indicate that the addition of PEG2000 and pegylation increase BIALP activity without affecting its stability, suggesting that they can be used in enzyme immunoassay with BIALP to increase sensitivity and rapidity.

  13. Screen-printed microsystems for the ultrasensitive electrochemical detection of alkaline phosphatase.

    PubMed

    Santiago, Luz M; Bejarano-Nosas, Diego; Lozano-Sanchez, Pablo; Katakis, Ioanis

    2010-06-01

    Screen printing technique has been used to manufacture a microsystem where the graphite-based electrodes hold both a functional and an architectural task. The thick film manufacturing technique has proved valid to develop a very low volume (ca. 20 microL) device where different electrochemical operations can be very efficiently performed. Biomolecule immobilisation within the microsystem for biosensors applications has been explored by inducing and optimizing the in situ generation of a potential pulse polypyrrole electropolymerised film entrapping either glucose oxidase or glucose dehydrogenase. This biomodified microsystem was applied to the ultrasensitive electrochemical detection of alkaline phosphatase yielding limits of detection below 10(-12) M for glucose oxidase and of 10(-15) M for glucose dehydrogenase modified systems, within 15 min of incubation time. The results obtained showed the advantages of using low volume microsystems in combination with an optimised polypyrrole-enzyme film, which displayed a good immobilisation efficiency in conjunction with a good diffusion of species through. Ultrasensitive detection of AP in combination with a stable and reproducible surface modification for entrapping of biomolecules opens the window for new electrochemical detection platform with great potential for integrated biosensor applications.

  14. Lectin affinity electrophoresis of serum alkaline phosphatase in metastasized breast cancer.

    PubMed

    Le Bricon, Thierry; Gay-Bellile, Cécile; Cottu, Paul; Benlakehal, Mourad; Guillon, Hélène; Houzé, Pascal

    2010-01-01

    The use of serum alkaline phosphatase (ALP) isoenzymes as markers of breast cancer metastases and treatment efficacy has received little attention. Twenty-six breast cancer women (56+/-13 years, all post-menopausal) were prospectively evaluated during their first and third course of chemotherapy (4-week interval). Serum samples were analyzed for ALP isoenzymes (bone, liver, and intestine) using a lectin affinity electrophoresis kit (Hydragel 15 ISO-PAL, Sebia) adapted on a semi-automated Hydrasys system (Sebia). Results were compared with imaging techniques for the presence of metastases; bone ALP isoenzyme (B-ALP) results were compared with C-Terminal degradation products of type I collagen (S-CTX) (CrossLaps, IDS Nordic). Serum B-ALP, but not S-CTX, confirmed the presence of bone metastases (BM) (n=15) with 67/100% sensitivity/specificity (using a 69 UI/L ROC cut-off); ROC AUC was 0.806 (P=0.0004) (NS for S-CTX). Chemotherapy reduced serum B-ALP by 24% over 4 weeks (P=0.0012); there was no change for S-CTX. There was no specific clinical pattern for other ALP isoenzymes (liver and intestine). In conclusion, serum B-ALP, but not S-CTX, could help confirm the presence of BM in breast cancer patients.

  15. Acceleration of gelation and promotion of mineralization of chitosan hydrogels by alkaline phosphatase.

    PubMed

    Douglas, Timothy E L; Skwarczynska, Agata; Modrzejewska, Zofia; Balcaen, Lieve; Schaubroeck, David; Lycke, Sylvia; Vanhaecke, Frank; Vandenabeele, Peter; Dubruel, Peter; Jansen, John A; Leeuwenburgh, Sander C G

    2013-05-01

    Thermosensitive chitosan hydrogels containing sodium beta-glycerophosphate (β-GP), whose gelation is induced by increasing temperature to body temperature, were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone. ALP incorporation led to acceleration of gelation upon increase of temperature for four different chitosan preparations of differing molecular weight, as demonstrated by rheometric time sweeps at 37 °C. Hydrogels containing ALP were subsequently incubated in calcium glycerophosphate (Ca-GP) solution to induce their mineralization with calcium phosphate (CaP) in order to improve their suitability as materials for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP mineral, as confirmed by SEM, FTIR, Raman spectroscopy, XRD, ICP-OES, and increases in dry mass percentage, which rose with increasing ALP concentration and incubation time in Ca-GP solution. The results demonstrate that ALP accelerates formation of thermosensitive chitosan/β-GP hydrogels and induces their mineralization with CaP, which paves the way for applications as injectable bone replacement materials.

  16. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase.

    PubMed

    Beloti, Marcio Mateus; de Oliveira, Paulo Tambasco; Tagliani, Marcela Martini; Rosa, Adalberto Luiz

    2008-02-01

    The aim of this study was to evaluate the response of osteoblastic cells to the composite of Ricinus communis polyurethane (RCP) and alkaline phosphatase (ALP) incubated in synthetic body fluid (SBF). RCP pure (RCPp) and RCP blended with ALP 6 mg/mL polymer (RCP+ALP) were incubated in SBF for 17 days. Four groups of RCP were tested: RCPp, RCP+ALP, and RCPp and RCP+ALP incubated in SBF (RCPp/SBF and RCP+ALP/SBF). Stem cells from rat bone marrow were cultured in conditions that allowed osteoblastic differentiation on RCP discs and were evaluated: cell adhesion, culture growth, cell viability, total protein content, ALP activity, and bone-like nodule formation. Data were compared by ANOVA or Kruskal-Wallis test. The group RCP+ALP was highly cytotoxic and, therefore, was not considered here. Cell adhesion (p = 0.14), culture growth (p = 0.39), viability (p = 0.46) and total protein content (p = 0.12) were not affected by either RCP composition or incubation in SBF. ALP activity was affected (p = 0.0001) as follows: RCPp < RCPp/SBF < RCP+ALP/SBF. Bone-like nodule formation was not observed on all evaluated groups. The composite RCP+ALP prior to SBF incubation is cytotoxic and must not be considered as biomaterial, but the incorporation of ALP to the RCP followed by SBF incubation could be a useful alternative to improve the biological properties of the RCP.

  17. Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications.

    PubMed

    Douglas, Timothy E L; Krok-Borkowicz, Małgorzata; Macuda, Aleksandra; Pietryga, Krzysztof; Pamuła, Elżbieta

    2016-01-01

    Thermosensitive injectable chitosan hydrogels can be formed by neutralization of acidic chitosan solutions with sodium betaglycerophosphate (Na-β-GP) coupled with increasing temperature to body temperature. Such hydrogels have been considered for applications in bone regeneration. In this study, chitosan hydrogels were enriched with glycerol and the enzyme alkaline phosphatase (ALP) with a view to improving their suitability as materials for bone tissue engineering. Mineral formation was confirmed by infrared spectroscopy (FTIR) and increases in the mass fraction of the hydrogel not consisting of water. Incorporation of ALP in hydrogels followed by incubation in a solution containing calcium ions and glycerophosphate, a substrate for ALP, led to formation of calcium phosphate within the hydrogel. MG-63 osteoblast-like cells were cultivated in eluates from hydrogels containing ALP and without ALP at different dilutions and directly on the hydrogel samples. Hydrogels containing ALP exhibited superior cytocompatibility to ALP-free hydrogels. These results pave the way for the use of glycerol- and ALP-enriched hydrogels in bone regeneration.

  18. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD.

    PubMed

    Haarhaus, Mathias; Brandenburg, Vincent; Kalantar-Zadeh, Kamyar; Stenvinkel, Peter; Magnusson, Per

    2017-07-01

    Cardiovascular disease is the main cause of early death in the settings of chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM), and ageing. Cardiovascular events can be caused by an imbalance between promoters and inhibitors of mineralization, which leads to vascular calcification. This process is akin to skeletal mineralization, which is carefully regulated and in which isozymes of alkaline phosphatase (ALP) have a crucial role. Four genes encode ALP isozymes in humans. Intestinal, placental and germ cell ALPs are tissue-specific, whereas the tissue-nonspecific isozyme of ALP (TNALP) is present in several tissues, including bone, liver and kidney. TNALP has a pivotal role in bone calcification. Experimental overexpression of TNALP in the vasculature is sufficient to induce vascular calcification, cardiac hypertrophy and premature death, mimicking the cardiovascular phenotype often found in CKD and T2DM. Intestinal ALP contributes to the gut mucosal defence and intestinal and liver ALPs might contribute to the acute inflammatory response to endogenous or pathogenic stimuli. Here we review novel mechanisms that link ALP to vascular calcification, inflammation, and endothelial dysfunction in kidney and cardiovascular diseases. We also discuss new drugs that target ALP, which have the potential to improve cardiovascular outcomes without inhibiting skeletal mineralization.

  19. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage.

    PubMed

    Miao, Dengshun; Scutt, Andrew

    2002-03-01

    We have developed methodology that enables alkaline phosphatase (ALP) to be histochemically stained reproducibly in decalcified paraffin-embedded bone and cartilage of rodents. Proximal tibiae and fourth lumbar vertebrae were fixed in periodate-lysine-paraformaldehyde (PLP) fixative, decalcified in an EDTA-G solution, and embedded in paraffin. In the articular cartilage of the proximal tibia, ALP activity was localized to the hypertrophic chondrocytes and cartilage matrix of the deep zone and the maturing chondrocytes of the intermediate zone. The cells and matrix in the superficial zone did not exhibit any enzyme activity. In tibial and vertebral growth plates, a progressive increase in ALP expression was seen in chondrocytes and cartilage matrix, with activity being weakest in the proliferative zone, higher in the maturing zone, and highest in the hypertrophic zone. In bone tissue, ALP activity was detected widely in pre-osteoblasts, osteoblasts, lining cells on the surface of trabeculae, some newly embedded osteocytes, endosteal cells, and subperiosteal cells. In areas of new bone formation, ALP activity was detected in osteoid. In the bone marrow, about 20% of bone marrow cells expressed ALP activity. In adult rats, the thickness of the growth plates was less and ALP activity was enhanced in maturing and hypertrophic chondrocytes, cartilage matrix in the hypertrophic zone, and primary spongiosa. This is the first time that ALP activity has been successfully visualized histochemically in decalcified, paraffin-embedded mineralized tissues. This technique should prove to be a very convenient adjunct for studying the behavior of osteoblasts during osteogenesis.

