Science.gov

Sample records for alkaline phosphatase phoa

  1. Phosphatidylcholine affects the secretion of the alkaline phosphatase PhoA in Pseudomonas strains.

    PubMed

    Liu, Xin; Long, Deliang; You, Heng; Yang, Dingpeng; Zhou, Shuang; Zhang, Shuting; Li, Mengqiu; He, Miao; Xiong, Min; Wang, Xingguo

    2016-11-01

    Pseudomonas aeruginosa ATCC 27853 and Pseudomonas sp. 593 use the phosphatidylcholine synthase pathway (Pcs-pathway) for the biosynthesis of phosphatidylcholine (PC). Both bacterial strains contain the phoA and lapA genes encoding alkaline phosphatases (ALP) and display strong ALP activities. The PhoA and LapA enzymes are thought to be independently secreted via the Xcp and Hxc type II secretion system (T2SS) subtypes, in which the Hxc system may act as a complementary mechanism when the Xcp pathway becomes limiting. Inactivation of the pcs gene in both bacteria abolished PC synthesis and resulted in approximately 50% less ALP activity in the cell-free culture. Analysis by western blotting showed that LapA protein content in the wild type and the pcs- mutant was unchanged in the cytoplasmic, periplasmic or extracellular protein fractions. In contrast, the PhoA protein in the pcs- mutant was less prevalent among extracellular proteins but was more abundant in the periplasmic protein fraction compared to the wild type. Semi- quantitative reverse transcriptase PCR showed that phoA, lapA and 12 xcp genes were equally expressed at the transcriptional level in both the wild types and the pcs- mutants. Our results demonstrate that the absence of PC in bacterial membrane phospholipids does not interfere with the transcription of the phoA and lapA genes but primarily affects the export of PhoA from the cytoplasm to the extracellular environment via the Xcp T2SS.

  2. Phosphatidylcholine affects the secretion of the alkaline phosphatase PhoA in Pseudomonas strains.

    PubMed

    Liu, Xin; Long, Deliang; You, Heng; Yang, Dingpeng; Zhou, Shuang; Zhang, Shuting; Li, Mengqiu; He, Miao; Xiong, Min; Wang, Xingguo

    2016-11-01

    Pseudomonas aeruginosa ATCC 27853 and Pseudomonas sp. 593 use the phosphatidylcholine synthase pathway (Pcs-pathway) for the biosynthesis of phosphatidylcholine (PC). Both bacterial strains contain the phoA and lapA genes encoding alkaline phosphatases (ALP) and display strong ALP activities. The PhoA and LapA enzymes are thought to be independently secreted via the Xcp and Hxc type II secretion system (T2SS) subtypes, in which the Hxc system may act as a complementary mechanism when the Xcp pathway becomes limiting. Inactivation of the pcs gene in both bacteria abolished PC synthesis and resulted in approximately 50% less ALP activity in the cell-free culture. Analysis by western blotting showed that LapA protein content in the wild type and the pcs- mutant was unchanged in the cytoplasmic, periplasmic or extracellular protein fractions. In contrast, the PhoA protein in the pcs- mutant was less prevalent among extracellular proteins but was more abundant in the periplasmic protein fraction compared to the wild type. Semi- quantitative reverse transcriptase PCR showed that phoA, lapA and 12 xcp genes were equally expressed at the transcriptional level in both the wild types and the pcs- mutants. Our results demonstrate that the absence of PC in bacterial membrane phospholipids does not interfere with the transcription of the phoA and lapA genes but primarily affects the export of PhoA from the cytoplasm to the extracellular environment via the Xcp T2SS. PMID:27664720

  3. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli.

    PubMed

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol.

  4. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli

    PubMed Central

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol. PMID:26091008

  5. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli.

    PubMed

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol. PMID:26091008

  6. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  7. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942.

    PubMed Central

    Ray, J M; Bhaya, D; Block, M A; Grossman, A R

    1991-01-01

    The alkaline phosphatase of Synechococcus sp. strain PCC 7942 is 145 kDa, which is larger than any alkaline phosphatase previously characterized and approximately three times the size of the analogous enzyme in Escherichia coli. The gene for the alkaline phosphatase, phoA, was cloned and sequenced, and the protein that it encodes was found to have little similarity to other phosphatases. Some sequence similarities were observed between the Synechococcus sp. strain PCC 7942 alkaline phosphatase, the alpha subunit of the ATPase from bacteria and chloroplasts, and the UshA sugar hydrolase of E. coli. Also, limited sequence similarity was observed between a region of the phosphatase and a motif implicated in nucleotide binding. Interestingly, although the alkaline phosphatase is transported across the inner cytoplasmic membrane and into the periplasmic space, it does not appear to have a cleavable signal sequence at its amino terminus. The half-life of the mRNA encoding the alkaline phosphatase, measured after inhibition of RNA synthesis, is approximately 5 min. Similar kinetics for the loss of alkaline phosphatase mRNA occur upon the addition of phosphate to phosphate-depleted cultures, suggesting that high levels of this nutrient inhibit transcription from phoA almost immediately. The phoA gene also appears to be the first gene of an operon; the largest detectable transcript that hybridizes to a phoA gene-specific probe is 11 kb, over twice the size needed to encode the mature protein. Other phosphate-regulated mRNAs are also transcribed upstream of the phoA gene. Insertional inactivation of phoA results in the loss of extracellular, phosphate-regulated phosphatase activity but does not alter the capacity of the cell for phosphate uptake. Images PMID:1712356

  8. New pleiotropic alkaline phosphatase-negative mutants of Escherichia coli K-12.

    PubMed Central

    Heyde, M; Portalier, R

    1982-01-01

    Escherichia coli K-12 mutants showing reduced alkaline phosphatase activity were isolated as 5-fluorouracil-plus-adenosine-resistant derivatives of a upp pho (either phoS or phoT) strain. One class of these mutants displayed a temperature-sensitive alkaline phosphatase-negative phenotype, a pleiotropic defect for growth on some substrates, an increased sensitivity to toxic compounds (e.g., EDTA, mitomycin, and chloramphenicol), and alterations in the expression of some membrane proteins. It phenotypically differed from previously described mutants. The mutation was located at min 8.5 close to the phoA gene and defines a new genetic locus we called napA (for negative alkaline phosphatase pleiotropic phenotype). As these mutants have lost the ability to grow on lactose and galactose, Lac+ and Gal+ revertants were isolated that simultaneously recovered the parental phenotype. PMID:7047492

  9. Ratiometric electrochemical detection of alkaline phosphatase.

    PubMed

    Goggins, Sean; Naz, Christophe; Marsh, Barrie J; Frost, Christopher G

    2015-01-11

    A novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).

  10. Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules

    PubMed Central

    Weichel, Michael; Jaussi, Rolf; Rhyner, Claudio; Crameri, Reto

    2008-01-01

    Active alkaline phosphatase of Escherichia coli (PhoA, EC 3.1.3.1) was displayed via the leucine zipper element of the Jun-Fos heterodimer on the surface of filamentous phage and the kinetic parameters Km and kcat were determined. The phoA gene was cloned downstream of fos while jun was inserted upstream of pIII or pVIII, alternatively, in the pJuFo phagemid vector. Both fusion genes are regulated by independent lacZ promoters. PhoA displayed on the phagemid pIII surface exhibited a Km of 11.2 µM with 4-nitrophenyl phosphate as substrate, which is consistent with data published for soluble PhoA. Based on these data we calculated the decoration of pJuFo phagemid with PhoA using the minor and major coat proteins pIII and pVIII as fusion partners under variable inducing conditions. We found that, even if the promoters are fully induced at a concentration of 1000 µM IPTG, the phagemids display maximally one copy of PhoA-Fos-Jun-coat protein fusion, irrespective of whether the protein is presented via pIII or pVIII. However, since PhoA is displayed in a native-like fashion, as deduced from the kinetic parameters of the enzymatic reaction, the pJuFo technology provides a versatile tool for the functional screening of complex cDNA libraries displayed on the phagemids' surface. PMID:18949073

  11. Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120.

    PubMed

    Muñoz-Martín, M Angeles; Mateo, Pilar; Leganés, Francisco; Fernández-Piñas, Francisca

    2011-07-01

    There is heterogeneity in the way cyanobacteria respond to P starvation and subsequently how they adapt to environments with low or fluctuating P concentrations. In this study, we have fused the promoterless lux operon luxCDABE to the promoter regions of Anabaena sp. PCC 7120 phoA genes putatively encoding alkaline phosphatases, phoA (all2843) and phoA-like (alr5291) and to the promoter region of one operon putatively encoding a high affinity phosphate transporter pst1 (all4575-4572). The self-bioluminescent strains constructed in this way, Anabaena AP (phoA promoter), Anabaena AP-L (phoA-like promoter), and Anabaena PST (pst1 promoter) have been used to study the expression of these genes in response to P starvation and P re-feeding with inorganic and organic phosphate sources. Our data showed that the pst1 promoter was activated at much higher level than the phoA-like promoter following P starvation; however, we did not observe activation of the phoA promoter. The P re-feeding experiments revealed that both strains, Anabaena (A.) PST and A. AP-L could be used as novel bioreporters of P availability in environmental samples. Both strains were used to estimate bioavailable P in environmental samples (fresh- and wastewaters) with a wide range of soluble P concentrations. The results indicated that most of the P in the water samples was in chemical forms available to the cyanobacterium; however there were some differences in the estimates given by both strains as A. PST appeared to be more adequate for the samples with the lowest P load while A. AP-L gave similar or even higher values of P concentrations than those chemically measured in samples with higher P load.

  12. Low serum alkaline phosphatase activity in Wilson's disease.

    PubMed

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  13. Genetic optimization of a bacteriophage-delivered alkaline phosphatase reporter to detect Escherichia coli.

    PubMed

    Jackson, Angelyca A; Hinkley, Troy C; Talbert, Joey N; Nugen, Sam R; Sela, David A

    2016-10-01

    A large fraction of foodborne illnesses are linked to (∼46%) leafy green vegetables contaminated by pathogens harbored in agricultural water. To prevent this, accurate point-of-production detection tools are required to identify and quantify bacterial contaminants in produce before consumers are impacted. In this study, a proof-of-concept model was engineered for a phage-based Escherichia coli detection system. We engineered the coliphage T7 to express alkaline phosphatase (ALP) to serve as the signal for E. coli detection. Wild type phoA (T7ALP) and a dominant-active allele, phoA D153G D330N (T7ALP*) was inserted into the T7 genome, with engineered constructs selected by CRISPR-mediated cleavage of unaltered chromosomes and confirmed by PCR. Engineered phages and E. coli target cells were co-incubated for 16 hours to produce lysates with liberated ALP correlated with input cell concentrations. A colorimetric assay used p-nitrophenyl phosphate (pNPP) to demonstrate significant ALP production by T7ALP and T7ALP* compared to the vector control (T7EV) (p≤ 0.05). Furthermore, T7ALP* produced 2.5-fold more signal than T7ALP (p≤ 0.05) at pH 10. Due to the increase in signal for the modified ALP* allele, we assessed T7ALP* sensitivity in a dose-responsive manner. We observed 3-fold higher signal for target cell populations as low as ∼2 × 10(5) CFU mL(-1) (p≤ 0.05 vs. no-phage control). PMID:27412402

  14. Intestinal alkaline phosphatase to treat necrotizing enterocolitis

    PubMed Central

    Biesterveld, Ben E.; Koehler, Shannon M.; Heinzerling, Nathan P.; Rentea, Rebecca M.; Fredrich, Katherine; Welak, Scott R.; Gourlay, David M.

    2015-01-01

    Background Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury. Materials and methods NEC was induced in Sprague–Dawley pups by delivery preterm followed by formula feedings with lipopolysaccharide (LPS) and hypoxia exposure and continued up to 4 d. IAP was added to feeds on day 2 until being sacrificed on day 4. NEC severity was scored based on hematoxylin and eosin-stained terminal ileum sections, and AP activity was measured using a colorimetric assay. IAP and interleukin-6 expression were measured using real time polymerase chain reaction. Results NEC pups' alkaline phosphatase (AP) activity was decreased to 0.18 U/mg compared with controls of 0.57 U/mg (P < 0.01). Discontinuation of LPS and hypoxia after 2 d increased AP activity to 0.36 U/mg (P < 0.01). IAP supplementation in matched groups did not impact total AP activity or expression. Discontinuing LPS and hypoxia after NEC onset improved intestinal injury scores to 1.14 compared with continued stressors, score 2.25 (P < 0.01). IAP supplementation decreased interleukin-6 expression two-fold (P < 0.05), though did not reverse NEC intestinal damage (P = 0.5). Conclusions This is the first work to demonstrate that removing the source of NEC improves intestinal damage and increases AP activity. When used as a rescue treatment, IAP decreased intestinal inflammation though did not impact injury making it likely that IAP is best used preventatively to those neonates at risk. PMID:25840489

  15. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  16. Effect of differing +2 amino acids on export of a heterologous PhoA lipoprotein in Mycoplasma gallisepticum.

    PubMed

    Panicker, Indu S; Kanci, Anna; Markham, Philip F; Browning, Glenn F

    2016-08-01

    The significance of the amino acid adjacent to the amino terminal cysteine of lipoproteins, the +2 amino acid, has been well documented in E. coli and there have also been limited studies on Gram-positive bacteria. In this study we investigated whether there was any preference for specific residues and any targeting role attributable to different residues following the cysteine at the amino terminus in lipoproteins of Mycoplasma gallisepticum. There were found to be distinct preferences in this position that vary considerably from the preferences seen in Gram-positive and Gram-negative bacteria. The effect of different amino acids at the +2 position was studied using the pTAP vector, which has been shown to express PhoA as a lipoprotein. Replacement of the threonine at the +2 position in the PhoA lipoprotein with hydrophobic amino acids resulted in higher levels of expression of alkaline phosphatase, while replacement with hydrophilic amino acids resulted in lower levels of expression of alkaline phosphatase. Changes in the +2 amino acid did not appear to alter export of the PhoA lipoprotein to the membrane fraction, but a difference was seen in susceptibility to proteolysis in PhoA lipoproteins with differing +2 amino acids. This is the first study to examine the role of the +2 amino acid in mycoplasma lipoproteins and establish a difference between M. gallisepticum and Gram-positive and Gram-negative bacteria and will assist in optimization of the design of recombinant lipoprotein genes in mycoplasmas for maximal levels of expression and stability on the cell surface.

  17. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    PubMed Central

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  18. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    SciTech Connect

    Henthorn, P.S.; Raducha, M.; Edwards, Y.H.; Weiss, M.J.; Slaughter, C.; Lafferty, M.A.; Harris, H.

    1987-03-01

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) (orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1) was isolated from a lambdagt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed.

  19. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  20. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  1. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  2. [Granulocyte alkaline phosphatase--a biomarker of chronic benzene exposure].

    PubMed

    Khristeva, V; Meshkov, T

    1994-01-01

    In tracing the cellular population status in the peripheral blood of workers, exposed to benzene, was included and cytochemical determination of the alkaline phosphatase activity in leucocytes. This enzyme is accepted as marker of the neutrophilic granulocytes, as maturation of the cells and their antibacterial activity are parallel to the cytochemical activity of the enzyme. 78 workers from the coke-chemical production from state firm "Kremikovtsi" and 41 workers from the production "Benzene" and "Isopropylbenzene"--Oil Chemical Plant, Burgas are included. The benzene concentrations in the air of the working places in all productions are in the range of 5 to 50 mg/m3. For cytochemical determination of the alkaline phosphatase activity is used the method of L. Kaplow and phosphatase index was calculated. It was established that in 98.4% of all examined the alkaline phosphatase activity is inhibited to different rate, as from 46.5% [61 workers] it is zero. In considerably lower percentage of workers were established and other deviations: leucocytosis or leucopenia, neutropenia, increased percent of band neutrophils and toxic granules. The results of the investigation of the granulocyte population show that from all indices, the activity of granulocyte alkaline phosphatase demonstrates most convincing the early myelotoxic effect of benzene.

  3. Enzymatic method of determining lead using alkaline phosphatase

    SciTech Connect

    Shekhovtsova, T.N.; Kucheryaeva, V.V.; Dolmanova, I.F.

    1986-03-20

    The purpose of this work was to determine the possibility of using alkaline phosphatase to determine trace amounts of ions of a number of metals - Mg, Ba, Ca, Sr, Cd, Pb - for which there are virtually no sensitive and simple methods of determination.

  4. Synthesis and secretion of alkaline phosphatase in vitro from first-trimester and term human placentas.

    PubMed Central

    Galski, H; Fridovich, S E; Weinstein, D; De Groot, N; Segal, S; Folman, R; Hochberg, A A

    1981-01-01

    The synthesis and secretion of alkaline phosphatases in vitro by human placental tissue incubated in organ culture were studied. First-trimester placenta synthesizes and secretes two different alkaline phosphatase isoenzymes (heat-labile and heat-stable), whereas in term placenta nearly all the alkaline phosphatase synthesized and secreted is heat-stable. The specific activities of alkaline phosphatases in first-trimester and term placental tissue remain constant throughout the time course of incubation. In the media, specific activities increase with time. Hence, alkaline phosphatase synthesis seems to be the driving force for its own secretion. The rates of synthesis de novo and of alkaline phosphatases were measured. The specific radioactivities of the secreted alkaline phosphatases were higher than the corresponding specific radioactivities in the tissue throughout the entire incubation period. The intracellular distribution of the alkaline phosphatase isoenzymes was compared. PMID:7306029

  5. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia.

  6. phoD Alkaline Phosphatase Gene Diversity in Soil.

    PubMed

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K

    2015-10-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  7. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  8. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation.

    PubMed

    Gulseren, Gulcihan; Yasa, I Ceren; Ustahuseyin, Oya; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O

    2015-07-13

    Recognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides. Here, we report enhanced bone regeneration efficiency through peptide nanofibers carrying both catalytic and matrix-regulatory functions of alkaline phosphatase, a versatile enzyme that plays a critical role in bone formation by regulating phosphate homeostasis and calcifiable bone matrix formation. Histidine presenting peptide nanostructures were developed to function as phosphatases. These molecules are able to catalyze phosphate hydrolysis and serve as bone-like nodule inducing scaffolds. Alkaline phosphatase-like peptide nanofibers enabled osteogenesis for both osteoblast-like and mesenchymal cell lines.

  9. Graphical techniques for kinetic data analyses of alkaline phosphatase

    SciTech Connect

    Frazer, J.W.; Brand, H.R.

    1980-09-01

    The use of an automated reactor for the experimentation and on-line graphics for the rapid and exhaustive analysis of experimental data is described. Traditional (linear) methods are used for selecting the most promising model for the alkaline phosphatase catalyzed reaction from a set of ten models under consideration. Then, nonlinear techniques for model selection are used and compared with traditional techniques. In both approaches, interactive graphics techniques are used to advantage for evaluating various models and for examining the quality of the experimental data.

  10. A description of alkaline phosphatases from marine organisms

    NASA Astrophysics Data System (ADS)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  11. Regan isoenzyme of alkaline phosphatase as a tumour marker for renal cell carcinoma.

    PubMed

    Bukowczan, J; Pattman, S; Jenkinson, F; Quinton, R

    2014-09-01

    Alkaline phosphatase is an enzyme present in all tissues of the human body. Several isoforms of this enzyme have been described with different catalytic nature, stability and antigenic structure. Rises in the activity of alkaline phosphatase are recognised in various states including bone diseases, liver disease, pregnancy, hyperthyroidism and malignant processes. The Regan isoenzyme, a rare variant of placental alkaline phosphatase, has been identified circulating in association with various tumours. The reported case describes a rising Regan isoform of alkaline phosphatase concentrations that led to a new diagnosis of occult renal cell carcinoma and persistently elevated activity postoperatively signposting persistent or recurrent disease.

  12. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  13. Intramolecular dynamics of structure of alkaline phosphatase from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Mazhul, Vladimir M.; Mjakinnik, Igor V.; Volkova, Alena N.

    1995-01-01

    The luminescent analysis with nano- and millisecond time resolution of intramolecular dynamics of Escherichia coli alkaline phosphatase was carried out. The effect of pH within the range 7.2 - 9.0, thermal inactivation, limited proteolysis by trypsin, binding of pyrophosphate, interconversion of enzyme and apoenzyme, the replacement of Zn2+ and Mg2+ in the active site by Cd2+ and Ni2+ on the spectral and kinetic parameters of luminescence was investigated. The essential changes of the level of nano- and millisecond dynamics of protein structure were found to correlate with the shift of enzymatic activity. The importance of small- and large-scale flexibility of protein structure for the act of enzymatic catalysis realization was shown.

  14. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  15. Establishing Quantitative Standards for Residual Alkaline Phosphatase in Pasteurized Milk

    PubMed Central

    Chon, Jung-Whan; Kim, Hyunsook; Kim, Kwang-Yup

    2016-01-01

    The alkaline phosphatase (ALP) assay is a rapid and convenient method for verifying milk pasteurization. Since colorimetric ALP assays rely on subjective visual assessments, their results are especially unreliable near the detection limits. In this study, we attempted to establish quantitative criteria for residual ALP in milk by using a more objective method based on spectrophotometric measurements. Raw milk was heat-treated for 0, 10, 20, 30, and 40 min and then subjected to ALP assays. The quantitative criteria for residual ALP in the milk was determined as 2 μg phenol/mL of milk, which is just above the ALP value of milk samples heat-treated for 30 min. These newly proposed methodology and criteria could facilitate the microbiological quality control of milk. PMID:27194927

  16. Significantly Elevated Liver Alkaline Phosphatase in Congestive Heart Failure

    PubMed Central

    Shamban, Leonid; Patel, Brijesh; Williams, Michael

    2014-01-01

    Congestive hepatopathy can have a mildly elevated liver profile, which should normalize with appropriate therapy. Liver specific alkaline phosphatase (ALP) in decompensated heart failure (HF) can be mildly elevated. The levels exceeding beyond the expected rise should be a concern and lead to further investigation. The literature reports insubstantial number of cases regarding significantly elevated levels of ALP and congestive hepatopathy. We report a case of a 45-year-old female with known history of severe cardiomyopathy that had persistently elevated levels of ALP. The extensive workup was negative for any specific pathology. The liver biopsy was consistent with congestive hepatopathy. The patient’s ALP levels decreased with aggressive diuretic therapy but still remained elevated.

  17. Utilizing ultrafiltration to remove alkaline phosphatase from clinical analyzer water.

    PubMed

    Bôle, Julien; Mabic, Stéphane

    2006-01-01

    Alkaline phosphatase (ALP) conjugated to antibodies is often used in enzyme immunoassays (EIAs). These assays are notably sensitive to experimental conditions. A possible source of interference is bacterial ALP, which is released when bacterial contamination occurs in clinical analyzers. Preliminary experiments led to the selection of a detection kit, ALP source, and specific types of tubes for collecting water samples and performing assays. The release of ALP from various strains of bacteria identified in pure water was demonstrated (10-30 x 10(6) cfu/mL released 6-10 microU/microL). It was shown that ultrafiltration is totally efficient in removing ALP from water, while residual ALP activity (2.21 microU/microL after filtration of an ALP solution of 6.22 microU/microL) was observed after filtration using a 0.22-mum filter.

  18. Cortisol modification of HeLa 65 alkaline phosphatase. Decreased phosphate content of the induced enzyme.

    PubMed

    Bazzell, K L; Price, G; Tu, S; Griffin, M

    1976-01-15

    Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues. PMID:1248469

  19. Recombinant single-chain Fv antibody fragment-alkaline phosphatase conjugate for one-step immunodetection in molecular hybridization.

    PubMed

    Muller, B H; Chevrier, D; Boulain, J C; Guesdon, J L

    1999-07-30

    Using phage-display technology, a recombinant single-chain Fv antibody fragment (scFv) was rapidly generated from the K16-16 hybridoma secreting mouse monoclonal antibody (MAb) that binds to acetylaminofluorene-labeled DNA (AAF-DNA). The selected A4 phage-scFv specifically bound to AAF-DNA. The anti-AAF scFv gene was then recloned into a fusion vector for the production of a hybrid protein comprising the antibody fragment fused to a potent bacterial alkaline phosphatase variant (PhoAv). The anti-AAF scFv-PhoAv hybrid protein was bifunctional and possessed both antigen binding capacity and PhoA activity. The recombinant conjugate was directly used, without further purification, for one-step immunodetection in dot-blot hybridization. The detection limit was identical and the test was quicker than the conventional two-step procedure with the purified anti-AAF MAb revealed with a secondary enzyme-labeled antibody. To assess the value of this new reagent for the immunodetection of genomic nucleic acids, genomic DNAs of Campylobacter jejuni and Campylobacter coli were then one-step immunodetected with non-purified recombinant scFv-PhoAv conjugate in a Southern-blot hybridization experiment. The present study shows that the genetic fusion with PhoAv provides a new tool for immunodetection which presents easier and quicker production and use with the same sensitivity and specificity as classical reagents. The recombinant anti-AAF scFv-PhoAv conjugate is a promising alternative reagent for applications involving the immunodetection of specific DNA or RNA sequences, such as the detection and characterization of microorganisms.

  20. High sequence variability, diverse subcellular localizations, and ecological implications of alkaline phosphatase in dinoflagellates and other eukaryotic phytoplankton.

    PubMed

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the "red-type" eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort.

  1. High Sequence Variability, Diverse Subcellular Localizations, and Ecological Implications of Alkaline Phosphatase in Dinoflagellates and Other Eukaryotic Phytoplankton

    PubMed Central

    Lin, Xin; Zhang, Huan; Cui, Yudong; Lin, Senjie

    2012-01-01

    Alkaline phosphatase (AP) is a key enzyme for phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphorus is limited. While three major types of AP and their correspondingly diverse subcellular localization have been recognized in bacteria, little is known about AP in eukaryotic phytoplankton such as dinoflagellates. Here, we isolated a full-length AP cDNA from a latest-diverging dinoflagellate genus Alexandrium, and conducted comparative analyses with homologs from a relatively basal (Amphidinium carterae) and late-diverging (Karenia brevis) lineage of dinoflagellates as well as other eukaryotic algae. New data and previous studies indicate that AP is common in dinoflagellates and most other major eukaryotic groups of phytoplankton. AP sequences are more variable than many other genes studied in dinoflagellates, and are divergent among different eukaryotic phytoplankton lineages. Sequence comparison to the other characterized APs suggests that dinoflagellates and some other eukaryotic phytoplankton possess the putative AP as phoA type, but some other eukaryotic phytoplankton seem to have other types. Phylogenetic analyses based on AP amino acid sequences indicated that the “red-type” eukaryotic lineages formed a monophyletic group, suggesting a common origin of their APs. As different amino acid sequences have been found to predictably determine different spatial distribution in the cells, which may facilitate access to different pools of DOP, existing computational models were adopted to predict the subcellular localizations of putative AP in the three dinoflagellates and other eukaryotic phytoplankton. Results showed different subcellular localizations of APs in different dinoflagellates and other lineages. The linkage between AP sequence divergence, subcellular localization, and ecological niche differentiation requires rigorous experimental verification, and this study now provides a framework for such a future effort

  2. Comparative evaluation of Schistosoma mansoni, Schistosoma intercalatum, and Schistosoma haematobium alkaline phosphatase antigenicity by the alkaline phosphatase immunoassay (APIA).

    PubMed

    Cesari, I M; Ballén, D E; Mendoza, L; Ferrer, A; Pointier, J-P; Kombila, M; Richard-Lenoble, D; Théron, A

    2014-04-01

    To know if alkaline phosphatase (AP) from schistosomes other than Schistosoma mansoni can be used as diagnostic marker for schistosomiasis in alkaline phosphatase immunocapture assay (APIA), we comparatively tested n-butanol extracts of adult worm membranes from a Venezuelan (JL) strain of S. mansoni (Ven/AWBE/Sm); a Cameroonian (EDEN) strain of Schistosoma intercalatum (Cam/AWBE/Si) and a Yemeni strain of Schistosoma haematobium (Yem/AWBE/Sh). APIA was evaluated with sera of patients from Venezuela, Senegal, and Gabon infected with S. mansoni, from Gabon infected with S. intercalatum or S. haematobium, from Chine infected with Schistosoma japonicum and from Cambodian patients infected with Schistosoma mekongi. Results indicate that 92.5% (37/40) of Venezuela sera, 75% (15/20) of Senegal sera, 39.5% (17/43) of S. haematobium sera, and 19.2% (5/26) S. intercalatum sera were APIA-positive with the Ven/AWBE/Sm preparation. APIA with the Cam/AWBE/Si preparation showed that 53.8% of S. intercalatum-positive sera had anti-AP antibodies, and 51.2% S. haematobium-positive sera cross-immunocapturing the S. intercalatum AP. APIA performed with Yem/AWBE/Sh showed that 55.8% S. haematobium sera were positive. Only two out of nine S. japonicum sera were APIA-positive with the Ven/AWBE/Sm and Cam/AWBE/Si, and no reaction was observed with Cambodian S. mekongi-positive sera. AP activity was shown to be present in all the schistosome species/strains studied. The use of APIA as a tool to explore the APs antigenicity and the presence of Schistosoma sp. infections through the detection of anti-Schistosoma sp. AP antibodies in a host, allowed us to demonstrate the antigenicity of APs of S. mansoni, S. intercalatum, and S. haematobium.

  3. The dynamics of alkaline phosphatase activity during operculum regeneration in the polychaete Pomatoceros lamarckii.

    PubMed

    Szabó, Réka; Ferrier, David E K

    2014-01-01

    Alkaline phosphatase enzymes are found throughout the living world and fulfil a variety of functions. They have been linked to regeneration, stem cells and biomineralisation in a range of animals. Here we describe the pattern of alkaline phosphatase activity in a spiralian appendage, the operculum of the serpulid polychaete Pomatoceros lamarckii. The P. lamarckii operculum is reinforced by a calcified opercular plate and is capable of rapid regeneration, making it an ideal model system to study these key processes in annelids. Alkaline phosphatase activity is present in mesodermal tissues of both intact and regenerating opercular filaments, in a strongly regionalised pattern correlated with major morphological features. Based on the lack of epidermal activity and the broad distribution of staining in mesodermal tissues, calcification- or stem cell-specific roles are unlikely. Transcriptomic data reveal that at least four distinct genes contribute to the detected activity. Opercular alkaline phosphatase activity is sensitive to levamisole. Phylogenetic analysis of metazoan alkaline phosphatases indicates homology of the P. lamarckii sequences to other annelid alkaline phosphatases, and shows that metazoan alkaline phosphatase evolution was characterised by extensive lineage-specific duplications. PMID:25690977

  4. Zn2Mg alkaline phosphatase in an early ptolemeic mummy.

    PubMed

    Kaup, Y; Baumer, U; Koller, J; Hedges, R E; Werner, H; Hartmann, H J; Etspüler, H; Weser, U

    1994-01-01

    Bone samples of a ptolemeic mummy have been employed to study the mode of conservation on the intactness of Zn2Mg alkaline phosphatase in both structure and catalytic activity. A protein of M(r) = 190 +/- 10 kDa being identical to the 200 kDa enzyme of fresh human bones was successfully isolated. Regardless of age 200 kDa protein bands and a distinct subunit at 60 kDa were seen in SDS-PAGE electrophoresis. The 200 kDa band was also monitored by activity staining. The specific activity was 120 mU/mg and 65% of the respective activity obtained in the identical preparation using fresh human tibia or rib. The enzymic activity was inhibited in the presence of 1,10-phenanthroline and L-homoarginine. Radiocarbon dating supported the assignment of the mummy to the early ptolemeic period. Among the many bactericidal and fungicidal components employed for mummification were aromatic alcohols, mono- and sesquiterpenes. Pistachio resin was the major balm resin used. The microbiological sterility of the bone surface was ascertained by independent bacterial and fungal examinations.

  5. Reliable Digital Single Molecule Electrochemistry for Ultrasensitive Alkaline Phosphatase Detection.

    PubMed

    Wu, Zhen; Zhou, Chuan-Hua; Pan, Liang-Jun; Zeng, Tao; Zhu, Lian; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-09-20

    Single molecule electrochemistry (SME) has gained much progress in fundamental studies, but it is difficult to use in practice due to its less reliability. We have solved the reliability of single molecule electrochemical detection by integration of digital analysis with efficient signal amplification of enzyme-induced metallization (EIM) together with high-throughput parallelism of microelectrode array (MA), establishing a digital single molecule electrochemical detection method (dSMED). Our dSMED has been successfully used for alkaline phosphatase (ALP) detection in the complex sample of liver cancer cells. Compared to direct measurement of the oxidation current of enzyme products, EIM can enhance signals by about 100 times, achieving signal-to-background ratio high enough for single molecule detection. The integration of digital analysis with SME can further decrease the detection limit of ALP to 1 aM relative to original 50 aM, enabling dSMED to be sensitively, specifically and reliably applied in liver cancer cells. The presented dSMED is enormously promising in exploring physical and chemical properties of single molecules, single biomolecular detection, or single-cell analysis.

  6. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily

    PubMed Central

    van Loo, Bert; Jonas, Stefanie; Babtie, Ann C.; Benjdia, Alhosna; Berteau, Olivier; Hyvönen, Marko; Hollfelder, Florian

    2010-01-01

    We report a catalytically promiscuous enzyme able to efficiently promote the hydrolysis of six different substrate classes. Originally assigned as a phosphonate monoester hydrolase (PMH) this enzyme exhibits substantial second-order rate accelerations ((kcat/KM)/kw), ranging from 107 to as high as 1019, for the hydrolyses of phosphate mono-, di-, and triesters, phosphonate monoesters, sulfate monoesters, and sulfonate monoesters. This substrate collection encompasses a range of substrate charges between 0 and -2, transition states of a different nature, and involves attack at two different reaction centers (P and S). Intrinsic reactivities (half-lives) range from 200 days to 105 years under near neutrality. The substantial rate accelerations for a set of relatively difficult reactions suggest that efficient catalysis is not necessarily limited to efficient stabilization of just one transition state. The crystal structure of PMH identifies it as a member of the alkaline phosphatase superfamily. PMH encompasses four of the native activities previously observed in this superfamily and extends its repertoire by two further activities, one of which, sulfonate monoesterase, has not been observed previously for a natural enzyme. PMH is thus one of the most promiscuous hydrolases described to date. The functional links between superfamily activities can be presumed to have played a role in functional evolution by gene duplication. PMID:20133613

  7. Nanoceria particles as catalytic amplifiers for alkaline phosphatase assays.

    PubMed

    Hayat, Akhtar; Andreescu, Silvana

    2013-11-01

    We propose a novel system to enhance detection sensitivity of alkaline phosphatase (ALP) in electrochemical assays by using nanoceria particles as redox active catalytic amplifiers of ALP signals. The catalytic activity of nanoceria particles attributed to their dual oxidation state Ce(4+)/Ce(3+) and high oxygen mobility enabled oxidation of the products of the ALP-catalyzed reaction. A suite of spectroscopic and electrochemical methods, including UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and cyclic voltammetry (CV) were used to characterize the interaction of nanoceria with the ALP-generated products. Spectrometric experiments demonstrate change in the oxidation state of nanoceria upon exposure to the hydrolytic products of ALP. Three enzymatically generated products of commonly used ALP substrates were detected at a screen printing electrode surface in the presence of nanoceria. Electrochemical experiments demonstrate signal amplification of the ALP activity assay by nanoceria for all three products, demonstrating remarkable sensitivity of this assay. The assay was optimized with respect to pH and buffer composition. Analytical characterization of the nanoceria-based ALP activity assay was established using a 1-naphthyl phosphate substrate. The proposed strategy can find widespread applications in sensing schemes involving ALP. PMID:24053108

  8. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity.