  20. Fluorometric determination of alkaline phosphatase activity in food using magnetoliposomes as on-flow microcontainer devices.

    PubMed

    Román-Pizarro, Vanessa; Fernández-Romero, Juan Manuel; Gómez-Hens, Agustina

    2014-02-26

    Liposomes containing magnetic gold nanoparticles (AuNPs) and an enzymatic substrate (4-methylumbelliferyl-phosphate) have been used as on-flow microcontainers for reagent preconcentration in a flow injection method for the determination of alkaline phosphatase (ALP) activity. The dynamic range of the calibration graph was 6.4 × 10(-3)-0.25 U L(-1) ALP, and the detection limit was 1.9 × 10(-3) U L(-1). The precision, expressed as relative standard deviation (RSD%), was in the range of 0.7-2.4%. The overall method showed a sampling frequency of 10 h(-1). The method was applied to the determination of ALP in milk samples with recovery values ranging between 87.5 and 104.6%. The residual ALP activity in milk samples subjected to temperature treatments was also determined. The results obtained in the analysis of all milk samples were compared with those obtained by applying a previously described flow injection method.

  1. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site

    PubMed Central

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402

  2. Alkaline phosphatase as an indicator of true ejaculation in the rhinoceros.

    PubMed

    Roth, T L; Stoops, M A; Robeck, T R; Ball, R L; Wolfe, B A; Finnegan, M V; O'Brien, J K

    2010-12-01

    The objective was to determine if seminal alkaline phosphatase (ALP) can serve as an indicator of true ejaculation in the rhinoceros. Concentrations of ALP activity were determined in seminal fractions collected from African black rhinos (Diceros bicornis), an African white rhino (Ceratotherium simum), and an Indian rhino (Rhinoceros unicornis) during electroejaculation. In addition, seminal fractions collected during penile massage of a Sumatran rhino (Dicerorhinus sumatrensis) were assessed. Correlations between ALP activity and sperm concentration, fraction pH, and fraction osmolality were evaluated in the Indian rhino and black rhino. Concentrations of ALP activity in rhino ejaculate fractions ranged from < 5 to 11,780 U/L and were positively correlated (P < 0.05) with sperm concentration for both Indian rhino (r = 0.995) and black rhino (r = 0.697), but did not exhibit a strong correlation with either pH or osmolality (P > 0.05). Data were insufficient for establishing meaningful correlation coefficients in the Sumatran rhino and white rhino, but preliminary results were in accordance with findings in the Indian rhino and black rhino. We concluded that ALP was present in rhinoceros semen, likely originated from the epididymides and/or testes, and could serve as a useful tool for assessing the production of ejaculatory versus pre-ejaculatory fluid in the rhinoceros. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. An enzyme immobilized microassay in capillary electrophoresis for characterization and inhibition studies of alkaline phosphatases.

    PubMed

    Iqbal, Jamshed

    2011-07-15

    A simple and fast dynamically coated capillary electrophoretic method was developed for the characterization and inhibition studies of alkaline phosphatases(EC 3.1.3.1). An inside capillary enzymatic reaction was performed, and hydrolysis of the substrate 4-nitrophenylphosphate to 4-nitrophenol was measured. Fused-silica capillary surface was dynamically modified with polycationic polybrene coating. By reversal of the electroosmotic flow (EOF), analysis time was reduced up to 3 min as the anionic analytes were migrated in the same direction as the EOF. Furthermore, the sensitivity of the method was increased using electroinjection through high-field amplified injection. The baseline separation of 4-nitrophenylphosphate and 4-nitrophenol was achieved by employing 50 mM sodium phosphate as the running buffer (pH 8.5), 0.0025% polybrene, and a constant voltage of -15 kV, and the products were detected at 322 nm. Under the optimized conditions, a good separation with high efficiency was achieved. The new method was applied to study enzyme kinetics and inhibitor screening. K(m) and K(i) values obtained with the new CE method were compared well with the standard spectrophotometric method. Dynamic coating of fused-silica capillary gave fast and reproducible separation of substrate and product. The method can be easily optimized for inhibition studies of other isozymes.

  4. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  5. Rapid identification of Vibrio vulnificus on nonselective media with an alkaline phosphatase-labeled oligonucleotide probe.

    PubMed Central

    Wright, A C; Miceli, G A; Landry, W L; Christy, J B; Watkins, W D; Morris, J G

    1993-01-01

    An oligonucleotide DNA probe (VVAP) was constructed from a portion of the Vibrio vulnificus cytolysin gene (hylA) sequence and labeled with alkaline phosphatase covalently linked to the DNA. Control and environmental isolates probed with VVAP showed an exact correlation with results obtained with a plasmid DNA probe (derived from pCVD702) previously described as having 100% specificity and sensitivity for this organism. Identification of V. vulnificus strains was confirmed independently by analysis of the cellular fatty acid composition and by API 20E. Naturally occurring V. vulnificus bacteria were detected without enrichment or selective media by VVAP in unseeded oyster homogenates and seawater collected from a single site in Chesapeake Bay during June at concentrations of 6 x 10(2) and 2 x 10(1) bacteria per ml, respectively. V. vulnificus bacteria were also enumerated by VVAP in oysters seeded with known concentrations of bacteria and plated on nonselective medium. The VVAP method provides a rapid, accurate means of identifying and enumerating V. vulnificus in seawater and oysters without the use of selective media or additional biochemical tests. Images PMID:8434919

  6. Lactate dehydrogenase and alkaline phosphatase isoenzymes and protein-bound sialic acid in regenerating rat liver.

    PubMed

    Allalouf, D; Schwarzman, S; Levinsky, H; Feller, N; Hart, J; Zoher, S; Menache, R

    1986-01-01

    Lactate dehydrogenase (LDH) and alkaline phosphatase (AP) isoenzyme patterns and protein-bound sialic acid content were compared between normal, regenerating rat liver 10 days after partial hepatectomy and fetal rat liver. For this purpose, liver from ten adult rats and two pools of ten fetal livers each were examined. Isoenzymes were separated by electrophoresis on cellulose acetate and their percent distribution calculated after quantitation by densitometry of the bands. LDH-5 and LDH-4 combined represented in all the tissues examined 90%-94% of the total activity. LDH-5/LDH-4 ratios were nearly equivalent in the normal and regenerated liver (7.14, 6.41), but substantially lower in fetal liver (2.50). Two bands of AP were visualized in electropherograms. AP-1/AP-2 ratio was lower in regenerated liver (1.57) as compared to normal liver (2.27) and still lower in fetal liver (1.06). Protein-bound sialic acid was, on protein basis, slightly but not significantly higher in regenerated liver (1.71 microgram/mg protein) than in normal liver (1.43), and significantly higher in fetal liver (1.87). The relatively small differences in isoenzyme patterns and in protein-bound sialic acid between regenerated and normal liver as compared to those between fetal and normal tissue add support to the view that the cells in regenerated liver are not of embryonic origin.

  7. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro.

    PubMed

    Sabokbar, A; Millett, P J; Myer, B; Rushton, N

    1994-10-01

    Alkaline phosphatase (ALP) is the most widely recognized biochemical marker for osteoblast activity. Although its precise function is poorly understood, it is believed to play a role in skeletal mineralization. The aim of this study was to develop an assay suitable for measuring the activity of this enzyme in microtiter plate format. Using the well-characterized osteoblast-like cell line Saos-2, this paper describes an optimized biochemical assay suitable for measuring ALP activity in tissue culture samples. We have determined that a p-nitrophenyl phosphate substrate concentration of 9 mM provides highest enzyme activities. We have found that cell concentration, and hence enzyme concentration, affects both the kinetics and precision of the assay. We also tested several methods of enzyme solubilization and found that freeze-thawing the membrane fractions twice at -70 degrees C/37 degrees C or freeze-thawing once with sonication yielded highest enzyme activities. The activity of the enzyme decreased by 10% after 7 days storage. This assay provides a sensitive and reproducible method that is ideally suited for measuring ALP activity in isolated osteoblastic cells, although sample preparation and storage can influence results.

  8. Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes.

    PubMed Central

    Seriwatana, J; Echeverria, P; Taylor, D N; Sakuldaipeara, T; Changchawalit, S; Chivoratanond, O

    1987-01-01

    Alkaline phosphatase-conjugated (AP) 26-base oligonucleotide DNA probes were compared with the same probes labeled with gamma-32P for the identification of heat-labile (LT) and heat-stable (ST) enterotoxigenic Escherichia coli (ETEC). The AP oligonucleotide probes were as sensitive as the radiolabeled (RL) probes in detecting LT and STA-2 target cell DNA, but the AP ST probe, which differed from STA-1 by two bases, was less sensitive than the RL probe in detecting STA-1 DNA (6.25 versus 0.78 ng). Of 94 ETEC that were identified with the RL probe, the AP probes detected 93% (28 of 30) of ST, 73% (25 of 34) of LT, and 67% (20 of 30) of LTST ETEC. When colony lysates of these ETEC were examined, the AP probes identified all 94 ETEC. In examinations of stool blots, the RL and AP probes were shown to have sensitivities of 71 and 59%, specificities of 91 and 86%, positive predictive values of 87 and 73%, and negative predictive values of 86 and 74%, respectively. AP oligonucleotide probes to detect ETEC were less sensitive in detecting ETEC by colony or stool blot hybridization than the RL probes but could be used by laboratories without access to radioisotopes to examine colony lysates. Images PMID:3305559

  9. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase.

    PubMed

    Yang, Jinjin; Zheng, Lin; Wang, Yu; Li, Wei; Zhang, Jinli; Gu, Junjie; Fu, Yan

    2016-03-15

    DNA-based peroxidase mimetics are facilely constructed through Cu(II)-coordination with different oligonucleotides involving G20, C20, A20 and T20, respectively, with high peroxidase mimicking activity as well as high stability against proteins. Peroxidase-like activities of DNA-Cu(II) complexes are greatly associated with the sequence composition of DNA templates, which decrease in the following order: G20>C20>A20>T20. G20-Cu(II) complex ([Cu(2+)]/[base]=0.05) possesses the Km value of 0.257 mM toward 3,3',5,5'-tetramethylbenzidine and 102.3mM toward hydrogen peroxide at 25 °C. G20-Cu(II) complexes are employed to develop a colorimetric turn-on assay of alkaline phosphatase with high sensitivity and selectivity, on the basis of pyrophosphate-induced inhibition of their intrinsic peroxidase-like activities. The limit of detection is achieved as 0.84 U/L with the linear response region of 20-200 U/L. Such colorimetric assay system is probably applicable for the quantitative determination of ALP in biological fluids. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Intestinal alkaline phosphatase deficiency leads to lipopolysaccharide desensitization and faster weight gain.

    PubMed

    Yang, Ye; Millán, José Luis; Mecsas, Joan; Guillemin, Karen

    2015-01-01

    Animals develop in the presence of complex microbial communities, and early host responses to these microbes can influence key aspects of development, such as maturation of the immune system, in ways that impact adult physiology. We previously showed that the zebrafish intestinal alkaline phosphatase (ALPI) gene alpi.1 was induced by Gram-negative bacterium-derived lipopolysaccharide (LPS), a process dependent on myeloid differentiation primary response gene 88 (MYD88), and functioned to detoxify LPS and prevent excessive host inflammatory responses to commensal microbiota in the newly colonized intestine. In the present study, we examined whether the regulation and function of ALPI were conserved in mammals. We found that among the mouse ALPI genes, Akp3 was specifically upregulated by the microbiota, but through a mechanism independent of LPS or MYD88. We showed that disruption of Akp3 did not significantly affect intestinal inflammatory responses to commensal microbiota or animal susceptibility to Yersinia pseudotuberculosis infection. However, we found that Akp3(-/-) mice acquired LPS tolerance during postweaning development, suggesting that Akp3 plays an important role in immune education. Finally, we demonstrated that inhibiting LPS sensing with a mutation in CD14 abrogated the accelerated weight gain in Akp3(-/-) mice receiving a high-fat diet, suggesting that the weight gain is caused by excessive LPS in Akp3(-/-) mice. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors.

    PubMed

    Bhatti, Huma Aslam; Khatoon, Memoona; Al-Rashida, Mariya; Bano, Huma; Iqbal, Nafees; Zaib-Un-Nisa; Yousuf, Sammer; Khan, Khalid Mohammed; Hameed, Abdul; Iqbal, Jamshed

    2017-04-01

    Owing to the biological importance of cyclic sulfonamides (sultams), herein we report a new, facile and cost-effective method for the synthesis of sultams that makes use of a reaction between dansyl amide and easily accessible benzaldehydes under mildly acidic conditions. All compounds were obtained in good yields (69-96%). Consequently a series of cyclic sulfonamides (7a-7n) was synthesized and characterized using FTIR, MS and NMR spectroscopy, crystal structure of compound 7b has also been determined. All compounds were evaluated for their potential to inhibit alkaline phosphatase (bTNAP and bIAP). All compounds were found to be excellent inhibitors of bTNAP with IC50 values in lower micro-molar range (0.11-6.63μM). Most of the compounds were selective inhibitors of bTNAP over bIAP. Only six compounds were found to be active against bIAP (IC50 values in the range 0.38-3.48μM). Molecular docking studies were carried out to identify and rationalize the structural elements necessary for efficient AP inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Expression of secreted alkaline phosphatase in hepatocytes controlled by HCV IRES].

    PubMed

    Liu, Shui-ping; Tan, De-ming; Hou, Zhou-hua

    2003-08-01

    To establish a cell model of secreted alkaline phosphatase (SEAP) controlled by HCV internal ribosome entry site (IRES). The fragment of HCV 5' noncoding region (5' NCR) was amplified by polymerase chain reaction (PCR), and was immediately cloned the upstream of the SEAP gene of pSEAP2-Control, an SEAP eukaryotic expression plasmid. With the liposome transfection technique, the resulting recombinant plasmid pdNCRSEAP was transfected into hepatocytes QSG7710, and the SEAP activity of cell culture media was monitored quantitatively by the chemiluminescent method. The regulatory effect of the HCV 5' NCR on the SEAP expression was measured by the treatment of transfected cells with antisense oligodeoxynucleotide (ASODN) at 5 mumol and 10 mumol, respectively. The light emission intensity of pdNCRSEAP expression was 76% that of pSEAP2-Control. The inhibition rates of pNCRSEAP luminescence intensity affected by ASODN of 5 mumol and 10 mumol were 29.2% and 44.6%, respectively, while ASODN had no significant effect on the pSEAP2-Control expression. The SEAP expression of pdNCRSEAP is controlled by HCV 5'NCR. The cell model of drug evaluation targeted at HCV 5'NCR is successfully established and can be analyzed conveniently.

  13. Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system.

    PubMed

    Torisawa, Yu-Suke; Ohara, Noriko; Nagamine, Kuniaki; Kasai, Shigenobu; Yasukawa, Tomoyuki; Shiku, Hitoshi; Matsue, Tomokazu

    2006-11-15

    Electrochemical monitoring of cellular signal transduction under three-dimensional (3-D) cell culture conditions has been demonstrated by combining cell-based microarrays with a secreted alkaline phosphatase (SEAP) reporter system. The cells were genetically engineered to produce SEAP under the control of nuclear factor kappaB (NFkappaB) enhancer elements, and they were embedded with a small volume of a collagen gel matrix on a pyramidal-shaped silicon microstructure. Cellular SEAP expression triggered by NFkappaB activation was assessed by two types of electrochemical systems. First, SEAP expression of a 3-D cell array on a chip was continuously monitored in situ for 2 days by scanning electrochemical microscopy (SECM). Since the SECM-based assay enables the evaluation of cellular respiratory activity, simultaneous measurements of cellular viability and signal transduction were possible. Further, we have developed an electrode-integrated cell culture device for parallel evaluation of cellular SEAP expression. The detector electrode was integrated around the silicon microhole. Two kinds of cells were immobilized on the array of microholes on the same chip for comparative characterization of their SEAP activity. This electrochemical microdevice can be applied to evaluate the SEAP expression activity in multiple cellular microarrays by a high-throughput method.

  14. Rat enterocytes secrete SLPs containing alkaline phosphatase and cubilin in response to corn oil feeding.

    PubMed

    Mahmood, Akhtar; Shao, Jian-su; Alpers, David H

    2003-08-01

    Surfactant-like particles (SLP) are unilamellar secreted membranes associated with the process of lipid absorption and isolated previously only from the apical surface of enterocytes. In this paper, the intracellular membrane has been isolated from corn oil-fed animals, identified by its content of the marker protein intestinal alkaline phosphatase (IAP). Another brush-border protein, cubilin, and its anchoring protein megalin have been identified as components of extracellular SLP, but only cubilin is present to any extent in intracellular SLP. During fat absorption, IAP is modestly enriched in intracellular SLP, but full-length cubilin (migrating at 210 kDa in fat-fed mucosal fractions) falls by one-half, although fragments of cubilin are abundant in the intracellular SLP. Both IAP and cubilin colocalize to the same cells during corn oil absorption and colocalize around lipid droplets. This localization is more intense during feeding of corn oil with Pluronic L-81, a detergent that allows uptake of fatty acids and monoglycerides from the lumen, but blocks chylomicron secretion. Confocal microscopy confirms the colocalization of IAP and the ligand for cubilin, intrinsic factor. Possible roles for cubilin in intracellular SLP include facilitating movement of the lipid droplet through the cell and binding to the basolateral membrane before reverse endocytosis.

  15. Alkaline phosphatase as a treatment of sepsis-associated acute kidney injury.

    PubMed

    Peters, Esther; van Elsas, Andrea; Heemskerk, Suzanne; Jonk, Luigi; van der Hoeven, Johannes; Arend, Jacques; Masereeuw, Rosalinde; Pickkers, Peter

    2013-01-01

    Currently there are no pharmacological therapies licensed to treat sepsis-associated acute kidney injury (AKI). Considering the high incidence and mortality of sepsis-associated AKI, there is an urgent medical need to develop effective pharmacological interventions. Two phase II clinical trials recently demonstrated beneficial effects of the enzyme alkaline phosphatase (AP). In critically ill patients with sepsis-associated AKI, treatment with AP reduced the urinary excretion of tubular injury biomarkers and plasma markers of inflammation, which was associated with improvement of renal function. The dephosphorylating enzyme, AP, is endogenously present in the renal proximal tubule apical membrane but becomes depleted during ischemia-induced AKI, thereby possibly contributing to further renal damage. The exact mechanism of action of AP in AKI is unknown, but might be related to detoxification of circulating lipopolysaccharide and other proinflammatory mediators that lose their proinflammatory effects after dephosphorylation. Alternatively, tissue damage associated with systemic inflammation might be attenuated by an AP-mediated effect on adenosine metabolism. Adenosine is a signaling molecule that has been shown to protect the body from inflammation-induced tissue injury, which is derived through dephosphorylation of ATP. In this Perspectives article, we discuss the clinical activity of AP and its putative molecular modes of action, and we speculate on its use to treat and possibly prevent sepsis-associated AKI.

  16. Rat serum alkaline phosphatase electrophoretic fractions: variations with feeding, starvation and cellulose fibre ingestion.