    PubMed

    Estaki, Mehrbod; DeCoffe, Daniella; Gibson, Deanna L

    2014-11-14

    Intestinal alkaline phosphatase (IAP) plays an essential role in intestinal homeostasis and health through interactions with the resident microbiota, diet and the gut. IAP's role in the intestine is to dephosphorylate toxic microbial ligands such as lipopolysaccharides, unmethylated cytosine-guanosine dinucleotides and flagellin as well as extracellular nucleotides such as uridine diphosphate. IAP's ability to detoxify these ligands is essential in protecting the host from sepsis during acute inflammation and chronic inflammatory conditions such as inflammatory bowel disease. Also important in these complications is IAP's ability to regulate the microbial ecosystem by forming a complex relationship between microbiota, diet and the intestinal mucosal surface. Evidence reveals that diet alters IAP expression and activity and this in turn can influence the gut microbiota and homeostasis. IAP's ability to maintain a healthy gastrointestinal tract has accelerated research on its potential use as a therapeutic agent against a multitude of diseases. Exogenous IAP has been shown to have beneficial effects when administered during ulcerative colitis, coronary bypass surgery and sepsis. There are currently a handful of human clinical trials underway investigating the effects of exogenous IAP during sepsis, rheumatoid arthritis and heart surgery. In light of these findings IAP has been marked as a novel agent to help treat a variety of other inflammatory and infectious diseases. The purpose of this review is to highlight the essential characteristics of IAP in protection and maintenance of intestinal homeostasis while addressing the intricate interplay between IAP, diet, microbiota and the intestinal epithelium.

  9. SERUM VALUES OF ALKALINE PHOSPHATASE AND LACTATE DEHYDROGENASE IN OSTEOSARCOMA

    PubMed Central

    ZUMÁRRAGA, JUAN PABLO; BAPTISTA, ANDRÉ MATHIAS; ROSA, LUIS PABLO DE LA; CAIERO, MARCELO TADEU; CAMARGO, OLAVO PIRES DE

    2016-01-01

    ABSTRACT Objective: To study the relationship between the pre and post chemotherapy (CT) serum levels of alkaline phosphatase (AP) and lactate dehydrogenase (LDH), and the percentage of tumor necrosis (TN) found in specimens after the pre surgical CT in patients with osteosarcoma. Methods: Series of cases with retrospective evaluation of patients diagnosed with osteosarcoma. Participants were divided into two groups according to serum values of both enzymes. The values of AP and LDH were obtained before and after preoperative CT. The percentage of tumor necrosis (TN) of surgical specimens of each patient was also included. Results: One hundred and thirty seven medical records were included from 1990 to 2013. Both the AP as LDH decreased in the patients studied, being the higher in pre CT than post CT. The average LHD decrease was 795.12U/L and AP decrease was 437.40 U/L. The average TN was 34.10 %. There was no statistically significant correlation between the serums values and the percentage of tumoral necrosis. Conclusion: The serum levels values of AP and LDH are not good predictors for the chemotherapy-induced necrosis in patients with osteosarcoma. Level of Evidence IV, Case Series. PMID:27217815

  10. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  11. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-01-01

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease. PMID:27525888

  12. Cloning and sequencing of human intestinal alkaline phosphatase cDNA

    SciTech Connect

    Berger, J.; Garattini, E.; Hua, J.C.; Udenfriend, S.

    1987-02-01

    Partial protein sequence data obtained on intestinal alkaline phosphatase indicated a high degree of homology with the reported sequence of the placental isoenzyme. Accordingly, placental alkaline phosphatase cDNA was cloned and used as a probe to clone intestinal alkaline phosphatase cDNA. The latter is somewhat larger (3.1 kilobases) than the cDNA for the placental isozyme (2.8 kilobases). Although the 3' untranslated regions are quite different, there is almost 90% homology in the translated regions of the two isozymes. There are, however, significant differences at their amino and carboxyl termini and a substitution of an alanine in intestinal alkaline phosphatase for a glycine in the active site of the placental isozyme.

  13. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    SciTech Connect

    Howard, A.D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S.

    1987-09-01

    Placental alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with (/sup 14/C)ethanolamine, (/sup 14/C)myristic acid, or myo(/sup 3/H)inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase.

  14. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    SciTech Connect

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-08-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G (IgG) complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table.

  15. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  16. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  17. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  18. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  19. Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Low, M G; Finean, J B

    1977-10-01

    Purified phosphatidylinositol-specific phospholipase C from Staphylococcus aureus released a substantial proportion of the total alkaline phosphatase activity from a wide range of tissues from several mammalian species. Co-purification of the phospholipase C and alkaline phosphatase-releasing activities and the inhibition of both these activities by iso-osmotic salt solutions suggested that the releasing effect was unlikely to be due to a contaminant.

  20. Imaging of alkaline phosphatase activity in bone tissue.

    PubMed

    Gade, Terence P; Motley, Matthew W; Beattie, Bradley J; Bhakta, Roshni; Boskey, Adele L; Koutcher, Jason A; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with (19)Flourine magnetic resonance spectroscopic imaging ((19)FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19)Fluorine magnetic resonance spectroscopy ((19)FMRS) and (19)FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19)FMRS and (19)FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19)FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19)FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19)FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19)FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  1. Modeling catalytic promiscuity in the alkaline phosphatase superfamily

    PubMed Central

    Duarte, Fernanda; Amrein, Beat Anton

    2013-01-01

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  2. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  3. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate

    PubMed Central

    Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083

  4. Associations between Renal Hyperfiltration and Serum Alkaline Phosphatase

    PubMed Central

    Oh, Se Won; Han, Kum Hyun; Han, Sang Youb

    2015-01-01

    Renal hyperfiltration, which is associated with renal injury, occurs in diabetic or obese individuals. Serum alkaline phosphatase (ALP) level is also elevated in patients with diabetes (DM) or metabolic syndrome (MS), and increased urinary excretion of ALP has been demonstrated in patients who have hyperfiltration and tubular damage. However, little was investigated about the association between hyperfiltration and serum ALP level. A retrospective observational study of the 21,308 adults in the Korea National Health and Nutrition Examination Survey IV-V databases (2008–2011) was performed. Renal hyperfiltration was defined as exceeding the age- and sex-specific 97.5th percentile. We divided participants into 4 groups according to their estimated glomerular filtration rate (eGFR): >120, 90–119, 60–89, and <60 mL/min/1.73 m2. The participants with eGFR >120 mL/min/1.73 m2 showed the highest risk for MS, in the highest ALP quartiles (3.848, 95% CI, 1.876–7.892), compared to the lowest quartile. Similarly, the highest risk for DM, in the highest ALP quartiles, was observed in participants with eGFR >120 ml/min/1.73 m2 (2.166, 95% CI, 1.084–4.329). ALP quartiles were significantly associated with albuminuria in participants with eGFR ≥ 60 ml/min/1.73m2. The highest ALP quartile had a 1.631-fold risk elevation for albuminuria with adjustment of age and sex. (95% CI, 1.158-2.297, P = 0.005). After adjustment, the highest ALP quartile had a 1.624-fold risk elevation, for renal hyperfiltration (95% CI, 1.204–2.192, P = 0.002). In addition, hyperfiltration was significantly associated with hemoglobin, triglyceride, white blood cell count, DM, smoking, and alcohol consumption (P<0.05). The relationship between serum ALP and metabolic disorders is stronger in participants with an upper-normal range of eGFR. Higher ALP levels are significantly associated with renal hyperfiltration in Korean general population. PMID:25853240

  5. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients.

    PubMed

    Peters, Esther; Heemskerk, Suzanne; Masereeuw, Rosalinde; Pickkers, Peter

    2014-06-01

    Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well.

  6. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-25

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases.

  7. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-25

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases. PMID:25500268

  8. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    PubMed

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  9. A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity.

    PubMed

    Cox, W G; Singer, V L

    1999-11-01

    We describe a high-resolution, fluorescence-based method for localizing endogenous alkaline phosphatase in tissues and cultured cells. This method utilizes ELF (Enzyme-Labeled Fluorescence)-97 phosphate, which yields an intensely fluorescent yellow-green precipitate at the site of enzymatic activity. We compared zebrafish intestine, ovary, and kidney cryosections stained for endogenous alkaline phosphatase using four histochemical techniques: ELF-97 phosphate, Gomori method, BCIP/NBT, and naphthol AS-MX phosphate coupled with Fast Blue BB (colored) and Fast Red TR (fluorescent) diazonium salts. Each method localized endogenous alkaline phosphatase to the same specific sample regions. However, we found that sections labeled using ELF-97 phosphate exhibited significantly better resolution than the other samples. The enzymatic product remained highly localized to the site of enzymatic activity, whereas signals generated using the other methods diffused. We found that the ELF-97 precipitate was more photostable than the Fast Red TR azo dye adduct. Using ELF-97 phosphate in cultured cells, we detected an intracellular activity that was only weakly labeled with the other methods, but co-localized with an antibody against alkaline phosphatase, suggesting that the ELF-97 phosphate provided greater sensitivity. Finally, we found that detecting endogenous alkaline phosphatase with ELF-97 phosphate was compatible with the use of antibodies and lectins. (J Histochem Cytochem 47:1443-1455, 1999)

  10. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed Central

    Weinberg, R A; Zusman, D R

    1990-01-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  11. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  12. ASSOCIATION OF THE ALKALINE PHOSPHATASE OF RABBIT POLYMORPHONUCLEAR LEUKOCYTES WITH THE MEMBRANE OF THE SPECIFIC GRANULES

    PubMed Central

    Bretz, Ursula; Baggiolini, Marco

    1973-01-01

    The localization of alkaline phosphatase in the specific granules of rabbit polymorphonuclear leukocytes was investigated. The results obtained suggest very strongly that alkaline phosphatase is a component of the granule membrane. The enzyme remains attached to the membrane upon disruption of the granules by the use of detergents or by hypotonic shock and subsequent extraction with sodium sulfate, and can be isolated together with fragments of the granule membrane by isopycnic equilibration. Treatment of the granules with high amounts of Triton-X-100, sodium deoxycholate, or hexadecyltrimethylammonium bromide releases the enzyme in soluble form. In polymorphonuclear leukocyte homogenates, lysis of the granules is needed in order to render alkaline phosphatase fully accessible to substrates. This suggests that the catalytic site of the enzyme is exposed at the inner face of the granule membrane. PMID:4761336

  13. Alkaline phosphatase protein increases in response to prednisolone in HeLa cells.

    PubMed Central

    Hanford, W C; Kottel, R H; Fishman, W H

    1981-01-01

    Quantification of term-placental alkaline phosphatase isoenzyme protein in HeLa TCRC-1 cells grown in the presence and absence of prednisolone indicates that there is a net increase in amount of enzyme-specific protein in prednisolone-stimulated cells. In a similar analysis of HeLa D98AH2 cells, prednisolone treatment causes the appearance of term-placental alkaline phosphatase protein and the loss of the intestinal isoenzyme protein. These results support the interpretation that the response of these cells to corticosteroids is the net accumulation of alkaline phosphatase protein rather than the modification of pre-existing enzyme to a more active state. Images Fig. 1. Fig. 2. PMID:7340849

  14. Tubulin polymerization by paclitaxel (taxol) phosphate prodrugs after metabolic activation with alkaline phosphatase.

    PubMed

    Mamber, S W; Mikkilineni, A B; Pack, E J; Rosser, M P; Wong, H; Ueda, Y; Forenza, S

    1995-08-01

    Paclitaxel (taxol) phosphate derivatives BMY46366, BMY-46489, BMS180661 and BMS180820 were used to determine the ability of alkaline phosphatase to convert these water-soluble potential prodrugs to tubulin-polymerizing metabolites (i.e., paclitaxel). Compounds were treated up to 180 min with an in vitro metabolic activation system composed of 10% bovine alkaline phosphatase in 0.2 M tris, pH 7.4, or in 0.2 M glycine, pH 8.8, plus 0.05 M MgCl2. Samples were tested (either by direct addition or after methylene chloride extraction/dimethyl-sulfoxide resuspension) in spectrophotometric tubulin polymerization assays utilizing bovine-derived microtubule protein. Pretreatment of 2'- and 7-phosphonoxyphenylpropionate prodrugs BMS180661 and BMS180820 with alkaline phosphatase for 30 to 120 min yielded relative initial slopes of about 20 to 100% at test concentrations equimolar to paclitaxel. High-performance liquid chromatography/mass spectrometry of BMS180661 treated with alkaline phosphatase confirmed the production of paclitaxel from the prodrug. In contrast, 2'- and 7-phosphate analogs BMY46366 and BMY46489 treated with alkaline phosphatase were not active in tubulin assays. None of the paclitaxel phosphate prodrugs polymerized tubulin in the absence of metabolic activation. The differences in tubulin polymerization with metabolic activation may be related both to accessibility of the phosphate group to the enzyme and to anionic charge effects. These results demonstrate that certain paclitaxel phosphate prodrugs can be metabolized by alkaline phosphatase to yield effective tubulin polymerization. PMID:7636751

  15. Stereochemistry of phospho group transfer catalyzed by a mutant alkaline phosphatase

    SciTech Connect

    Butler-Ransohoff, J.E.; Kendall, D.A.; Freeman, S.; Knowles, J.R.; Kaiser, E.T.

    1988-06-28

    The stereochemical course of the phospho group transfer catalyzed by mutant (S102C) alkaline phosphatase from Escherichia coli was investigated by using /sup 31/P nuclear magnetic resonance spectroscopy. Transphosphorylation from 4-nitrophenyl (R/sub P/)-/sup 17/O, /sup 16/O, /sup 18/O)phosphate to (S)-propane-1,2-diol occurs with overall retention of configuration at phosphorus. This result is consistent with the view that the hydrolysis of substrates by this mutant enzyme proceeds by way of a covalent phosphoenzyme intermediate in the same manner as the wild-type alkaline phosphatase.

  16. Catalytic Signature of a Heat-Stable, Chimeric Human Alkaline Phosphatase with Therapeutic Potential

    PubMed Central

    Kiffer-Moreira, Tina; Sheen, Campbell R.; Gasque, Kellen Cristina da Silva; Bolean, Mayte; Ciancaglini, Pietro; van Elsas, Andrea; Hoylaerts, Marc F.; Millán, José Luis

    2014-01-01

    Recombinant alkaline phosphatases are becoming promising protein therapeutics to prevent skeletal mineralization defects, inflammatory bowel diseases, and treat acute kidney injury. By substituting the flexible crown domain of human intestinal alkaline phosphatase (IAP) with that of the human placental isozyme (PLAP) we generated a chimeric enzyme (ChimAP) that retains the structural folding of IAP, but displays greatly increased stability, active site Zn2+ binding, increased transphosphorylation, a higher turnover number and narrower substrate specificity, with comparable selectivity for bacterial lipopolysaccharide (LPS), than the parent IAP isozyme. ChimAP shows promise as a protein therapeutic for indications such as inflammatory bowel diseases, gut dysbioses and acute kidney injury. PMID:24586729

  17. Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

    PubMed Central

    Spencer, D B; Chen, C P; Hulett, F M

    1981-01-01

    The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium. PMID:7462163

  18. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  19. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia.

    PubMed

    Lozo, Svjetlana; Atabeygi, Amir; Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  20. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia

    PubMed Central

    Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT).

  1. Extreme Elevation of Alkaline Phosphatase in a Pregnancy Complicated by Gestational Diabetes and Infant with Neonatal Alloimmune Thrombocytopenia

    PubMed Central

    Healey, Michael

    2016-01-01

    There have been few case reports of isolated elevation of alkaline phosphatase beyond the normal physiologic amount with subsequent return to baseline after delivery. Here we present a similar case of extreme elevation of alkaline phosphatase in a pregnancy complicated by gestational diabetes and subsequently by neonatal alloimmune thrombocytopenia (NAIT). PMID:27610256

  2. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  3. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition.

  4. Heat stable alkaline phosphatase from thermophiles. Final report, March-October 1993

    SciTech Connect

    Combie, J.D.; Runnion, K.N.; Williamson, M.L.

    1994-07-01

    Alkaline phosphatase has been the most widely used enzyme for colorimetric immunoassays. The current potential for this enzyme lies in biosensors, fieldable assay kits, biotechnology applications, degradation of certain nerve agents and pesticides and detoxification of heavy metal waste streams. While the commercial source of this enzyme is predominantly from mammalian tissues, expanded commercial application is restricted by the enzyme's instability at elevated temperatures. Although alkaline phosphatases are ubiquitous in nature, two isolates out of 44 alkaline phosphatase producing isolates occurring in habitats at 50 deg C and above have been isolated possessing extremely stable enzymes. One enzyme retained 98% of original activity following boiling for 1 hr. The secretion of the enzyme by the organism is an added benefit promoting efficient and economical production capability. Procedures for the screening, isolation, and optimal growth and fermentation of organisms acquired from geothermal sources located in Yellowstone National Park, WY are described. Purification was most effectively achieved using size exclusion chromatography where 101% of the activity and 33% of the crude mother liquor protein were recovered. Although the presence of manganese in the assay buffer was observed to significantly elevate the enzyme's catalytic activity, a precipitate incompatibility with calcium chloride, a requirement for high temperature stability, prohibits its use. Bacteria, Fermentation, Alkaline phosphatase, Biosensors, Biotechnology, Heat stable enzymes, Biochemistry, Bioremediation, Thermophilic microorganisms.

  5. Nature of immobilization surface affects antibody specificity to placental alkaline phosphatase.

    PubMed

    Kumar, Mukesh; Khan, Imran; Sinha, Subrata

    2015-01-01

    Retention of native conformation of immobilized protein is essential for various applications including selection and detection of specific recombinant antibodies (scFvs). Placental alkaline phosphatase (PAP), an onco-fetal antigen expressed on the surface of several tumors, was immobilized on supermagnetic particles for selection of recombinant antibodies from a human phage display antibody library. The isolated antibodies were found to be cross-reactive to either of the isozymes of alkaline phosphatase, i.e., bone alkaline phosphatase (BAP) or intestinal alkaline phosphatase (IAP) and could not be used for tumor targeting. A specific anti-PAP monoclonal antibody H17E2 was tested for retention of specificity under these conditions. Binding of the antibody to magnetic beads conjugated IAP and BAP along with PAP and the ability of the two isozymes to inhibit its binding to PAP depicted the loss of isozyme specificity of the antibody. However, the antibody retained its specificity to PAP immobilized on polyvinyl chloride (PVC) surface. Enzyme activity was observed on both surfaces. This demonstrates that nature of immobilization may affect antigen-antibody binding in subtle ways, resulting in alteration of conformation of the epitopes. This may have consequences for determining the specificity of antibody binding for proteins that share a high degree of homology.

  6. Highly sensitive detection of alkaline phosphatase using molecular beacon probes based on enzymatic polymerization.

    PubMed

    Ma, Changbei

    2012-06-01

    We have developed a new methodology for highly sensitive alkaline phosphatase assay using molecular beacon probes. No incubation step is needed to obtain a limit of detection for ALP of 2×10(-16) M. Furthermore, ALP inhibition by the inhibitor okadaic acid is shown, demonstrating the potential for high-throughput screening for inhibitors.

  7. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alkaline phosphatase or isoenzymes test system. 862.1050 Section 862.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification.

    PubMed

    Bobryshev, Yuri V; Orekhov, Alexander N; Sobenin, Igor; Chistiakov, Dimitry A

    2014-01-01

    Matrix vesicle (MV)-mediated mineralization is important for bone ossification. However, under certain circumstances such as atherosclerosis, mineralization may occur in the arterial wall. Bone-type tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes inorganic pyrophosphate (PPi) and generates inorganic phosphate (Pi), which is essential for MV-mediated hydroxyapatite formation. MVs contain another phosphatase, PHOSPHO1, that serves as an additional supplier of Pi. Activation of bone-type tissue-nonspecific alkaline phosphatase (TNAP) in vascular smooth muscle cells precedes vascular calcification. By degrading PPi, TNAP plays a procalcific role changing the Pi/PPi ratio toward mineralization. A pathologic role of bone-type TNAP and PHOSPHO1 make them to be attractive targets for cardiovascular therapy.

  13. Evaluation of alkaline phosphatase detection in dairy products using a modified rapid chemiluminescent method and official methods.

    PubMed

    Albillos, S M; Reddy, R; Salter, R

    2011-07-01

    Alkaline phosphatase is a ubiquitous milk enzyme that historically has been used to verify adequate pasteurization of milk for public health purposes. Current approved methods for detection of alkaline phosphatase in milk include the use of enzyme photoactivated substrates to give readings in milliunits per liter. The U.S. and European public health limit for alkaline phosphatase in pasteurized drinks is 350 mU/liter. A modified chemiluminescent method, fast alkaline phosphatase, was compared with the approved fluorometric and chemiluminescent alkaline phosphatase methods to determine whether the modified method was equivalent to the approved methods and suitable for detecting alkaline phosphatase in milk. Alkaline phosphatase concentrations in cow's, goat's, and sheep's milk and in flavored drinks and cream were determined by three methods. Evaluations in each matrix were conducted with pasteurized samples spiked with raw milk to produce alkaline phosphatase concentrations of 2 to 5,000 mU/liter. The tests were performed by the method developer and then reproduced at a laboratory at the National Center for Food Safety and Technology following the criteria for a single laboratory validation. The results indicated that the fast alkaline phosphatase method was not significantly different from the approved chemiluminescent method, with a limit of detection of 20 to 50 mU/liter in all the studied matrices. This modified chemiluminescent method detects alkaline phosphatase in the 350 mU/liter range with absolute differences from triplicate data that are lower and within the range of the allowed intralaboratory repeatability values published for the approved chemiluminescent method.

  14. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  15. Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria.

    PubMed

    Alcaine, S D; Pacitto, D; Sela, D A; Nugen, S R

    2015-11-21

    Genetic engineering of bacteriophages allows for the development of rapid, highly specific, and easily manufactured probes for the detection of bacterial pathogens. A challenge for novel probes is the ease of their adoption in real world laboratories. We have engineered the bacteriophage T7, which targets Escherichia coli, to carry the alkaline phosphatase gene, phoA. This inclusion results in phoA overexpression following phage infection of E. coli. Alkaline phosphatase is commonly used in a wide range of diagnostics, and thus a signal produced by our phage-based probe could be detected using common laboratory equipment. Our work demonstrates the successful: (i) modification of T7 phage to carry phoA; (ii) overexpression of alkaline phosphatase in E. coli; and (iii) detection of this T7-induced alkaline phosphatase activity using commercially available colorimetric and chemilumiscent methods. Furthermore, we demonstrate the application of our phage-based probe to rapidly detect low levels of bacteria and discern the antibiotic resistance of E. coli isolates. Using our bioengineered phage-based probe we were able to detect 10(3) CFU per mL of E. coli in 6 hours using a chemiluminescent substrate and 10(4) CFU per mL within 7.5 hours using a colorimetric substrate. We also show the application of this phage-based probe for antibiotic resistance testing. We were able to determine whether an E. coli isolate was resistant to ampicillin within 4.5 hours using chemiluminescent substrate and within 6 hours using a colorimetric substrate. This phage-based scheme could be readily adopted in labs without significant capital investments and can be translated to other phage-bacteria pairs for further detection.

  16. A monoclonal antibody against the surface of osteoblasts recognizes alkaline phosphatase isoenzymes in bone, liver, kidney, and intestine.

    PubMed

    Bruder, S P; Caplan, A I

    1990-01-01

    Monoclonal antibodies against the surface of embryonic osteogenic cells have been used to characterize the osteoblastic lineage. One antibody, SB-1, reacts in frozen sections with a family of cells in bone, liver, kidney, and intestine which are identically stained by the histochemical substrate for alkaline phosphatase. In this report, biochemical and immunochemical evidence is presented to indicate that SB-1 is directed against an epitope on alkaline phosphatase which is shared by isoenzymes in a variety of chick tissues. In a solid-phase assay system, high dilutions (1:10(5] of ascites fluid were found to give significant binding of SB-1 to alkaline phosphatase extracted from chick limb or intestine. Partial purification of intestinal alkaline phosphatase on a Sepharose CL-6B column results in the co-elution of alkaline phosphatase enzyme activity and antibody-binding material; this indicates that SB-1 recognizes intestinal alkaline phosphatase rather than an impurity in the crude preparation. Furthermore, Western immunoblots of chick calvarial bone extract electrophoresed on a 5-20% SDS-polyacrylamide gel show that SB-1 reacts with a single 155 kD band which also is stained by the alkaline phosphatase histochemical substrate. In a similar set of experiments, SB-1 reacts with an intestinal alkaline phosphatase isoenzyme whose molecular weight is approximately 185 kD. From these studies, we conclude that SB-1 is specifically reactive with alkaline phosphatase isoenzymes present in bone, liver, kidney, cartilage, and intestine. The reactive epitope is stable to SDS denaturation, not associated with the active site of the enzyme, and dependent on disulfide bonds which impart secondary structure to the protein.

  17. Monoclonal antibody to alkaline phosphatase from the intestinal mucosa of the harp seal, Phoca groenlandica.

    PubMed

    Sakharov IYu; Mechetner, E B; Stepanova, I E; Shekhonin, B V; Pletjushkina OYu

    1992-04-01

    1. Hybridoma secreting a monoclonal antibody APP.1 to the harp seal alkaline phosphatase (A1Ph) was obtained by fusing murine myeloma Sp 2/0 cells with the splenocytes of BALB/c mice immunized with purified isozyme K. 2. The antibody has no effect on the enzyme activity and shows a high affinity for harp seal A1Ph (KD = 8.5 x 10(-10) M). The antibody has similar affinities for the AlPh of harp seal, fur seal, common seal and deer. 3. The antibody APP.1 was coupled to Sepharose and employed in chromatographic purification of the harp seal intestinal AlPh. Alkaline phosphatase isolated on this immunosorbent has a spec. act. of 20,800 units per mg of protein. 4. The antibody-enzyme complex gives an excellent immunocytochemical labeling of tissue sections, cell cultures and smears.

  18. Disposition of preformed mineral in matrix vesicles. Internal localization and association with alkaline phosphatase

    SciTech Connect

    McLean, F.M.; Keller, P.J.; Genge, B.R.; Walters, S.A.; Wuthier, R.E.

    1987-08-05

    Studies were made on the disposition of mineral ions in matrix vesicles (MV) and their relationship to alkaline phosphatase by treatment of MV-enriched microsomes (MVEM) with graded levels of Ca2+-chelating agents to complex accessible ions, fractionation of MVEM on hypertonic sucrose gradients at two different pH values (7.5 and 8.0) to evaluate for the presence of calcium phosphate mineral, and passage of MVEM through cation-exchange columns to determine the accessibility of the Ca2+. The effect of removal of Ca2+ and Pi on subsequent ability of MVEM to induce mineral formation from synthetic cartilage lymph was also determined. Passage through cation-exchange columns revealed that MV Ca2+ was not freely exchangeable, but coeluted in the void volume with alkaline phosphatase. However, upon incubation in synthetic cartilage lymph, progressively more Ca2+ was retained by the column. These findings indicate that, initially, the majority of Ca2+ in MVEM is internal and not readily exchangeable, but as Ca2+ accumulates, progressively more becomes external. The mineral in MV is labile and readily susceptible to loss; treatment with graded levels of EGTA removed major portions of the original Ca2+ and Pi. 45Ca uptake by these mineral-depleted MV was markedly reduced, even in the presence of alkaline phosphatase substrates. Sucrose gradient fractionation of MVEM caused extensive loss of Pi, but not Ca2+, from the low-density alkaline phosphatase-rich fractions. This reveals that Ca2+ and Pi are not initially coupled together: Pi is largely soluble, whereas Ca2+ must be tightly bound. In the high-density vesicles, large amounts of both Ca2+ and Pi are present.

  19. Repeated immunostaining of the same tissue section using alkaline phosphatase as a reporter.

    PubMed

    Smith, A A

    2016-08-01

    One can determine the best dilution of a primary antibody for immunohistochemistry that uses horseradish peroxidase conjugated to a secondary antibody by testing increasing concentrations sequentially on the same tissue section. When the same tissue section is incubated repeatedly with increasing concentrations of primary antibodies to epithelial membrane antigen, smooth muscle α-actin, or vimentin using alkaline phosphatase conjugated to a secondary antibody as the reporter, the best staining was obtained with a less concentrated primary antibody than was optimal for a single staining test. The best concentration of primary antibody for single run staining using an alkaline phosphatase reporting system is usually four times the best concentration for staining with multiple runs. The optimal concentration can be determined by denaturing the residual alkaline phosphatase and extracting residual stain by incubating the section in 4:1 diglyme:phosphate buffered saline for 20 min at 80(o) C between tests of primary antibody concentrations. I tested the method for four chromogens from one supplier and one chromogen from a different supplier.

  20. Cobalt(III), a probe of metal binding sites of Escherichia coli alkaline phosphatase.

    PubMed Central

    Anderson, R A; Vallee, B L

    1975-01-01

    To facilitate the study of individual metal binding sites of polymeric metalloproteins, conversion of exchange-labile Co(II) in E. coli alkaline phosphatase (EC 3.1.3.1) to exchange-inert Co(III) was examined. Oxidation of Co(II) alkaline phosphatase with hydrogen peroxide results in a single absorption maximum at 530 nm and loss both of the characteristic electron paramagnetic signal and of enzymatic activity. Zinc neither reactivates this enzyme nor displaces the oxidized cobalt atoms. Metal and amino-acid analyses demonstrate that oxidation alters neither cobalt binding nor amino-acid composition of the enzyme. Al data are consistent with the conclusion that hydrogen peroxide oxidizes Co(II) in alkaline phosphatase to Co(III). Polymeric metalloenzymes can contain different categories of metal atoms serving in catalysis, structure stabilization, and/or control and exerting their effects independently or interdependently. The in situ conversion of exchange-labile Co(II) to exchange-stable (Co(III) offers a method to selectively and differentially "freeze" cobalt atoms at their respective binding sites. The accompanying spectral changes and concomitant retardation in ligand exchange reactions may be used to differentiate between specific metal binding sites that serve different roles in polymeric metalloenzymes. PMID:164026

  1. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    SciTech Connect

    Ayyagari, M.; Kamtekar, S.; Pande, R.; Marx, K.; Kumar, J.

    1994-12-31

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalyst both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.

  2. Increase in alkaline phosphatase activity in calvaria cells cultured with diphosphonates.

    PubMed Central

    Felix, R; Fleisch, H

    1979-01-01

    1. Dichloromethanediphosphonate and to a lesser degree 1-hydroxyethane-1,1-diphosphonate, two compounds characterized by a P-C-P bond, increased the alkaline phosphatase activity of cultured rat calvaria cells up to 30 times in a dose-dependent fashion. 2. Both diphosphonates also slightly inhibited the protein synthesis in these cells. 3. Thymidine, an inhibitor of cell division, did not inhibit the induction of the enzyme, indicating that the increase in enzyme activity was not due to the formation of a specific population of cells with high alkaline phosphatase activity. 4. The effect on alkaline phosphatase was suppressed by the addition of cycloheximide, an inhibitor of protein synthesis. 5. After subculturing the stimulated cells in medium without diphosphonates, the enzyme activity fell almost to the control value. 6. Bovine parathyrin diminished the enzyme activity of the control cells and the cells treated with dichloromethanediphosphonate; however, at high concentration the effect of parathyrin was greater on the diphosphonate-treated cells than on the control cells. 7. The electrophoretic behaviour, heat inactivation, inhibition by bromotetramisole or by phenylalanine, and the Km value of the induced enzyme were identical with that of the control enzyme. PMID:534490

  3. Alterations in activities of acid phosphatase, alkaline phosphatase, ATPase and ATP content in response to seasonally varying Pi status in okra (Abelmoschus esculentus).

    PubMed

    Sen, Supatra; Mukherji, S

    2004-04-01

    Phosphorus (P) is the second most important macronutrient for plant growth. Plants exhibit numerous physiological and metabolic adaptations in response to seasonal variations in phosphorus content. Activities of acid and alkaline phosphatases, ATPase and ATP content were studied in summer, rainy and winter seasons at two different developmental stages (28 and 58 days after sowing) in Okra. Activities of both acid and alkaline phosphatases increased manifold in winter to cope up with low phosphorus content. ATP content and ATPase activity were high in summer signifying an active metabolic period. Phosphorus deficiency is characterized by low ATP content and ATPase activity (which are in turn partly responsible for a drastic reduction in growth and yield) and enhanced activities of acid and alkaline phosphatases which increase the availability of P in P-deficient seasons.

  4. Ozone inhalation in rats: effects on alkaline phosphatase and lactic dehydrogenase isoenzymes in lavage and plasma

    SciTech Connect

    Nachtman, J.P.; Moon, H.L.; Miles, R.C.

    1988-10-01

    Ozone is found in urban and rural atmospheres and is produced from a variety of natural and man-made sources. Animal studies conducted at typical ambient levels result in reproducible morphological, biochemical and functional effects. Ozone damages type I epithelial cells, induces proliferation of type II cells and produces inflammation of the terminal bronchiolar-alveolar duct region. Ozone increases lung oxygen utilization and increases glutathione metabolism. Ozone increases airway resistance. The authors measured lactic dehydrogenase (LD) isoenzymes to ascertain the tissue giving rise to the increased LD activity in lavage. They also assayed acid phosphatase, alkaline phosphatase, creatine kinase activities, and protein levels since these parameters were increased in rat lung lavage after particulate exposure. They determined white cell differential and red cell morphology parameters because previous investigators reported that ozone increased neutrophil/lymphocyte ratio.

  5. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.