    PubMed

    Martins, M J; Dias, P O; Hipólito-Reis, C

    1998-12-01

    The effect of feeding, starvation and fibre ingestion on alkaline phosphatase (ALP) activity (E.C. 3.1.3.1) was studied in Wistar rat serum. Using identical assay conditions for total ALP activity determination and for electrophoretic ALP isoenzymes/fractions activity calculation, alpha- and beta-naphthyl phosphates and p-nitrophenyl phosphate were used as substrates and 2-amino-2-methyl-1-propanol/HCI was used as buffer, respectively. Total activity with beta-naphthyl phosphate was significantly higher than with alpha-naphthyl phosphate and p-nitrophenyl phosphate; with alpha-naphthyl phosphate it was significantly higher than with p-nitrophenyl phosphate. With all substrates, fed animals had significantly higher total activity than starving ones. Electrophoresis allowed the separation of two fractions. The second fraction activity was significantly higher in the fed group than in the starving ones, irrespective of the substrate used. Starving animals with fibre showed higher values of this fraction than starving animals without fibre, the difference reaching statistical significance with alpha-naphthyl phosphate. The first fraction predominated in both starved groups and the second in the fed group. The second fraction was identified as intestinal ALP. We conclude that the mechanical stimulation of the digestive tract appears to influence the passage of intestinal ALP to serum. The experimental conditions used enable quantification of electrophoretic fractions based on total activity. Activity depends on the substrate used.

  17. Facile and sensitive fluorescence sensing of alkaline phosphatase activity using NMM/G-quadruplex.

    PubMed

    He, Yue; Wang, Chengqiu; Zhao, Qiyang; Zhang, Yaohai; Chen, Aihua; Pang, Junxiao; Fang, Qi; Cui, Yongliang; Jiao, Bining

    2017-09-01

    Herein, we are presenting an approach that utilizes the λ exonuclease (λ exo) cleavage reaction in combination with the formation of G-quadruplex, thereby providing a label-free fluorometric tool for simply and accurately determining alkaline phosphatase (ALP) activity and inhibition. A hairpin probe (HP) with 5'-phosphoryl termini and 3'-end containing a G-rich region, is designed. Taking advantage of the efficient enzyme reactions, namely the λ exo cleavage reaction, the G-rich DNA fragment is released from HP and folds into a stable G-quadruplex in the presence of potassium ions, thus greatly enhance the fluorescence of N-methyl mesoporphyrin IX (NMM) (a specific G-quadruplex binder). However, in the presence of ALP, the 5'-phosphoryl of the HP is dephosphorylated. The yielding 5'-hydroxyl end product hampers the λ exo cleavage reaction. HP maintains its stem-loop structure. Thus the formation of the G-quadruplex is prohibited, and this results in weak fluorescence of NMM. The fluorescence intensity exhibits a linear correlation to ALP concentration in the range of 1-50 U/L with a detection limit of 0.75 U/L. Additionally, inhibition effect of sodium orthovanadate has also been investigated. This study offers a simple yet sensitive method for ALP activity assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. PHO8 gene coding alkaline phosphatase of Saccharomyces cerevisiae is involved in polyphosphate metabolism.

    PubMed

    Kizawa, Keiko; Aono, Toshihiro; Ohtomo, Ryo

    2017-01-25

    It has been argued for a long time whether alkaline phosphatase (ALP) is involved in polyphosphate (polyP) metabolism in arbuscular mycorrhizal fungi. In the present study, we have analyzed the effects of disrupting the PHO8 gene, which encodes phosphate (Pi)-deficiency-inducible ALP, on the polyP contents of Saccharomyces cerevisiae. The polyP content of the Δpho8 mutant was higher than the wild type strain in the logarithmic phase under Pi-sufficient conditions. On the contrary, the chain length of polyP extracted from the Δpho8 mutant did not differ from the wild type strain. When cells in Pi-deficient conditions were supplemented with Pi, the increase of the polyP amounts in the Δpho8 mutant was similar to that in the wild type strain. These results suggest that ALP, which is encoded by PHO8, affects the polyP content, but not the chain length, and participates in polyP homeostasis in Pi-sufficient conditions.

  19. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  20. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract

    PubMed Central

    Wojcik, Dagmara; Zahradnik-Bilska, Janina; Mach, Tomasz

    2017-01-01

    Over the past few years, the role of intestinal alkaline phosphatase (IAP) as a crucial mucosal defence factor essential for maintaining gut homeostasis has been established. IAP is an important apical brush border enzyme expressed throughout the gastrointestinal tract and secreted both into the intestinal lumen and into the bloodstream. IAP exerts its effects through dephosphorylation of proinflammatory molecules including lipopolysaccharide (LPS), flagellin, and adenosine triphosphate (ATP) released from cells during stressful events. Diminished activity of IAP could increase the risk of disease through changes in the microbiome, intestinal inflammation, and intestinal permeability. Exogenous IAP exerts a protective effect against intestinal and systemic inflammation in a variety of diseases and represents a potential therapeutic agent in diseases driven by gut barrier dysfunction such as IBD. The intestinal protective mechanisms are impaired in IBD patients due to lower synthesis and activity of endogenous IAP, but the pathomechanism of this enzyme deficiency remains unclear. IAP has been safely administered to humans and the human recombinant form of IAP has been developed. This review was designed to provide an update in recent research on the involvement of IAP in intestinal inflammatory processes with focus on IBD in experimental animal models and human patients. PMID:28316376

  1. Alkaline phosphatase activity at the southwest coast of India: A comparison of locations differently affected by upwelling

    NASA Astrophysics Data System (ADS)

    Mamatha, S. S.; Malik, Ashish; Varik, Sandesh; Parvathi, V.; Jineesh, V. K.; Gauns, Mangesh U.; LokaBharathi, P. A.

    2015-01-01

    The realization of the potential importance of phosphorus (P) as a limiting nutrient in marine ecosystem is increasing globally. Hence, the contribution of biotic variables in mobilizing this nutrient would be relevant especially in productive coastal waters. As alkaline phosphatase activity (APA) indicates the status of P for primary production in aquatic environments, we asked the following question: is the level of APA indicative of P sufficiency or deficiency in coastal waters, especially, where upwelling is a regular phenomenon? Therefore, we have examined the total APA, chlorophyll a along with phosphatase producing bacteria (PPB) and related environmental parameters from nearshore to offshore in coastal waters off Trivandrum and Kochi regions differently affected by upwelling during the onset of monsoon. Off Trivandrum, APA in the offshore waters of 5-m layer at 2.23 μM P h- 1 was > 4 times higher than nearshore. Thus, low APA could be indicative of P sufficiency in coastal waters and higher activity suggestive of deficiency in offshore waters off Trivandrum. In contrast, there was less difference in APA between near and offshore surface waters off Kochi. Our results show that the regions differently affected by upwelling respond differently according to ambient P concentration, distance from shore or depth of water. These observations could apparently be applicable to other coastal systems as well, where gradients in upwelling and phosphate runoff have been noticed. Further studies on other transects would throw more light on the extent and direction of the relationship between APA and ambient P concentration. Such studies would help in understanding the level of control of this nutrient on the productivity of coastal waters.

  2. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli

    PubMed Central

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol. PMID:26091008

  3. Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene.

    PubMed

    Bellazi, L; Mornet, E; Meurice, G; Pata-Merci, N; De Mazancourt, P; Dieudonné, M-N

    2011-10-01

    During pregnancy, placental growth allows the adaptation of the feto-maternal unit to fetal requirements. Placental alkaline phosphatase (PLAP) is a phosphomonoesterase produced increasingly until term by the placenta and also ectopically in some tumors. To precise the role of this enzyme in the placenta, we analyzed the genome wide expression profile of HTR-8/Svneo trophoblastic cells after overexpression of the alkaline phosphatase gene (ALPP). We showed that ALPP overexpression mainly altered expression of genes implicated in cellular growth and proliferation. These results were confirmed by the study of cellular effects in HTR-8/Svneo cells overexpressing ALPP and in HTR-8/Svneo cells in which ALPP expression was suppressed by siRNA. We showed that PLAP exerts a positive effect on DNA replication and acts as a proliferative factor in trophoblastic cells.

  4. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    SciTech Connect

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. )

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  5. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones

    PubMed Central

    Llinas, Paola; Masella, Michel; Stigbrand, Torgny; Ménez, André; Stura, Enrico A.; Le Du, Marie Hélène

    2006-01-01

    Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites—two for zinc, one for magnesium, and one for calcium ion—that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210–228 and 250–297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. PMID:16815919

  6. Release of alkaline phosphatase from cells of Pseudomonas aeruginosa by manipulation of cation concentration and of pH.

    PubMed

    Cheng, K J; Ingram, J M; Costerton, J W

    1970-11-01

    Pseudomonas aeruginosa ATCC 9027 contains an inducible alkaline phosphatase. The enzyme is readily removed from 14-hr cells by washes in 0.2 m MgCl(2), pH 8.4. Similar washes in tris(hydroxymethyl)aminomethane buffer, 20% sucrose, monovalent ions, or water partially release enzyme from the cells. The release of alkaline phosphatase is correlated with an increased release of protein and retention of internal enzymes. The effect of 0.2 m MgCl(2) washing upon the cells is minimal since both viability and growth rates remain unchanged as compared to water washing. Although cells are plasmolyzed in both 0.2 m MgCl(2) and 20% sucrose, it is evident that plasmolysis alone is unable to account for total enzyme release and that a divalent metal, i.e. Mg(2+), augments the release pattern. Growing cells in the presence of increasing concentrations of MgCl(2) or at increased pH values results in an almost total secretion of the enzyme to the culture filtrate. The findings suggest that P. aeruginosa alkaline phosphatase is linked to the exocytoplasmic region through divalent metal ion, presumably Mg(2+), bridges.

  7. Characterization of alkaline phosphatase labeled UidA(Gus) probe and its application in testing of transgenic tritordeum.

    PubMed

    Tu, Zhiming; Zhang, Jiangzhou; Yang, Guangxiao; He, Guangyuan

    2011-08-01

    Hybridization is a very important molecular biology technique to measure the degree of genetic similarity between DNA sequences, and detect the foreign genes in transgenic organisms. To label a DNA or RNA probe plays a key role in hybridization. A method using nonradioactive material alkaline phosphatase to label UidA(Gus) DNA as probe has been studied. On that basis of Renz and our previous work, alkaline phosphatase-labeled DNA was used as a probe to examine the transformation of the foreign UidA(Gus) gene in transgenic tritordeum. Such DNA-enzyme complexes were characterized and examined carefully, the results showed that it was a sensitive, specific, safe and economical probe. For dot hybridization and Southern blot under full-stringency conditions with alkaline phosphatase as the detector and 5-bromo-4-chloro-3-indolyl phosphate (BCIP)-Nitro Blue Tetrazolium (NBT) as the substrate, dot hybridization showed that the UidA(Gus) gene was transformed into the target plants and inherited stable, Southern blot showed that at least two copies of UidA(Gus) gene were inserted into one line of our transgenic tritordeum. Histochemical staining with X-Gluc of transgenic tritordeum also certified that the foreign UidA(Gus) DNA were transformed into the transgenic tritordeum.

  8. Role of placental alkaline phosphatase in the internalization of trypomatigotes of Trypanosoma cruzi into HEp2 cells.

    PubMed

    Sartori, M J; Mezzano, L; Lin, S; Muñoz, S; de Fabro, S P

    2003-09-01

    In vitro, Trypanosoma cruzi invades a wide variety of mammalian cells by an unique process that is still poorly understood. Trypomastigotes adhere to specific receptors on the outer membrane of host cells before intracellular invasion, causing calcium ion mobilization and rearrangement of host cell microfilaments. To test if placental alkaline phosphatase (PLAP), a trophoblast plasma membrane protein anchored by a glycosylphosphatidylinositol molecule, is involved in the transplacental transmission of this parasite. We cultured HEp2 cells with the parasite and studied PLAP and actin microfilaments. The results were correlated with invasion rate. Human HEp2 tumour cells express PLAP. HEp2 cells infected with trypomastigotes showed alteration in their alkaline phosphatase activity and a different pattern of actin organization, compared to control cells. Perturbation of PLAP from HEp2 cells before infection with T. cruzi trypomastigotes decreased the invasion rate. Placental alkaline phosphatase could be involved in the internalization of T. cruzi into HEp2 cells, via activation of tyrosine kinase and rearrangement of actin microfilaments.

  9. Histomorphometric alteration of knee articular cartilage and serum alkaline phosphatase in young female mice by chronic supplementation with soybean.

    PubMed

    Fazelipour, S; Tootian, Z; Matini, E; Hadipour-Jahromy, M

    2011-06-01

    The purpose of the present study was to examine the effect of soybean supplementation on cartilage thickness in the knee joint and serum levels of alkaline phosphatase (ALP) in mice. Forty female mice were fed for 6 months on one of four regimens: low protein, complete protein without soybean, and complete protein containing either 20% or 40% soybean. Body weight differences, histological and histomorphometric analysis, and ALP levels were determined and compared after 6 months. The results showed a significant increase in serum ALP activity and cartilage thickness in both groups fed on soybean-containing diets, compared with the other groups. Additionally, the number of chondrocytes was significantly increased (p < 0.001) in the group taking the 40% soybean regimen, and the proteoglycan content of the intracellular fluid in the tibia was higher in those groups taking soybean. In conclusion, the present study suggests that soybean supplementation is capable of stimulating ALP production and reducing cartilage loss in young female mice. Soybean supplementation during childhood may therefore be potentially useful in protecting joints. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Usefulness of marking alkaline phosphatase and C-reactive protein in monitoring the risk of preterm delivery

    PubMed Central

    Huras, Hubert; Ossowski, Piotr; Jach, Robert; Reron, Alfred

    2011-01-01

    Summary Background The purpose of this paper is to compare the effectiveness of use of alkaline phosphatase (ALP) and C-reactive protein (CRP) levels in marking and monitoring the risk of preterm delivery due to infection. Material/Methods The study involved 83 patients assigned to groups: Group I (n=43) consisted of patients hospitalized for symptoms of preterm delivery, and Group II (control group n=40) consisted of patients controlled or hospitalized delivering on time without complications, whose pregnancy had a physiological course. All patients had a single marking of ALP and CRP levels in serum performed. Results CRP levels were within the range 7 mg/l to 94 mg/l in the study group, and 4.83 mg/l to 90 mg/l in the control group. The level of ALP in the study group ranged from 139 u/l to 368 u/l and from 218 u/l to 321 u/l in the control group. In more than half of women (72.1%) from study group, CRP level exceeded 7 mg/l; in the control group, the CRP level exceeded 7 mg/l in 35% of cases. Significantly higher levels of CRP (above 20 mg/l) and ALP (above 300 u/l) were found in the 18 patients from the study group compared to the control group. Conclusions Although an increase in the level of ALP in serum cannot be an absolute and sole marker of the risk of preterm delivery, it can be used in conjunction with a significantly elevated CRP level. PMID:22037746

  11. Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing.

    PubMed

    Preechaworapun, Anchana; Dai, Zong; Xiang, Yun; Chailapakul, Orawon; Wang, Joseph

    2008-07-15

    In this paper, we have critically evaluated the electrochemical behavior of the products of seven substrates of the enzyme label, alkaline phosphate, commonly used in electrochemical immunosensors. These products (and the corresponding substrates) include indigo carmine (3-indoyl phosphate), hydroquinone (hydroquinone diphosphate), 4-nitrophenol (4-nitrophenol phosphate), 4-aminophenol (p-aminophenyl phosphate), 1-naphthol (1-naphthyl phosphate), phenol (phenyl phosphate), and L-ascorbic acid (2-phospho-L-ascorbic acid). Cyclic voltammetry and amperometry of these products were carried out at glassy carbon (GC), screen-printed carbon (SPC) and gold (Au) electrodes, respectively. Among the products, L-ascorbic acid showed the most sensitive (24.8 microA cm(-2), 12.0 microA cm(-2), and 48.0 microA cm(-2) of 100 microM ascorbic acid at GC, SPC, and Au electrodes, respectively) and well-defined amperometric response at all electrodes used, making 2-phospho-l-ascorbic acid the best substrate in electrochemical detection involving an alkaline phosphatase (ALP) enzyme label. The 2-phospho-L-ascorbic acid is also commercially available and inexpensive. Therefore, it was the best choice for electrochemical detection using ALP as label. Using mouse IgG as a model, an ALP enzyme-amplified sandwich-type amperometric immunosensor was constructed. The immunosensor was designed by electropolymerization of o-aminobenzoic acid (o-ABA) conductive polymer on the surface of GC, SPC, and Au electrodes. The anti-mouse IgG was subsequently attached on the electrode surface through covalent bonding between IgG antibody and the carboxyl groups from poly(o-ABA). Using 2-phospho-L-ascorbic acid as a substrate, the poly(o-ABA)/Au immunosensor produced the best signal (about 297 times of current density response ratio between 1000 ng mL(-1) and 0 ng mL(-1) of mouse IgG), demonstrating that amperometric immunosensors based on a conducting polymer electrode system were sensitive to

  12. Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities.

    PubMed

    Fan, Ming Z; Adeola, Olayiwola; Asem, Elikplimi K; King, Dale

    2002-07-01

    Our objectives were to determine postnatal changes in the maximal enzyme activity (V(max)) and enzyme affinity (K(m)) of jejunal mucosal membrane-bound alkaline phosphatase, aminopeptidase N and sucrase using a porcine model which may more closely resemble the human intestine. Jejunal brush border membrane was prepared by Mg(2+)-precipitation and differential centrifugation from pigs of suckling (8 days), weaning (28 days), post-weaning (35 days) and adult (70 days) stages. p-Nitrophenyl phosphate (0-8 mM), L-alanine-p-nitroanilide hydrochloride (0-28 mM) and sucrose (0-100 mM) were used in alkaline phosphatase, aminopeptidase N and sucrase kinetic measurements. V(max) of alkaline phosphatase was the lowest in the adult (4.27 micromol.mg(-1) protein.min(-1)), intermediate in the suckling (9.75 micromol.mg(-l) protein.min(-l)) and the highest in the weaning and post-weaning stage (12.83 and 10.40 micromol.mg(-l) protein.min(-l)). K(m) of alkaline phosphatase was high in the suckling and weaning stages (5.14 and 9.93 mM) and low in the adult (0.66 mM). V(max) of aminopeptidase N was low in the suckling (7.04 micromol.mg protein(-1).min(-1)) and high in the post-weaning stage (13.36 micromol.mg(-l) protein.min(-l)). K(m) of aminopeptidase N was the highest in the two weaning stages (2.96 and 3.39 mM), intermediate in the adult (2.33 mM) and the lowest in the suckling stage (1.66 mM). V(max) of sucrase increased from the suckling to the adult (0.48-1.30 micromol.mg(-l) protein.min(-l)). K(m) of sucrase ranged from 11.19 to 16.57 mM. There are dramatic postnatal developmental changes in both the maximal enzyme activity and enzyme affinity of jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase in the pig.

  13. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.

    PubMed

    Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; Rasskazov, Valery

    2015-04-01

    The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters.

  14. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.