  6. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding. PMID:21521136

  7. Osteopontin gene expression and alkaline phosphatase activity in avian tibial dyschondroplasia.

    PubMed

    Knopov, V; Leach, R M; Barak-Shalom, T; Hurwitz, S; Pines, M

    1995-04-01

    Osteopontin (OPN) gene expression and alkaline phosphatase activity were evaluated in the epiphyseal growth plates of normal chickens and in diet-induced tibial dyschdroplasia (TD)-afflicted chickens. In the normal growth plate, OPN gene was expressed by a) cells of the subperichondrial zone surrounding the articular cartilage, b) a narrow layer of hypertrophic chondrocytes at the hypertrophic zone, and c) lower hypertrophic chondrocytes at the zone of matrix calcification and endochondral bone formation. The latter two layers were separated by OPN-negative chondrocytes. Osteopontin gene was not expressed throughout the zone of articular cartilage in the nonhypertrophic or upper hypertrophic portions of the growth plate cartilage. Only at sites of calcification of the lower hypertrophic zone was the expression of the OPN gene associated with alkaline phosphatase activity. In all TD lesions, regardless of the induction procedure, the layer of chondrocytes of the lower hypertrophic zone expressing the OPN gene and the layer of OPN-negative cells separating the two areas of OPN-expressing cells were grossly enlarged. This resulted in a wide discontinuity between the chondrocytes of the lower hypertrophic zone expressing the OPN gene and the cells expressing the OPN gene that are associated with mineralization. In TD, no alkaline phosphatase activity was detected within the growth plate cartilage, but normal OPN gene expression was observed at the subperichondrium zone and at the zone of endochondral bone formation. The results of this study suggest that in the epiphyseal growth plate, OPN expression is not restricted to sites of bone calcification.

  8. Diagnostic Utility of Heat Stable Alkaline Phosphatase in Hypertensive Disorders of Pregnancy

    PubMed Central

    Abu Raghavan, Srinivasan; Ghosh, Seethesh; Basu, Sharbari; Ramasamy, Ramesh; Murugaiyan, Sathish Babu

    2014-01-01

    Background: Hypertensive disorders in pregnancy (HDP) complicate 3-10% of all pregnancies. Though there are several biochemical parameters which aid in predicting hypertension of pregnancy, human placental alkaline phosphatase (PLAP), synthesized in placenta during pregnancy by placental syncytiotrophoblast, assumes diagnostic relevance. The purpose of this study was to compare the total alkaline phosphatase (ALP) and heat stable placental alkaline phosphatase (PLAP) levels in the serum of normotensive and hypertensive disorders of pregnancy and to evaluate the clinical utility of ALP and PLAP as a reliable, sensitive, specific and economical biochemical marker of HDP. Materials and Methods: This was a case control study, carried out on pregnant women with hypertension, of south Indian population. Study included pregnant women, 60 patients with hypertension and 60 controls. Biochemical assays were carried out by the IFCC approved procedures based on spectrophotometric method and using fully automated random access chemistry analyser. Data was compared by using student t-test. ROC was drawn to find out optimum cut off for ALP, PLAP and PLAP/ALP ratio in HDP. Pearson’s correlation was performed to ascertain the association among markers. Results: Serum total ALP, PLAP and PLAP/ALP ratio levels were significantly higher in hypertensive pregnant women when compared to controls (p<0.05). There was significant correlation among ALP, PLAP and DBP. ROC analysis of ALP (169.5), PLAP (69) and PLAP/ALP (0.44) ratios showed optimum cut-offs in diagnosis of hypertension in pregnancy. Conclusion: Serum heat stable ALP isoenzyme and PLAP/ALP ratio could be useful adjuvant markers in diagnosis of HDP in association with other relevant and economically viable biochemical tests. PMID:25584211

  9. Intestinal alkaline phosphatase: a summary of its role in clinical disease.

    PubMed

    Fawley, Jason; Gourlay, David M

    2016-05-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases.

  10. Intestinal alkaline phosphatase: a summary of its role in clinical disease.

    PubMed

    Fawley, Jason; Gourlay, David M

    2016-05-01

    Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases. PMID:27083970

  11. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. PMID:25865133

  12. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions.

  13. Alkaline phosphatase relieves desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocyte membranes

    SciTech Connect

    Stadel, J.M.; Rebar, R.; Crooke, S.T.

    1987-05-01

    Desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes results in 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of ..beta..-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoproterenol- and cAMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37/sup 0/C, pH = 8.0. In both cases alkaline phosphatase treatment significantly reduced desensitization of agonist-stimulated adenylate cyclase activity by 40-60%. Similar results were obtained following alkaline phosphatase treatment of membranes from isoproterenol- and cAMP-desensitized duck erythrocytes. In addition, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with phorbol 12-mystrate 13-acetate returned adenylate cyclase activity to near control values. In all experiments inclusion of 20 mM NaPO/sub 4/ to inhibit alkaline phosphatase during treatment of membranes blocked the enzyme's effect on agonist-stimulated adenylate cyclase activity. These results demonstrate a role for phosphorylation in desensitization of adenylate cyclase-coupled ..beta..-adrenergic receptors in avian erythrocytes.

  14. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation. PMID:27433601

  15. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation.

  16. Modification of human placental alkaline phosphatase by periodate-oxidized 1,N6-ethenoadenosine monophosphate.

    PubMed Central

    Chang, G G; Shiao, M S; Lee, K R; Wu, J J

    1990-01-01

    Oxidation of 1,N6-ethenoadenosine monophosphate (epsilon AMP) with periodate cleaved the cis-diol of the ribose ring and resulted in the formation of a dialdehyde derivative (epsilon AMP-dial). At room temperature epsilon AMP-dial was unstable and underwent beta-elimination to give 4',5'-anhydro-1,N6-ethenoadenosine dialdehyde acetal (A epsilon Ado-dial). These nucleotide analogues were found to inactivate human placental alkaline phosphatase in a time- and concentration-dependent manner. epsilon AMP-dial was shown to be an affinity label for the enzyme on the basis of the following criteria. (a) Kinetics of the enzyme activity loss over a wide range of epsilon AMP-dial concentration showed a saturating phenomenon. Removal of the phosphate group made the reagent (A epsilon Ado-dial) become a general chemical modifying reagent. (b) The artificial substrate p-nitrophenyl phosphate gave substantial protection of the enzyme against inactivation. (c) epsilon AMP-dial was a substrate and a partial mixed-type inhibitor for the enzyme. Results of the inhibition and protection studies indicated that the reagent and substrate could combine with the enzyme simultaneously. Besides the phosphate-binding domain, an induced hydrophobic region is proposed for the substrate-binding site for human placental alkaline phosphatase. PMID:2176472

  17. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  18. Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1997-01-01

    It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.

  19. Alkaline Phosphatase Protects Lipopolysaccharide-Induced Early Pregnancy Defects in Mice

    PubMed Central

    Lei, Wei; Ni, Hua; Herington, Jennifer; Reese, Jeff; Paria, Bibhash C.

    2015-01-01

    Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women. PMID:25910276

  20. Intestinal Alkaline Phosphatase Is Protective to the Preterm Rat Pup Intestine

    PubMed Central

    Heinzerling, Nathan P.; Liedel, Jennifer L.; Welak, Scott R.; Fredrich, Katherine; Biesterveld, Ben E.; Pritchard, Kirkwood A.; Gourlay, David M.

    2014-01-01

    Background Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Methods Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNF-a, IL-6 and iNOS and permeability and cytokine expression after LPS. exposure. Results There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Conclusions Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. PMID:24888842

  1. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. PMID:25996812

  2. Acute decrease in alkaline phosphatase after brain injury: A potential mechanism for tauopathy.

    PubMed

    Arun, Peethambaran; Oguntayo, Samuel; Albert, Stephen Van; Gist, Irene; Wang, Ying; Nambiar, Madhusoodana P; Long, Joseph B

    2015-11-16

    Dephosphorylation of phosphorylated Tau (pTau) protein, which is essential for the preservation of neuronal microtubule assemblies and for protection against trauma-induced tauopathy and chronic traumatic encephalopathy (CTE), is primarily achieved in brain by tissue non-specific alkaline phosphatase (TNAP). Paired helical filaments (PHFs) and Tau isolated from Alzheimer's disease (AD) patients' brains have been shown to form microtubule assemblies with tubulin only after treatment with TNAP or protein phosphatase-2A, 2B and -1, suggesting that Tau protein in the PHFs of neurons in AD brain is hyperphosphorylated, which prevents microtubule assembly. Using blast or weight drop models of traumatic brain injury (TBI) in rats, we observed pTau accumulation in the brain as early as 6h post-injury and further accumulation which varied regionally by 24h post-injury. The pTau accumulation was accompanied by reduced TNAP expression and activity in these brain regions and a significantly decreased plasma total alkaline phosphatase activity after the weight drop. These results reveal that both blast- and impact acceleration-induced head injuries cause an acute decrease in the level/activity of TNAP in the brain, which potentially contributes to trauma-induced accumulation of pTau and the resultant tauopathy. The regional changes in the level/activity of TNAP or accumulation of pTau after these injuries did not correlate with the accumulation of amyloid precursor protein, suggesting that the basic mechanism underlying tauopathy in TBI might be distinct from that associated with AD.

  3. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    PubMed Central

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-01-01

    Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403

  4. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    SciTech Connect

    Henthorn, P.; Zervos, P.; Raducha, M.; Harris, H.; Kadesch, T.

    1988-09-01

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity.

  5. Effect of starvation and sampling time on plasma alkaline phosphatase activity and calcium homeostasis in the rat.

    PubMed

    Thompson, C S; Mikhailidis, D P; Gill, D S; Jeremy, J Y; Bell, J L; Dandona, P

    1989-01-01

    The effect of starvation and sampling time on plasma alkaline phosphatase activity, total plasma calcium concentration and whole blood ionized calcium concentration was determined in the rat. Starvation caused a significant fall in total and ionized calcium concentrations as well as in alkaline phosphatase activity. These changes were accompanied by a fall in whole blood pH and an increase in the anion gap and a decrease in urinary excretion of calcium. These indices were restored to normal following refeeding. There was no change in serum 25-OH vitamin D concentrations following starvation for 3 days. Alkaline phosphatase activity showed a pattern compatible with the presence of a circadian rhythm when sampling took place between 0800 and 1800 h. Total and ionized calcium concentrations did not show such a rhythm when animals were fed the present diet. PMID:2786112

  6. X-Ray Structure Reveals a New Class and Provides Insight into Evolution of Alkaline Phosphatases

    PubMed Central

    Bihani, Subhash C.; Das, Amit; Nilgiriwala, Kayzad S.; Prashar, Vishal; Pirocchi, Michel; Apte, Shree Kumar; Ferrer, Jean-Luc; Hosur, Madhusoodan V.

    2011-01-01

    The alkaline phosphatase (AP) is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP). The crystal structure reveals many differences from other APs: 1) the catalytic residue is a threonine instead of serine, 2) there is no third metal ion binding pocket, and 3) the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily. PMID:21829507

  7. Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation-induced heart disease in rats

    SciTech Connect

    Lauk, S.

    1987-04-01

    Alkaline phosphatase activity of capillary endothelial cells in the heart of Wistar and Sprague-Dawley rats was studied sequentially after single doses of 10, 15, 20, or 25 Gy. Following irradiation capillary density and alkaline phosphatase activity were focally lost before myocardial degeneration or clinical symptoms of heart disease developed. Recovery from both changes took place after doses of 10 or 15 Gy. The decrease in capillary density and enzyme activity showed the same strain difference in latency times and in the extent of the lesions as previously described for pathological and clinical signs of heart disease.

  8. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  9. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  10. A disposable alkaline phosphatase-based biosensor for vanadium chronoamperometric determination.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2014-02-24

    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water.

  11. Structure of the glycosylphosphatidylinositol membrane anchor of human placental alkaline phosphatase.

    PubMed Central

    Redman, C A; Thomas-Oates, J E; Ogata, S; Ikehara, Y; Ferguson, M A

    1994-01-01

    The glycosylphosphatidylinositol membrane anchor of human placental alkaline phosphatase was isolated by exhaustive proteolysis followed by hydrophobic interaction chromatography. The resulting glycosylphosphatidylinositol-peptide was subjected to compositional analysis and chemical and enzymic modifications. The neutral-glycan fraction, prepared by dephosphorylation followed by HNO2 deamination and reduction, was sequenced using exoglycosidases and acetolysis. The phosphatidylinositol moiety was analysed by fast-atom bombardment mass spectrometry and gas chromatography-mass spectrometry. Taken together the data suggest the structure, Thr-Asp-ethanolamine-PO4-Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN-(sn-1-O- alkyl-2-O-acylglycerol-3-PO4-1-myo-D-inositol), which contains an additional ethanolamine phosphate group at an unknown position. PMID:7945214

  12. Spatial variability of dissolved phosphorous concentrations and alkaline phosphatase activity in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chang, J.; Ho, T.; Gong, G.

    2010-12-01

    The concentrations of dissolved inorganic phosphorus (DIP) and alkaline phosphatase activity (APA) have been determined at about 25 sampling stations in the East China Sea since 2003. The stations are mainly distributed from the Changjiang river mouth to northern Taiwan and east to the shelf break. In addition to the Changjiang discharge, we have found a specific nutrient source around a coastal site (122° 2’30’’ E, 28° 40’ N). Elevated DIP and nitrate concentrations have been constantly observed around the sampling station for 8 years, where the surface DIP concentrations are generally around 0.3 µM. The nutrient source may either originate from ground water discharge or coastal upwelling, where lower temperature has been observed in the water column around the station. In general, APA has been negatively correlated with DIP concentrations in the studies sites, with lowest APA around the high DIP station and the Changjiang river mouth.

  13. Osteocalcin and bone-specific alkaline phosphatase in Asian elephants (Elephas maximus) at different ages.

    PubMed

    Arya, Nlin; Moonarmart, Walasinee; Cheewamongkolnimit, Nareerat; Keratikul, Nutcha; Poon-Iam, Sawinee; Routh, Andrew; Bumpenpol, Pitikarn; Angkawanish, Taweepoke

    2015-11-01

    Bone turnover markers could offer a potential alternative means for the early diagnosis of metabolic bone disease in young growing elephants although the baseline of bone turnover markers in elephant is not well established. The aim of this study was to determine any relationship between the age of captive Asian elephants (Elephas maximus) and markers of bone formation. Serum samples from 24 female Asian elephants were collected to evaluate levels of two bone formation markers, namely, osteocalcin (OC) and bone-specific alkaline phosphatase (BAP). Both intact and N-terminal midfragment OC and BAP were negatively correlated with age. The findings demonstrate that younger elephants have a higher rate of bone turnover than older elephants. Use of these and additional bone markers could lead to the establishment of validated protocols for the monitoring of bone disease in elephants. PMID:26361748

  14. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  15. Fluoride stimulates ( sup 3 H)thymidine incorporation and alkaline phosphatase production by human osteoblasts

    SciTech Connect

    Khokher, M.A.; Dandona, P. )

    1990-11-01

    The effect of sodium fluoride on alkaline phosphatase (ALP) release and ({sup 3}H)thymidine uptake by human osteoblasts in culture was investigated. Sodium fluoride stimulated both ALP release and ({sup 3}H)thymidine uptake at concentrations of sodium fluoride greater than 250 mumol/L. This stimulation was similar in magnitude to that induced by 1,25-dihydroxycholecalciferol. The fluoride-induced increase in ALP was inhibited by verapamil, a calcium channel blocker. We conclude that sodium fluoride stimulates osteoblasts to proliferate and to release ALP. This stimulation by fluoride is dependent on calcium influx. Fluoride-induced stimulation of human osteoblasts may be relevant to its effect in enhancing bone formation in patients with osteoporosis.

  16. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    PubMed

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.

  17. A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2014-01-01

    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 μM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap water. PMID:24569772

  18. Biochemical and physiological properties of alkaline phosphatases in five isolates of marine bacteria.

    PubMed Central

    Hassan, H M; Pratt, D

    1977-01-01

    The alkaline phosphatase activities of five unique isolates of marine bacteria were found to be associated with the periplasmic space; however, the enzymes from these isolates differed with respect to their repressibility, the apparent number of isoenzymes, the necessity for Mg2 for activity, and the conditions required for their release. With three of the isolates, the enzyme was released when cells that had been washed in 0.5 M NaCl were suspended in sucrose; however, with the other two isolates, one required the additional presence of tris(hydroxymethyl)aminomethane and the other required the presence of lysozyme and ethylenediaminetetraacetic acid. In two isolates the activity was constitutive, in two it was partially repressed, and in one it was completely repressed by inorganic phosphate. The repression of activity was associated with corresponding changes of activity bands as seen by acrylamide gel electrophoresis. Images PMID:845125

  19. Fingerprint deposition on nitrocellulose and polyvinylidene difluoride membranes using alkaline phosphatase.

    PubMed

    Kurien, Biji T; Danda, Debashish; Scofield, R Hal

    2015-01-01

    Dactyloscopy or fingerprint identification is a vital part of forensic evidence. Identification with fingerprints has been known since the finding of finger impressions on the clay surface of Babylonian legal contracts almost 4,000 years ago. The skin on the fingers and palms appears as grooves and ridges when observed under a microscope. A unique fingerprint is produced by the patterns of these friction skin ridges. Visible fingerprints can be deposited on solid surfaces. Colored inks have been used to deposit fingermarks on documents. Herein, we show that alkaline phosphatase can be used to transfer prints from fingers or palm to nitrocellulose or polyvinylidene difluoride membranes. The prints can be detected by using the nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate method of detection.

  20. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae.

    PubMed

    Vlahović, Milena; Lazarević, Jelica; Perić-Mataruga, Vesna; Ilijin, Larisa; Mrdaković, Marija

    2009-05-01

    Biochemical analyses can point to toxicant presence before its effects can be detected at higher organizational levels. We investigated responses of larval mass and alkaline phosphatase (ALP) to different cadmium treatments in 4th instar gypsy moth larvae from 20 full-sib families. Changes in trait values and trait plasticities as well as their variation were monitored after acute and chronic exposure or recovery from two cadmium concentrations (Cd(1)=10microg and Cd(2)=30microg Cd/g dry food). Larval mass only decreased, without returning to the control level at recovery stage following chronic cadmium challenge. Acute stress did not change trait value but increased genetic variance of larval mass. Significant ALP activity changes, sensitivity of isozyme patterns (Mr of 60, 64, and 85kDa) and increased variation in ALP plasticity during acute exposure to cadmium point to its possible aplication as an exposure biomarker.

  1. Key role of alkaline phosphatase in the development of human-derived nanoparticles in vitro.

    PubMed

    Hunter, Larry W; Shiekh, Farooq A; Pisimisis, George T; Kim, Sung-Hoon; Edeh, Samuel N; Miller, Virginia M; Lieske, John C

    2011-03-01

    Alkaline phosphatase (ALP) is an enzyme critical for physiological and pathological biomineralization. Experiments were designed to determine whether ALP participates in the formation of calcifying nanometer sized particles (NPs) in vitro. Filtered homogenates of human calcified carotid artery, aorta and kidney stones were inoculated into cell culture medium containing 10% fetal bovine serum in the absence or presence of inhibitors of ALP or pyrophosphate. A calcific NP biofilm developed within 1 week after inoculation and their development was reduced by pyrophosphate and inhibitors of ALP. ALP protein and enzymatic activity were detected in washed NPs, whether calcified or decalcified. Therefore, ALP activity is required for the formation of calcifying NPs in vitro, as has previously been implicated during pathological calcification in vivo. PMID:21029794

  2. Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat.

    PubMed Central

    Beertsen, W; van den Bos, T

    1992-01-01

    To determine whether alkaline phosphatase (ALP) can cause the mineralization of collagenous matrices in vivo, bovine intestinal ALP was covalently bound to slices of guanidine-extracted demineralized bovine dentin (DDS). The preparations were implanted subcutaneously over the right half of the rat skull. Control slices not treated with the enzyme were implanted over the left half of the skull of the same animals. Specimens were harvested after periods varying from 1 to 4 wk. It was shown that ALP-coupled DDS rapidly accumulated hydroxyapatite crystals. 4 wk after implantation, the content of calcium and phosphate per microgram of hydroxyproline amounted up to 80 and 60%, respectively, of that found in normal bovine dentin. Our observations present direct evidence that ALP may play a crucial role in the induction of hydroxyapatite deposition in collagenous matrices in vivo. Images PMID:1602003

  3. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.

    PubMed

    Barrozo, Alexandre; Duarte, Fernanda; Bauer, Paul; Carvalho, Alexandra T P; Kamerlin, Shina C L

    2015-07-22

    It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.

  4. Modulation of Symbiont Lipid A Signaling by Host Alkaline Phosphatases in the Squid-Vibrio Symbiosis

    PubMed Central

    Rader, Bethany A.; Kremer, Natacha; Apicella, Michael A.; Goldman, William E.; McFall-Ngai, Margaret J.

    2012-01-01

    ABSTRACT The synergistic activity of Vibrio fischeri lipid A and the peptidoglycan monomer (tracheal cytotoxin [TCT]) induces apoptosis in the superficial cells of the juvenile Euprymna scolopes light organ during the onset of the squid-vibrio symbiosis. Once the association is established in the epithelium-lined crypts of the light organ, the host degrades the symbiont’s constitutively produced TCT by the amidase activity of a peptidoglycan recognition protein (E. scolopes peptidoglycan recognition protein 2 [EsPGRP2]). In the present study, we explored the role of alkaline phosphatases in transforming the lipid A of the symbiont into a form that changes its signaling properties to host tissues. We obtained full-length open reading frames for two E. scolopes alkaline phosphatase (EsAP) mRNAs (esap1 and esap2); transcript levels suggested that the dominant light organ isoform is EsAP1. Levels of total EsAP activity increased with symbiosis, but only after the lipid A-dependent morphogenetic induction at 12 h, and were regulated over the day-night cycle. Inhibition of total EsAP activity impaired normal colonization and persistence by the symbiont. EsAP activity localized to the internal regions of the symbiotic juvenile light organ, including the lumina of the crypt spaces where the symbiont resides. These data provide evidence that EsAPs work in concert with EsPGRPs to change the signaling properties of bacterial products and thereby promote persistent colonization by the mutualistic symbiont. PMID:22550038

  5. Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes.

    PubMed

    Turner, A S; Alvis, M; Myers, W; Stevens, M L; Lundy, M W

    1995-10-01

    An animal model of human osteoporosis which adequately meets many of the criteria needed to test new therapeutic agents is currently unavailable. The old ewe may serve this purpose, as changes in bone remodeling occur within 3 months, and a difference in bone mass has been indicated 6 months after ovariectomy. In the current study, we have measured longitudinal changes in bone mass and bone-specific alkaline phosphatase (BSAP) for six months in 7-9 year old ovariectomized (OVX) ewes. Thirty ewes were divided into three groups: sham-treated (n = 9), OVX (n = 12) and OVX with estrogen implants (OVXE, n = 9). Bone mineral density (BMD) was determined at 0, 3 and 6 months in the vertebrae (L4-L6/L5-L7), calcaneus (CAL) and distal radius (DR) using dual-energy X-ray absorptiometry (DEXA). Bone-Specific Alkaline Phosphatase (Tandem-R Ostase; Hybritech) was determined at monthly intervals. Body weight did not significantly change in any group during treatment compared to sham, although a trend of increasing body weight at 3 and 6 months was apparent in both OVX groups. Luteinizing hormone increased in all OVX ewes as a function of time as expected, demonstrating successful ovariectomies. Uterine weight was significantly increased (p < 0.01) in the OVXE animals compared to Sham and OVX groups. BMD did not change significantly during the 6-month treatment period in the CAL or DR. BMD in the vertebrae (L4-L6/L5-L7) was significantly lower in the OVX group compared to sham (p < 0.08).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579943

  6. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily

    PubMed Central

    2015-01-01

    It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design. PMID:26091851

  7. Alkaline phosphatase activity in the western English Channel: Elevations induced by high summertime rainfall

    NASA Astrophysics Data System (ADS)

    Rees, Andrew P.; Hope, Sam B.; Widdicombe, Claire E.; Dixon, Joanna L.; Woodward, E. Malcolm S.; Fitzsimons, Mark F.

    2009-03-01

    Alkaline phosphatase activity (APA) was determined in bulk particulate material and in a single-cell (ELF) assay at station L4 in the western English Channel during the summer of 2007. Throughout this period, the UK experienced its heaviest summertime rainfall since records began in 1914; with the result that riverine run-off into coastal waters was also elevated relative to long-term averages. Between May and August 2007, three distinct periods of elevated river run-off were observed which resulted in salinity minima at L4 on days 141, 190 and 232. An extended period of high river run-off between days 170 and 210 was responsible for decreases in near-surface salinity at L4 from 35.2068 to a minimum on day 190 of 34.7422. This contributed to the development of haline stratification which supported the development of an intense bloom of the centric diatom Chaetoceros debelis, with maximum observed chlorophyll a concentration of 8.69 μg l -1. Minima in salinity, and maxima in chlorophyll concentration on day 190 were coincident with a peak in river-derived dissolved inorganic nitrogen (DIN) of 1.9 μmol l -1 which was >5 times greater than the summertime mean and 24 times the concentrations experienced at L4 on weeks immediately before and after. There was no accompanying increase in dissolved inorganic phosphorus (DIP), and the DIN:DIP ratio increased to 49. With the inherent phosphorus stress that this caused, rates of APA increased from <4 to 42.4 nmolP l -1 h -1. ELF analysis on day 197 identified two taxa actively expressing alkaline phosphatase: the dinoflagellate Prorocentrum micans and ciliate Tiarana sp.

  8. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  9. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  10. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.

    PubMed

    Chung, Thomas D Y

    2013-01-01

    Laboratory automation and robotics have "industrialized" the execution and completion of large-scale, enabling high-capacity and high-throughput (100 K-1 MM/day) screening (HTS) campaigns of large "libraries" of compounds (>200 K-2 MM) to complete in a few days or weeks. Critical to the success these HTS campaigns is the ability of a competent assay development team to convert a validated research-grade laboratory "benchtop" assay suitable for manual or semi-automated operations on a few hundreds of compounds into a robust miniaturized (384- or 1,536-well format), well-engineered, scalable, industrialized assay that can be seamlessly implemented on a fully automated, fully integrated robotic screening platform for cost-effective screening of hundreds of thousands of compounds. Here, we provide a review of the theoretical guiding principles and practical considerations necessary to reduce often complex research biology into a "lean manufacturing" engineering endeavor comprising adaption, automation, and implementation of HTS. Furthermore we provide a detailed example specifically for a cell-free in vitro biochemical, enzymatic phosphatase assay for tissue-nonspecific alkaline phosphatase that illustrates these principles and considerations. PMID:23860647

  11. Zein as biodegradable material for effective delivery of alkaline phosphatase and substrates in biokits and biosensors.

    PubMed

    Jornet-Martínez, N; Campíns-Falcó, P; Hall, E A H

    2016-12-15

    A biodegradable material, zein, is proposed as a reagent delivery platform for biokits and biosensors based on alkaline phosphatase (ALP) activity/inhibition in the presence of phosphatase substrates. The immobilization and release of both the substrate and/or the active ALP, in a biodegradable and low-cost material such as zein, a prolamin from maize, and in combination with glycerol as plasticizer have been investigated. Three zein-based devices are proposed for several applications: (1) inorganic phosphorus estimation in water of different sources (river, lake, coastal water and tap water) with a detection limit of 0.2mg/L - compared to at least 1mg/L required by legislation, (2) estimation of ALP in saliva and (3) chlorpyrifos control in commercial preparations. The single-use kits developed are low cost, easy and fast to manufacture and are stable for at least 20 days at -20°C, so the zein film can preserve and deliver both the enzyme and substrates.

  12. Cloning & Characterization of the Cry1Ac-binding Alkaline Phosphatase (HvALP) from Heliothis virescens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Membrane bound alkaline phosphatases (mALPs) in the insect midgut have been reported as functional receptors for Cry toxins from the bacterium Bacillus thuringiensis. We previously reported the identification of HvALP in the midgut of Heliothis virescens larvae as a Cry1Ac binding protein that is d...

  13. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases.

  14. Pst I restriction fragment length polymorphism of the human placental alkaline phosphatase gene in normal placentae and tumors

    SciTech Connect

    Tsavaler, L.; Penhallow, R.C.; Kam, W.; Sussman, H.H.

    1987-07-01

    The structure of the human placental alkaline phosphatase gene from normal term placentae was studied by restriction enzyme digestion and Southern blot analysis using a cDNA probe to the gene for the placental enzyme. The DNA digests fall into three distinct patterns based on the presence and intensity of an extra 1.1-kilobase Pst I Band. The extra 1.1-kilobase band is present in 9 of 27 placenta samples, and in 1 of these samples the extra band is present at double intensity. No polymorphism was revealed by digestion with restriction enzymes EcoRI, Sma I, BamHI, or Sac I. The extra Pst I-digestion site may lie in a noncoding region of the gene because no correlation was observed between the restriction fragment length polymorphism and the common placental alkaline phosphatase alleles identified by starch gel electrophoresis. In addition, because placental alkaline phosphatase is frequently re-expressed in neoplasms, the authors examined tissue from ovarian, testicular, and endometrial tumors and from BeWo choriocarcinoma cells in culture. The Pst I-DNA digestion patterns from these cells and tissues were identical to those seen in the normal ovary and term placentae. The consistent reproducible digestion patterns seen in DNA from normal and tumor tissue indicate that a major gene rearrangement is not the basis for the ectopic expression of placental alkaline phosphatase in neoplasia.

  15. Changes in Bone Alkaline Phosphatase and Procollagen Type-1 C-Peptide after Static and Dynamic Exercises

    ERIC Educational Resources Information Center

    Kubo, Keitaro; Yuki, Kazuhito; Ikebukuro, Toshihiro

    2012-01-01

    We investigated the effects of two types of nonweight-bearing exercise on changes in bone-specific alkaline phosphatase (BAP) and pro-collagen type 1 C-peptide (P1P). BAP is a specific marker of bone synthesis, whereas P1P reflects synthesis of type 1 collagen in other organs as well as bone. Eight participants performed static and dynamic…

  16. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass

    PubMed Central

    Reilly, Gwendolen C.; Radin, Shula; Chen, Andrew T.; Ducheyne, Paul

    2009-01-01

    Bioactive glass is used as both a bone filler and as a coating on implants, and has been advocated as a potential osteogenic scaffold for tissue engineering. Rat derived mesenchymal stem cells (MSCs) show elevated levels of levels of alkaline phosphatase activity when grown on 45S5 bioactive glass as compared to standard tissue culture plastic. Similarly, exposure to the dissolution products of 45S5 elevates alkaline phosphatase activity and other osteogenic markers in these cells. We investigated whether human MSCs grown under the same laboratory conditions as rat MSCs would exhibit similar responses. In general, human MSCs produce markedly less alkaline phosphatase activity than rat MSCs, regardless of cell culture conditions, and do not respond to the growth factor BMP-2 in the same way as rat MSCs. In our experiments there was no difference in alkaline phosphatase activity between human MSCs grown on 45S5 bioactive glass or tissue culture plastic, in samples from five different orthopaedic patients, regardless of culture media composition. Neither was there any consistent effect of 45S5 dissolution products on human MSCs from three different donors. These results suggest that the positive effects of bioactive glass on bone growth in human patients are not mediated by accelerated differentiation of mesenchymal stem cells. PMID:17586040

  17. Human intestinal alkaline phosphatase-binding IgG in patients with severe bacterial infections.

    PubMed Central

    Mäder, M; Kolbus, N; Meihorst, D; Köhn, A; Beuche, W; Felgenhauer, K

    1994-01-01

    Patterns of alkaline phosphatase (AP)-binding proteins were observed in the alkaline pH range of 6.5-9.5 upon isoelectric focusing and blotting of serum from patients with inflammatory diseases. After isolation using affinity chromatography on protein A or immunoaffinity chromatography on AP coupled to cyanogen bromide (CNBr)-activated Sepharose, the AP-binding protein was identified as IgG on Western blots and in ELISA using human IgG-specific antibodies. It was shown that this IgG binds to AP from both calf (bovine) and human intestine. However, it binds neither to the human liver-bone-kidney (LBK) isoform nor to bacterial AP. Moderate reaction was observed with human placental AP. Comparing patients with various diagnoses (n = 284), AP-binding antibodies were mainly found in severe bacterial infections. They were not detected in serum from healthy blood donors (n = 300). The presence of AP-binding IgG was independent of the infected organ and the bacterial species causing infection. This antibody may be useful for discriminating bacterial from viral infection and for indicating severe bacterial inflammation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8287614

  18. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  19. Placental alkaline phosphatase isoenzyme expression by the non-HeLa DoT cervical-carcinoma cell line.

    PubMed Central

    Kottel, R H; Fishman, W H

    1981-01-01

    Expression of the oncodevelopmental protein, placental alkaline phosphatase, was observed in DoT cells, an epidermoid cell line derived from cervical carcinoma. Under normal conditions of growth in vitro, biochemical inhibition, cytochemical and immunological studies revealed that these cells express the term-placental (Regan) isoenzyme. Thus alkaline phosphatase activity was observed to be heat-stable and inhibited by L-phenylalanine. These properties, supported by immunoelectrophoretic analysis using antisera specific for liver, intestinal or term-placental isoenzymes, identified the isoenzyme as placental type. DoT cells treated with prednisolone (1 microgram/ml) increased total alkaline phosphatase specific activity. This activity was also identified as term-placental phosphatase isoenzyme. On the other hand, treatment of the same cells with sodium butyrate (1 mM) did not induce increased activity of the term-placental isoenzyme, an unexpected observation. As a result of these studies, DoT cells are proposed as a representative cell line for studies of the regulation of oncodevelopmental gene expression in human tumour cells of cervical origin. Images Fig. 2. Fig. 3. PMID:7342975

  20. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  1. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease

    PubMed Central

    López-Valverde, Antonio; Gómez-de-Diego, Rafel; Arias-Santiago, Salvador; de Vicente-Jiménez, Joaquín

    2013-01-01

    Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin. Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation. Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth. Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin. Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin. PMID:23524437

  2. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  3. Kinetics of gene expression of alkaline phosphatase during healing of alveolar bone in rats.

    PubMed

    Rodrigues, Willian Caetano; Fabris, André Luís da Silva; Hassumi, Jaqueline Suemi; Gonçalves, Alaíde; Sonoda, Celso Koogi; Okamoto, Roberta

    2016-06-01

    Immunohistochemical studies and molecular biology have enabled us to identify numerous proteins that are involved in the metabolism of bone, and their encoding genes. Among these is alkaline phosphatase (ALP), an enzyme that is responsible for the initiation of mineralisation of the extracellular matrix during alveolar bone repair. To evaluate the gene expression of ALP during this process, we studied nine healthy adult male rats, which had their maxillary central incisors extracted from the right side and were randomly divided into three groups. During three experimental periods, 7 days, 14 days, and 28 days, the alveoli were curetted, the rats killed, and samples analysed by real-time reverse transcription polymerase chain reaction (qRT-PCR). The RNAm that encodes the gene for the synthesis of ALP was expressed during the three periods analysed, but its concentration was significantly increased at 14 and 28 days compared with at 7 days. There was no significant difference between 14 and 28 days (p=0.0005). We conclude that genes related to ALP are expressed throughout the healing process and more intensively during the later periods (14 and 28 days), which coincides with the increased formation of mineralised bone. PMID:26935214

  4. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase.

    PubMed

    Yang, Jinjin; Zheng, Lin; Wang, Yu; Li, Wei; Zhang, Jinli; Gu, Junjie; Fu, Yan

    2016-03-15

    DNA-based peroxidase mimetics are facilely constructed through Cu(II)-coordination with different oligonucleotides involving G20, C20, A20 and T20, respectively, with high peroxidase mimicking activity as well as high stability against proteins. Peroxidase-like activities of DNA-Cu(II) complexes are greatly associated with the sequence composition of DNA templates, which decrease in the following order: G20>C20>A20>T20. G20-Cu(II) complex ([Cu(2+)]/[base]=0.05) possesses the Km value of 0.257 mM toward 3,3',5,5'-tetramethylbenzidine and 102.3mM toward hydrogen peroxide at 25 °C. G20-Cu(II) complexes are employed to develop a colorimetric turn-on assay of alkaline phosphatase with high sensitivity and selectivity, on the basis of pyrophosphate-induced inhibition of their intrinsic peroxidase-like activities. The limit of detection is achieved as 0.84 U/L with the linear response region of 20-200 U/L. Such colorimetric assay system is probably applicable for the quantitative determination of ALP in biological fluids.

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells.

    PubMed

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells.

  6. Ethnic differences in pre-adipocyte intracellular lipid accumulation and alkaline phosphatase activity.

    PubMed

    Ali, Aus T; Chirambo, George; Penny, Clement; Paiker, Janice E; Ikram, Faisel; Psaras, George; Crowther, Nigel J

    2015-01-01

    Alkaline phosphatase (ALP) increases lipid accumulation in human pre-adipocytes. This study was performed to assess whether ethnic differences in the prevalence of obesity in African and European females are related to differences in pre-adipocyte lipid accretion and ALP activity. Pre-adipocytes were isolated from 13 black and 14 white females. Adipogenesis was quantified using the lipid dye, Oil red O, whilst ALP activity was assayed in cell extracts on day zero and 12days after initiating adipogenesis. Lipid levels (OD units/mg protein) were lower in pre-adipocytes from white than black females on day 0 (0.36±0.05 versus 0.44±0.03, respectively; p<0.0005) and day 12 (1.18±0.14 versus 1.80±0.22, respectively; p<0.0005), as was ALP activity (mU/mg protein) on day zero (36.5±5.8 versus 136.4±10.9, respectively; p<0.0005) and day 12 (127±16 versus 278±27, respectively; p<0.0005). Treatment of pre-adipocytes with histidine, an ALP inhibitor, blocked lipid accumulation. Thus, lipid uptake is higher in pre-adipocytes isolated from black compared to white females which parallels the obesity prevalence rates in these population groups. The reason for higher fat accumulation in pre-adipocytes isolated from black females may be related to higher ALP activity.

  7. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  8. Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action.

    PubMed

    Sergienko, Eduard; Su, Ying; Chan, Xochella; Brown, Brock; Hurder, Andrew; Narisawa, Sonoko; Millán, José Luis

    2009-08-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme expressed at high levels in bone, liver, and kidney. It appears involved in dephosphorylation of numerous phosphate monoesters, but only 2 of them, pyrophosphate and pyridoxal phosphate, have yet been unequivocally documented. Discovery and characterization of other substrates could be considerably facilitated if specific and potent modulators of TNAP activity with various modes of action were available. Here, the authors describe in detail a high-throughput screening campaign to identify inhibitors of TNAP, performed within the Molecular Library Screening Center Network (MLSCN). A novel homogeneous luminescent TNAP assay was developed and optimized with respect to the enzyme and substrate concentrations, enabling identification of a large number of compounds overlooked by a conventional colorimetric assay. Several new chemical series were identified from screening the Molecular Libraries Small Molecule Repository (MLSMR) collection and demonstrated to have diverse selectivity and mode of inhibition profiles. The nanomolar potency of some of these scaffolds surpasses currently known inhibitors. This article provides an example of a success where the Roadmap Initiative collaborative model, sponsored by the National Institutes of Health, brought together a deep knowledge of target biology from a principal investigator's laboratory, a well-designed compound collection from the MLSMR, and an industrial-level screening facility and staff at the MLSCN center to identify pharmacologically active compounds, with outstanding selectivity data from a panel of more than 200 publicly accessible assays, through a high-throughput screen. PMID:19556612

  9. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

    PubMed

    Roman, Ioan; Trusca, Roxana Doina; Soare, Maria-Laura; Fratila, Corneliu; Krasicka-Cydzik, Elzbieta; Stan, Miruna-Silvia; Dinischiotu, Anca

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL.

  10. [Polymorphism of placental alkaline phosphatase on the level of DNA and protein in the Mordovian population].

    PubMed

    Bekman, G; Vennberg, K; Bekman, L; Spitsyn, V A; Novoradovskiĭ, A G

    1996-03-01

    Data on DNA and enzyme polymorphisms of human placental alkaline phosphatase (PLAP) in Mordvinian populations are presented. Restriction fragment length polymorphism (RFLP) was detected after the digestion of DNA samples with Rsa I and Pst I endounucleases. The frequencies of the second (2) allele for PLAP Pst I and Rsa I were 0.53 and 0.192, respectively. Comparative data suggest that there are no population differences between Mordvinians and Scandinavian ethnic groups. In Mordvinians gene frequencies measured at the level of gene products were PLAP*1(S) = 0.681, PLAP*2(F) = 0.244, PLAP*3(I) = 0.069, and PLAP*18(D) = 0.006, indicating the similarity of the corresponding values in Scandinavians. The observed RFLP and "protein" genotype frequencies were in good agreement with that expected according to the Hardy-Weinberg equation. In the Mordvinian population, as in those, surveyed previously, a strong linkage disequilibrium between Pst I and Rsa I PLAP alleles was observed. PMID:8723634

  11. Invited review: The application of alkaline phosphatase assays for the validation of milk product pasteurization.

    PubMed

    Rankin, S A; Christiansen, A; Lee, W; Banavara, D S; Lopez-Hernandez, A

    2010-12-01

    Standard practices for indirectly assessing the pasteurization status of milk products are primarily based on the thermal inactivation kinetics of the endogenous milk enzyme, alkaline phosphatase (ALP). This assessment provides an invaluable, if not required, tool for both regulatory and in-house process control and validation. Endogenous milk ALP manifests a slightly higher heat resistance than the pathogenic microflora upon which pasteurization time and temperature requirements are based. Hence, ALP activity is recognized and accepted as the method of choice for the rapid validation of milk product pasteurization. However, ALP assays have notable limitations that must be understood if they are to be administered and interpreted correctly and the results are to be applied judiciously. Issues such as the reactivation of heat-denatured ALP and the presence of both heat-stable and -labile microbial ALP are addressed. A discussion of ALP in the milk of nonbovine species is presented based on the limited literature available. Some discussion of research involving alternative pasteurization indicators also is presented. This article is intended to summarize the pertinent details of the ALP assay for dairy products (noting the basis and limitations of various methods) and the processing, handling, and known compositional factors that influence the assay results.

  12. Biochemical characterization of the soluble alkaline phosphatase isolated from the venomous snake W. aegyptia.

    PubMed

    Al-Saleh, Saad S M

    2002-12-01

    A soluble form of alkaline phosphatase (ALP) has been identified and purified from Walterinnesia aegyptia venom using an HPLC system Gold 126/1667 equipped with Protein PAK 125 and Protein PAK 60 columns. The enzyme was purified 3.4 fold over crude venom with a yield of 37.3%. On SDS-PAGE under non-reduced conditions the purified enzyme showed three bands of 212 kD, 80 kD, and 55 kD. However, under reducing conditions, the enzyme showed two bands of 80 kD and 55 kD. The specific activity of ALP was 24 U/mg with p-nitrophenylephosphate as the substrate. During isoelectric focusing experiments the ALP exhibited two bands focused at pH 6.2 and 6.8, which suggests that either the enzyme exists as two different isoforms or the two bands in IEF may be two subunits of 80 kD and 55 kD. The kinetic parameters (Km and Vmax) and IC50 of ALP inhibition by L-phenylalanine, L-leucine, imidazole, caffeine, orthophosphate and permanganate were also investigated in the present study. Zinc and cyanide ions at a concentration of 15 mM and 10 mM, respectively, completely inhibited the activity of W. aegyptia ALP. PMID:12503880

  13. p107-Dependent recruitment of SWI/SNF to the alkaline phosphatase promoter during osteoblast differentiation.

    PubMed

    Flowers, Stephen; Patel, Parth J; Gleicher, Stephanie; Amer, Kamal; Himelman, Eric; Goel, Shruti; Moran, Elizabeth

    2014-12-01

    The retinoblastoma protein family is intimately involved in the regulation of tissue specific gene expression during mesenchymal stem cell differentiation. The role of the following proteins, pRB, p107 and p130, is particularly significant in differentiation to the osteoblast lineage, as human germ-line mutations of RB1 greatly increase susceptibility to osteosarcoma. During differentiation, pRB directly targets certain osteogenic genes for activation, including the alkaline phosphatase-encoding gene Alpl. Chromatin immunoprecipitation (ChIP) assays indicate that Alpl is targeted by p107 in differentiating osteoblasts selectively during activation with the same dynamics as pRB, which suggests that p107 helps promote Alpl activation. Mouse models indicate overlapping roles for pRB and p107 in bone and cartilage formation, but very little is known about direct tissue-specific gene targets of p107, or the consequences of targeting by p107. Here, the roles of p107 and pRB were compared using shRNA-mediated knockdown genetics in an osteoblast progenitor model, MC3T3-E1 cells. The results show that p107 has a distinct role along with pRB in induction of Alpl. Deficiency of p107 does not impede recruitment of transcription factors recognized as pRB co-activation partners at the promoter; however, p107 is required for the efficient recruitment of an activating SWI/SNF chromatin-remodeling complex, an essential event in Alpl induction.

  14. Alkaline phosphatase assay using a near-infrared fluorescent substrate merocyanine 700 phosphate.

    PubMed

    Gong, Haibiao; Little, Garrick; Cradduck, Mark; Draney, Daniel R; Padhye, Nisha; Olive, D Michael

    2011-05-15

    Alkaline phosphatase (ALP) is a phosphomonoester hydrolase that is commonly used as a conjugating enzyme in biological research. A wide variety of substrates have been developed to assay its activity. In this study, we developed an ALP assay method utilizing merocyanine 700 (MC700) based substrate MC700 phosphate (MC700p). MC700 is a near-infrared fluorescent merocyanine dye, and has excitation/emission maxima at 686 nm/722 nm in ALP assay buffer. Upon hydrolysis by ALP, MC700p is converted to MC700. The fluorescence of MC700 is dependent on the pH and detergent concentration in the buffer. The fluorescence signal produced by MC700p hydrolysis is linearly related to the ALP amount and substrate concentration. A stop solution containing EDTA could be used to stop the ALP/MC700p reaction. It was also demonstrated that MC700p could substitute pNpp as the ALP substrate in a commercial 17β-Estradiol enzyme immunoassay kit. PMID:21482307

  15. Correlation of alkaline phosphatase activity to clinical parameters of inflammation in smokers suffering from chronic periodontitis

    PubMed Central

    Grover, Vishakha; Malhotra, Ranjan; Kapoor, Anoop; Bither, Rupika; Sachdeva, Sonia

    2016-01-01

    Context: Current clinical periodontal diagnostic techniques emphasize the assessment of clinical and radiographic signs of periodontal diseases which can provide a measure of history of disease. Hence, new methodologies for early identification and determination of periodontal disease activity need to be explored which will eventually result in expedited treatment. Aim: To evaluate the correlation of alkaline phosphatase (ALP) activity in gingival crevicular fluid (GCF) to clinical parameters of periodontal inflammation in smokers with chronic periodontitis. Materials and Methods: Study population included 15 smoker male patients in the age group of 35–55 years suffering from moderate generalized chronic periodontitis with history of smoking present. Following parameters were evaluated at baseline, 1 month and 3 months after scaling and root planing: plaque index, bleeding index, probing pocket depth (PD), relative attachment level (RAL), and GCF ALP activity. Statistical Analysis Used: Independent variables for measurements over time were analyzed by using Wilcoxon signed rank test. Results: A statistically significant reduction in all the clinical parameters and GCF ALP activity was observed from baseline to 1 month and 3 months. A correlation was observed between change in GCF ALP activity and PD reduction as well as gain in RAL at 3 months. Conclusion: The present study emphasizes that total ALP activity could be used as a marker for periodontal disease activity in smokers. Estimation of changes in the levels of this enzyme has a potential to aid in the detection of progression of periodontal disease and monitoring the response to periodontal therapy. PMID:27563197

  16. Alkaline phosphatase and dipeptidylpeptidase IV staining of tissue components of skeletal muscle: a comparative study.

    PubMed

    Grim, M; Carlson, B M

    1990-12-01

    A combined alkaline phosphatase (AP) and dipeptidlypeptidase IV (DPP IV) staining reaction has demonstrated enzymatic heterogeneity of the arterial and venous segments of capillaries in rat skeletal muscle. This study compared the staining reactions of skeletal muscles in many commonly used laboratory animals, including the axolotl, chick, quail, Monodelphys, rat, mouse, hamster, guinea pig, rabbit, dog, monkey, and human. DPP IV activity was found in the venous ends of the capillaries and in the endothelium of some larger veins in many of the species but was never demonstrated in the arterial side of the circulation. AP was found in the arterial ends of capillaries in all species except the axolotl, and it was also found in the endothelium of larger arteries of most species. AP activity was absent in venous endothelium of all species except for birds and Monodelphys. DPP IV activity was found in the perineurium of intramuscular nerves of most species, and AP activity was commonly seen in tendons and intramuscular connective tissue. The interspecies variability found in this study shows that care must be taken in comparing experimental data involving this technique from one species to another, but within a species the technique allows a fine level of discrimination between functionally distinct compounds of skeletal muscle tissue.

  17. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.

    PubMed

    Polaske, Nathan W; Kelly, Brian D; Ashworth-Sharpe, Julia; Bieniarz, Christopher

    2016-03-16

    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays. PMID:26731201

  18. Enrichment of thermosensitive chitosan hydrogels with glycerol and alkaline phosphatase for bone tissue engineering applications.

    PubMed

    Douglas, Timothy E L; Krok-Borkowicz, Małgorzata; Macuda, Aleksandra; Pietryga, Krzysztof; Pamuła, Elżbieta

    2016-01-01

    Thermosensitive injectable chitosan hydrogels can be formed by neutralization of acidic chitosan solutions with sodium betaglycerophosphate (Na-β-GP) coupled with increasing temperature to body temperature. Such hydrogels have been considered for applications in bone regeneration. In this study, chitosan hydrogels were enriched with glycerol and the enzyme alkaline phosphatase (ALP) with a view to improving their suitability as materials for bone tissue engineering. Mineral formation was confirmed by infrared spectroscopy (FTIR) and increases in the mass fraction of the hydrogel not consisting of water. Incorporation of ALP in hydrogels followed by incubation in a solution containing calcium ions and glycerophosphate, a substrate for ALP, led to formation of calcium phosphate within the hydrogel. MG-63 osteoblast-like cells were cultivated in eluates from hydrogels containing ALP and without ALP at different dilutions and directly on the hydrogel samples. Hydrogels containing ALP exhibited superior cytocompatibility to ALP-free hydrogels. These results pave the way for the use of glycerol- and ALP-enriched hydrogels in bone regeneration. PMID:27405261

  19. Neonatal lethal osteochondrodysplasia with low serum levels of alkaline phosphatase and osteocalcin.

    PubMed

    Wyckoff, Myra H; El-Turk, Chirine; Laptook, Abbot; Timmons, Charles; Gannon, Francis H; Zhang, Xiafang; Mumm, Steven; Whyte, Michael P

    2005-02-01

    Neonatal lethal skeletal dysplasias are rare and typically involve thoracic malformations and severe limb shortening. We report on a newborn boy manifesting an osteochondrodysplasia associated with fatal respiratory insufficiency who had normal lung volumes and extremity lengths. His disorder featured aberrant skeletal patterning and defective ossification including a severely osteopenic skull, apparent absence of clavicles, and clefting of the mandible and vertebrae. Serum alkaline phosphatase and osteocalcin levels were markedly low. Biochemical studies suggested parathyroid insufficiency probably from critical illness. Histopathology at autopsy excluded impaired mineralization of skeletal matrix, but endochondral bone formation appeared disorganized with growth plate clustering of chondrocytes in hypertrophic zones and in zones of provisional calcification. Parathyroid glands were not found. Despite features of two distinctive heritable entities, hypophosphatasia and cleidocranial dysplasia, the cumulative findings did not match either condition, and no mutations were found in either the tissue nonspecific ALP isoenzyme or core-binding factor genes, respectively, or in the genes encoding osteocalcin or the osteoblast transcription factor osterix. This patient could represent the extreme of cleidocranial dysplasia (a disorder not always associated with structural mutation in core-binding factor A1), but more likely he defines a unique osteochondrodysplasia disrupting both intramembranous and endochondral bone formation.

  20. A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2013-12-01

    The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself.

  1. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  2. A highly fluorescent simultaneous azo dye technique for demonstration of nonspecific alkaline phosphatase activity.

    PubMed

    Ziomek, C A; Lepire, M L; Torres, I

    1990-03-01

    We describe a fluorescent histochemical technique for detection of nonspecific alkaline phosphatase (APase) in cells. The technique utilizes standard azo dye chemistry with naphthol AS-MX phosphate as substrate and fast red TR as the diazonium salt. The reaction product is a highly fluorescent red precipitate. Pre-implantation mouse embryos were used to establish optimal fixation and staining protocols and the specificity and sensitivity of the method. Fixation was in 4% paraformaldehyde for 1 hr, as glutaraldehyde induced autofluorescence of the cells. Maximal discriminable staining was detected after 15-20 min in the stain solution. The stain solution itself proved to be non-fluorescent, thus allowing visual observation of the progress of the staining reaction by fluorescence microscopy in its presence. To test the specificity of this fluorescent APase stain, a variety of cell types of known APase reactivity were stained by this protocol. Mouse lymphocytes and STO fibroblasts were negative, whereas F9 teratocarcinoma cells, intestinal epithelial cells, and rat fetal primordial germ cells were all found to be highly positive for APase activity, in agreement with published results on APase localization in these cells.

  3. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons.

    PubMed

    Bar-Yosef, Yehonathan; Sukenik, Assaf; Hadas, Ora; Viner-Mozzini, Yehudit; Kaplan, Aaron

    2010-09-14

    The hepatotoxin cylindrospermopsin (CYN) produced by certain cyanobacteria, including Aphanizomenon ovalisporum (hereafter Aphanizomenon) [1], seriously affects lake water quality [2], but its biological role is not known. Strong correlation between Aphanizomenon abundance in Lake Kinneret, Israel, and alkaline phosphatase (APase) activity suggests that inorganic phosphate (Pi) limitation induces the PHO regulon and APase secretion [3]. Staining lake samples with DAPI [4] revealed a high level of polyphosphate bodies (PPB) in Aphanizomenon. Application of enzyme-labeled fluorescence (ELF-APase) [5] showed APase in various organisms, but not in Aphanizomenon. ELF-APase signals and extracellular APase activity in Aphanizomenon were detected only after exploiting PPB under prolonged Pi deprivation in cultures or toward the end of its autumn bloom. Pi deprivation of Aphanizomenon induces CYN production, high-affinity Pi uptake, and an internal, not external, APase. Addition of Aphanizomenon spent media or CYN to various phytoplanktons, including Chlamydomonas reinhardtii, induced genes typically upregulated under Pi limitation and a rise in extracellular APase activity, despite ample surrounding Pi. Coculturing Aphanizomenon with Chlamydomonas or with Debarya sp. showed positive ELF-APase signals, but not in Aphanizomenon. CYN producers promote Pi supply by inducing APase secretion by other phytoplanktons, possibly explaining their increased abundance despite reduced Pi supply from watersheds.

  4. Ambroxol reduces LPS toxicity mediated by induction of alkaline phosphatases in rat lung.

    PubMed

    Koyama, Iwao; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Kikuno, Akira; Hokari, Shigeru; Komoda, Tsugikazu

    2004-08-01

    Alkaline phosphatases (APs) have been suggested to detoxify lipopolysaccharide (LPS) by dephosphorylation. Ambroxol, a bronchial expectorant, is known to accelerate the secretion of pulmonary surfactant particles including AP molecules as a pharmacological action. In the present study, some beneficial effects of ambroxol on LPS toxicity in the rat lung were investigated. In an experiment using the rat lung organ culture, AP activities were enhanced in a time-dependent manner by incubation with 25 microM of ambroxol in both the tissue and the medium. Western blot analysis indicated that AP activity was elevated by the treatment with ambroxol, due to the induction of surfactant proteins (SPs) and AP molecules. In the in vivo experiment, the serum LPS content was markedly increased after LPS administration to rats by intratracheal instillation of 20 mg/kg. However, when the rats were pretreated with oral ambroxol (1.0 mg/kg) at 1 h before LPS challenge, the area under the concentration--time curve (AUC) of serum LPS was significantly decreased. These results suggest that ambroxol inhibits the translocation of LPS from the lung into the circulation as well as its detoxification effect via the elevation of AP activity. Bromhexine, another expectorant, is less effective than ambroxol as an LPS detoxificant. Maintenance of high AP activity level in the lung suggests APs to have physiological significant effects against the inflammatory events induced by LPS.

  5. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  6. Pyrophosphate-regulated Zn(2+)-dependent DNAzyme activity: an amplified fluorescence sensing strategy for alkaline phosphatase.

    PubMed

    Kong, Rong-Mei; Fu, Ting; Sun, Ni-Na; Qu, Feng-Li; Zhang, Shu-Fang; Zhang, Xiao-Bing

    2013-12-15

    In this work, based on the fact that pyrophosphate (PPi) could regulate the activity of Zn(2+)-dependent DNAzyme, we for the first time report a fluorescence turn-on sensing system for alkaline phosphatase (ALP) with improved sensitivity via nonprotein-enzymatic signal amplification. A catalytic and molecular beacon (CAMB) design was employed to further improve its sensitivity. Taking advantage of the strong interactions between PPi and the Zn(2+), the cofactor Zn(2+) was caged, and the DNAzyme activity was effectively inhibited. The introduction of ALP, however, could catalyze the hydrolysis of PPi and release free Zn(2+), resulting in the activation of DNAzyme to catalyze the cleavage of the molecular beacon substrate with a remarkable increase of fluorescent signal. These optimized designs together allow a high sensitivity for ALP, with a detection limit of 20 pM observed, much lower than previously reported methods. It has also been used for detection of ALP in human serum with satisfactory results, demonstrating its potential applications in clinical diagnosis.

  7. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions

    PubMed Central

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  8. Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments.

    PubMed

    Schmidt, Yvonne; Biniossek, Martin; Stark, G Björn; Finkenzeller, Günter; Simunovic, Filip

    2015-03-01

    Vascularization is essential in bone tissue engineering and recent research has focused on interactions between osteoblasts (hOBs) and endothelial cells (ECs). It was shown that cocultivation increases the stability of osteoblastic alkaline phosphatase (ALP) mRNA. We investigated the mechanisms behind this observation, focusing on mRNA binding proteins. Using a luciferase reporter assay, we found that the 3'-untranslated region (UTR) of ALP mRNA is necessary for human umbilical vein endothelial cells (HUVEC)-mediated stabilization of osteoblastic ALP mRNA. Using pulldown experiments and nanoflow-HPLC mass spectrometry, vimentin was identified to bind to the 3'-UTR of ALP mRNA. Validation was performed by Western blotting. Functional experiments inhibiting intermediate filaments with iminodipropionitrile and specific inhibition of vimentin by siRNA transfection showed reduced levels of ALP mRNA and protein. Therefore, ALP mRNA binds to and is stabilized by vimentin. This data add to the understanding of intracellular trafficking of ALP mRNA, its function, and have possible implications in tissue engineering applications.

  9. Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis.

    PubMed

    Thengodkar, Rutwik Ravindra Mandakini; Sivakami, S

    2010-07-01

    Spirulina is a photosynthetic, filamentous, spiral-shaped, multicellular, blue-green microalga. The two most important species are Spirulina maxima and Spirulina platensis. Spirulina is considered an excellent food, lacking toxicity and having corrective properties against viral attacks, anemia, tumor growth and malnutrition. We have observed that cultures of Spirulina platensis grow in media containing up to 80 ppm of the organophosphorous pesticide, Chlorpyrifos. It was found to be due to an alkaline phosphatase (ALP) activity that was detected in cell free extracts of Spirulina platensis. This activity was purified from the cell free extracts using ammonium sulphate precipitation and gel filtration and shown to belong to the class of EC 3.1.3.1 ALP. The purified enzyme degrades 100 ppm Chlorpyrifos to 20 ppm in 1 h transforming it into its primary metabolite 3, 5, 6-trichloro-2-pyridinol. This is the first report of degradation of Chlorpyrifos by Spirulina platensis whose enzymic mechanism has been clearly identified. These findings have immense potential for harnessing Spirulina platensis in bioremediation of polluted ecosystems. PMID:20127145

  10. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step. PMID:27541005

  11. Multicolor ELISA based on alkaline phosphatase-triggered growth of Au nanorods.

    PubMed

    Li, Yanyan; Ma, Xiaoming; Xu, Zhengming; Liu, Meihua; Lin, Zhenyu; Qiu, Bin; Guo, Longhua; Chen, Guonan

    2016-05-10

    Seed-mediated synthesis of gold nanorods (AuNRs) has been widely used for diverse applications in the past decade. In this work, this synthetic process is demonstrated for multicolor biosensing for the first time. Our investigation reveals that ascorbic acid acts as a key factor to mediate the growth of AuNRs. This phenomenon is incorporated into the alkaline phosphatase (ALP)-enzyme-linked immunosorbent assay (ELISA) system based on the fact that ALP can catalyze the conversion of ascorbic acid-phosphate into ascorbic acid with high efficiency. This allows us to develop a multicolor ELISA approach for sensitive detection of disease biomarkers with the naked eye. We show the proof-of-concept multicolor ELISA for the detection of prostate-specific antigen (PSA) in human serum. The results show that different colors are presented in response to different concentrations of PSA, and a detection limit of 3 × 10(-15) g mL(-1) in human serum was achieved. The proposed multicolor ELISA could be a good supplement to conventional ELISA for POC diagnostics. PMID:27050384

  12. Cloning and Overexpression of Alkaline Phosphatase PhoK from Sphingomonas sp. Strain BSAR-1 for Bioprecipitation of Uranium from Alkaline Solutions▿

    PubMed Central

    Nilgiriwala, Kayzad S.; Alahari, Anuradha; Rao, Amara Sambasiva; Apte, Shree Kumar

    2008-01-01

    Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 ± 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions. PMID:18641147

  13. Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions.

    PubMed

    Nilgiriwala, Kayzad S; Alahari, Anuradha; Rao, Amara Sambasiva; Apte, Shree Kumar

    2008-09-01

    Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 +/- 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions.

  14. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    SciTech Connect

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. )

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  15. Variation in alkaline-phosphatase activity with changing load on the mandibular condylar cartilage in the rat.

    PubMed

    Bouvier, M

    1987-01-01

    Biomechanical loads were varied by feeding diets of different consistencies. One group was fed hard diet for eight weeks, a second soft diet for eight weeks, and a third soft diet for four weeks followed by four weeks of hard diet. In all groups, alkaline-phosphatase activity was localized primarily in cells and extracellular matrix of the hypertrophic zone, and in cells lining trabeculae of the subcondylar bone. The staining intensity in the hypertrophic zone was slightly less in the soft-diet and soft/hard-diet groups than in the hard-diet group. The thickness of the cell layer staining positively for alkaline-phosphatase was significantly less in the soft-diet group than in the hard- and soft/hard-diet groups.

  16. AMP/GMP Analogs as Affinity ESIPT Probes for Highly Selective Sensing of Alkaline Phosphatase Activity in Living Systems.

    PubMed

    Jia, Yan; Li, Peng; Han, Keli

    2015-11-01

    Current probes for alkaline phosphatase (ALP) detection had been developed mainly by adding a phosphate group to a dye, which would lead to indistinct performance when implemented in a living system as several phosphatases exist together. In this study, the nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) were introduced into 2'-(2'-hydroxyphenyl)-benzothiazole-based probes, and highly fluorescent turn-on probes with good selectivity towards ALP over several phosphatases, as well as high affinity and low toxicity were obtained. In the presence of L-phenylalanine, an ALP inhibitor, a strong decrease in fluorescence recovery was observed. These probes allowed for real-time imaging of endogenous ALP activity in living cells as well as in a zebrafish model.

  17. Comparison of the single molecule activity distributions of recombinant and non-recombinant bovine intestinal alkaline phosphatase.

    PubMed

    Craig, Douglas B; Hanlon-Dearman, Fiona; Beaudry, Shailah; Shek, Kevin; King, Steffany D

    2015-10-01

    Single molecule assays were performed on bovine intestinal alkaline phosphatase and the recombinant enzyme expressed in Pichia pastoris using a capillary electrophoresis-based method. The catalytic rates for the bovine and recombinant enzymes were found to be 11,000±7000min(-1) (N=161) and 12,000±7000min(-1) (N=173), respectively. Mean catalytic rates and variances did not differ significantly between the enzyme from both sources. Furthermore, the distribution of catalytic rates were indistinguishable.

  18. Effect of endosulfan on acid and alkaline phosphatase activity in liver, kidney, and muscles of Channa gachua

    SciTech Connect

    Sharma, R.M. )

    1990-03-01

    The widespread use of a great many toxic chemicals to eliminate unwanted plant or animal species has resulted in the contamination of most aquatic habitats with these substances on a regular basis. Endosulfan, a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known organochlorine insecticide on the activity of acid and alkaline phosphatase in liver, kidney and muscles of a freshwater teleost, Channa gachua.

  19. Dehydrogenases, Acid and Alkaline Phosphatases, and Esterases for Chemotaxonomy of Selected Meloidogyne, Ditylenchus, Heterodera and Aphelenchus spp.

    PubMed Central

    Dickson, D. W.; Huisingh, D.; Sasser, J. N.

    1971-01-01

    Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogyne javanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given. PMID:19322334

  20. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    PubMed

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  1. A Novel Bifunctional Hybrid with Marine Bacterium Alkaline Phosphatase and Far Eastern Holothurian Mannan-Binding Lectin Activities

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25±5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  2. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae.

    PubMed

    Jurat-Fuentes, Juan L; Adang, Michael J

    2004-08-01

    We reported previously a direct correlation between reduced soybean agglutinin binding to 63- and 68-kDa midgut glycoproteins and resistance to Cry1Ac toxin from Bacillus thuringiensis in the tobacco budworm (Heliothis virescens). In the present work we describe the identification of the 68-kDa glycoprotein as a membrane-bound form of alkaline phosphatase we term HvALP. Lectin blot analysis of HvALP revealed the existence of N-linked oligosaccharides containing terminal N-acetylgalactosamine required for [125I]Cry1Ac binding in ligand blots. Based on immunoblotting and alkaline phosphatase activity detection, reduced soybean agglutinin binding to HvALP from Cry1Ac resistant larvae of the H. virescens YHD2 strain was attributable to reduced amounts of HvALP in resistant larvae. Quantification of specific alkaline phosphatase activity in brush border membrane proteins from susceptible (YDK and F1 generation from backcrosses) and YHD2 H. virescens larvae confirmed the observation of reduced HvALP levels. We propose HvALP as a Cry1Ac binding protein that is present at reduced levels in brush border membrane vesicles from YHD2 larvae. PMID:15265032

  3. A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera

    PubMed Central

    Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E.; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects. PMID:25885820

  4. Assessment of the serum levels of bone alkaline phosphatase with a new immunoradiometric assay in patients with metabolic bone disease

    SciTech Connect

    Garnero, P.; Delmas, P.D.

    1993-10-01

    The authors measured serum bone alkaline phosphatase (B-ALP) with a new immunoradiometric assay (IRMA) in a large sample of healthy controls comprising 173 women and 180 men, 20-88 yr of age, and in patients with metabolic bone disease. Using serum samples from patients with liver disease and patients with Paget's disease with elevated total alkaline phosphatase (T-ALP) as a source of, respectively, liver and bone isoenyzmes, they determined a liver cross-reactivity of the IRMA of 16% that was confirmed by electrophoresis of the circulating alkaline phosphatase isoenzymes. The IRMA was linear for serial sample dilutions, the recovery ranged from 89-110%, and the intra- and interassay variations were below 7% and 9%, respectively. B-ALP increased linearly with age in both sexes, and the mean B-ALP serum levels were not significantly different for women and men (11.3 [+-] 4.8 ng/mL for women; 11.0 [+-] 4.0 ng/mL for men). The increase in B-ALP after the menopause was significantly higher than that in T-ALP (+77% vs. +24%; P<0.001). When the values of postmenopausal women were expressed as the SD from the mean of premenopausal women, the mean Z scores were 2.2[+-] 1.8 for B-ALP and 0.9 [+-] 1.3 for T-ALP (P<0.001 between the two).

  5. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    PubMed

    Chen, Wenbo; Liu, Chenxi; Xiao, Yutao; Zhang, Dandan; Zhang, Yongdong; Li, Xianchun; Tabashnik, Bruce E; Wu, Kongming

    2015-01-01

    Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50) of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f) was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects. PMID:25885820

  6. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  7. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification.

    PubMed

    Sheen, Campbell R; Kuss, Pia; Narisawa, Sonoko; Yadav, Manisha C; Nigro, Jessica; Wang, Wei; Chhea, T Nicole; Sergienko, Eduard A; Kapoor, Kapil; Jackson, Michael R; Hoylaerts, Marc F; Pinkerton, Anthony B; O'Neill, W Charles; Millán, José Luis

    2015-05-01

    Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre(+/-) ; Hprt(ALPL) (/Y) or TNAP-OE) show extensive vascular calcification, high blood pressure, and cardiac hypertrophy, and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre(+/-) ; Hprt(ALPL) (/-) ) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target.

  8. Comparative characterization of pulmonary surfactant aggregates and alkaline phosphatase isozymes in human lung carcinoma tissue.