    PubMed

    Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem Y; Ressl, Susanne; Wiersma-Koch, Helen; Borland, Jamar; Brown, Clayton L; Johnson, Tory A; Singh, Zorawar; Herschlag, Daniel

    2016-11-02

    Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme's cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >10(7)-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes

  15. Serum alkaline phosphatase isoenzymes in laboratory beagle dogs detected by polyacrylamide-gel disk electrophoresis.

    PubMed

    Hatayama, Kazuhisa; Nishihara, Yoshito; Kimura, Sayaka; Goto, Ken; Nakamura, Daichi; Wakita, Atsushi; Urasoko, Yoshinaka

    2011-10-01

    Serum alkaline phosphatase (ALP) activity is frequently measured in toxicity studies. Itoh et al. (2002) reported that a commercially available polyacrylamide-gel (PAG) disk electrophoresis kit used in humans (AlkPhor System, Jokoh Co., Ltd., Tokyo, Japan) for identifying serum ALP isoenzymes was useful for veterinary clinicopathological diagnosis in mongrel dogs. In the present study, based on the report of Itoh et al. (2002), we tried to expand the application range of this kit to laboratory beagle dogs which are commonly used in toxicity studies. In order to identify the origin of each ALP isoenzyme, tissue ALP extracts from the liver, bone and small intestine and serum samples were treated with neuraminidase, anti-small intestinal ALP antibody, ALP inhibitor levamisole and/or wheat germ agglutinin (WGA). The main serum ALP isoenzymes in 5-month-old intact beagle dogs were bone-derived (bone and atypical ALP: corresponding to human variant bone ALP) and they tended to decrease with age. However, liver-derived ALP isoenzyme greatly increased in the serum of cholestasis model dogs. The cholestasis model dogs also had a large molecular ALP detected in the resolving gel. This ALP could be originated from intestinal ALP or corticosteroid-induced ALP (CALP), because the activity remained even after levamisole inhibition. CALP was observed in intact laboratory beagle dogs with individual differences. These results suggest that the present method is a useful tool for detecting serum ALP isoenzymes in laboratory beagle dogs and concomitant levamisole inhibition with another gel is applicable for the evaluation of organ toxicity.

  16. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Measurement of alkaline phosphatase in canine seminal plasma--an update.

    PubMed

    Schäfer-Somi, S; Fröhlich, T; Schwendenwein, I

    2013-02-01

    In dogs, diagnosis of incomplete ejaculation and azoospermia can be made by measuring the activity of the enzyme alkaline phosphatase (AP) in seminal plasma. However, even though upper cut-off value of 5000 IU/l is given in the literature, results by different assays may vary considerably. Furthermore, no data exist concerning the stability of the enzyme during storage of frozen seminal plasma, and no recommendations for pre-analytic dilutions can be found. During the present study, we compared results from a conventional large scale wet chemistry analyzer to a widely used dry chemistry point of care system (POC) and established a best practice for pre-analytical dilutions. Furthermore, stability of enzyme activities in seminal plasma during storage at -18 °C for 24 h was evaluated. The average activity of AP in the 2nd fraction of normal ejaculates measured by Reflotron® was 107,328 IU/l. After 24 h of frozen storage, activities did not differ significantly (96,844 IU / l, p > 0.05). Fresh and frozen samples were analysed in parallel by the POC and conventional chemistry analyser, and the results compared that did not reveal a significant difference (p > 0.05). A dilution of seminal plasma with physiologic saline 1:100 prior to analysis was sufficient for the qualitative information whether AP activity is below or above 5000 IU/l. Present data show that AP measurement by a POC dry chemistry system is sufficiently accurate in diluted seminal plasma for the diagnosis of azoospermia and that seminal plasma can be stored frozen for 24h before analysis.

  18. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification†

    PubMed Central

    Sheen, Campbell R.; Kuss, Pia; Narisawa, Sonoko; Yadav, Manisha C.; Nigro, Jessica; Wang, Wei; Chhea, T. Nicole; Sergienko, Eduard A.; Kapoor, Kapil; Jackson, Michael R.; Hoylaerts, Marc. F.; Pinkerton, Anthony B.; O'Neill, W. Charles; Millán, Jose Luis

    2015-01-01

    Medial vascular calcification (MVC) is a pathological phenomenon common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases, that causes vascular stiffening and can lead to heart failure. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre+/-; HprtALPL/Y, or TNAP-OE) show extensive vascular calcification, high blood pressure, cardiac hypertrophy and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre+/-; HprtALPL/-) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target. This article is protected by copyright. All rights reserved PMID:25428889

  19. Detection, purification and characterisation of a secretory alkaline phosphatase from Onchocerca species.

    PubMed

    Cho-Ngwa, Fidelis; Mbua, Eric Ngalle; Nchamukong, Kingsley G; Titanji, Vincent P K

    2007-12-01

    An Onchocerca secretory alkaline phosphatase (E.C. 3.1.3.1) of molecular weight 90 kDa when in crude extract, but which dimerises to about 180 kDa upon purification, was detected, purified and characterised. The enzyme was found to be secreted by both O. ochengi and O. volvulus worms. It was shown to be of Onchocerca origin by Western blotting with bovine onchocerciasis sera and by its time-dependent release in cultures. The O. ochengi enzyme was purified to near homogeneity by a combination of polyethylene glycol precipitation, DEAE-cellulose chromatography and preparative electrophoresis. About 0.96 mg of the active enzyme was purified from 48.4 mg of the crude parasite-released products, giving a purification fold of 71.45 and a yield of 8.7%. The purified enzyme exhibited a typical Michaelis-Menten kinetics with optimum activity on p-nitrophenylphosphate (p-NPP) at pH 10.2. Its apparent K(m) for p-NPP was 0.56+/-0.03 mM and it required Mg(2+) and dithiothreitol (DTT) for stability throughout its purification. Sodium dodecyl sulphate at 2% (w/v) did not inhibit the enzyme activity, but apparently stabilised it during freezing. Inorganic phosphate inhibited the enzyme competitively with an apparent inhibition constant (K(i)) of 3.33+/-0.04 mM, whereas l-phenylalanine inhibited it in a mixed way with a K(i) of 3.18+/-0.03 mM. While contributing to the understanding of metabolism in Onchocerca, the present apparently unique enzyme which is likely to serve in the nutrition of the parasite could be further characterised as a macrofilaricide target or diagnostic marker in onchocerciasis.

  20. Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae.

    PubMed

    Omelon, Sidney; Georgiou, John; Variola, Fabio; Dean, Mason N

    2014-09-01

    Elasmobranchs (e.g. sharks and rays), like all fishes, grow continuously throughout life. Unlike other vertebrates, their skeletons are primarily cartilaginous, comprising a hyaline cartilage-like core, stiffened by a thin outer array of mineralized, abutting and interconnected tiles called tesserae. Tesserae bear active mineralization fronts at all margins and the tesseral layer is thin enough to section without decalcifying, making this a tractable but largely unexamined system for investigating controlled apatite mineralization, while also offering a potential analog for endochondral ossification. The chemical mechanism for tesserae mineralization has not been described, but has been previously attributed to spherical precursors, and alkaline phosphatase (ALP) activity. Here, we use a variety of techniques to elucidate the involvement of phosphorus-containing precursors in the formation of tesserae at their mineralization fronts. Using Raman spectroscopy, fluorescence microscopy and histological methods, we demonstrate that ALP activity is located with inorganic phosphate polymers (polyP) at the tessera-uncalcified cartilage interface, suggesting a potential mechanism for regulated mineralization: inorganic phosphate (Pi) can be cleaved from polyP by ALP, thus making Pi locally available for apatite biomineralization. The application of exogenous ALP to tissue cross-sections resulted in the disappearance of polyP and the appearance of Pi in uncalcified cartilage adjacent to mineralization fronts. We propose that elasmobranch skeletal cells control apatite biomineralization by biochemically controlling polyP and ALP production, placement and activity. Previous identification of polyP and ALP shown previously in mammalian calcifying cartilage supports the hypothesis that this mechanism may be a general regulating feature in the mineralization of vertebrate skeletons.

  1. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics.

    PubMed

    Simão, Ana Maria S; Yadav, Manisha C; Narisawa, Sonoko; Bolean, Mayte; Pizauro, Joao Martins; Hoylaerts, Marc F; Ciancaglini, Pietro; Millán, José Luis

    2010-03-05

    We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.

  2. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone.

  3. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    SciTech Connect

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  4. Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization and defense against bacterial endotoxin in hamsters

    PubMed Central

    Lei, Wei; Nguyen, Heidi; Brown, Naoko; Ni, Hua; Kiffer-Moreira, Tina; Reese, Jeff; Millán, José Luis; Paria, Bibhash C.

    2013-01-01

    Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types, and their hormonal regulation, cell-type and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5 and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; and both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone is the major uterine Akp2 inducer, both progesterone and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. In contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection. PMID:23929901

  5. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.

  6. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily

    PubMed Central

    2016-01-01

    Naively one might have expected an early division between phosphate monoesterases and diesterases of the alkaline phosphatase (AP) superfamily. On the contrary, prior results and our structural and biochemical analyses of phosphate monoesterase PafA, from Chryseobacterium meningosepticum, indicate similarities to a superfamily phosphate diesterase [Xanthomonas citri nucleotide pyrophosphatase/phosphodiesterase (NPP)] and distinct differences from the three metal ion AP superfamily monoesterase, from Escherichia coli AP (EcAP). We carried out a series of experiments to map out and learn from the differences and similarities between these enzymes. First, we asked why there would be independent instances of monoesterases in the AP superfamily? PafA has a much weaker product inhibition and slightly higher activity relative to EcAP, suggesting that different metabolic evolutionary pressures favored distinct active-site architectures. Next, we addressed the preferential phosphate monoester and diester catalysis of PafA and NPP, respectively. We asked whether the >80% sequence differences throughout these scaffolds provide functional specialization for each enzyme’s cognate reaction. In contrast to expectations from this model, PafA and NPP mutants with the common subset of active-site groups embedded in each native scaffold had the same monoesterase:diesterase specificities; thus, the >107-fold difference in native specificities appears to arise from distinct interactions at a single phosphoryl substituent. We also uncovered striking mechanistic similarities between the PafA and EcAP monoesterases, including evidence for ground-state destabilization and functional active-site networks that involve different active-site groups but may play analogous catalytic roles. Discovering common network functions may reveal active-site architectural connections that are critical for function, and identifying regions of functional modularity may facilitate the design of new enzymes

  7. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  8. Alkaline phosphatase activity of glutaraldehyde-treated bovine pericardium used in bioprosthetic cardiac valves.