    PubMed

    Iino, Nozomi; Matsunaga, Toshiyuki; Harada, Tsuyoshi; Igarashi, Seiji; Koyama, Iwao; Komoda, Tsugikazu

    2007-05-01

    Alkaline phosphatase (AP) isozymes are surfactant-associated proteins (SPs). Since several different AP isozymes have been detected in the pneumocytes of lung cancer patients, we attempted to identify the relationship between pulmonary surfactant aggregate subtypes and AP isozymes. Pulmonary surfactant aggregates were isolated from carcinoma and non-carcinoma tissues of patients with non-small cell carcinoma of the lung. Upon analysis, ultraheavy, heavy, and light surfactant aggregates were detected in the non-carcinoma tissues, but no ultraheavy surfactant aggregates were found in the carcinoma tissues. Surfactant-associated protein A (SP-A) was detected as two bands (a 27-kDa band and a 54-kDa band) in the ultraheavy, heavy, and light surfactant aggregates found in the non-carcinoma tissues. Although both SP-A bands were detected in the heavy and light surfactant aggregates from adenocarcinoma tissues, the 54-kDa band was not detected in squamous cell carcinoma tissues. Liver AP (LAP) was detected in the heavy and light surfactant aggregates from both non-carcinoma and squamous carcinoma tissues, but not in heavy surfactant aggregates from adenocarcinoma tissues. A larger amount of bone type AP (BAP) was found in light surfactant aggregate fractions from squamous cell carcinomas than those from adenocarcinoma tissues or non-carcinoma tissues from patients with either type of cancer. LAP, BAP, and SP-A were identified immunohistochemically in type II pneumocytes from non-carcinoma tissues and adenocarcinoma cells, but no distinct SP-A staining was observed in squamous cell carcinoma tissues. The present study has thus revealed several differences in pulmonary surfactant aggregates and AP isozymes between adenocarcinoma tissue and squamous cell carcinoma tissue.

  9. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  10. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change. PMID:26895537

  11. Regulation of alkaline phosphatase expression in a neonatal rat clonal calvarial cell strain by retinoic acid.

    PubMed

    Ng, K W; Gummer, P R; Michelangeli, V P; Bateman, J F; Mascara, T; Cole, W G; Martin, T J

    1988-02-01

    A clonal cell strain, UMR 201, was established from a culture of rat calvarial cells by the process of limiting dilution on a collagen substratum. One-day-old neonatal rat calvaria stripped of periosteum were placed on collagen in alpha-MEM with 10% fetal bovine serum (FBS). Cells that grew out from the calvaria were passaged eight times to select cells with the ability to proliferate in culture before cloning was attempted. Cells from the clonal strain were homogeneous in appearance with a doubling time in culture of about 24 hours. The UMR 201 cells formed predominantly type 1 collagen. When treated with retinoic acid (RA), all cells showed an intense staining for alkaline phosphatase (ALP). This effect of RA on the expression of ALP activity was reversible and was time and dose dependent. The earliest change was observed within 6 hours. In contrast, single and isolated clumps of untreated cells stained positively for ALP only when they were confluent. Coincubation with dactinomycin up to 3 hours after the addition of RA completely prevented the expression of ALP, whereas dactinomycin became progressively less effective when added at later times. This is interpreted as indicating a regulatory role of RA on the gene expression of ALP. Other hormones acting on bone, such as 1,25(OH)2 vitamin D3 and dexamethasone, also modulate ALP activity. The cells showed morphologic evidence of senescence after passage 12. Our preliminary studies showed that the UMR 201 cells had the characteristics of relatively undifferentiated mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Characteristics of Secretion of Penicillinase, Alkaline Phosphatase, and Nuclease by Bacillus Species

    PubMed Central

    Chesbro, William R.; Lampen, J. O.

    1968-01-01

    The distribution of alkaline phosphatase and nuclease activity between cells and medium was examined in one strain of Bacillus licheniformis and four strains of B. subtilis. Over 95% of both activities was found in the medium of the B. licheniformis culture, but in the B. subtilis cultures the amount of enzyme activity found in the medium varied with the strain and the enzyme considered. B. licheniformis 749 and its penicillinase magnoconstitutive mutant 749/C were grown in continuous culture with phosphorous as the growth-limiting factor, and the kinetics of penicillinase formation and secretion were examined. Nutrient arrest halted secretion (usually after a lag of about 30 min) in both the inducible and constitutive strains. Chloramphenicol did not eliminate secretion, but under certain circumstances reduced its rate. In the inducible strain treated with a low level of inducer, the rate of secretion was more affected by the rate of synthesis than by the level of cell-bound enzyme. During induction, the onset of accretion of cell-bound penicillinase and secretion of the exoenzyme were nearly simultaneous. It seems unlikely that a long-lived, membrane- or cell-bound intermediate is mandatory in the secretion of the three enzymes by Bacillus species. In the case of penicillinase secretion, there are at least two different phases. When penicillinase synthesis is proceeding rapidly, the rate of secretion is five to six times greater at equivalent concentrations of membrane-bound penicillinase than it is when penicillinase synthesis is reduced. The data require that any membrane-bound intermediate in the formation of exoenzyme be much shorter-lived in cells with a high rate of synthesis than in cells with a low rate. Either there are two separate routes for the secretion of penicillinase or the characteristics of the process vary substantially between the early stages and the declining phase of induction. PMID:4970649

  13. Dimer asymmetry and the catalytic cycle of alkaline phosphatase from Escherichia coli.

    PubMed

    Orhanović, Stjepan; Pavela-Vrancic, Maja

    2003-11-01

    Although alkaline phosphatase (APase) from Escherichia coli crystallizes as a symmetric dimer, it displays deviations from Michaelis-Menten kinetics, supported by a model describing a dimeric enzyme with unequal subunits [Orhanović S., Pavela-Vrancic M. and Flogel-Mrsić M. (1994) Acta. Pharm.44, 87-95]. The possibility, that the observed asymmetry could be attributed to negative cooperativity in Mg2+ binding, has been examined. The influence of the metal ion content on the catalytic properties of APase from E. coli has been examined by kinetic analyses. An activation study has indicated that Mg2+ enhances APase activity by a mechanism that involves interactions between subunits. The observed deviations from Michaelis-Menten kinetics are independent of saturation with Zn2+ or Mg2+ ions, suggesting that asymmetry is an intrinsic property of the dimeric enzyme. In accordance with the experimental data, a model describing the mechanism of substrate hydrolysis by APase has been proposed. The release of the product is enhanced by a conformational change generating a subunit with lower affinity for both the substrate and the product. In the course of the catalytic cycle the conformation of the subunits alternates between two states in order to enable substrate binding and product release. APase displays higher activity in the presence of Mg2+, as binding of Mg2+ increases the rate of conformational change. A conformationally controlled and Mg2+-assisted dissociation of the reaction product (Pi) could serve as a kinetic switch preventing loss of Pi into the environment. PMID:14622301

  14. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    SciTech Connect

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  15. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone. PMID:26645431

  16. Distribution of alkaline phosphatase, osteopontin, RANK ligand and osteoprotegerin in calcified human carotid atheroma.

    PubMed

    Higgins, Catherine L; Isbilir, Salim; Basto, Pamela; Chen, Iou Yih; Vaduganathan, Muthiah; Vaduganathan, Periyanan; Reardon, Michael J; Lawrie, Gerald; Peterson, Leif; Morrisett, Joel D

    2015-10-01

    Ectopic vascular calcification is a significant component of atherosclerotic disease. Osteopontin (OPN), Osteoprotegerin (OPG), Receptor Activator of NFκB Ligand (RANKL), and alkaline phosphatase (ALP) are each thought to play central roles in the calcification or demineralization of atherosclerotic lesions. Abnormalities in the balance of these proteins may lead to perturbations in bone remodeling and arterial calcification. The purpose of this study was to measure the distribution of these proteins in human carotid lesions and to elucidate possible mechanism(s) whereby they control the deposition or depletion of arterial calcification. Thirty-three patients who had undergone carotid endarterectomy (CEA) within the previous 18 months and 11 control patients were enrolled. CEA specimens were analyzed by EBCT for calcification content in terms of Agatston (AGAT) and Volume scores. CEA specimens were then cut into 5 mm segments which were homogenized and extracted. Extracts were analyzed for tissue levels of calcium, phosphorus, ALP, OPN, RANKL, and OPG. Fasting blood samples were analyzed for the same components. In CEA tissue segments, the calcification levels (CHA AGAT) were inversely associated with the levels of OPG (r = -0.432/-0.579, p < 0.05) and positively associated with the levels of RANKL (r = 0.332/0.415, p < 0.05). In turn, the tissue levels of OPG were associated with homologous serum levels of OPG (r = 0.820/0.389, p < 0.001), and the tissue levels of RANKL were associated with the serum levels of homologous RANKL (r = 0.739/0.666, p < 0.0001). This study suggests that serum levels of OPG and RANKL may be useful biomarkers for estimating the degree of calcification in carotid atherosclerotic lesions. PMID:26307009

  17. Possible association between serum alkaline phosphatase concentration and thoracicacute aortic dissection

    PubMed Central

    Yu, Ming; Ding, Juan; Zhao, Long; Huang, Xiang; Ma, Ke-Zhong

    2015-01-01

    Objectives: Alkaline phosphatase (ALP) is an enzyme that catalyzes the hydrolysis of organic pyrophosphate. Accumulating data have demonstrated that the concentration of increased ALP is associated with C-reactive protein (CRP) concentration, and inflammation was complicated in the pathogenesis of acute aortic dissection (ADD). Therefore, the aim of our study was to examine the relationship between serum ALP concentration and thoracic ADD. Methods: We retrieved demographic data and test results of biochemical data of 68 patients with thoracic ADD and 126 Non-thoracic ADD patients, retrospectively. Results: A total of 194 patients were divided into thoracic ADD groups and non-thoracic ADD groups. Age, creatinine(Cr) and high-density lipoprotein cholesterol (HDL-C) were found to be statistical significance between the two groups. The mean ALP level was significantly higher in patients with thoracic ADD compared with Non-thoracic ADD patients (80.6±23.02 Vs. 65.9±16.49, P=0.001). Stepwise multiple logistic regression analyses revealed a significantly association of ALP with thoracic ADD (OR=1.038, 95% CI: 1.015-1.062, P=0.001). In addition, HDL-C was negative associated with thoracic ADD in multiple logistic regression analyses after adjustment for age, sex and Cr (OR=-0.083, 95% CI: 0.012-0.560, P=0.011). Conclusions: The present study suggests that the level of serum ALP is associated with thoracic ADD, and serum ALP concentration may be apotential risk factor for thoracic ADD. PMID:26629214

  18. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.

    PubMed

    Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard

    2013-02-01

    The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.

  19. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.

  20. Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts

    PubMed Central

    Martin, Sean; Lin, Huey; Ejimadu, Chukwuemeka

    2015-01-01

    Recent studies of myocardial infarction in secreted Frizzled-related protein 2 (sFRP2) knockout mice and our hamster heart failure therapy based on sFRP2 blockade have established sFRP2 as a key profibrotic cytokine in the heart. The failing hamster heart is marked by prominent fibrosis and calcification with elevated expression of sFRP2. Noting the involvement of tissue-nonspecific alkaline phosphatase (TNAP) in bone mineralization and vascular calcification, we determined whether sFRP2 might be an upstream regulator of TNAP. Biochemical assays revealed an approximately twofold increase in the activity of TNAP and elevated levels of inorganic phosphate (Pi) in the failing heart compared with the normal heart. Neither was this change detected in the liver or hamstring muscle nor was it associated with systemic hyperphosphatemia. TNAP was readily cloned from the hamster heart and upon overexpression increased the level of extracellular but not intracellular Pi, which is consistent with the cell surface location of the ectoenzyme. In line with the previous demonstration that sFRP2 blockade attenuated fibrosis, we show here that the therapy downregulated TNAP. This in vivo finding is corroborated by the in vitro study showing that cultured cardiac fibroblasts treated with recombinant sFRP2 protein exhibited progressive increase in the expression and activity of TNAP, which was completely abrogated by cycloheximide or tunicamycin. Induction of TNAP by sFRP2 is restricted to cardiac fibroblasts among the multiple cell types examined, and was not observed with sFRP4. The current work indicates that sFRP2 may promote cardiac fibrocalcification through coordinate activation of tolloid-like metalloproteinases and TNAP. PMID:25972450

  1. [Influences of uncommon isoenzymes on determination of alkaline phosphatase activity by dry-chemistry analyzers].

    PubMed

    Tozawa, T; Hashimoto, M

    2001-04-01

    Dry-chemistry(DC) analysis may be influenced by some matrix effects for measuring uncommon isoenzyme forms. Placental and intestinal alkaline phosphatase(AP) are overestimated by the VITROS DC, compared with results obtained with the wet-chemistry(WC) method of Bretaudiere, et al. using 2-amino-2-methyl-1-propanol (AMP) buffer, however, no such discrepancy between AP results in any DC method and that with a routine WC method recommended by Japanese Society of Clinical Chemistry in that 2-ethylaminoethanol(EAE) buffer is used, has been demonstrated. The type of buffer used affects differently the rates of AP isoenzymes activities. We therefore examined whether the presence of uncommon AP isoenzyme forms in serum caused aberrant DC results for AP in comparison with a routine WC method using EAE buffer. Here, serum samples with only liver AP and bone AP(n : 32); high-molecular-mass AP(n : 11); placental AP(n : 12); intestinal AP(n : 13) and immunoglobulin (Ig) bound AP(n : 12) were analyzed for total AP activity on three different DC analyzers: VITROS 700XR, FUJIDRYCHEM 5000, SPOTCHEM 4410 and a WC analyzer: HITACHI 7350. Values obtained in all of the DCs for sera containing only liver/bone AP agreed with those with the WC method. For sera containing placental AP, the VITROS values were higher than those with the WC method, while the FUJIDRYCHEM values and the SPOTCHEM values were lower. The VITROS values and the FUJIDRYCHEM values for sera containing intestinal AP were lower than those with the WC method, while the SPOTCHEM values were higher. All of the DCs did not affect high-molecular-mass AP and Ig bound liver/bone AP types of macro AP, but underestimated Ig bound intestinal type. Ig bound intestinal AP may be sieved by DC multilayer elements. PMID:11391954

  2. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates

    PubMed Central

    Yang, Ye; Wandler, Anica M.; Postlethwait, John H.; Guillemin, Karen

    2012-01-01

    Alkaline phosphatases (Alps) are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS). In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls for their liver expression, but a key to proper bone mineralization), or their tissue-specific expression, for example in the intestine (Alpi). We previously characterized a zebrafish alpi gene (renamed here alpi.1) that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that alpl is ubiquitously expressed in zebrafish, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet. PMID:23091474

  3. Leukocyte alkaline phosphatase, CA15-3, CA125, and CEA in cancer patients.

    PubMed

    Walach, N; Gur, Y

    1998-01-01

    Peripheral blood leukocyte alkaline phosphatase (LAP) scores and CA15-3, CA125, and CEA levels in plasma were measured in 57 patients with metastatic breast, ovarian, and colorectal cancer, respectively, and in 79 patients with the same types of nonmetastatic cancer. The mean LAP scores of the metastatic cancer patients (261, 272 and 275 for breast, ovary and colon, respectively) were significantly higher than those of the nonmetastatic cancer group (70, 68 and 57, respectively). There was no overlap between the 95% confidence intervals of the two groups (i.e., metastatic versus nonmetastatic), and no patient known to be metastatic had a LAP score within the normal range. The mean levels of other markers in the metastatic patients (CA15-3, 63.4 mu/ml; CA125, 104.8 mu/ml; and CEA, 51.8 ng/ml for metastatic breast, ovarian, and colon cancer, respectively) were also higher than in the nonmetastatic patients (CA15-3, 24 mu/ml; CA125, 25.3 mu/ml; and CEA, 5.8 ng/ml for nonmetastatic breast, ovarian, and colon cancer, respectively). However, the 95% confidence intervals of the nonmetastatic and the metastatic patients overlapped so that there were false-negatives and/or false-positives when the other markers were used. We therefore conclude that the addition of the LAP score to conventional cancer markers could be helpful for the diagnosis of recurrence and follow-up of cancer patients and suggest that our results be confirmed by further studies on a larger series of patients.

  4. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  5. Serial serum alkaline phosphatase as an early biomarker for osteopenia of prematurity.

    PubMed

    Abdallah, Enas A A; Said, Reem N; Mosallam, Dalia S; Moawad, Eman M I; Kamal, Naglaa M; Fathallah, Mohammed G E-D

    2016-09-01

    Metabolic bone disease of prematurity is a condition characterized by reduction in bone mineral content (osteopenia). It is a problem faced by very low birth weight (VLBW) infants because of lack of fetal mineralization during the last trimester. Our aim was to assess serum alkaline phosphatase (ALP) level as an early biomarker for osteopenia in premature infants and to estimate an optimal cutoff value of serum ALP at which osteopenia is detected radiologically in premature newborns.This prospective study was conducted on a cohort of 120 newborn infants of both sex of ≤34 weeks' gestational age and <1500 g birth weight. Two blood samples, from each infant on at least 2 consecutive weeks, were reported for calcium, phosphorus, and ALP. Evidence of osteopenia was evaluated radiologically by performing wrist/knee x-ray.Sixteen infants (13.3%) had evidence of osteopenia in x-ray, whereas 104 infants (86.7%) were nonosteopenic and all the osteopenic infants were <1000-g birth weight. Birth weight and gestational age were significantly inversely related to serum ALP levels. Both samples showed statistically significantly higher mean ALP level in osteopenic than nonosteopenics (P < 0.001, and P < 0.001 respectively). There was no constant value of serum ALP related to radiologic evidence of osteopenia. However, the optimal cutoff value of serum ALP at which osteopenia is detected is 500 IU/L with 100% sensitivity and 80.77% specificity.High levels of ALP can be considered a reliable biomarker to predict the status of bone mineralization and the need for radiological evaluation in premature infants particularly those <1000-g birth weight and <32 weeks' gestation. PMID:27631238

  6. The mechanism of mineralization and the role of alkaline phosphatase in health and disease.

    PubMed

    Orimo, Hideo

    2010-02-01

    Biomineralization is the process by which hydroxyapatite is deposited in the extracellular matrix. Physiological mineralization occurs in hard tissues, whereas pathological calcification occurs in soft tissues. The first step of mineralization is the formation of hydroxyapatite crystals within matrix vesicles that bud from the surface membrane of hypertrophic chondrocytes, osteoblasts, and odontoblasts. This is followed by propagation of hydroxyapatite into the extracellular matrix and its deposition between collagen fibrils. Extracellular inorganic pyrophosphate, provided by NPP1 and ANKH, inhibits hydroxyapatite formation. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes pyrophosphate and provides inorganic phosphate to promote mineralization. Inorganic pyrophosphate, pyridoxal phosphate, and phosphoethanolamine are thought to be the physiologic substrates of TNAP. These accumulate in the event of TNAP deficiency, e.g., in cases of hypophosphatasia. The gene encoding TNAP is mapped to chromosome 1, consists of 12 exons, and possesses regulatory motifs in the 5'-untranslated region. Inhibition of TNAP enzymatic activity suppresses TNAP mRNA expression and mineralization in vitro. Hypophosphatasia is an inherited systemic bone disease characterized by hypomineralization of hard tissues. The phenotype of hypophosphatasia is varied. To date, more than 200 mutations in the TNAP gene have been reported. Knockout mice mimic the phenotypes of severe hypophosphatasia. Among the mutations in the TNAP gene, c.1559delT is frequent in the Japanese population. This frameshift mutation results in the expression of an abnormally long protein that is degraded in cells. DNA-based prenatal diagnosis using chorionic villus sampling has been developed, but requires thorough genetic counseling. Although hypophosphatasia is untreatable at present, the recent success of enzyme replacement therapy offers promise. The problems presented by impaired mineralization in age

  7. [Studies on the mechanism of thermostability and thermophilicity change of thermostable alkaline phosphatase and its mutants].

    PubMed

    Yu, Feng; Xu, Xiao-Feng; Jin, Zhe

    2003-07-01

    The relationship among the substituted amino acids, the 3D structure simulated on PC through CPHmodels Server ( http://www.cbs.dtu. dk/services/CPHmodels/) and the thermostable performance of 4 thermostable alkaline phosphatase(TAP) mutants selected from a clone bank of more than 200 mutants were analyzed to explore the mechanism of thermostability change. These mutants are TAP(A410T) (A410-->T), TAP(P396S) (P396-->S), TAP2(N100S T320-->I) and TAP4(N100-->S P396-->S A410 -->V P490-->S). TAP and the mutants' thermostable performance was evaluated by measuring the highest tolerable temperature (T1/2) and the optimal reaction temperature (Topt). The 3D structure neighboring the substituted amino acids was simulated by Swiss-PDBViewer to observe the relationship between the structure change and the thermostable performance of TAP and its mutants. The results displayed that all these amino acid substitutions except the T320-->I mutant brought about only a little local change on TAP's 3D structure and very little effect on their optimal reaction temperature, but a significant decrease (nearly 10 degrees C) on their highest tolerable temperature. However, the T320-->I mutation due to close to TAP's active sites did bring about a significant descendents of the mutant in both the highest tolerable temperature and the optimal reaction temperature. Thus, it seems to be able to conclude that most of the amino acid substitutions, no matter where they locate and what structure change they may make, can cause TAP's highest tolerable temperature reduced significantly. What's more, if the mutation occurring near or in the active sites, it can also cause TAP's optimal reaction temperature reduced significantly at the same time.

  8. Crystallization and preliminary X-ray diffraction analysis of a high-affinity phosphate-binding protein endowed with phosphatase activity from Pseudomonas aeruginosa PAO1.

    PubMed

    Djeghader, Ahmed; Gotthard, Guillaume; Suh, Andrew; Gonzalez, Daniel; Scott, Ken; Chabriere, Eric; Elias, Mikael

    2013-10-01

    In prokaryotes, phosphate starvation induces the expression of numerous phosphate-responsive genes, such as the pst operon including the high-affinity phosphate-binding protein (PBP or pstS) and alkaline phosphatases such as PhoA. This response increases the cellular inorganic phosphate import efficiency. Notably, some Pseudomonas species secrete, via a type-2 secretion system, a phosphate-binding protein dubbed LapA endowed with phosphatase activity. Here, the expression, purification, crystallization and X-ray data collection at 0.87 Å resolution of LapA are described. Combined with biochemical and enzymatic characterization, the structure of this intriguing phosphate-binding protein will help to elucidate the molecular origin of its phosphatase activity and to decipher its putative role in phosphate uptake.

  9. Comparative Evaluation of Efficacy of Three Different Herbal Toothpastes on Salivary Alkaline Phosphatase and Salivary Acid Phosphatase - A Randomized Controlled Trial

    PubMed Central

    Dodamani, Arun; Karibasappa, G. N.; Deshmukh, Manjiri; Naik, Rahul

    2016-01-01

    Introduction Very few researches in the past have tried to evaluate the effect of herbal toothpaste on saliva and salivary constituents like alkaline phosphatase and acid phosphatase which play an important role in maintaining oral health. Aim To evaluate and compare the effect of three different herbal toothpastes on Salivary Alkaline Phosphatase (ALP) and salivary Acid Phosphatase (ACP). Material and Methods The present study was a preliminary study conducted among 45 dental students (15 subjects in each group) in the age group of 19-21 years. Subjects in each group were randomly intervened with three different herbal toothpastes respectively (Group A – Patanjali Dant Kanti, Group B - Himalaya Complete Care and Group C – Vicco Vajradanti). Unstimulated saliva sample were collected before and after brushing and salivary ACP and salivary ALP levels were assessed at an interval of one week each for a period of four weeks starting from day one. Compiled data was analyzed using chi square test, paired t-test and ANOVA based on the nature of the obtained data. Results All the three toothpastes showed significant (p<0.001) reduction in ACP and ALP levels at each interval. For patanjali toothpaste, the mean reduction was in the range of 2.55 – 2.62 IU/L for ACP and 2.94 – 2.99 IU/L for ALP. For Himalaya toothpaste, the mean reduction was in the range of 1.39 – 1.47 IU/L for ACP and 1.55 – 1.61 IU/L for ALP. For Vicco toothpaste, the mean reduction was in the range of 2.46 – 2.50 IU/L for ACP and 2.64 – 2.77 IU/L for ALP. Patanjali and Vicco toothpaste were significantly effective in reducing the levels of salivary ACP and ALP more than Himalaya toothpaste (p<0.05). Conclusion Herbal toothpastes, especially Dant Kanti and Vicco Vajradanti, showed significant reduction in levels of ACP and ALP resulting in overall improvement towards the oral health. PMID:27790584

  10. Effect of neonatal MSG treatment on day-night alkaline phosphatase activity in the rat duodenum.

    PubMed

    Martinková, A; Lenhardt, L; Mozes, S

    2000-01-01

    The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to

  11. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.

    PubMed

    Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; Rasskazov, Valery

    2015-04-01

    The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters. PMID:25260971

  12. Prognostic Importance of Serum Alkaline Phosphatase in CKD Stages 3–4 in a Clinical Population

    PubMed Central

    Taliercio, Jonathan J.; Schold, Jesse D.; Simon, James F.; Arrigain, Susana; Tang, Anne; Saab, Georges; Nally, Joseph V.; Navaneethan, Sankar D.

    2013-01-01

    Background Elevated total serum alkaline phosphatase (ALP) levels have been associated with mortality in the general population and in dialysis patients. Study Design Retrospective cohort study. Setting & Participants 28,678 patients with chronic kidney disease (CKD) stages 3 and 4 (estimated glomerular filtration rate [eGFR], 15–59 ml/min/1.73 m2) were identified using the Cleveland Clinic Chronic Kidney Disease Registry. CKD was defined as two eGFR values <60 ml/min/1.73 m2 drawn >90 days apart using the Chronic Kidney Disease Epidemiology Collaboration creatinine equation. Predictor ALP levels measured using the calorimetric assay was examined as quartiles (quartile 1, <66 U/L; Q2, 66–81 U/L; Q3, 82–101 U/L; and Q4, ≥102 U/L) and as a continuous measure. Outcomes & Measurements All-cause mortality and ESRD were ascertained using the Social Security Death Index and US Renal Data System. Results After a median follow up of 2.2 years, 588 patients progressed to ESRD and 4,755 died. There was a graded increase in the risk for mortality with higher ALP quartiles (Q2, Q3, Q4) when compared to the reference quartile (Q1) after adjusting for demographics, comorbid conditions, use of relevant medications and liver function tests. The highest quartile of ALP was associated with a hazard ratio for ESRD of 1.38 (95% CI, 1.09–1.76). Each 1-standard deviation (42.7 U/L) higher ALP level was associated with 15% (95% CI, 1.09–1.22) and 16% (95% CI, 1.14–1.18) increased risk of ESRD and mortality respectively. Limitations Single center observational study, lack complete data including PTH for all study participants and attrition bias. Conclusions Higher serum ALP levels in CKD stages 3–4 were independently associated with all-cause mortality and ESRD. PMID:23769134

  13. [Spatial distribution characteristics and ecological significance of alkaline phosphatase in water column of Taihu Lake].

    PubMed

    Lu, Na; Hu, Wei-ping; Deng, Jian-cai; Zhai, Shu-hua; Chen, Xiao-min; Zhou, Xiao-ping

    2009-10-15

    Based on different ecological zone of Taihu Lake, alkaline phosphatase activity (APA), the kinetic parameters and the chemical parameters in water column from different zone of Taihu Lake were monitored, and the spatial distribution characteristics and the effects of environmental factors on the values of APA, Vmax and Km were studied. The results showed that the values of APA, Vmax and Km in water column from Taihu Lake had a spatial heterogeneous distribution. The spatial distribution characteristic of APA values was the same as that of Vmax, ones in water from different zones of Taihu Lake, namely, the maximal values of APA (9.43 +/- 5.30) nmol x (L x min)(-1) and Vmax (13.70 +/- 7.42) nmol x (L x min)(-1) occurred in water from estuary zone in western bank of Taihu Lake. The value distribution of APA and Vmax in other zone of Taihu Lake followed as: the central zone of Taihu Lake > the grass type zone of Taihu Lake > the Meiliang Bay zone of Taihu Lake > the Zhushan Bay zone of Taihu Lake > the Gonghu Bay zone of Taihu Lake. The value of Km from the grass type zone of Taihu Lake was the highest (20.50 +/- 11.30) micromol x L(-1) , and the one from estuary zone in western bank of Taihu Lake was the lowest (9.17 +/- 3.46) micromol x L(-1) The value of kinetic parameter Vmax was significantly positively correlated with the values of pH, total phosphorus (TP) and the chlorophyll a (Chla), with r(pH) = 0.6512** (p < 0.01), r(TP) = 0.4885** (p < 0.01) and r(Chla) = 0.7656** (p < 0.01), respectively. However, the effects of hydro-temperature, dissolved total phosphorus (DTP) and orthophosphorus (PO4(3-) -P) on Vmax values were negligible. There was no significant influence of the hydro-temperature, pH, DTP, PO4(3-)-P and Chla concentrations on the Km values, nevertheless significant negative relationship between the Km value and TP content was found with r = -0.3834* (p = 0.048).

  14. Toxic impact of aldrin on acid and alkaline phosphatase activity of penaeid prawn, Metapenaeus monoceros: In vitro study

    SciTech Connect

    Reddy, M.S.; Jayaprada, P.; Rao, K.V.R. )

    1991-03-01

    The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).

  15. Lactate dehydrogenase (LD), alkaline phosphatase (ALP) isoenzymatic patterns in Iraqi children with visceral leishmaniasis before and after treatment with stibogluconate.

    PubMed

    Taher, Jasim Hameed; Al-Mulla Hummadi, Yassir Mustafa Kamal; Al-Bashir, Nada Muhammed Taha; Al-Araji, Ali Shaalan

    2016-06-01

    The mean levels of alkaline phosphatase (ALP), lactate dehydrogenase enzymes exhibited a significant elevation in visceral leishmaniasis (VL) patients compared to the control. There was no significant change in relation to the sex and age. ALP isoenzymes revealed three banding patterns which differ from the three zymodems which were obtained from control group. These differences may be due to isoenzymes activity of patients with VL before and after therapy. Lactate dehydrogenase (LD) isoenzymes revealed five banding patterns differ from the five normal zymodems. These differences mainly occurred due to LD isoenzymes activity in patients with VL before and after therapy. PMID:27413293

  16. A one-day double-labelling technique for tissue specimens: immunogold-silver staining for in situ hybridization combined with alkaline phosphatase-anti-alkaline phosphatase (APAAP) immunohistochemistry for antigens.

    PubMed

    Müller-Ladner, U; Kriegsmann, J; Gay, R E; Gay, S

    1996-02-01

    An improved technique is described that addresses the problems of sensitivity, specificity, the use of hazardous radioactive equipment and time consumption in immunohistochemical labelling and double labelling of in situ hybridization of tissue specimens. It consists of a two-step protocol in which digoxigenin-uridine triphosphate (UTP) labelled riboprobes in the in situ hybridization step are visualized by the immunogold-silver staining method, and double labelling of tissue antigens is achieved by the application of an alkaline phosphatase-anti-alkaline phosphatase staining step. We tested this protocol using snap-frozen tissue sections of synovial tissue from patients with rheumatoid arthritis. The target mRNA was detected by perforin or cathepsin D riboprobes, the double labelling was performed using anti-collagen type IV and alpha-smooth muscle actin antibodies. It is concluded that, in comparison with an established three- to four-day double-labelling protocol used in many laboratories, this one-day combination is currently the most rapid assay of reliable quality for double labelling of in situ hybridization products and tissue antigens.

  17. Sensitivity and specificity of indirect immunofluorescence and Grocott-technique in comparison with immunocytology (alkaline phosphatase anti alkaline phosphatase = APAAP) for the diagnosis of Pneumocystis carinii in broncho-alveolar lavage (BAL).

    PubMed

    Arastéh, K N; Simon, V; Musch, R; Weiss, R O; Przytarski, K; Futh, U M; Pleuger, F; Huhn, D; L'age, M P

    1998-12-16

    The purpose of the study was to compare the sensitivity and specificity of the indirect method of immunofluorescence with the immunocytological technique of alkaline phosphatase anti alkaline phosphatase complex (APAAP) for the detection of Pneumocystis carinii by bronchoalveolar lavage (BAL) in HIV-1 positive patients. - 83 HIV-1 positive patients with clinical presentations suggestive of Pneumocystis carinii pneumonia (PcP) were included in the study. 28 samples were found Pc-positive by immunofluorescence (IFT), 26 by Grocott and 29 by APAAP. In comparison to the lab results 33 patients were diagnosed as PcP according to the clinical course (i.e. therapeutic outcome, drugs used, and therapy changes). Compared to the clinical diagnoses, the following lab tests proved to be false positive and false negative: false positive: IF = 1, Grocott = 0, APAAP = 4 (3F6). false negative: IF = 5, Grocott = 7, APAAP = 4 (3F6). - Grocott stain shows insufficient correlation to the clinical diagnoses (p = 0.0156, McNemar-Test, two-tailed). - The two different detection methods (IFT and APAAP) showed no significant statistical difference with regard to their sensitivity (p = 0.3438, McNemar-Test, two tailed) and specificity. Considering cost and time the immunofluorescence technique seems to be the most suitable for the diagnosis of PcP in HIV-1 positive patients.

  18. Alkaline phosphatase isoenzyme activities in rheumatoid arthritis: hepatobiliary enzyme dissociation and relation to disease activity.

    PubMed Central

    Aida, S

    1993-01-01

    OBJECTIVES--Hyperphosphatasaemia has been observed occasionally in patients with rheumatoid arthritis (RA), and it has been suggested that the serum alkaline phosphatase (ALP) level is related to the activity of the disease. Therefore, the relationship between serum ALP and RA was studied. METHODS--The serum activities of hepatobiliary enzymes (ALP isoenzymes, gamma-glutamyltranspeptidase (GTP), leucine aminopeptidase (LAP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)), immunoglobulins, RA haemagglutinin test (RAHA), C reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were observed in 288 patients with rheumatoid arthritis. RESULTS--Serum biliary ALP (ALP1) activity was detected in 31.6% of the patients. In patients positive for ALP1 the respective values of total ALP (ALPt) (p < 0.001), liver ALP (ALP2) (p < 0.001), bone ALP (ALP3) (p < 0.05), gamma-GTP (p < 0.001), LAP (p < 0.001), immunoglobulins IgG (p < 0.01), IgA (p < 0.01), and IgM (p < 0.01), RAHA (p < 0.001), CRP (p < 0.001), ESR (p < 0.001), and articular index (p < 0.001) were significantly higher than in patients who did not have ALP1. Significant Spearman's rank correlations (rs) were demonstrated between serum ALP2 level and the respective values of ALPt (rs = 0.9128, p < 0.001), ALP1 (rs = 0.4443, p < 0.001), ALP3 (rs = 0.5898, p < 0.001), gamma-GTP (rs = 0.2903, p < 0.001), LAP (rs = 0.3093, p < 0.001), IgA (rs = 0.2299, p < 0.01), IgM (rs = 0.1773, p < 0.05), RAHA (rs = 0.2420, p < 0.01), CRP (rs = 0.3532, p < 0.001), ESR (rs = 0.4006, p < 0.001). the articular index (rs = 0.4006, p < 0.001). However, no significant difference or correlation was noted for either AST or ALT. In many patients who showed abnormal hyperphosphatasaemia, hepatobiliary enzyme dissociation was observed: levels of ALPt (in 12.8%), ALP1 (in 31.6%), ALP2 (18.8%), gamma-GTP (in 4.3%), and LAP (in 19.3%) were abnormally high, but both AST and ALT were within normal limits. CONCLUSION

  19. Which one of the two common reporter systems is more suitable for chemiluminescent enzyme immunoassay: alkaline phosphatase or horseradish peroxidase?