    PubMed

    Maranto, A R; Schoen, F J

    1988-10-01

    Bioprosthetic valves fail frequently because of pathological mineralization, a process that begins in cell remnants of the glutaraldehyde (GLUT) fixed tissue. Other pathological cardiovascular calcification and physiological mineralization in skeletal/dental tissues are both largely initiated in cell-derived membranous structures (often called "matrix vesicles"), and the enzyme alkaline phosphatase (AP) likely has an important function in the pathogenesis of mineral nucleation. This study tested the hypothesis that AP might also be present in and contribute to calcification of bioprosthetic valves. AP activity of fresh and GLUT-treated bovine pericardium was measured by the conversion of p-nitrophenyl phosphate to p-nitrophenol. Following 24 hours in 0.6% HEPES-buffered GLUT and storage for 2 weeks in 0.2% GLUT, considerable AP hydrolytic activity remained in GLUT-treated tissue relative to that of fresh tissue (Vmax, 24 vs. 45 mumol reaction product/min/mg tissue protein, respectively), although binding was somewhat reduced (Km, 1.9 X 10(3) vs. 1.4 X 10(3) microM substrate, respectively). Enzyme reaction product was demonstrated in both fixed and fresh tissue by light microscopic histochemical studies, confirming the biochemical results. Reaction product was noted along membranes of vascular endothelial cells and interstitial fibroblasts, the sites of early calcific deposits in bioprosthetic valves, by ultrastructural examination of GLUT-treated tissue. We conclude that GLUT-treated bovine pericardium retains much of the hydrolytic activity of AP, an enzyme associated with normal skeletal and pathological cardiovascular and noncardiovascular mineralization, and suggest that further examination of the mechanistic role of this enzyme may stimulate new approaches for slowing or preventing calcification of bioprosthetic tissue.

  9. Bone-specific alkaline phosphatase and bone turnover in African American hemodialysis patients.

    PubMed

    Yessayan, Lenar; Moore, Carol; Lu, Mei; Yee, Jerry

    2017-01-01

    Noninvasive measures of bone activity include intact parathyroid hormone (iPTH) and bone-specific alkaline phosphatase (BSAP). Whether BSAP measurement alone or in combination with other biochemical data provides more reliable information about bone turnover than iPTH alone in African Americans on hemodialysis is unknown. This cross-sectional study aimed to determine the optimal predictor and cutoff points for BSAP, iPTH, calcium and phosphorus in classifying bone biopsy findings. Forty-three African American hemodialysis patients were available for analysis. Biochemical data on the day of biopsy across a spectrum of qualitative histologic bone features were compared. Classification and regression tree analysis was used to determine both the optimal predictor and cutoff points for BSAP, iPTH, calcium and phosphorus in identifying bone turnover status. Seven subjects had adynamic disease, 31 had mild/moderate hyperparathyroid bone features, and five had severe hyperparathyroid bone disease. BSAP was the optimal predictor of bone biopsy with a cutoff point of 22 ng/mL. Calcium and phosphorus had no predictive value. At BSAP ≤ 22 ng/mL, subjects had either adynamic bone disease or mild/moderate hyperparathyroid bone disease but iPTH was not useful in further classifying biopsy findings. When BSAP was >22 ng/mL, subjects had either mild/moderate or severe hyperparathyroid bone disease, and iPTH was useful in further classifying biopsy findings. With BSAP > 22 ng/mL and iPTH < 726 pg/mL, all subjects had mild/moderate bone turnover features. Compared to iPTH, BSAP was shown to be the optimal predictor of biopsy findings with an optimal cutoff at 22 ng/mL. © 2016 International Society for Hemodialysis.

  10. High lateral mobility of endogenous and transfected alkaline phosphatase: a phosphatidylinositol-anchored membrane protein

    PubMed Central

    1987-01-01

    The lateral mobility of alkaline phosphatase (AP) in the plasma membrane of osteoblastic and nonosteoblastic cells was estimated by fluorescence redistribution after photobleaching in embryonic and in tumor cells, in cells that express AP naturally, and in cells transfected with an expression vector containing AP cDNA. The diffusion coefficient (D) and the mobile fraction, estimated from the percent recovery (%R), were found to be cell-type dependent ranging from (0.58 +/- 0.16) X 10(-9) cm2s-1 and 73.3 +/- 10.5 in rat osteosarcoma cells ROS 17/2.8 to (1.77 +/- 0.51) X 10(-9) cm2s-1 and 82.8 +/- 2.5 in rat osteosarcoma cells UMR106. Similar values of D greater than or equal to 10(-9) cm2s-1 with approximately 80% recovery were also found in fetal rat calvaria cells, transfected skin fibroblasts, and transfected AP- negative osteosarcoma cells ROS 25/1. These values of D are many times greater than "typical" values for membrane proteins, coming close to those of membrane lipid in fetal rat calvaria and ROS 17/2.8 cells (D = [4(-5)] X 10(-9) cm2s-1 with 75-80% recovery), estimated with the hexadecanoyl aminofluorescein probe. In all cell types, phosphatidylinositol (PI)-specific phospholipase C released 60-90% of native and transfection-expressed AP, demonstrating that, as in other tissue types, AP in these cells is anchored in the membrane via a linkage to PI. These results indicate that the transfected cells used in this study possess the machinery for AP insertion into the membrane and its binding to PI. The fast AP mobility appears to be an intrinsic property of the way the protein is anchored in the membrane, a conclusion with general implications for the understanding of the slow diffusion of other membrane proteins. PMID:2889741

  11. Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex.

    PubMed

    Hu, Qiong; He, Minhui; Mei, Yaqi; Feng, Wenjie; Jing, Su; Kong, Jinming; Zhang, Xueji

    2017-01-15

    Alkaline phosphatase (ALP) plays a vital role in dephosphorylation- and phosphorylation-related cellular regulation and signaling processes. Accordingly, the development of efficient methods for ALP activity assay is of significant importance in clinical diagnosis. In this work, a simple and practical method is reported for the first time for the sensitive and selective colorimetric assay of ALP activity by exploiting a water-soluble Cu(II)-phenanthroline complex as the probe, on the basis of the distinctive metal-to-ligand charge-transfer (MLCT) properties. This method is simply built on a two-step chromogenic reaction: the enzymatic hydrolysis of the substrate ascorbic acid 2-phosphate to ascorbic acid (AA), followed by the reduction of the colorimetric probe Cu(BPDS)2(2-) (BPDS=bathophenanthroline disulfonate) by AA to its cuprous form. The latter process triggers a turn-on spectral absorption at 424nm and a striking color change of the solution from colorless to blackish-green. Needless of complicated protocols and instrumentation, this method allows a sensitive readout of ALP activity within a wide linear range of 0-200mUmL(-)(1), with a detection limit down to 1.25mUmL(-1). Results also reveal that it is highly selective and holds great potential in ALP inhibitor efficiency evaluation. In addition, quantitative analysis of ALP activity in spiked serum samples has been realized successfully in the linear range of 0-200mUmL(-1), with a detection limit of 1.75mUmL(-1). Advantages of simplicity, wide linear range, high sensitivity and selectivity, low cost, and little background interference render this method great potential in practical applications.

  12. Escherichia coli mutants deficient in the production of alkaline phosphatase isozymes.

    PubMed Central

    Nakata, A; Yamaguchi, M; Izutani, K; Amemura, M

    1978-01-01

    Escherichia coli K-12 mutants showing an altered isozyme pattern of alkaline phosphatase were isolated. Whereas wild-type strains synthesized all three isozymes in a synthetic medium supplemented with Casamino Acids or arginine but synthesized only isozyme 3 in a medium without supplement, the mutant strains synthesized isozyme 1 and a small amount (if any) of isozyme 2, but no isozyme 3, under all growth conditions. The mutation responsible for the altered isozyme pattern, designated iap, was mapped by P1 transduction in the interval between cysC and srl (at about 58.5 min on the E. coli genetic map). It was cotransducible with cysC and srl at frequencies of 0.54 and 0.08, respectively. The order of the genes in this region was srl-iap-cysC-argA-thyA-lysA. Three more independent mutations were also mapped in the same locus. We purified isozymes 1' and 3' from iap and iap+ strains and analyzed the sequences of four amino acids from the amino terminus of each polypeptide. They were Arg-Thr-Pro-Glu (or Gln) in isozyme 1' and Thr-Pro-Glu (or gln)-Met in isozyme 3', which were identical with those of corresponding isozymes produced by the wild-type phoA+ strain (P.M. Kelley, P.A. Neumann, K. Schriefer, F. Cancedda, M.J. Schlesinger, and R.A. Bradshaw, Biochemistry 12:3499-3503, 1973; M.J. Schlesinger, W. Bloch, and P.M. Kelley, p. 333-342, in Isozymes, Academic Press Inc., 1975). These results indicate that the different mobilities of isozymes 1, 2, and 3 are determined by the presence or absence of amino-terminal arginine residues in polypeptides. Images PMID:348683

  13. Human Placental Alkaline Phosphatase as a Tracking Marker for Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Balmayor, Elizabeth Rosado; Flicker, Magdalena; Käser, Tobias; Saalmüller, Armin

    2013-01-01

    Abstract Currently, adult mesenchymal stem cells (MSCs) are being evaluated for a wide variety of therapeutic approaches. It has been suggested that MSCs possess regenerative properties when implanted or injected into damaged tissue. However, the efficacy of MSCs in several of the proposed treatments is still controversial. To further explore the therapeutic potential of these cells, it is necessary to trace the fate of individual donor or manipulated cells in the host organism. Recent studies from our lab showed that human placental alkaline phosphatase (hPLAP) is a marker with great potential for cell tracking. However, a potential concern related to this marker is its enzymatic activity, which might alter cell behavior and differentiation by hydrolyzing substrates in the extracellular space and thereby changing the cellular microenvironment. Therefore, the aim of this study was to characterize bone marrow MSCs (BMSCs) derived from hPLAP-transgenic inbred F344 rats (hPLAP-tg) in comparison to wild type (wt) BMSCs. Here, we show that BMSCs from wt and hPLAP-tg donors are indistinguishable in terms of cell morphology, viability, adhesion, immune phenotype, and proliferation as well as in their differentiation capacity over six passages. The expression of the hPLAP marker enzyme was not impaired by extensive in vitro cultivation, osteogenic, adipogenic, or chondrogenic differentiation, or seeding onto two- or three-dimensional biomaterials. Thus, our study underscores the utility of genetically labeled BMSCs isolated from hPLAP-tg donors for long-term tracking of the fate of transplanted MSCs in regenerative therapies. PMID:24083090

  14. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.