    PubMed

    Yu, Songcheng; Yu, Fei; Liu, Lie; Zhang, Hongquan; Zhang, Zhenzhong; Qu, Lingbo; Wu, Yongjun

    2016-05-01

    Alkaline phosphatase and horseradish peroxidase are the most commonly used reporter systems in chemiluminescent enzyme immunoassay (CLEIA). Which one, therefore, would be better when establishing a CLEIA method for a new target substance? There was no standard answer. In this study, both reporters were compared systematically including luminescence kinetics, conjugation methods, optimal condition and detection performance, using two common drugs, SD-methoxy-pyrimidine and enrofloxacin, as determination objects. The results revealed that there was much difference between the luminescence kinetics of the two systems. However, there was little difference between these systems when detecting the same substance, including in optimal conditions and determination of performance. Both reporters were suitable for establishing chemiluminescent enzyme immunoassays. Therefore, the choice of alkaline phosphatase or horseradish peroxidase as the reporter system in chemiluminescent enzyme immunoassays depends on availability. Conversely, these two report systems could be applied in simultaneous analysis of multicomponents due to their different optical behaviors and similar performances. But attention should be paid to conjugation method and coating buffer, which affected the luminescent intensity of different determination targets. PMID:26552992

  20. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots.

    PubMed

    Na, Weidan; Liu, Siyu; Liu, Xiaotong; Su, Xingguang

    2015-11-01

    In this study, we reported a simple and sensitive fluorescence nanosensor for rapid detection of amifostine and alkaline phosphatase (ALP). The novel nanosensor was based on the fluorescence "turn on-off" of CdS quantum dots (QDs). Firstly, Cd(2+) cation could react with S(2-) anion to generate fluorescent CdS QDs in the presence of amifostine. The fluorescence (FL) intensity of amifostine-capped CdS QDs (Amifostine-CdS QDs) was increased with the increasing amounts of amifostine, and could be used for amifostine detection. However, amifostine could be converted to 2-(3-aminopropylamino) ethanethiol (WR1065) in the presence of ALP based on the dephosphorylation of ALP. Under the optimum conditions, the affinity of WR1065 to CdS QDs was weaker than that of amifostine. Therefore the new generation of WR1065-CdS QDs would reduce the FL intensity with the increase of ALP concentration, and the fluorescence of CdS QDs was turn off. The metabolic process of amifostine in the presence of alkaline phosphatase could be also studied via the change of FL intensity of CdS QDs. The present method was cost-effective, convenient, and does not require any complicated synthetic procedures.

  1. Reduced L/B/K alkaline phosphatase gene expression in renal cell carcinoma: plausible role in tumorigenesis.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Singh, Shrawan Kumar; Kakkar, Nandita; Prasad, Rajendra

    2014-09-01

    Renal cell carcinoma (RCC) is the most common kidney cancer in adults. Although several genes have been found to be involved in carcinogenesis of RCC, more great efforts are needed to identify new genes which are responsible for the process. Clear cell RCC, originates from proximal tubule cells, is the most common pathological type of RCC. Alkaline phosphatase (ALP) is a marker enzyme of brush border membrane of proximal tubular cells. Our previous studies showed a significant decreased activity of Liver/Bone/Kidney (L/B/K) alkaline phosphatase in RCC. In the present study, we explored the molecular basis of the decreased activity of ALP in RCC. Immunohistochemistry, immunofluorescence and flow cytometry analysis showed decreased ALP protein in RCC. Additionally, real time PCR documented significantly reduced ALP gene expression (P = 0.009). Moreover, RCC cell lines (ACHN and A498) transfected with full length L/B/K cDNA showed decreased migratory property as well as viability of these cells as compared with controls (P = 0.000). Further, L/B/K ALP cDNA transfected cells (ACHN and A498) showed significant increased apoptosis as compared to control (P = 0.000). These findings suggest the new role of ALP in cell viability and apoptosis and involvement in RCC tumorigenesis. However, further studies are needed to explore the exact molecular mechanism.

  2. Bacillus cereus Phosphopentomutase Is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle

    SciTech Connect

    Panosian, Timothy D.; Nannemann, David P.; Watkins, Guy R.; Phelan, Vanessa V.; McDonald, W. Hayes; Wadzinski, Brian E.; Bachmann, Brian O.; Iverson, Tina M.

    2011-09-15

    Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert {alpha}-D-ribose 5-phosphate (ribose 5-phosphate) and {alpha}-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator {alpha}-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn{sup 2+}-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[{sup 18}O{sub 3}]phosphate and [U-{sup 13}C{sub 5}]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.

  3. Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

    PubMed Central

    Jurat-Fuentes, Juan Luis; Karumbaiah, Lohitash; Jakka, Siva Rama Krishna; Ning, Changming; Liu, Chenxi; Wu, Kongming; Jackson, Jerreme; Gould, Fred; Blanco, Carlos; Portilla, Maribel; Perera, Omaththage; Adang, Michael

    2011-01-01

    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests. PMID:21390253

  4. Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2012-08-30

    In this work, a solid phase extraction sequential injection methodology for the determination of alkaline phosphatase activity in dynamic water systems was developed. The determination of the enzymatic activity was based on the spectrophotometric detection of a coloured product, p-nitrophenol, at 405 nm. The p-nitrophenol is the product of the catalytic decomposition of p-nitrophenyl phosphate, a non-coloured substrate. Considering the low levels expected in natural waters and exploiting the fact of alkaline phosphatase being a metalloprotein, the enzyme was pre-concentrated in-line using a NTA Superflow resin charged with Zn(2+) ions. The developed sequential injection method enabled a quantification range of 0.044-0.441 unit mL(-1) of enzyme activity with a detection limit of 0.0082 unit mL(-1) enzyme activity (1.9 μmol L(-1) of pNP) and a determination rate of 17 h(-1). Recovery tests confirmed the accuracy of the developed sequential injection method and it was effectively applied to different natural waters and to plant root extracts. PMID:22939148

  5. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5'-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study.

    PubMed Central

    Fedde, K N; Whyte, M P

    1990-01-01

    To clarify its physiologic role, alkaline phosphatase (ALP) was examined in normal skin fibroblasts and was shown to be the tissue-nonspecific (TNS) isoenzyme type (as evidenced by heat and inhibition profiles) and to be active toward millimolar concentrations of the putative natural substrates phosphoethanolamine (PEA) and pyridoxal-5'-phosphate (PLP). Fibroblast ALP has a low-affinity activity, with a distinctly alkaline pH optimum (9.3), toward 4-methylumbelliferyl phosphate (4-MUP), PEA, and PLP but a more physiologic pH optimum (8.3) toward physiologic concentrations (micromolar) of PEA and PLP. Normal fibroblast ALP is linked to the outside of the plasma membrane, since in intact cell monolayers (1) dephosphorylation rates of the membrane-impermeable substrates PEA and PLP in the medium at physiologic pH were similar to those observed with disrupted cell monolayers, (2) brief exposure to acidic medium resulted in greater than 90% inactivation of the total ALP activity, and (3) digestion with phosphatidylinositol-specific phospholipase C (PI-PLC) released about 80% of the ALP activity. Hypophosphatasia fibroblasts were markedly deficient (2%-5% control values) in alkaline and physiologic ALP activity when 4-MUP, PLP, and PEA were used as substrate. The majority of the detectable ALP activity, however, appeared to be properly lipid anchored in ecto-orientation. Thus, our findings of genetic deficiency of PEA- and PLP-phosphatase activity in hypophosphatasia fibroblasts, as well as our biochemical findings, indicate that TNS-ALP acts physiologically as a lipid-anchored PEA and PLP ectophosphatase. PMID:2220817

  6. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    PubMed

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-01

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  7. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.

    PubMed

    Wang, Xiaobo; Zhang, Zhiyang; Ma, Xiaoyan; Wen, Jinghan; Geng, Zhirong; Wang, Zhilin

    2015-05-01

    An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.

  8. Sensitive and direct electrochemical detection of double-stranded DNA utilizing alkaline phosphatase-labelled zinc finger proteins.

    PubMed

    Noh, Soodong; Ha, Dat Thinh; Yang, Haesik; Kim, Moon-Soo

    2015-06-21

    Direct detection of double-stranded DNA (dsDNA) using zinc finger proteins (ZFPs) is of great importance in biomedical applications such as identifying pathogens and circulating DNAs. However, its sensitivity is still not sufficiently high because limited signalling labels can be conjugated or fused. Herein, we report sensitive and direct detection of dsDNA using (i) alkaline phosphatase (ALP) as a fast catalytic label conjugated to ZFPs along with (ii) electrochemical measurement of an ALP product (l-ascorbic acid) at the indium-tin oxide electrode with a high signal-to-background ratio. ALP is simply conjugated to a ZFP through lysine residues in a ZFP purification tag, a maltose binding protein (MBP). Sandwich-type electrochemical detection of dsDNA allows a detection limit of ca. 100 fM without using DNA amplification. PMID:25969923

  9. A Case of Vitamin D Deficiency without Elevation of Serum Alkaline Phosphatase in a Carrier of Hypophosphatasia.

    PubMed

    Matsuo, Kumihiro; Mukai, Tokuo; Furuya, Akiko; Suzuki, Shigeru; Tanahashi, Yusuke; Azuma, Hiroshi

    2013-10-01

    Elevated serum alkaline phosphatase (ALP) is a screening marker for the diagnosis of vitamin D deficiency, which may fail to be diagnosed if serum ALP is not elevated. Here, we describe a case of vitamin D deficiency without elevation of serum ALP. A 1-year-old Japanese girl was referred to our hospital for the evaluation of genu varum. Her serum intact PTH level was elevated, while her serum ALP level was normal. Furthermore, her serum 25-hydroxyvitamin D level was reduced, and her urine phosphoethanolamine (PEA) level was mildly elevated. ALPL gene analysis revealed she was a heterozygous carrier of hypophosphatasia (c.1559delT). Serum intact PTH and urine PEA evaluations were helpful for diagnosing vitamin D deficiency and hypophosphatasia carrier status, respectively. Therefore, the possibility of vitamin D deficiency without elevation of serum ALP should be considered. PMID:24170964

  10. A Further Investigation of the Effects of Extremely Low Frequency Magnetic Fields on Alkaline Phosphatase and Acetylcholinesterase.

    PubMed

    Silkstone, Gary; Wilson, Michael T

    2016-01-01

    Using a custom build spectrophotometer equipped with Helmholtz coils and designed to study the effects of magnetic fields on enzyme reactions in real-time we have investigated the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports we have been unable to detect any field effects on these enzymes under any field/frequency regime. We discuss possible reasons for the discrepancy between this and earlier work and note the particularly complex influence of small temperature changes that may confound analysis. PMID:26963611

  11. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-01

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP.

  12. A Further Investigation of the Effects of Extremely Low Frequency Magnetic Fields on Alkaline Phosphatase and Acetylcholinesterase

    PubMed Central

    Silkstone, Gary; Wilson, Michael T.

    2016-01-01

    Using a custom build spectrophotometer equipped with Helmholtz coils and designed to study the effects of magnetic fields on enzyme reactions in real-time we have investigated the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports we have been unable to detect any field effects on these enzymes under any field/frequency regime. We discuss possible reasons for the discrepancy between this and earlier work and note the particularly complex influence of small temperature changes that may confound analysis. PMID:26963611

  13. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase.

    PubMed

    Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren

    2015-01-01

    The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies.

  14. Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men.

    PubMed

    Davis, Cindy D

    2003-02-01

    One possible dietary factor that may increase susceptibility to colon cancer is inadequate copper intake. The objective of this study was to investigate the effects of low and adequate copper intakes on copper nutriture and putative risk factors for colon cancer susceptibility in healthy men. Seventeen healthy free-living nonsmoking men aged 21-52 y completed a 13-wk controlled feeding study in a randomized crossover design. The basal diet contained 0.59 mg Cu/13.65 MJ. After a 1-wk equilibration period in which the men consumed the basal diet supplemented with 1.0 mg Cu/d, they were randomly assigned to receive either the basal diet or the basal diet supplemented with 2 mg Cu/d for 6 wk. After the first dietary period, the men immediately began to consume the other level of Cu for the last 6 wk. They collected their feces during the equilibration period and during the last 2 wk of the two dietary periods for free radical and fecal water analysis. Low dietary copper significantly (P < 0.01) increased fecal free radical production and fecal water alkaline phosphatase activity. Low dietary copper significantly (P < 0.0001) decreased fecal water copper concentrations but did not affect fecal water volume, pH, iron or zinc concentrations. In contrast to the fecal analysis, hematological indicators of copper status were not significantly affected by the dietary treatments. These results suggest that low dietary copper adversely affects fecal free radical production and fecal water alkaline phosphatase activity, which are putative risk factors for colon cancer.

  15. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID

  16. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  17. Comparison of the expression, activity, and fecal concentration of intestinal alkaline phosphatase between healthy dogs and dogs with chronic enteropathy.

    PubMed

    Ide, Kaori; Kato, Kazuki; Sawa, Yuki; Hayashi, Akiko; Takizawa, Rei; Nishifuji, Koji

    2016-07-01

    OBJECTIVE To compare expression, activity, and fecal concentration of intestinal alkaline phosphatase (IAP) between healthy dogs and dogs with chronic enteropathy (CE). ANIMALS 9 healthy university-owned Beagles and 109 healthy client-owned dogs (controls) and 28 dogs with CE (cases). PROCEDURES Cases were defined as dogs with persistent (> 3 weeks) gastrointestinal signs that failed to respond to antimicrobials and anti-inflammatory doses of prednisolone or dietary trials, did not have mechanical gastrointestinal abnormalities as determined by abdominal radiography and ultrasonography, and had a diagnosis of lymphoplasmacytic enteritis or eosinophilic gastroenteritis on histologic examination of biopsy specimens. Duodenal and colonic mucosa biopsy specimens were obtained from the 9 university-owned Beagles and all cases for histologic examination and determination of IAP expression (by real-time quantitative PCR assay) and activity (by enzyme histochemical analysis). Fecal samples were obtained from all dogs for determination of fecal IAP concentration by a quantitative enzyme reaction assay. RESULTS For dogs evaluated, IAP expression and activity were localized at the luminal side of epithelial cells in the mucosa and intestinal crypts, although both were greater in the duodenum than in the colon. Active IAP was detected in the feces of all dogs. Intestinal alkaline phosphatase expression and activity were lower for cases than for controls, and fecal IAP concentration for dogs with moderate and severe CE was lower than that for dogs with mild CE. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dogs with CE had impaired IAP expression and activity. Additional research is necessary to elucidate the role of IAP in the pathogenesis of CE. PMID:27347825

  18. Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa.

    PubMed

    Bucci, Diego; Giaretta, Elisa; Spinaci, Marcella; Rizzato, Giovanni; Isani, Gloria; Mislei, Beatrice; Mari, Gaetano; Tamanini, Carlo; Galeati, Giovanna

    2016-01-15

    Alkaline phosphatase (AP) has been studied in several situations to elucidate its role in reproductive biology of the male from different mammalian species; at present, its role in horse sperm physiology is not clear. The aim of the present work was to measure AP activity in seminal plasma and sperm extracts from freshly ejaculated as well as in frozen-thawed stallion spermatozoa and to verify whether relationship exists between AP activity and sperm quality parameters. Our data on 40 freshly ejaculated samples from 10 different stallions demonstrate that the main source of AP activity is seminal plasma, whereas sperm extracts contribution is very low. In addition, we found that AP activity at physiological pH (7.0) is significantly lower than that observed at pH 8.0, including the optimal AP pH (pH 10.0). Alkaline phosphatase did not exert any effect on sperm-oocyte interaction assessed by heterologous oocyte binding assay. Additionally, we observed a thermal stability of seminal plasma AP, concluding that it is similar to that of bone isoforms. Positive correlations were found between seminal plasma AP activity and sperm concentration, whereas a negative correlation was present between both spermatozoa extracts and seminal plasma AP activity and seminal plasma protein content. A significant decrease in sperm extract AP activity was found in frozen-thawed samples compared with freshly ejaculated ones (n = 21), concomitantly with the decrease in sperm quality parameters. The positive correlation between seminal plasma AP activity measured at pH 10 and viability of frozen-thawed spermatozoa suggests that seminal plasma AP activity could be used as an additional predictive parameter for stallion sperm freezability. In conclusion, we provide some insights into AP activity in both seminal plasma and sperm extracts and describe a decrease in AP after freezing and thawing.

  19. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase

    PubMed Central

    Liu, Yan; Yang, Shenghui; Xiao, Jianhua; Yu, Liang; Chen, Li; Zou, Ju; Wang, Kegeng; Tan, Sijie; Yu, Zhengyang; Zeng, Qingren

    2015-01-01

    The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies. PMID:25973009

  20. Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects.

    PubMed Central

    Nosjean, O; Koyama, I; Goseki, M; Roux, B; Komoda, T

    1997-01-01

    To investigate the possible role(s) of glycans in human tissue non-specific alkaline phosphatase (TNAP) activity, the iso-enzymes were purified and treated with various exo- and endo-glycosidases. Catalytic activity, oligomerization, conformation and immunoreactivity of the modified TNAPs were evaluated. All TNAPs proved to be N-glycosylated, and only the liver isoform (LAP) is not O-glycosylated. Usually, the kidney (KAP) and bone (BAP) isoenzymes are similar and cannot be clearly discriminated. Differences between the immunoreactivity of KAP/BAP and LAP with a BAP antibody were mainly attributed to the N-glycosylated moieties of the TNAPs. In addition, elimination of O-glycosylations moderately affects the TNAP reactivity. Interestingly, N-glycosylation is absolutely essential for TNAP activity, but not for that of the placental or intestinal enzymes. According to the deduced amino acid sequence of TNAP cDNA, Asn-213 is a possible N-glycosylation site, and our present findings suggest that this sugar chain plays a key role in enzyme regulation. With regard to the oligomeric state of alkaline phosphatase (AP) isoforms, the dimer/tetramer equilibrium is dependent on the deglycosylation of glycosyl-phosphatidylinositol(GPI)-free APs, but not GPI-linked APs. This equilibrium does not affect the AP conformation as observed with CD. With regard to TNAPs, no data were available on the gene expression or nature of the 5'-non-translated leader exon of human KAP, as opposed to BAP and LAP genes. cDNA sequencing revealed that cortex/medulla KAP is genetically related to BAP, and medulla KAP to LAP. PMID:9020858

  1. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  2. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  3. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health. PMID:27630955

  4. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721.

    PubMed

    Calabro-Jones, P M; Fahey, R C; Smoluk, G D; Ward, J F

    1985-01-01

    Addition of alkaline phosphatase and WR-2721 to culture medium containing V79-171 cells leads to production of WR-1065 and its disulphide forms in the medium, to cellular accumulation of WR-1065, and to radioprotection which correlates with cellular WR-1065 level.

  5. Defective intracellular transport of tissue-nonspecific alkaline phosphatase with an Ala162-->Thr mutation associated with lethal hypophosphatasia.

    PubMed

    Shibata, H; Fukushi, M; Igarashi, A; Misumi, Y; Ikehara, Y; Ohashi, Y; Oda, K

    1998-05-01

    We have studied the biosynthesis and intracellular transport of tissue-nonspecific alkaline phosphatase (TNSALP) transiently expressed in COS-1 cells. Mutations were introduced into TNSALP to examine the effects of a single amino acid substitution on the activity and biosynthesis of TNSALP. The cells expressing wild-type TNSALP exhibited more than 200-fold higher alkaline phosphatase activity than untransfected ones. Pulse-chase experiments showed that TNSALP was synthesized as a 66-kDa endoglucosaminidase H (Endo H)-sensitive form and converted to EndoH-resistant forms with heterogenous molecular masses ( approximately 80 kDa), which finally appeared on the cell surface as judged by digestion with phosphatidylinositol-specific phospholipase C (PI-PLC). In contrast, a TNSALP with a Glu218-->Gly mutation exhibited no phosphatase activity at all and the 66-kDa Endo H-sensitive form was the only molecular species throughout the chase in the transfected cells. In accordance with this finding, digestion with PI-PLC and immunofluorescence observation confirmed that this mutant was never expressed on the cell surface. Another mutant with a Ala162-->Thr substitution, which naturally occurs in association with a lethal hypophosphatasia, exhibited a low activity and only a small fraction of the 66-kDa form acquired Endo-H resistance and reached the cell surface. Since the wild-type and the mutant TNSALPs were labeled with [3H]ethanolamine, a component of glycosylphosphatidylinositol (GPI), it is unlikely that the impaired intracellular transport of the two mutants is due to a failure in their modification by GPI. Interestingly, the 66-kDa Endo H-sensitive form of the TNSALP mutants but not that of the wild-type, was found to form an interchain disulfide-bonded high-molecular-mass aggregate within the cells. These results suggest that impaired intracellular transport of the TNSALP (Ala162-->Thr) molecule caused by its aggregation is the molecular basis for the lethal

  6. Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu.

    PubMed

    Dai, Jiangyu; Chen, Dan; Wu, Shiqiang; Wu, Xiufeng; Zhou, Jie; Tang, Xiangming; Shao, Keqiang; Gao, Guang

    2015-03-01

    Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.

  7. Serum alkaline phosphatase and bilirubin are early surrogate markers for ischemic cholangiopathy and graft failure in liver transplantation from donation after circulatory death.

    PubMed

    Halldorson, J B; Rayhill, S; Bakthavatsalam, R; Montenovo, M; Dick, A; Perkins, J; Reyes, J

    2015-03-01

    Liver transplantation with the use of donation after circulatory death (DCD) is associated with ischemic cholangiopathy (IC) often leading to graft loss. We hypothesized that serial postoperative analysis of alkaline phosphatase and bilirubin might identify patients who would later on develop ischemic cholangiopathy and/or graft loss, allowing early recognition and potentially retransplantation. The University of Washington DCD experience totals 89 DCD liver transplantations performed from 2003 to 2011 with Kaplan-Meier estimated 5-year patient and graft survival rates of 81.6% and 75.6%, respectively; 84/89 patients transplanted with DCD livers lived ≥ 60 days after transplantation and were analyzed. Serum bilirubin and alkaline phosphatase levels at 1 week, 2 week, 1 month, and 2 months after transplantation were analyzed. Two-month serum bilirubin and alkaline phosphatase proved to have the strongest associations with development of IC and graft failure. Two-month alkaline phosphatase of <100 U/L had a negative predictive value of 97% for development of IC. Two-month alkaline phosphatase demonstrated an inflection starting at >300 U/L strongly associated with development of IC (P < .0001). Serum bilirubin at 2 months was most strongly associated with graft failure within the 1st year with a strong inflection point at 2.5 mg/dL (P = .0001). All jaundiced recipients at 60 days after transplantation (bilirubin >2.5 mg/dL) developed graft failure within the 1st year (P < .0001). Use of these early surrogate markers could facilitate prioritization and early retransplantation for DCD liver recipients with allografts destined for failure.

  8. Kinetic comparison of tissue non-specific and placental human alkaline phosphatases expressed in baculovirus infected cells: application to screening for Down's syndrome

    PubMed Central

    Denier, Colette C; Brisson-Lougarre, Andrée A; Biasini, Ghislaine G; Grozdea, Jean J; Fournier, Didier D

    2002-01-01

    Background In humans, there are four alkaline phosphatases, and each form exibits a characteristic pattern of tissue distribution. The availability of an easy method to reveal their activity has resulted in large amount of data reporting correlations between variations in activity and illnesses. For example, alkaline phosphatase from neutrophils of mothers pregnent with a trisomy 21 fetus (Down's syndrome) displays significant differences both in its biochemical and immunological properties, and in its affinity for some specific inhibitors. Results To analyse these differences, the biochemical characteristics of two isozymes (non specific and placental alkaline phosphatases) were expressed in baculovirus infected cells. Comparative analysis of the two proteins allowed us to estimate the kinetic constants of denaturation and sensitivity to two inhibitors (L-p-bromotetramisole and thiophosphate), allowing better discrimination between the two enzymes. These parameters were then used to estimate the ratio of the two isoenzymes in neutrophils of pregnant mothers with or without a trisomy 21 fetus. It appeared that the placental isozyme represented 13% of the total activity of neutrophils of non pregnant women. This proportion did not significantly increase with normal pregnancy. By contrast, in pregnancies with trisomy 21 fetus, the proportion reached 60–80% of activity. Conclusion Over-expression of the placental isozyme compared with the tissue-nonspecific form in neutrophils of mother with a trisomy 21 fetus may explain why the characteristics of the alkaline phosphatase in these cells is different from normal. Application of this knowledge could improve the potential of using alkaline phosphatase measurements to screen for Down's syndrome. PMID:11818032

  9. Alkaline phosphatase activity at the southwest coast of India: A comparison of locations differently affected by upwelling

    NASA Astrophysics Data System (ADS)

    Mamatha, S. S.; Malik, Ashish; Varik, Sandesh; Parvathi, V.; Jineesh, V. K.; Gauns, Mangesh U.; LokaBharathi, P. A.

    2015-01-01

    The realization of the potential importance of phosphorus (P) as a limiting nutrient in marine ecosystem is increasing globally. Hence, the contribution of biotic variables in mobilizing this nutrient would be relevant especially in productive coastal waters. As alkaline phosphatase activity (APA) indicates the status of P for primary production in aquatic environments, we asked the following question: is the level of APA indicative of P sufficiency or deficiency in coastal waters, especially, where upwelling is a regular phenomenon? Therefore, we have examined the total APA, chlorophyll a along with phosphatase producing bacteria (PPB) and related environmental parameters from nearshore to offshore in coastal waters off Trivandrum and Kochi regions differently affected by upwelling during the onset of monsoon. Off Trivandrum, APA in the offshore waters of 5-m layer at 2.23 μM P h- 1 was > 4 times higher than nearshore. Thus, low APA could be indicative of P sufficiency in coastal waters and higher activity suggestive of deficiency in offshore waters off Trivandrum. In contrast, there was less difference in APA between near and offshore surface waters off Kochi. Our results show that the regions differently affected by upwelling respond differently according to ambient P concentration, distance from shore or depth of water. These observations could apparently be applicable to other coastal systems as well, where gradients in upwelling and phosphate runoff have been noticed. Further studies on other transects would throw more light on the extent and direction of the relationship between APA and ambient P concentration. Such studies would help in understanding the level of control of this nutrient on the productivity of coastal waters.

  10. Structure and expression of rat osteosarcoma (ROS 17/2.8) alkaline phosphatase: product of a single copy gene.

    PubMed Central

    Thiede, M A; Yoon, K; Golub, E E; Noda, M; Rodan, G A

    1988-01-01

    Alkaline phosphatase [ALP; orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] is a ubiquitous enzyme of unknown function expressed at high levels in cells of mineralizing tissues. To study the structure, function, and expression of ALP, a full-length cDNA of rat ALP (2415 bases) was isolated from a ROS 17/2.8 osteosarcoma cell lambda gt10 cDNA library. The predicted amino acid sequence spans 524 residues and includes an N-terminal signal peptide of 17 amino acids, the phosphohydrolase active site, a rather hydrophilic backbone with five potential N-glycosylation sites, and a short hydrophobic C-terminal sequence. ALP negative CHO cells transfected with an expression vector containing the ALP coding sequences express ALP. The rat bone, liver, and kidney ALP shows remarkable 90% homology with the corresponding human enzyme, the most divergent region being the C-terminal hydrophobic domain through which the enzyme may be anchored to the plasma membrane. The rat ALP also shows 50% homology with the human placental and intestinal ALP and 25% homology with the Escherichia coli ALP. The amino acids involved in catalysis show nearly complete homology among all known ALP sequences, suggesting that these enzymes evolved from a common ancestral gene. The rat ALP cDNA pRAP 54, used as a hybridization probe in RNA blot analysis of several tissues that express ALP, revealed the presence of an ALP mRNA of approximately equal to 2500 bases. Furthermore, hybridization patterns derived from Southern blot analysis of rat chromosomal DNA offered molecular evidence that the ALP expressed in ROS 17/2.8 osteosarcoma and various rat tissues, excluding the intestine, is the product of the same single copy gene. Images PMID:3422431

  11. Alkaline Phosphatase Activity : an overlooked player on the phosphate behavior in macrotidal estuaries

    NASA Astrophysics Data System (ADS)

    Delmas, Daniel; Labry, Claire; Youenou, Agnes; Quere, Julien; Auguet, Jean Christophe; Montanie, Helene

    2014-05-01

    The non-conservative behavior of phosphate within the estuarine salinity gradient is essentially assigned to physico-chemical processes, such as desorption at low salinity and to benthic exchanges. Microbial phosphatase activity (APA), generally related to phosphate deficiency, is seldom studied in phosphate rich estuarine waters. In order to address the impact of microbial activity (bacterial abundance, production BSP, APA) on phosphate behavior, we studied these activities on a seasonal basis within the salinity gradient of two macrotidal estuaries presenting different levels of suspended solids. Whatever the season the Charente estuary is characterized by high levels of Suspended Particulate Matter (SPM > 1g.L-1), particularly in the Maximum Turbidity Zone (MTZ) located at the 5-10 psu. In this area characterized by high BSP and APA there is a significant increase of PO4 levels especially during summer. In the Aulne estuary the particle load is significantly lower (1/10) but high BSP and APA are equally recorded. In the highly turbid waters of the Charente estuary, active phytoplankton is virtually absent as pheopigments constitute up to 80% of the total pigments, particularly in the MTZ, therefore APA may essentially have a bacterial origin. In the Aulne estuary attached bacteria are dominant, both in numbers and production, and their distribution along the haline gradient perfectly follows those of APA and phosphate levels. These observations, associated with the very close relationships observed between APA, SPM and BSP, suggest that APA derive mainly from bacterial (attached) origin and operate at the expense of particulate phosphorus and hence contribute to PO4 regeneration, especially in spring and summer. Finally, as APA increased as PO4, whereas the reverse is observed in both fresh and marine waters, an original scheme for APA regulation, related to the large dominance of attached bacteria can be described for the estuarine waters.

  12. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  13. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots.

    PubMed

    Qian, Zhao Sheng; Chai, Lu Jing; Huang, Yuan Yuan; Tang, Cong; Shen, Jia Jia; Chen, Jian Rong; Feng, Hui

    2015-06-15

    A convenient and real-time fluorometric assay with the assistance of copper ions based on aggregation and disaggregation of carbon quantum dots (CQDs) was developed to achieve highly sensitive detection of alkaline phosphatase activity. CQDs and pyrophosphate anions (PPi) were used as the fluorescent indicator and substrate for ALP activity assessment respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by copper ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, PPi can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to copper ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by re-dispersion of CQDs in the presence of ALP and PPi. Quantitative evaluation of ALP activity in a broad range from 16.7 to 782.6 U/L with the detection limit of 1.1 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility, and provides an example based on disaggregation in optical probe development.

  14. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay.

    PubMed

    Hu, Xue-Lian; Wu, Xiu-Ming; Fang, Xin; Li, Zai-Jun; Wang, Guang-Li

    2016-03-15

    In this work, a novel strategy for modulating the fluorescence of gold nanoclusters (Au NCs) is developed. The fluorescence of bovine serum albumin (BSA) protected Au NCs is firstly quenched by KMnO4 and then restored by ascorbic acid (AA) due to the deterioration/restoration of the surface structure. Based on which, a novel "switch-on" fluorescent assay for probing the activity of alkaline phosphatase (ALP) is developed with a detection limit as low as 0.002 U/L. In addition, this testing protocol is also expanded to the detection of the inhibitor of ALP and mouse IgG (as a model), the detection limits are 15 ng/mL for the inhibitor of 2,4-Dichlorophenoxyacetic acid (2,4-DA) and 1.5 pg/mL for mouse IgG. The present method paves a new way to develop convenient, sensitive, and selective metal NCs-based fluorescent "turn-on" probes with promising applications in versatile biosensing.

  15. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk.

    PubMed

    Yu, Ling; Shi, ZhuanZhuan; Fang, Can; Zhang, YuanYuan; Liu, YingShuai; Li, ChangMing

    2015-07-15

    A disposable lateral flow-through strip was developed for smartphone to fast one-step quantitatively detect alkaline phosphatase (ALP) activity in raw milk. The strip comprises two functional components, a conjugation pad loaded with phosphotyrosine-coated gold nanoparticles (AuNPs@Cys-Try-p) and a testing line coated with anti-phosphotryosine antibody (anti-Tyr-p mAb). The dephosphorylation activity of ALP at the testing zone can be quantitatively assayed by monitoring the accumulated AuNPs-induced color changes by smartphone camera, thus providing a highly convenient portable detection method. A trace amount of ALP as low as 0.1UL(-1) with a linear dynamic range of 0.1-150UL(-1) (R(2)=0.999) in pasteurized milk and raw milk can be one-step detected by the developed flow-through strip within 10min, demonstrating the potential of smartphone-based portable sensing device for pathogen detection. This bio-hazards free lateral flow-through testing strip can be also used to fabricate rapid, sensitive and inexpensive enzyme or immunosensors for broad portable clinic diagnosis and food contamination analysis, particularly in point-of-care and daily food quality inspection.

  16. Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase.

    PubMed

    Zhang, Zhiyang; Chen, Zhaopeng; Wang, Shasha; Cheng, Fangbin; Chen, Lingxin

    2015-12-23

    Here, we propose a plasmonic enzyme-linked immunosorbent assay (ELISA) based on highly sensitive colorimetric detection of alkaline phosphatase (ALP), which is achieved by iodine-mediated etching of gold nanorods (AuNRs). Once the sandwich-type immunocomplex is formed, the ALP bound on the polystyrene microwells will hydrolyze ascorbic acid 2-phosphate into ascorbic acid. Subsequently, iodate is reduced to iodine, a moderate oxidant, which etches AuNRs from rod to sphere in shape. The shape change of AuNRs leads to a blue-shift of longitudinal localized surface plasmon resonance. As a result, the solution of AuNRs changes from blue to red. Benefiting from the highly sensitive detection of ALP, the proposed plasmonic ELISA has achieved an ultralow detection limit (100 pg/mL) for human immunoglobulin G (IgG). Importantly, the visual detection limit (3.0 ng/mL) allows the rapid differential diagnosis with the naked eye. The further detection of human IgG in fetal bovine serum indicates its applicability to the determination of low abundance protein in complex biological samples.

  17. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review.

    PubMed

    Melo, A D B; Silveira, H; Luciano, F B; Andrade, C; Costa, L B; Rostagno, M H

    2016-01-01

    The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets. PMID:26732323

  18. Cloning, expression, purification and activation by Na ion of halophilic alkaline phosphatase from moderate halophile Halomonas sp. 593.

    PubMed

    Ishibashi, Matsujiro; Oda, Kazuki; Arakawa, Tsutomu; Tokunaga, Masao

    2011-03-01

    We have succeeded in the cloning of alkaline phosphatase gene, haalp, from moderate halophile Halomonas sp. 593. A deduced amino acid sequence showed a high ratio of acidic to basic amino acids, characteristic of halophilic proteins. The gene product was efficiently expressed in Escherichia coli BL21 Star (DE3) pLysS, but in an inactive form. The purified recombinant HaALP was separated into four fractions by gel filtration. When they were dialyzed against 50 mM Tris-HCl (pH 8.0)/2 mM MgCl₂ buffer containing 3 M NaCl, one of these four fractions was activated to almost full activity. This fraction contained a folding intermediate that was converted to the native structure by the salt. Among the additional salts tested, i.e., KCl, KBr, LiCl, MgCl₂, (NH₄)₂SO₄, and Na₂SO₄, only Na₂SO₄ was effective, suggesting the importance of Na ion.

  19. A High Level of Intestinal Alkaline Phosphatase Is Protective Against Type 2 Diabetes Mellitus Irrespective of Obesity.

    PubMed

    Malo, Madhu S

    2015-12-01

    Mice deficient in intestinal alkaline phosphatase (IAP) develop type 2 diabetes mellitus (T2DM). We hypothesized that a high level of IAP might be protective against T2DM in humans. We determined IAP levels in the stools of 202 diabetic patients and 445 healthy non-diabetic control people. We found that compared to controls, T2DM patients have approx. 50% less IAP (mean +/- SEM: 67.4 +/- 3.2 vs 35.3 +/- 2.5 U/g stool, respectively; p < 0.000001) indicating a protective role of IAP against T2DM. Multiple logistic regression analyses showed an independent association between the IAP level and diabetes status. With each 25 U/g decrease in stool IAP, there is a 35% increased risk of diabetes. The study revealed that obese people with high IAP (approx. 65 U/g stool) do not develop T2DM. Approx. 65% of the healthy population have < 65.0 U/g stool IAP, and predictably, these people might have 'the incipient metabolic syndrome', including 'incipient diabetes', and might develop T2DM and other metabolic disorders in the near future. In conclusion, high IAP levels appear to be protective against diabetes irrespective of obesity, and a 'temporal IAP profile' might be a valuable tool for predicting 'the incipient metabolic syndrome', including 'incipient diabetes'.

  20. Detection of metastatic tumour cells in routine bone marrow smears by immuno-alkaline phosphatase labelling with monoclonal antibodies.

    PubMed

    Ghosh, A K; Erber, W N; Hatton, C S; O'Connor, N T; Falini, B; Osborn, M; Mason, D Y

    1985-09-01

    The present study describes 11 cases (10 carcinomas, one rhabdomyosarcoma) in which immuno-alkaline phosphatase labelling with monoclonal antibodies was used to demonstrate metastatic cells in routine smears of aspirated bone marrow. Carcinoma cells were detected using antibodies against epithelial cytokeratins, milk fat globule membrane antigen and carcinoembryonic antigen, and rhabdomyosarcoma cells with monoclonal anti-desmin. In four of the carcinoma cases it had not been possible to identify malignant cells in routinely stained marrow smears, whilst the case of disseminated rhabdomyosarcoma had initially been diagnosed (and treated) as a case of acute lymphoblastic leukaemia. The anti-cytokeratin antibody was found to be the most valuable of the anti-epithelial reagents used, since it labelled malignant cells in all of the 10 cases of carcinoma and gave the strongest reactions. These results suggest that immunocytochemical labelling should be used in cases of suspected carcinoma whenever conventional examination of marrow smears yields negative results, and furthermore (as illustrated by the case of rhabdomyosarcoma) that the technique is of value for identifying the true nature of poorly differentiated neoplasms in bone marrow.

  1. Steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer and pyrene for alkaline phosphatase fluorescent sensing

    NASA Astrophysics Data System (ADS)

    Song, Chunxia; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Jianbo; Huang, Jin; Zhou, Maogui; Guo, Xiaochen

    2016-03-01

    We herein report a strategy for sensitive alkaline phosphatase (ALP) fluorescent sensing based on steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer (polyβ-CD) and pyrene. The fluorescence of pyrene was enhanced more than 10 times through supramolecular assembly with polyβ-CD. The 5‧-phosphorylated dsDNA probe with pyrene attached on the 3‧-terminal could be cleaved by λ exonuclease (λ exo), yielding pyrene attached on mononucleotides. Pyrene attached on mononucleotides could easily enter the cavity of polyβ-CD, resulting in fluorescence enhancement. When ALP was introduced, it could remove 5‧-phosphate groups from dsDNA and then prevented the cleavage of dsDNA. Pyrene attached on dsDNA was difficult to enter the cavity of polyβ-CD because of steric hindrance, resulting in an inconspicuous fluorescence enhancement. Owing to the excellent fluorescence enhancement during steric hindrance regulated supramolecular assembly, excellent performance of the assay method was achieved for ALP with a detection limit of 0.04 U mL- 1. The detection limit was superior or comparable with the reported methods. Besides, this method was simple in design, avoiding double-labeling of probe.

  2. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate.

    PubMed

    Obayashi, Yusuke; Iino, Ryota; Noji, Hiroyuki

    2015-08-01

    Digitalization of fluorogenic enzymatic assays through the use of femtoliter chamber array technology is an emerging approach to realizing highly quantitative bioassays with single-molecule sensitivity. However, only a few digital fluorogenic enzyme assays have been reported, and the variations of the digital enzyme assays are basically limited to fluorescein- and resorufin-based fluorogenic assays. This limitation hampers the realization of a multiplex digital enzyme assay such as a digital enzyme-linked immunosorbent assay (ELISA). In this study, after optimization of buffer conditions, we achieved a single-molecule digital enzyme alkaline phosphatase (ALP) assay with a cumarin-based fluorogenic substrate, 4-methylunbelliferyl phosphate (4-MUP). When ALP molecules were encapsulated in a 44-femtoliter chamber array at a low ratio of less than 1 molecule per chamber, each chamber showed a discrete fluorescence signal in an all-or-none manner, allowing the digital counting of the number of active enzyme molecules. The fraction of fluorescent chambers linearly decreased with the enzyme concentration, obeying the Poisson distribution as expected. We also demonstrated a dual-color digital enzyme assay with a ALP/4-MUP and β-galactosidase (β-gal)/resorufin-β-d-galactopyranoside combination. The activities of single ALP and β-gal molecules were clearly detected simultaneously. The method developed in this study will enable us to carry out a parallelized, multiplex digital ELISA.

  3. Sub-cellular localisation of alkaline phosphatase activity in the cytoplasm of tammar wallaby (Macropus eugenii) neutrophils and eosinophils.

    PubMed

    Hulme-Moir, K Lisa; Clark, Phillip

    2011-07-15

    Alkaline phosphatase (ALP) has been used in studies of neutrophil morphology and function as a marker for identifying different granule populations. In human neutrophils, ALP is found within secretory vesicles, a rapidly mobilisable vesicle population important for upregulating membrane receptors during early activation. Intra-cellular ALP activity in the heterophils of rabbits and guinea pigs, in contrast, is found only in secondary granules. The neutrophils and eosinophils of tammar wallabies (Macropus eugenii) have previously been reported to contain large amounts of ALP activity when stained using routine cytochemical techniques. To define the subcellular location of ALP in this species, cell suspensions were examined using cerium chloride cytochemistry and transmission electron microscopy (TEM). ALP was found in 2 distinct cytoplasmic compartments. One compartment displayed morphology consistent with a subpopulation of secondary granules while a second tubulo-vesicular population appeared similar to the secretory vesicles of human neutrophils. Thin tubular vesicles containing ALP were also identified within the cytoplasm of tammar wallaby eosinophils. Large numbers of ALP-containing vesicles have not been recognised previously in eosinophils and this may represent a novel cytoplasmic compartment. In both cell types, ALP-containing structures showed alteration in morphology following stimulation with N-formyl-Met-Leu-Phe (fMLP) and PMA. PMID:21596444

  4. Immunolabeling of CD3-positive lymphocytes with a recombinant single-chain antibody/alkaline phosphatase conjugate.

    PubMed

    Bourin, P; Servat, A; Lataillade, J J; Goyffon, M; Vaux, D; Billiald, P

    2000-02-01

    G3(3) is a novel murine monoclonal antibody directed against the CD3 antigen of human T lymphocytes which could be used to analyze lymphoid malignancies. We have produced and characterized a recombinant colorimetric immunoconjugate with the antigen-binding specificity of antibody G3(3). A gene encoding a single-chain antibody variable fragment (scFv) was assembled using the original hybridoma cells as a source of antibody variable heavy (VH) and variable light (VL) chain genes. The chimeric gene was introduced into a prokaryotic expression vector in order to produce a soluble scFv fused to bacterial alkaline phosphatase. DNA sequencing and Western blotting analyses demonstrated the integrity of the soluble immunoconjugate recovered from induced recombinant bacteria. The scFv/AP protein was bifunctional and similar in immunoreactivity to the parent G3(3) antibody. Flow cytometry and immunostaining experiments confirmed that the activity of the scFv/AP protein compares favourably with that of the parent antibody. The scFv/AP conjugate was bound to CD3 antigen at the surface of T cells and was directly detected by its enzymatic activity. Thus this novel fusion protein has potential applications as an immunodiagnostic reagent.

  5. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.

    PubMed

    Koutsioulis, Dimitris; Lyskowski, Andrzej; Mäki, Seija; Guthrie, Ellen; Feller, Georges; Bouriotis, Vassilis; Heikinheimo, Pirkko

    2010-01-01

    Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology. PMID:19916164

  6. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.

    PubMed

    Xia, Ning; Zhang, Youjuan; Wei, Xin; Huang, Yaping; Liu, Lin

    2015-06-01

    MicroRNAs (MiRNAs) have been regarded as clinically important biomarkers and drug discovery targets. In this work, we reported a simple and ultrasensitive electrochemical method for miRNAs detection based on single enzyme amplification and electrochemical-chemical-chemical (ECC) redox cycling. Specifically, upon contact with the target miRNAs, the hairpin structure of biotinylated DNA immobilized on gold electrode was destroyed and the biotin group in DNA was forced away from the electrode surface, allowing for the coupling of streptavidin-conjugated alkaline phosphatase (SA-ALP). Then, ascorbic acid (AA, the enzymatic product of ALP) triggered the ECC redox cycling with ferrocene methanol (FcM) and tris(2-carboxyethyl)phosphine (TCEP) as the redox mediator and the chemical reducing reagent, respectively. The method was more sensitive than that with horseradish peroxidase (HRP) or glucose oxidase (GOx) triggered recycling since one ALP molecule captured by one target miRNA molecule promoted the production of thousands of AA. Analytical merits (e.g., detection limit, dynamic range, specificity, regeneration and reproducibility) were evaluated. The feasibility of the method for analysis of miRNA-21 in human serum has also been demonstrated.

  7. A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-fast red reaction.

    PubMed

    Speel, E J; Schutte, B; Wiegant, J; Ramaekers, F C; Hopman, A H

    1992-09-01

    We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label. PMID:1506667

  8. Arginine Coordination in Enzymatic Phosphoryl Transfer: Evaluation of the Effect of Arg166 Mutations in Escherichia Coli Alkaline Phosphatase

    SciTech Connect

    O'Brien, P.J.; Lassila, J.K.; Fenn, T.D.; Zalatan, J.G.; Herschlag, D.

    2009-05-22

    Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by {approx}3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 {angstrom} X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.

  9. An electrochemical microRNAs biosensor with the signal amplification of alkaline phosphatase and electrochemical-chemical-chemical redox cycling.

    PubMed

    Xia, Ning; Zhang, Youjuan; Wei, Xin; Huang, Yaping; Liu, Lin

    2015-06-01

    MicroRNAs (MiRNAs) have been regarded as clinically important biomarkers and drug discovery targets. In this work, we reported a simple and ultrasensitive electrochemical method for miRNAs detection based on single enzyme amplification and electrochemical-chemical-chemical (ECC) redox cycling. Specifically, upon contact with the target miRNAs, the hairpin structure of biotinylated DNA immobilized on gold electrode was destroyed and the biotin group in DNA was forced away from the electrode surface, allowing for the coupling of streptavidin-conjugated alkaline phosphatase (SA-ALP). Then, ascorbic acid (AA, the enzymatic product of ALP) triggered the ECC redox cycling with ferrocene methanol (FcM) and tris(2-carboxyethyl)phosphine (TCEP) as the redox mediator and the chemical reducing reagent, respectively. The method was more sensitive than that with horseradish peroxidase (HRP) or glucose oxidase (GOx) triggered recycling since one ALP molecule captured by one target miRNA molecule promoted the production of thousands of AA. Analytical merits (e.g., detection limit, dynamic range, specificity, regeneration and reproducibility) were evaluated. The feasibility of the method for analysis of miRNA-21 in human serum has also been demonstrated. PMID:26002330

  10. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  11. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

    PubMed

    Zalatan, Jesse G; Catrina, Irina; Mitchell, Rebecca; Grzyska, Piotr K; O'brien, Patrick J; Herschlag, Daniel; Hengge, Alvan C

    2007-08-01

    Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.

  12. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells.

    PubMed

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E

    1993-10-15

    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  13. Effects of adenosine triphosphate and alkaline phosphatase on solubilized 3,5,3'-triiodothyronine-binding activity.

    PubMed

    Faure, R; Dussault, J H

    1988-09-01

    The T3-binding activity of salt-extractable nuclear proteins from rat liver was affected when ATP (2-10 mM; pH 8.0) was added concomitantly with T3 in the incubation medium. Scatchard analysis revealed that the equilibrium association constant was significantly reduced [5 mM ATP, 0.3 +/- 0.1 (+/- SE) 10(10) M-1; control, 1.1 +/- 0.15 X 10(10) M-1], but the maximum binding capacity remained unchanged. Similar values of inhibition were obtained when unbound receptors were preincubated with ATP. ATP achieved its maximal effect after 45 min of incubation at 30 C. Dilution experiments indicated that the effect of ATP was reversible. The inhibiting potency of nucleoside triphosphates at pH 8.0 was in the following order: ATP = CTP greater than GTP, whereas UTP had no effect. Nonhydrolyzable analogs of ATP were also inhibitory, and HPLC fractionation showed an approximately 98% recovery of ATP after incubation with nuclear extract. The adenine ring with at least two phosphates was essential, since ADP was as potent as ATP, whereas AMP had no effect. When the pH of the incubation medium was lowered to 7.3, the T3-binding activity was inhibited by ATP in the 0.1-1 mM range. Magnesium (3 mM) greatly increases the ATP effect at pH 7.3, but not at pH 8. The T3-binding activity was also drastically reduced when calf intestine alkaline phosphatase was added concomitantly in the incubation medium. Eight micrograms per ml enzyme were necessary to inhibit the T3 specific binding by 50% (30 C for 45 min). Scatchard analysis showed that the receptor affinity for T3 was decreased (control, 1.1 +/- 0.02 x 10(10) M-1; alkaline phosphatase, 0.41 +/- 0.03 x 10(10) M-1; n = 6), whereas the maximum binding capacity remained unchanged. Incubations performed with increasing concentrations of beta-mercaphoethanol (2.5, 5, 10, and 25 mM) revealed that the phosphatase inhibitory effect is thiol dependent. The inhibition was maximal at 2.5 mM and progressively decreased at 5 and 10 mM. No

  14. Distribution of activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat.

    PubMed

    Angelov, D N

    1990-05-01

    The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.

  15. Crystallization and preliminary X-ray crystallographic analysis of PhoK, an extracellular alkaline phosphatase from Sphingomonas sp. BSAR-­1

    PubMed Central

    Nilgiriwala, Kayzad S.; Bihani, Subhash C.; Das, Amit; Prashar, Vishal; Kumar, Mukesh; Ferrer, Jean-Luc; Apte, Shree Kumar; Hosur, M. V.

    2009-01-01

    Alkaline phosphatases (APs) are widely distributed from microbes to humans and are involved in several important biological processes such as phosphate nutrition, signal transduction and pathogenesis. Alkaline phosphatases are also useful in various industrial applications and in recombinant DNA technology. A new AP enzyme from Sphingomonas sp. strain BSAR-1, termed PhoK, has been shown to be useful in uranium bioprecipitation. PhoK was expressed, purified and crystallized. The crystals belonged to space group P43212 or P41212, with unit-cell parameters a = b = 87.37, c = 168.16 Å, and contained one enzyme molecule in the asymmetric unit. Native diffraction data have been collected to 1.95 Å resolution at the ESRF. PMID:19724132

  16. Crystallization and preliminary X-ray crystallographic analysis of PhoK, an extracellular alkaline phosphatase from Sphingomonas sp. BSAR-1.

    PubMed

    Nilgiriwala, Kayzad S; Bihani, Subhash C; Das, Amit; Prashar, Vishal; Kumar, Mukesh; Ferrer, Jean Luc; Apte, Shree Kumar; Hosur, M V

    2009-09-01

    Alkaline phosphatases (APs) are widely distributed from microbes to humans and are involved in several important biological processes such as phosphate nutrition, signal transduction and pathogenesis. Alkaline phosphatases are also useful in various industrial applications and in recombinant DNA technology. A new AP enzyme from Sphingomonas sp. strain BSAR-1, termed PhoK, has been shown to be useful in uranium bioprecipitation. PhoK was expressed, purified and crystallized. The crystals belonged to space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 87.37, c = 168.16 A, and contained one enzyme molecule in the asymmetric unit. Native diffraction data have been collected to 1.95 A resolution at the ESRF.

  17. Immunocapture assay for quantification of human IgA antibodies to parasite antigenic enzymes. Application with the alkaline phosphatase of Schistosoma mansoni.

    PubMed

    Lien, D N; Cesari, I M; Bouty, I; Bout, D; Hoebeke, J

    1992-01-01

    Conditions are described for using solid phase adsorbed jacalins in an immunocapture assay for IgA antibodies to the alkaline phosphatase of Schistosoma mansoni. Microtiter plates were activated with polylysine and jacalins were covalently adsorbed by means of glutaraldehyde. From three different jacalins, the one purified from seeds of Artocarpus tonkinensis showed the lowest non-specific adsorption and was used for further studies. Comparing solutions of bovine serum albumin, ovalbumin and Tween 20, it was shown that the latter was most successful in blocking non-specific adsorption. Low serum dilutions resulted in a less efficient IgA capture by the adsorbed jacalin than higher dilutions. Under optimal working conditions, a high correlation could be shown between the presence of specific anti-alkaline phosphatase antibodies of IgA isotype and IgG isotype.

  18. Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2014-11-01

    There is a need to measure proteins that are present in concentrations below the detection limits of existing colorimetric approaches with enzyme-linked immunoabsorbent assays (ELISA). The powerful enzyme alkaline phosphatase conjugated to the highly specific bacterial protein streptavidin binds to biotinylated macromolecules like proteins, antibodies, or other ligands and receptors with a high affinity. The binding of the biotinylated detection antibody, with resulting amplification of the signal by the catalytic production of reporter molecules, is key to the sensitivity of ELISA. The specificity and amplification of the signal by the enzyme alkaline phosphatase in ELISA together with the sensitivity of liquid chromatography electrospray ionization and mass spectrometry (LC-ESI-MS) to detect femtomole to picomole amounts of reporter molecules results in an ultrasensitive enzyme-linked immune mass spectrometric assay (ELIMSA). The novel ELIMSA substrate pyridoxamine-5-phosphate (PA5P) is cleaved by the enzyme alkaline phosphatase to yield the basic and hydrophilic product pyridoxamine (PA) that elutes rapidly with symmetrical peaks and a flat baseline. Pyridoxamine (PA) and (13)C PA were both observed to show a linear relationship between log ion intensity and quantity from picomole to femtomole amounts by liquid chromatography-electrospray ionization and mass spectrometry. Four independent methods, (i) internal (13)C isotope PA dilution curves, (ii) internal (13)C isotope one-point calibration, (iii) external PA standard curve, and (iv) external (13)C PA standard curve, all agreed within 1 digit in the same order of magnitude on the linear quantification of PA. Hence, a mass spectrometer can be used to robustly detect 526 ymol of the alkaline phosphatase streptavidin probe and accurately quantify zeptomole amounts of PSA against log linear absolute standard by micro electrospray on a simple ion trap.

  19. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    PubMed

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  20. Effect of dietary carbohydrate and phenotype on sucrase, maltase, lactase, and alkaline phosphatase specific activity in SHR/N-cp rat.

    PubMed

    Wiesenfeld, P; Baldwin, J; Szepesi, B; Michaelis, O E

    1993-03-01

    The obese spontaneous hypertensive rat/NIH-corpulent (SHR/N-cp) rat exhibits some of the metabolic and pathologic alterations associated with non-insulin-dependent diabetes mellitus and hypertension. The current study was conducted to investigate the influence of phenotype (ob versus In) and source of dietary carbohydrate (sucrose versus starch) on intestinal sucrase, maltase, lactase, and alkaline phosphatase activity in SHR/N-cp rats. For 3 months, lean and obese male SHR/N-cp rats were fed isocaloric diets containing as the sole source of carbohydrate either 54% cooked corn starch or sucrose. Serum and urine markers for diabetes were observed in obese rats. Wet weight and length of intestines were significantly increased in obese rats compared with lean littermates. Among the intestinal enzymes measured, statistical tests confirmed that sucrase activity was significantly increased (P < 0.01) by both phenotype (ob > In) and feeding a sucrose diet. Diet alone (sucrose > starch) significantly increased (P < 0.05) maltase activity in obese rats, but had no effect on lean rats. Lactase activity was significantly higher (P < 0.05) in obese sucrose-fed rats compared with obese starch-fed and/or lean littermates. Statistical tests revealed that intestinal alkaline phosphatase activity was significantly altered (P < 0.05) by both phenotype and diet. Intestinal alkaline phosphatase was higher in starch-fed lean rats compared with lean littermates fed sucrose and to starch or sucrose-fed obese rats. These results are not indicative of a simple, nonspecific increase in intestinal enzyme activity, since the effects observed in intestinal alkaline phosphatase contrast the effects observed in intestinal sucrase, maltase, and lactase activity. These results indicate that both phenotype and diet alter structural and enzymatic intestinal activities of SHR/N-cp rats. Distinct variations in the observed intestinal enzymatic activities suggest that these enzymes are under the

  1. Pst I restriction fragment length polymorphism of human placental alkaline phosphatase gene: Mendelian in segregation and localization of mutation site in the gene

    SciTech Connect

    Tsavaler, L.; Penhallow, R.C.; Sussman, H.H. )

    1988-10-01

    The pattern of inheritance of a Pst I restriction fragment length polymorphism (RFLP) of the human placental alkaline phosphatase gene was studied in nine nuclear families by Southern blot hybridization analysis of genomic DNA. The dimorphic RFLP is defined by the presence of allelic fragments 1.0 kilobase and 0.8 kilobase long. The results of this study show that the two alleles of the Pst I RFLP of the placental alkaline phosphatase gene segregate as codominant traits according to Mendelian expectations. For a polymorphism to be useful as a genetic marker the probability that an offspring is informative (PIC) must be at least 0.15. The allelic frequency of the 1.0-kilobase allele is 0.21, which correlates to a probability that an offspring is informative of 0.275 and is indicative of a useful polymorphism. By using probes derived from different regions of the placental alkaline phosphatase cDNA, the mutated Pst I site causing the RFLP was located in the penultimate intron 2497 base pairs downstream from the transcriptional initiation site.

  2. Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice.

    PubMed

    Kirihata, Yuka; Kawarabayashi, Tetsu; Imanishi, Satoshi; Sugimoto, Miki; Kume, Shin-Ichi

    2008-02-01

    In this study, we investigated the effects of administration of coumestrol during pregnancy on calcium (Ca) metabolism in post-delivery maternal and neonatal mice. From 6.5 to 16.5 days post coitus (dpc), pregnant females were administered daily doses of coumestrol (200 microg/kg body weight/day). One day after parturition, blood samples and the kidneys, liver, jejunum and duodenum were obtained from each of maternal mouse, and blood samples and the kidneys and liver were obtained from neonatal mice. Coumestrol did not have any significant effect on the Ca and inorganic phosphorus concentrations in the sera of the maternal and neonatal mice. No notable effects of coumestrol were observed in relation to Vitamin D receptor expression in the maternal and neonatal mice by immunohistochemical analysis. Coumestrol did not affect the Vitamin D receptor and epithelial calcium channel and 2 mRNA levels in any of the organs investigated. Enzyme histochemical analysis showed that coumestrol decreased intestinal alkaline phosphatase activity in the maternal jejunum and duodenum. In the duodenum, coumestrol decreased expression of intestinal alkaline phosphatase, c-fos and vascular endothelial growth factor at the mRNA level. However, we did not observe any significant effects of coumestrol on the expression of these genes. In conclusion, coumestrol decreased intestinal alkaline phosphatase activity in the small intestines of maternal mice at the level used in the present study, and the mechanisms underlying this effect are different for the jejunum and duodenum. PMID:18160770

  3. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields. PMID:24738440

  4. Alkaline phosphatase activity in Zostera noltii hornem. and its contribution to the release of phosphate in the palmones river estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 0C (22·6 μmol pNP released g dry wt-1 h-1), pH 8·8 (35·6 μmol pNP g dry wt-1 h-1) and salinity 43·8 (27·8 pmol pNP g dry wt-1 h-1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0 20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day-1 was found.

  5. Alkaline Phosphatase Activity in Zostera noltii Hornem. and its Contribution to the Release of Phosphate in the Palmones River Estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 °C (22·6 μmol pNP released g dry wt -1 h -1), pH 8·8 (35·6 μmol pNP g dry wt -1 h -1) and salinity 43·8 (27·8 μmol pNP g dry wt -1 h -1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0-20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day -1 was found.

  6. Alkaline phosphatase activity in Zostera noltii hornem. and its contribution to the release of phosphate in the palmones river estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 0C (22·6 μmol pNP released g dry wt -1 h -1), pH 8·8 (35·6 μmol pNP g dry wt -1 h -1) and salinity 43·8 (27·8 pmol pNP g dry wt -1 h -1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0-20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day -1 was found.

  7. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes.

  8. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  9. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice. PMID:27755566

  10. Association of Cry1Ac Toxin Resistance in Helicoverpa zea (Boddie) with Increased Alkaline Phosphatase Levels in the Midgut Lumen

    PubMed Central

    Caccia, Silvia; Moar, William J.; Chandrashekhar, Jayadevi; Oppert, Cris; Anilkumar, Konasale J.; Jurat-Fuentes, Juan Luis

    2012-01-01

    Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae. PMID:22685140

  11. Molecular Evolution of the Tissue-nonspecific Alkaline Phosphatase Allows Prediction and Validation of Missense Mutations Responsible for Hypophosphatasia*

    PubMed Central

    Silvent, Jérémie; Gasse, Barbara; Mornet, Etienne; Sire, Jean-Yves

    2014-01-01

    ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction. PMID:25023282

  12. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  13. Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin-Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis.

    PubMed

    Ibrar, Aliya; Zaib, Sumera; Jabeen, Farukh; Iqbal, Jamshed; Saeed, Aamer

    2016-07-01

    A series of new coumarin-triazolothiadiazine hybrid compounds (5a-j) was designed and synthesized by using the molecular hybridization concept. The cyclocondensation reaction involves the coumarinyl 4-amino-1,2,4-triazole and a range of bromo-acetophenones, delivering the desired products in good yields. The structures of the synthesized compounds were established on the basis of spectro-analytical data. The prepared compounds were evaluated against alkaline phosphatase (ALP) where compound 5j incorporating bis-coumarinyl motifs at the 3- and 6-positions of the heteroaromatic core turned out to be a potent inhibitor with an IC50 value of 1.15 ± 1.0 µM. The synthesized compounds were also tested against Leishmania major and 5h was the lead member with an IC50 value of 0.89 ± 0.08 μM. Anticancer activity was also determined using kidney fibroblast (BHK-21) and lung carcinoma (H-157) cancer cell lines. Compound 5i showed highest cytotoxic potential against H-157 cells with an IC50 value of 1.01 ± 0.12 μM, which is an improved inhibition compared to the standards (vincristine and cisplatin) used in this assay. Molecular docking studies were carried out on the synthesized library of coumarin-triazolothiadiazine hybrids against ALP. Almost all of the compounds showed strong interactions with the key residues of the active site of the receptor. In case of compounds 5a-c, 5h, and 5j, docking results positively complemented the experimental screening. These results provided substantial evidence for the further development of these compounds as potent inhibitors of ALP.

  14. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol.

    PubMed

    Turner, P C; Wu, Q K; Piekkola, S; Gratz, S; Mykkänen, H; El-Nezami, H

    2008-06-01

    Deoxynivalenol (DON) contamination of cereal crops occurs frequently, and may cause acute exposure at high levels or chronic more moderate exposure. DON has proven toxicity including restriction of enterocyte differentiation, which may play a part in DON induced gastroenteritis. The probiotic bacteria Lactobacillus rhamnosus strain GG (GG) can bind DON, and therefore potentially restrict bioavailability of this toxin. Binding efficacy is not significantly altered by heat treatment, and therefore this in vitro study evaluated whether heat inactivated GG could restore the differentiation process in Caco-2 cells, using alkaline phosphatase (ALP) activity as a marker of differentiation. DON (200ng/mL) caused a significant (p<0.001) 36% reduction in ALP activity (1598+/-137U/mg protein) compared to untreated cells (2502+/-80U/mg). A dose dependant restoration of ALP activity was observed where DON treated cells were co-incubated with heat inactivated GG (1719+/-84; 2007+/-142; 2272+/-160U/mg for GG at 1x10(4) (p>0.9), 1x10(7) (p<0.001), and 1x10(10)CFU/mL (p<0.001), respectively). Co-incubation of the non-binding strain, LC-705 (1x10(10)CFU/mL), with DON did not significantly restore the ALP (1841+/-97U/mg, p<0.077) compared to DON only treated cells. When viable GG were co-incubated with DON a similar restoration of ALP activity was observed as seen for heat inactivated GG. These combined data suggest that the major effect of GG on restoring ALP activity, and therefore Caco-2 cell differentiation, was due to specific binding of DON, with possibly a more minor role of non-specific bacterial interference.

  15. Mineralization of alkaline phosphatase-complexed collagen implants in the rat in relation to serum inorganic phosphate.

    PubMed

    van den Bos, T; Oosting, J; Everts, V; Beertsen, W

    1995-04-01

    The present study was designed to determine the relationship between mineralization of collagenous matrices and serum levels of calcium and inorganic phosphate. Collagen slices were prepared from bovine dentin or cortical bone and complexed with varying amounts of intestinal alkaline phosphatase (ALP). The enzyme was added to induce de novo mineralization. The ALP-complexed slices were implanted subcutaneously over the skull and in the dorsolateral aspect of the abdominal wall in female Wistar rats of various ages (5-, 10-, 20-, or 35-week-old) and in young male rats fed on a low-P diet. After 1-4 weeks, the implants were removed and analyzed for calcium and phosphate content. In addition, serum levels of calcium and phosphate (total and inorganic) were determined. It was shown that the highest mineral influx occurred in the younger rats (which were also highest in serum P(i)), whereas almost no mineral uptake occurred in the older ones. Also in rats fed on a low-P diet (which were low in serum P(i), a strongly decreased mineral influx was noted. In all animal groups a positive correlation was found between the degree of mineralization and serum P(i). No distinct relationship was found between serum Ca/organic phosphate levels and mineral influx in the implants. In vitro incubation of ALP-collagen conjugates in serum from younger and older rats confirmed our view that serum P(i), besides local levels of ALP, is important in de novo mineral deposition. For accretion of mineral in partially remineralized collagenous carriers, ALP activity was not required.

  16. Distinct expression of alkaline phosphatase activity in epilimnetic bacteria: Implication for persistent DOC consumption in a P-limited reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.; Kao, S.; Shiah, F.

    2013-12-01

    In a P-deficient system, P availability usually controls the microbial activity and thus the ecosystem function. Thingstad et al. (1997) first addressed a 'Malfunctioning Microbial-loop' theory, which stated that low bacterial production (BP) caused by insufficient nutrient supply would result in DOC accumulation in an oligotrophic ecosystem. In this study we re-examined the theory by conducting seasonal patterns and correlations among soluble reactive phosphate (SRP) and DOC, microbial abundances (picocyanobacteria, bacteria, and heterotrophic nanoflagellate; HNF) and activities (primary production, bacterial production, and alkaline phosphatase activity; APA) coupled with enzyme-labeled fluorescence (ELF) assays on bacterioplankton in a subtropical reservoir sharing the common features, nitrate-replete and P-deficient, with most natural freshwater system during Oct 2007-Oct 2008. Persistently high APA was recorded during most of time, implying that the system was P-deficient. Size fractionated APA and ELF assay revealed that bacteria were the major APA contributor. However, significantly low epilimnion DOC was recorded during the stratified summer season accompanying with high BP and APA as well as high PP, implying that heterotrophic bacteria can well sustain in P-deficient system by utilizing DOP to rapidly lower down DOC under relatively high PP. Such findings oppose the 'Malfunctioning Microbial-loop' theory. On the other hand, strong epilimnetic DOC accumulation occurred in Oct 2007 under low light and low PP condition accompanying with high abundance of HNF, implying that HNF grazing may contribute to a certain degree of DOC accumulation. Correlation matrix supported our suggestions. This study testified the DOC dynamics in P-deficient ecosystem are tightly coupled with the source (PP and grazing) and sink (BP). We also suggested that in SRP-limited freshwater systems bacteria are capable of breaking down autochthonous DOC to reduce the chance of DOC

  17. Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen.

    PubMed

    Caccia, Silvia; Moar, William J; Chandrashekhar, Jayadevi; Oppert, Cris; Anilkumar, Konasale J; Jurat-Fuentes, Juan Luis; Ferré, Juan

    2012-08-01

    Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differences were detected in Cry1Ac-induced pore formation activity in BBMVs from both strains. Enzymatic activities of two putative Cry1Ac receptors (aminopeptidase N [APN] and alkaline phosphatase [ALP]) were significantly reduced (2-fold and 3-fold, respectively) in BBMVs from AR1 compared to LC larvae. These reductions corresponded to reduced protein levels in midgut luminal contents only in the case of ALP, with an almost 10-fold increase in specific ALP activity in midgut fluids from AR1 compared to LC larvae. Partially purified H. zea ALP bound Cry1Ac toxin in ligand blots and competed with Cry1Ac toxin for BBMV binding. Based on these results, we suggest the existence of at least one mechanism of resistance to Cry1A toxins in H. zea involving binding of Cry1Ac toxin to an ALP receptor in the larval midgut lumen of resistant larvae. PMID:22685140

  18. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  19. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.