    PubMed

    Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard

    2013-02-01

    The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.

  15. Placental alkaline phosphatase (PLAP) enzyme activity and binding to IgG in Chagas' disease.

    PubMed

    Lin, S; Sartori, M J; Mezzano, L; de Fabro, S P

    2005-11-01

    Placentas and plasma from women with and without Chagas' disease and cultures of human placental villi with Trypanosoma cruzi, neuraminidase, phospholipase A2 and phospholipase C were analyzed in order to verify if the alterations in placental alkaline phosphatase (PLAP) enzyme activity are caused by T. cruzi as observed in previous works. As IgG receptivity happens to be one of the proposed functions of PLAP, general IgG binding ability of the placentas treated with the mentioned enzymes, which are present on the parasite's surface, were also tested. The phospholipases caused an increase of PLAP's enzyme activity in the supernatant of infected placentas and a decrease of enzyme activity in the membrane of cultured placentas, therefore suggesting the cleavage of PLAP by parasitic enzymes. Desialylation could also partially inhibit PLAP's enzyme activity in supernatant and membrane of placenta culture. Placentas from healthy patients presented higher IgG receptivity than those from patients with Chagas' disease. In vitro infection of healthy placentas with T. cruzi caused no difference in IgG receptivity in placental sections with respect to controls but the phospholipases and neuraminidase increased the IgG receptivity of cultured placentas. The IgG transference index was higher for patients with Chagas' disease than for those without it. Although binding to IgG does not completely inhibit the enzyme activity of PLAP, it interferes with the enzyme activity of PLAP. We concluded that the enzymes on the surface of T. cruzi trypomastigotes can not only affect PLAP's enzyme activity but also increase the IgG binding ability of the placenta and this can be related to the actions of neuraminidase-transsialidase, phospholipase A2 and phospholipase C on the parasite surface. The modification of PLAP from women with Chagas' disease should be considered as a result of multiple factors.

  16. Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer

    PubMed Central

    Chen, Bo; Dai, Danian; Tang, Hailin; Chen, Xi; Ai, Xiaohong; Huang, Xiaojia; Wei, Weidong; Xie, Xiaoming

    2016-01-01

    Background: Serum parameters as prognostic parameters are studied widely. We aim to examine the prognostic significance of the serum alkaline phosphatase (ALP) level and lactate dehydrogenase (LDH) level in triple negative breast cancer (TNBC). Methods: Total of 253 TNBC patients from Sun Yat-sen University Cancer Center who underwent treatment between January 2004 and December 2009 was conducted in this retrospective study. Before treatment serum ALP and LDH levels were routinely measured. We use the receiver operating characteristic (ROC) curve analysis to estimate the cutoff value of serum ALP and LDH levels. The Kaplan-Meier method and multivariable Cox regression analysis were used for Disease free survival (DFS) and overall survival (OS) assessed. Results: The ROC curves determined that the optimum cutoff point for ALP and LDH were 66.5u/L and 160.5u/L, respectively. The elevated ALP and LDH were both significantly associated with decreased DFS and OS (both P < 0.001). In addition, the entire cohort was stratified into three subgroups basis of ALP levels and LDH levels. TNBC Patients who with ALP >66.5 u/L and LDH >160.5u/L had the worst DFS and OS (both P < 0.001). In TNBC patients, univariate and multivariate Cox regression analyses conformed ALP and LDH were independent unfavorable prognostic factors for DFS and OS. Conclusions: The serum levels of ALP and LDH before treatment are independent prognostic parameters and may serve as complement to help predict survival in TNBC. PMID:27994669

  17. Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer.

    PubMed

    Chen, Bo; Dai, Danian; Tang, Hailin; Chen, Xi; Ai, Xiaohong; Huang, Xiaojia; Wei, Weidong; Xie, Xiaoming

    2016-01-01

    Background: Serum parameters as prognostic parameters are studied widely. We aim to examine the prognostic significance of the serum alkaline phosphatase (ALP) level and lactate dehydrogenase (LDH) level in triple negative breast cancer (TNBC). Methods: Total of 253 TNBC patients from Sun Yat-sen University Cancer Center who underwent treatment between January 2004 and December 2009 was conducted in this retrospective study. Before treatment serum ALP and LDH levels were routinely measured. We use the receiver operating characteristic (ROC) curve analysis to estimate the cutoff value of serum ALP and LDH levels. The Kaplan-Meier method and multivariable Cox regression analysis were used for Disease free survival (DFS) and overall survival (OS) assessed. Results: The ROC curves determined that the optimum cutoff point for ALP and LDH were 66.5u/L and 160.5u/L, respectively. The elevated ALP and LDH were both significantly associated with decreased DFS and OS (both P < 0.001). In addition, the entire cohort was stratified into three subgroups basis of ALP levels and LDH levels. TNBC Patients who with ALP >66.5 u/L and LDH >160.5u/L had the worst DFS and OS (both P < 0.001). In TNBC patients, univariate and multivariate Cox regression analyses conformed ALP and LDH were independent unfavorable prognostic factors for DFS and OS. Conclusions: The serum levels of ALP and LDH before treatment are independent prognostic parameters and may serve as complement to help predict survival in TNBC.

  18. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  19. Ingestion of potato starch containing esterified phosphorus increases alkaline phosphatase activity in the small intestine in rats.

    PubMed

    Mineo, Hitoshi; Morikawa, Nao; Ohmi, Sayako; Ishida, Kyo; Machida, Ayaka; Kanazawa, Takumi; Chiji, Hideyuki; Fukushima, Michihiro; Noda, Takahiro

    2010-05-01

    Alkaline phosphatase (ALP) hydrolyzes a variety of monophosphate esters and plays an important role in phosphorus (P) metabolism. Several nutrients in food have been reported to affect intestinal ALP activity in animal models. Previous reports indicated that high levels of P or phosphate in diets decreased intestinal ALP activity in rats. Because potato starch contains considerable amounts of esterified P, unlike other starch-derived plants, we hypothesized that the feeding of potato starch would decrease ALP activity in the intestinal tract. Male Sprague-Dawley rats (7 weeks old) were fed 3 different types of diet containing 60% corn starch or 1 of 2 types of potato starch with different esterified P content for 1 or 5 weeks. Body weight and food intake of each rat were measured every day throughout the experimental periods. At the end of the feeding periods, the small intestine was removed to determine ALP activity in the mucosal tissues. Significant differences were observed in ALP activity in the small intestine between the 2 feeding periods, among the 4 segments of the small intestine, and among the 3 diet groups. Significant positive linear correlations between the amount of P derived from the starch and mucosal ALP activity were obtained in the jejunum and jejunoileum in rats after feeding for 5 weeks. We concluded, contrary to our hypotheses, that the ingestion of potato starch adaptively increases ALP activity in the upper part of the small intestine of growing rats in an esterified P content-dependent manner.

  20. Ratiometric fluorescent probe for alkaline phosphatase based on betaine-modified polyethylenimine via excimer/monomer conversion.

    PubMed

    Zheng, Fangyuan; Guo, Sihua; Zeng, Fang; Li, Jun; Wu, Shuizhu

    2014-10-07

    Alkaline phosphatase (ALP) is an important diagnostic indicator for a number of human diseases since abnormal level of ALP is closely related to a variety of pathological processes; hence, the development of convenient and reliable assay methods for monitoring ALP is of great significance for medical sciences as well as biological diagnostics. Herein, we report the first ratiometric fluorescent sensing system for ALP. This sensing system consists of two components: the betaine-modified and positively charged polyethylenimine (PEI) and the negatively charged pyrene derivative containing one ALP-responsive phosphate group (Py-P, an aliphatic phosphate ester). In the absence of ALP, the two-component sensing system shows the excimer's emission of Py-P, since Py-P molecules complex with the positively charged polyelectrolyte via electrostatic interactions, leading to the formation of pyrene excimers. While in the presence of ALP, the phosphate moieties are cleaved from Py-P molecules due to the enzymatic reaction, thereby destroying the electrostatic interactions; as a result, the system displays the monomer emission of Py-P. This assay system is operable in aqueous media with a very low detection limit of 0.1 U/mL. The system is capable of detecting ALP in such biological fluid as serum, and this strategy may provide a new and effective approach for designing ratiometric sensing systems for detecting other biomolecules.

  1. Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays.

    PubMed

    Mark, Sonny S; Stolper, Samuel I; Baratti, Carla; Park, Jason Y; Taku, Maria A; Santiago-Avilés, Jorge J; Kricka, Larry J

    2008-06-11

    Aqueous suspendible polymer nanostructures were prepared by simple microtome processing of electrospun nylon 6 nanofibers and were used to immobilize calf intestinal alkaline phosphatase (ALP) by either covalent or noncovalent bioconjugation chemistries. It was found that noncovalent immobilization of ALP to the mechanically cut nanofibers (mean length approximately 4 microm; mean diameter approximately 80 nm) using a multi-stacked, layer-by-layer (LBL) approach with the cationic polymer Sapphire II resulted in the highest enzyme loading (48.1 +/- 0.4 microg . mg(-1) nanofiber) when compared to other covalent immobilization methods based on glutaraldehyde crosslinking. The biofunctionalized nanofibers were also characterized for their chemiluminescent activity with the dioxetane substrate, CSPD. The results indicate that the kinetic parameters, K(m) and V(max), for the catalytic activity of the nanostructure-bound ALP enzyme were influenced by the particular types of immobilization methods employed. In terms of the overall catalytic performance of the