    PubMed

    Bobyr, Elena; Lassila, Jonathan K; Wiersma-Koch, Helen I; Fenn, Timothy D; Lee, Jason J; Nikolic-Hughes, Ivana; Hodgson, Keith O; Rees, Douglas C; Hedman, Britt; Herschlag, Daniel

    2012-01-01

    Comparisons among evolutionarily related enzymes offer opportunities to reveal how structural differences produce different catalytic activities. Two structurally related enzymes, Escherichia coli alkaline phosphatase (AP) and Xanthomonas axonopodis nucleotide pyrophosphatase/phosphodiesterase (NPP), have nearly identical binuclear Zn(2+) catalytic centers but show tremendous differential specificity for hydrolysis of phosphate monoesters or phosphate diesters. To determine if there are differences in Zn(2+) coordination in the two enzymes that might contribute to catalytic specificity, we analyzed both x-ray absorption spectroscopic and x-ray crystallographic data. We report a 1.29-Å crystal structure of AP with bound phosphate, allowing evaluation of interactions at the AP metal site with high resolution. To make systematic comparisons between AP and NPP, we measured zinc extended x-ray absorption fine structure for AP and NPP in the free-enzyme forms, with AMP and inorganic phosphate ground-state analogs and with vanadate transition-state analogs. These studies yielded average zinc-ligand distances in AP and NPP free-enzyme forms and ground-state analog forms that were identical within error, suggesting little difference in metal ion coordination among these forms. Upon binding of vanadate to both enzymes, small increases in average metal-ligand distances were observed, consistent with an increased coordination number. Slightly longer increases were observed in NPP relative to AP, which could arise from subtle rearrangements of the active site or differences in the geometry of the bound vanadyl species. Overall, the results suggest that the binuclear Zn(2+) catalytic site remains very similar between AP and NPP during the course of a reaction cycle. PMID:22056344

  20. The Effects of Culture Conditions on the Glycosylation of Secreted Human Placental Alkaline Phosphatase Produced in Chinese Hamster Ovary Cells

    PubMed Central

    Nam, Jong Hyun; Zhang, Fuming; Ermonval, Myriam; Linhardt, Robert J.; Sharfstein, Susan T.

    2009-01-01

    The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33°C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions. PMID:18553404

  1. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the Western north pacific ocean.

    PubMed

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L(-1), chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62-92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22-39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean. PMID:22457661

  2. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components.

  3. Prognostic value of combined preoperative lactate dehydrogenase and alkaline phosphatase levels in patients with resectable pancreatic ductal adenocarcinoma.

    PubMed

    Ji, Fei; Fu, Shun-Jun; Guo, Zhi-Yong; Pang, Hui; Ju, Wei-Qiang; Wang, Dong-Ping; Hua, Yun-Peng; He, Xiao-Shun

    2016-07-01

    Serum enzymes, including lactate dehydrogenase (LDH) and alkaline phosphatase (ALP), have recently been reported to play important roles in tumor growth. Increases in LDH and ALP have been confirmed to predict poor prognosis in patients with various cancers. However, their prognostic value in pancreatic cancer has not been well studied. Therefore, we reviewed the preoperative data on LDH and ALP in 185 pancreatic ductal adenocarcinoma (PDAC) patients who underwent surgery between July 2005 and December 2010 to explore the prognostic value of these markers. The cutoff points were determined based on the upper limit of their normal values. The Chi-square test was used to analyze the relationships between LDH/ALP and clinical characteristics. Univariate and multivariate analyses were performed to identify the predictive value of the above factors for disease-free survival (DFS) and overall survival (OS). We found that elevation of LDH was related to carbohydrate antigen 19-9 (CA19-9), lymph node involvement, tumor size, TNM, distant metastasis, and recurrence. Additionally, ALP was correlated to perineural invasion. After multivariate analysis, LDH and ALP were identified as independent prognostic factors for DFS and OS, and elevation of LDH/ALP was correlated with poor DFS and OS. Notably, there was a positive correlation between LDH and ALP. The predictive power of LDH combined with ALP was more sensitive than that of either one alone. Therefore, we conclude that the preoperative LDH and ALP values are prognostic factors for PADC, and the prognostic accuracy of testing can be enhanced by the combination of LDH and ALP. PMID:27399091

  4. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae.

    PubMed

    Fernandez, Luisa E; Aimanova, Karlygash G; Gill, Sarjeet S; Bravo, Alejandra; Soberón, Mario

    2006-02-15

    A 65 kDa GPI (glycosylphosphatidyl-inositol)-anchored ALP (alkaline phosphatase) was characterized as a functional receptor of the Bacillus thuringiensis subsp. israelensis Cry11Aa toxin in Aedes aegypti midgut cells. Two (a 100 kDa and a 65 kDa) GPI-anchored proteins that bound Cry11Aa toxin were preferentially extracted after treatment of BBMV (brush boder membrane vesicles) from Ae. aegypti midgut epithelia with phospholipase C. The 65 kDa protein was further purified by toxin affinity chromatography. The 65 kDa protein showed ALP activity. The peptide-displaying phages (P1.BBMV and P8.BBMV) that bound to the 65 kDa GPI-ALP (GPI-anchored ALP) and competed with the Cry11Aa toxin to bind to BBMV were isolated by selecting BBMV-binding peptide-phages by biopanning. GPI-ALP was shown to be preferentially distributed in Ae. aegypti in the posterior part of the midgut and in the caeca, by using P1.BBMV binding to fixed midgut tissue sections to determine the location of GPI-ALP. Cry11Aa binds to the same regions of the midgut and competed with P1.BBMV and P8.BBMV to bind to BBMV. The importance of this interaction was demonstrated by the in vivo attenuation of Cry11Aa toxicity in the presence of these phages. Our results shows that GPI-ALP is an important receptor molecule involved in Cry11Aa interaction with midgut cells and toxicity to Ae. aegypti larvae.

  5. Orientation of mineral crystallites and mineral density during skeletal development in mice deficient in tissue nonspecific alkaline phosphatase.

    PubMed

    Tesch, W; Vandenbos, T; Roschgr, P; Fratzl-Zelman, N; Klaushofer, K; Beertsen, W; Fratzl, P

    2003-01-01

    Tissue nonspecific alkaline phosphatase (TNALP) is thought to play an important role in mineralization processes, although its exact working mechanism is not known. In the present investigation we have studied mineral crystal characteristics in the developing skeleton of TNALP-deficient mice. Null mutants (n = 7) and their wild-type littermates (n = 7) were bred and killed between 8 and 22 days after birth. Skeletal tissues were processed to assess mineral characteristics (small angle X-ray scattering, quantitative backscattered electron imaging), and to analyze bone by light microscopy and immunolabeling. The results showed a reduced longitudinal growth and a strongly delayed epiphyseal ossification in the null mutants. This was accompanied by disturbances in mineralization pattern, in that crystallites were not orderly aligned with respect to the longitudinal axis of the cortical bone. Among the null mutants, a great variability in the mineralization parameters was noticed. Also, immunolabeling of osteopontin (OPN) revealed an abnormal distribution pattern of the protein within the bone matrix. Whereas in the wild-type animals OPN was predominantly observed in cement and reversal lines, in the null mutants, OPN was also randomly dispersed throughout the nonmineralized matrix, with focal densities. In contrast, the distribution pattern of osteocalcin (OC) was comparable in both types of animals. It is concluded that ablation of TNALP results not only in hypomineralization of the skeleton, but also in a severe disorder of the mineral crystal alignment pattern in the corticalis of growing long bone in association with a disordered matrix architecture, presumably as a result of impaired bone remodeling and maturation. PMID:12510812

  6. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation

    PubMed Central

    Jansen, Jos C.; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A.W.; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G.; Rodenburg, Richard J.; Drenth, Joost P.H.; Huynen, Martijn A.; Wevers, Ron A.; Morava, Eva; Foulquier, François; Veltman, Joris A.; Lefeber, Dirk J.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation. PMID:26833330

  7. One-step immunoassay for tetrabromobisphenol a using a camelid single domain antibody-alkaline phosphatase fusion protein.

    PubMed

    Wang, Jia; Majkova, Zuzana; Bever, Candace R S; Yang, Jun; Gee, Shirley J; Li, Ji; Xu, Ting; Hammock, Bruce D

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant, showing widespread environmental and human exposures. A variable domain of the heavy chain antibody (VHH), naturally occurring in camelids, approaches the lower size limit of functional antigen-binding entities. The ease of genetic manipulation makes such VHHs a superior choice to use as an immunoreagent. In this study, a highly selective anti-TBBPA VHH T3-15 fused with alkaline phosphatase (AP) from E. coli was expressed, showing both an integrated TBBPA-binding capacity and enzymatic activity. A one-step immunoassay based on the fusion protein T3-15-AP was developed for TBBPA in 5% dimethyl sulfoxide (DMSO)/phosphate buffered saline (PBS, pH 7.4), with a half-maximum signal inhibition concentration (IC50) of 0.20 ng mL(-1). Compared to the parental VHH T3-15, T3-15-AP was able to bind to a wider variety of coating antigens and the assay sensitivity was slightly improved. Cross-reactivity of T3-15-AP with a set of important brominated analogues was negligible (<0.1%). Although T3-15-AP was susceptible to extreme heat (90 °C), much higher binding stability at ambient temperature was observed in the T3-15-AP-based assay for at least 70 days. A simple pretreatment method of diluting urine samples with DMSO was developed for a one-step assay. The recoveries of TBBPA from urine samples via this one-step assay ranged from 96.7% to 109.9% and correlated well with a high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. It is expected that the dimerized fusion protein, VHH-AP, will show promising applications in human exposure and environmental monitoring.

  8. One-step Immunoassay for Tetrabromobisphenol A Using a Camelid Single Domain Antibody-Alkaline Phosphatase Fusion Protein

    PubMed Central

    Wang, Jia; Majkova, Zuzana; Bever, Candace R. S.; Yang, Jun; Gee, Shirley J.; Li, Ji; Xu, Ting; Hammock, Bruce D.

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant, showing widespread environment and human exposures. A variable domain of the heavy chain antibody (VHH), naturally occurring in camelids, approaches the lower size limit of functional antigen-binding entities. Ease of genetic manipulation makes such VHHs a superior choice to use as an immunoreagent. In this study, a highly selective anti-TBBPA VHH T3-15 fused with alkaline phosphatase (AP) from E. coli was expressed, showing both an integrated TBBPA-binding capacity and enzymatic activity. A one-step immunoassay based on the fusion protein T3-15-AP was developed for TBBPA in 5% dimethyl sulfoxide (DMSO)/phosphate buffered saline (PBS, pH 7.4), with a half-maximum signal inhibition concentration (IC50) of 0.20 ng mL−1. Compared to the parental VHH T3-15, T3-15-AP was able to bind to a wider variety of coating antigens and the assay sensitivity was slightly improved. Cross-reactivity of T3-15-AP with a set of important brominated analogs was negligible (<0.1%). Although T3-15-AP was susceptible to extreme heat (90 °C), much higher binding stability at ambient temperature was observed in the T3-15-AP based assay for at least 70 days. A simple pretreatment method of diluting urine samples with DMSO was developed for a one-step assay. The recoveries of TBBPA from urine samples by this one-step assay ranged from 96.7–109.9% and correlated well with an HPLC-MS/MS method. It is expected that the dimerized fusion protein, VHH-AP, will show promising applications in human exposure and environmental monitoring. PMID:25849972

  9. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.

    PubMed

    Jansen, Jos C; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A W; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G; Rodenburg, Richard J; Drenth, Joost P H; Huynen, Martijn A; Wevers, Ron A; Morava, Eva; Foulquier, François; Veltman, Joris A; Lefeber, Dirk J

    2016-02-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.

  10. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the Western north pacific ocean.

    PubMed

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L(-1), chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62-92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22-39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean.

  11. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents. PMID:23030390

  12. Molecular phenotype of tissue-nonspecific alkaline phosphatase with a proline (108) to leucine substitution associated with dominant odontohypophosphatasia.

    PubMed

    Numa-Kinjoh, Natsuko; Komaru, Keiichi; Ishida, Yoko; Sohda, Miwa; Oda, Kimimitsu

    2015-08-01

    Hypophosphatasia (HPP) is a genetic disease characterized by defective calcification of hard tissues such as bone and teeth accompanying deficiency of serum alkaline phosphatase (ALP) activity. Its development results from various mutations in the ALPL gene encoding tissue-nonspecific ALP (TNSALP). HPP is known to be transmitted in an autosomal recessive or autosomal dominant manner. A point mutation (c.323C>T) in the ALPL gene leading to a proline to leucine substitution at position 108 of TNSALP was first reported in a patient diagnosed with odonto-HPP (M Herasse et al., J Med Genet 2003;40:605-609), although the effects of this mutation on the TNSALP molecule have not been elucidated. To understand the molecular basis of this dominantly transmitted HPP, we first characterized TNSALP (P108L) by expressing it in COS-1 cells transiently. In contrast to wild-type TNSALP (WT), TNSALP (P108L) showed virtually no ALP activity. When coexpressed with TNSALP (WT), TNSALP (P108L) significantly inhibited the enzyme activity of TNSALP (WT), confirming that this mutant TNSALP exerts a dominant negative effect on TNSALP (WT). Using immunofluorescence and digestion with phosphatidylinositol-specific phospholipase C, we demonstrated that TNSALP (P108L) was anchored to the cell surface via glycosylphosphatidylinositol-like TNSALP (WT) in a Tet-On CHO cell expression system. Consistent with this, TNSALP (P108L) acquired endo-β-N-acetylglucosaminidase H resistance and sialic acids, as evidenced by glycosidase treatments. Importantly, TNSALP (WT) largely formed a functional dimeric structure, while TNSALP (P108L) was found to be present as a monomer in the cell. This indicates that the molecular structure of TNSALP is affected by a missense mutation at position 108, which is in contact with the active site, such that it no longer assembles into the functional dimeric form. Collectively, these results may explain why TNSALP (P108L) loses its ALP activity, even though it is able to

  13. Effects of Intercropping with Potato Onion on the Growth of Tomato and Rhizosphere Alkaline Phosphatase Genes Diversity

    PubMed Central

    Wu, Xia; Wu, Fengzhi; Zhou, Xingang; Fu, Xuepeng; Tao, Yue; Xu, Weihui; Pan, Kai; Liu, Shouwei

    2016-01-01

    Background and Aims: In China, excessive fertilization has resulted in phosphorus (P) accumulation in most greenhouse soils. Intercropping can improve the efficiency of nutrient utilization in crop production. In this study, pot experiments were performed to investigate the effects of intercropping with potato onion (Allium cepa L. var. aggregatum G. Don) on tomato (Solanum lycopersicum L.) seedlings growth and P uptake, the diversity of rhizosphere phosphobacteria and alkaline phosphatase (ALP) genes in phosphorus-rich soil. Methods: The experiment included three treatments, namely tomato monoculture (TM), potato onion monoculture (OM), and tomato/potato onion intercropping (TI-tomato intercropping and OI-potato onion intercropping). The growth and P uptake of tomato and potato onion seedlings were evaluated. The dilution plating method was used to determine the population of phosphate-solubilizing bacteria (PSB) and phosphate-mineralizing bacteria (PMB). The genomic DNAs of PSB and PMB in the rhizosphere of tomato and potato onions were extracted and purified, and then, with the primer set of 338f /518r, the PCR amplification of partial bacterial 16S rDNA sequence was performed and sequenced to determine the diversities of PSB and PMB. After extracting the total genomic DNAs from the rhizosphere, the copy numbers and diversities of ALP genes were investigated using real-time PCR and PCR-DGGE, respectively. Results: Intercropping with potato onion promoted the growth and P uptake of tomato seedlings, but inhibited those of potato onion. After 37 days of transplanting, compared to the rhizosphere of TM, the soil pH increased, while the electrolytic conductivity and Olsen P content decreased (p < 0.05) in the rhizosphere of TI. The populations and diversities of PSB, PMB, and ALP genes increased significantly in the rhizosphere of TI, compared to the rhizosphere of TM. Conclusion: The results indicated that intercropping with potato onion promoted the growth and P

  14. Molecular phenotype of tissue-nonspecific alkaline phosphatase with a proline (108) to leucine substitution associated with dominant odontohypophosphatasia.

    PubMed

    Numa-Kinjoh, Natsuko; Komaru, Keiichi; Ishida, Yoko; Sohda, Miwa; Oda, Kimimitsu

    2015-08-01

    Hypophosphatasia (HPP) is a genetic disease characterized by defective calcification of hard tissues such as bone and teeth accompanying deficiency of serum alkaline phosphatase (ALP) activity. Its development results from various mutations in the ALPL gene encoding tissue-nonspecific ALP (TNSALP). HPP is known to be transmitted in an autosomal recessive or autosomal dominant manner. A point mutation (c.323C>T) in the ALPL gene leading to a proline to leucine substitution at position 108 of TNSALP was first reported in a patient diagnosed with odonto-HPP (M Herasse et al., J Med Genet 2003;40:605-609), although the effects of this mutation on the TNSALP molecule have not been elucidated. To understand the molecular basis of this dominantly transmitted HPP, we first characterized TNSALP (P108L) by expressing it in COS-1 cells transiently. In contrast to wild-type TNSALP (WT), TNSALP (P108L) showed virtually no ALP activity. When coexpressed with TNSALP (WT), TNSALP (P108L) significantly inhibited the enzyme activity of TNSALP (WT), confirming that this mutant TNSALP exerts a dominant negative effect on TNSALP (WT). Using immunofluorescence and digestion with phosphatidylinositol-specific phospholipase C, we demonstrated that TNSALP (P108L) was anchored to the cell surface via glycosylphosphatidylinositol-like TNSALP (WT) in a Tet-On CHO cell expression system. Consistent with this, TNSALP (P108L) acquired endo-β-N-acetylglucosaminidase H resistance and sialic acids, as evidenced by glycosidase treatments. Importantly, TNSALP (WT) largely formed a functional dimeric structure, while TNSALP (P108L) was found to be present as a monomer in the cell. This indicates that the molecular structure of TNSALP is affected by a missense mutation at position 108, which is in contact with the active site, such that it no longer assembles into the functional dimeric form. Collectively, these results may explain why TNSALP (P108L) loses its ALP activity, even though it is able to

  15. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    PubMed

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays. PMID:26419907

  16. Alkaline phosphatase activity: new assay for the Reflotron system. Results of the evaluation in eight clinical laboratories.

    PubMed

    Schumann, G; Dominick, H C; Hellmann, D; Klauke, R; Möckesch, M; Stekel, H; von Schenck, H; Kraft, M; Nagel, R; Hänseler, E

    2001-01-01

    A new reagent carrier, Reflotron ALP, has been developed for the Reflotron system, allowing easy and rapid measurement (in less than 3 minutes) of alkaline phosphatase (ALP) activity in capillary blood, venous blood, heparinized plasma or serum. The evaluation of the analytical performance of the assay was carried out at eight clinical laboratories. The study of the imprecision using the measurements in human samples resulted in coefficients of variation ranging from 1.3% to 4.6% (within-run) and from 3.2% to 4.0% (day-to-day). The analytical specificity of the Reflotron ALP assay agrees well with ALP methods using a N-methyl-D-glucamine buffer solution. The calibration of the Reflotron ALP assay, however, is related to the reference intervals for ALP methods using a diethanolamine buffer solution. Method comparisons were performed with the ALP method on Hitachi instruments using diethanolamine buffer. Reflotron ALP measurements in blood and plasma in 157 randomly selected split samples showed excellent agreement (slope: 0.99; intercept: 0.7 U/l; median bias: 2.3%; median difference from the comparison method: -0.3%). Specimens from pregnant women and adolescents were excluded from this study. Differing values were obtained in a method comparison using 48 samples containing predominantly the ALP bone isoform (slope: 0.81; intercept: 31.5 U/l; median bias: 5.7%; median difference from the comparison method: -12.2%). Regression analysis of the results from 21 sera with prevailing placental ALP gave a slope of 1.51, and an intercept of -41.1 U/l (median bias: 8.6%; median difference from the comparison method: 35.6%). Reflotron ALP was compared with three different wet chemistry procedures using different buffer compounds: N-methyl-D-glucamine or diethanolamine or 2-amino-2-methyl-1-propanol. In samples containing predominantly ALP isoforms not of liver origin, the measurements with N-methyl-D-glucamine buffer gave the best fit with respect to Reflotron. In an

  17. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation

    PubMed Central

    2014-01-01

    Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC

  18. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP

  19. Intestinal Alkaline Phosphatase Inhibits the Translocation of Bacteria of Gut-Origin in Mice with Peritonitis: Mechanism of Action

    PubMed Central

    Wang, Wei; Chen, Shan-Wen; Zhu, Jing; Zuo, Shuai; Ma, Yuan-Yuan; Chen, Zi-Yi; Zhang, Jun-Ling; Chen, Guo-Wei; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-01-01

    Exogenous intestinal alkaline phosphatase (IAP), an enzyme produced endogenously at the brush edge of the intestinal mucosa, may mitigate the increase in aberrant intestinal permeability increased during sepsis. The aim of this study was to test the efficacy of the inhibitory effect of IAP on acute intestinal inflammation and to study the molecular mechanisms underlying IAP in ameliorating intestinal permeability. We used an in vivo imaging method to evaluate disease status and the curative effect of IAP. Two Escherichia coli (E.coli) B21 strains, carrying EGFP labeled enhanced green fluorescent protein (EGFP) and RFP labeled red fluorescent protein (RFP), were constructed as tracer bacteria and were administered orally to C57/B6N mice to generate an injection peritonitis (IP) model. The IP model was established by injecting inflammatory lavage fluid. C57/B6N mice bearing the tracer bacteria were subsequently treated with (IP+IAP group), or without IAP (IP group). IAP was administered to the mice via tail vein injections. The amount of tracer bacteria in the blood, liver, and lungs at 24 h post-injection was analyzed via flow cytometry (FCM), in vivo imaging, and Western blotting. Intestinal barrier function was measured using a flux assay with the macro-molecule fluorescein isothiocyanate dextran, molecular weight 40kD, (FD40). To elucidate the molecular mechanism underlying the effects of IAP, we examined the levels of ERK phosphorylation, and the expression levels of proteins in the ERK-SP1-VEGF and ERK-Cdx-2-Claudin-2 pathways. We observed that IAP inhibited the expression of Claudin-2, a type of cation channel-forming protein, and VEGF, a cytokine that may increase intestinal permeability by reducing the levels of dephosphorylated ERK. In conclusion, exogenous IAP shows a therapeutic effect in an injection peritonitis model. This including inhibition of bacterial translocation. Moreover, we have established an imaging methodology for live-animals can

  20. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  1. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin.

    PubMed

    Arenas, Iván; Bravo, Alejandra; Soberón, Mario; Gómez, Isabel

    2010-04-23

    Cry toxins produced by Bacillus thuringiensis have been recognized as pore-forming toxins whose primary action is to lyse midgut epithelial cells in their target insect. In the case of the Cry1A toxins, a prepore oligomeric intermediate is formed after interaction with cadherin receptor. The Cry1A oligomer then interacts with glycosylphosphatidylinositol-anchored receptors. Two Manduca sexta glycosylphosphatidylinositol-anchored proteins, aminopeptidase (APN) and alkaline phosphatase (ALP), have been shown to bind Cry1Ab, although their role in toxicity remains to be determined. Detection of Cry1Ab binding proteins by ligand blot assay revealed that ALP is preferentially expressed earlier during insect development, because it was found in the first larval instars, whereas APN is induced later after the third larval instar. The binding of Cry1Ab oligomer to pure preparations of APN and ALP showed that this toxin structure interacts with both receptors with high affinity (apparent K(d) = 0.6 nM), whereas the monomer showed weaker binding (apparent K(d) = 101.6 and 267.3 nM for APN and ALP, respectively). Several Cry1Ab nontoxic mutants located in the exposed loop 2 of domain II or in beta-16 of domain III were affected in binding to APN and ALP, depending on their oligomeric state. In particular monomers of the nontoxic domain III, the L511A mutant did not bind ALP but retained APN binding, suggesting that initial interaction with ALP is critical for toxicity. Our data suggest that APN and ALP fulfill two roles. First APN and ALP are initial receptors promoting the localization of toxin monomers in the midgut microvilli before interaction with cadherin. Then APN and ALP function as secondary receptors mediating oligomer insertion into the membrane. However, the expression pattern of these receptors and the phenotype of L511A mutant suggest that ALP may have a predominant role in toxin action because Cry toxins are highly effective against the neonate larvae that is

  2. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    PubMed

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays.

  3. Conversion of secretory proteins into membrane proteins by fusing with a glycosylphosphatidylinositol anchor signal of alkaline phosphatase.

    PubMed Central

    Oda, K; Cheng, J; Saku, T; Takami, N; Sohda, M; Misumi, Y; Ikehara, Y; Millán, J L

    1994-01-01

    Placental alkaline phosphatase (PLAP) is initially synthesized as a precursor (proPLAP) with a C-terminal extension. We constructed a recombinant cDNA which encodes a chimeric protein (alpha GL-PLAP) comprising rat alpha 2u-globulin (alpha GL) and the C-terminal extension of PLAP. Two molecular species (25 kDa and 22 kDa) were expressed in the COS-1 cell transfected with the cDNA for alpha GL-PLAP. Only the 22 kDa form was labelled with both [3H]stearic acid and [3H]ethanolamine. Upon digestion with phosphatidylinositol-specific phospholipase C the 22 kDa form was released into the medium, indicating that this form is anchored on the cell surface via glycosylphosphatidylinositol (GPI). A specific IgG raised against a C-terminal nonapeptide of proPLAP precipitated the 25 kDa form but not the 22 kDa form, suggesting that the 25 kDa form is a precursor retaining the C-terminal propeptide. When a mutant alpha GL-PLAP, in which the aspartic acid residue is replaced with tryptophan at a putative cleavage/attachment site, was expressed in COS-1 cells, the 25 kDa precursor was the only form found inside the cell and retained in the endoplasmic reticulum, as judged by immunofluorescence microscopy. In vitro translation programmed with mRNAs coding for the wild-type and mutant forms of alpha GL-PLAP demonstrated that the C-terminal propeptide was cleaved from the wild-type chimeric protein, but not from the mutant one. This gave rise to the 22 kDa form attached with a GPI anchor, suggesting that GPI is covalently linked to the aspartic acid residue (Asp159) of alpha GL-PLAP. Taken together, these results indicate that the C-terminal propeptide of PLAP functions as a signal to render alpha GL a GPI-linked membrane protein in vitro and in vivo in cultured cells, and that the chimeric protein constructed in this study may be useful for elucidating the mechanism underlying the cleavage of the propeptide and attachment of GPI, which occur in the endoplasmic reticulum. Images

  4. Intestinal alkaline phosphatase inhibits the translocation of bacteria of gut-origin in mice with peritonitis: mechanism of action.

    PubMed

    Wang, Wei; Chen, Shan-Wen; Zhu, Jing; Zuo, Shuai; Ma, Yuan-Yuan; Chen, Zi-Yi; Zhang, Jun-Ling; Chen, Guo-Wei; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-01-01

    Exogenous intestinal alkaline phosphatase (IAP), an enzyme produced endogenously at the brush edge of the intestinal mucosa, may mitigate the increase in aberrant intestinal permeability increased during sepsis. The aim of this study was to test the efficacy of the inhibitory effect of IAP on acute intestinal inflammation and to study the molecular mechanisms underlying IAP in ameliorating intestinal permeability. We used an in vivo imaging method to evaluate disease status and the curative effect of IAP. Two Escherichia coli (E.coli) B21 strains, carrying EGFP labeled enhanced green fluorescent protein (EGFP) and RFP labeled red fluorescent protein (RFP), were constructed as tracer bacteria and were administered orally to C57/B6N mice to generate an injection peritonitis (IP) model. The IP model was established by injecting inflammatory lavage fluid. C57/B6N mice bearing the tracer bacteria were subsequently treated with (IP+IAP group), or without IAP (IP group). IAP was administered to the mice via tail vein injections. The amount of tracer bacteria in the blood, liver, and lungs at 24 h post-injection was analyzed via flow cytometry (FCM), in vivo imaging, and Western blotting. Intestinal barrier function was measured using a flux assay with the macro-molecule fluorescein isothiocyanate dextran, molecular weight 40kD, (FD40). To elucidate the molecular mechanism underlying the effects of IAP, we examined the levels of ERK phosphorylation, and the expression levels of proteins in the ERK-SP1-VEGF and ERK-Cdx-2-Claudin-2 pathways. We observed that IAP inhibited the expression of Claudin-2, a type of cation channel-forming protein, and VEGF, a cytokine that may increase intestinal permeability by reducing the levels of dephosphorylated ERK. In conclusion, exogenous IAP shows a therapeutic effect in an injection peritonitis model. This including inhibition of bacterial translocation. Moreover, we have established an imaging methodology for live-animals can

  5. Comparison of levels of serum copper, zinc, albumin, globulin and alkaline phosphatase in psoriatic patients and controls: A hospital based casecontrol study

    PubMed Central

    Sheikh, Gousia; Masood, Qazi; Majeed, Sabiya; Hassan, Iffat

    2015-01-01

    Background: Psoriasis is a chronic, immune-mediated skin disease with unknown etiology, with an epidermal turnover time of <10 days compared to a normal turnover time of 4-8 weeks. This epidermal hyperproliferation accounts for many of the metabolic abnormalities including alteration in the serum levels of proteins and some trace elements. Aim: The aim was to detect any statistically significant difference in the serum levels of zinc, copper, albumin, globulin and alkaline phosphatase between psoriasis patients and healthy controls. Materials and Methods: Hundred cases of psoriasis and 100 age and sex matched controls were enrolled in a hospital based case-control study. The serum levels of zinc, copper, albumin, globulin and alkaline phosphatase were calculated and compared among the cases and controls and evaluated statistically. Results: Serum zinc levels were significantly low in the psoriasis group as compared with controls (mean 80.028 μg/dl vs. 109.179 μg/dl, P < 0.0001). Serum copper levels were significantly raised among cases as compared with controls (mean 167.317 μg/dl vs. 133.884 μg/dl P < 0.0001). Serum albumin levels were significantly decreased (3.762 g/dl vs. 4.103 g/dl, P < 0.001), whereas serum globulin levels were raised (3.296 g/dl vs. 2.596 g/dl, P = 0.0014) among cases as compared with controls, respectively. Serum alkaline phosphatase levels were comparable between the two groups. Conclusion: The results of this study show significant alterations in the serum levels of copper, zinc, albumin, and globulin in psoriatic patients. This paper aims at highlighting the possible role of trace metals copper and zinc in the aetiopathogenesis of psoriasis and also provides a proposed interplay of factors involved in the pathogenesis of psoriasis. PMID:25821726

  6. Osteopontin involvement in integrin-mediated cell signaling and regulation of expression of alkaline phosphatase during early differentiation of UMR cells.

    PubMed

    Liu, Y K; Uemura, T; Nemoto, A; Yabe, T; Fujii, N; Ushida, T; Tateishi, T

    1997-12-22

    To clarify the function of osteopontin in osteoblast differentiation, we have examined the signal transduction pathway in an osteoblastic cell line (UMR106-6) bound to osteopontin, fibronectin, vitronectin and collagen type I surfaces. This was done by investigating the production and autophosphorylation of focal adhesion kinase (FAK) and the expression of alkaline phosphatase (ALP) at the transcription level. Results suggest that osteopontin was not only responsible for the autophosphorylation of FAK but regulated the expression of ALP, which was strongly correlated with FAK activity. These results suggest that osteopontin might act as a trigger in the early differentiation of osteoblasts.

  7. Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization.

    PubMed

    Marquès, Stéphanie; Buchet, René; Popowycz, Florence; Lemaire, Marc; Mebarek, Saïda

    2016-03-01

    Tissue-nonspecific alkaline phosphatase (TNAP) by hydrolyzing pyrophosphate, an inhibitor of apatite formation, promotes extracellular matrix calcification during bone formation and growth, as well as during ectopic calcification under pathological conditions. TNAP is a target for the treatment of soft tissue pathological ossification. We synthesized a series of benzofuran derivatives. Among these, SMA14, displayed TNAP activity better than levamisole. SMA14 was found to be not toxic at doses of up to 40μM in osteoblast-like Saos-2 cells and primary osteoblasts. As probed by Alizarin Red staining, this compound inhibited mineral formation in murine primary osteoblast and in osteoblast-like Saos-2 cells.

  8. Release of bacterial alkaline phosphatase in the rumen of cattle fed a feedlot bloat-provoking diet or a hay diet.

    PubMed

    Cheng, K J; Hironaka, R; Costerton, J W

    1976-05-01

    Alkaline phosphatase (APase) was present in the bovine rumen in both cell-free and cell-associated states and levels of the enzyme varied with dietary regime. Reaction product deposition showed that the enzyme was associated with the mixed bacterial population. No enzyme was observed to be associated with protozoa. Trace activity of APase was also detected in the saliva. The presence of large amounts of APase in cell-free rumen fluid of cattle fed fine concentrate feed is believed to be due, in part, to the breakage of bacterial cells that occurs in the rumen.

  9. Treatment of PCR products with exonuclease I and heat-labile alkaline phosphatase improves the visibility of combined bisulfite restriction analysis

    SciTech Connect

    Watanabe, Kousuke; Emoto, Noriko; Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2010-08-27

    Research highlights: {yields} Incubating PCR products at a high temperature causes smears in gel electrophoresis. {yields} Smears interfere with the interpretation of methylation analysis using COBRA. {yields} Treatment with exonuclease I and heat-labile alkaline phosphatase eliminates smears. {yields} The elimination of smears improves the visibility of COBRA. -- Abstract: DNA methylation plays a vital role in the regulation of gene expression. Abnormal promoter hypermethylation is an important mechanism of inactivating tumor suppressor genes in human cancers. Combined bisulfite restriction analysis (COBRA) is a widely used method for identifying the DNA methylation of specific CpG sites. Here, we report that exonuclease I and heat-labile alkaline phosphatase can be used for PCR purification for COBRA, improving the visibility of gel electrophoresis after restriction digestion. This improvement is observed when restriction digestion is performed at a high temperature, such as 60 {sup o}C or 65 {sup o}C, with BstUI and TaqI, respectively. This simple method can be applied instead of DNA purification using spin columns or phenol/chloroform extraction. It can also be applied to other situations when PCR products are digested by thermophile-derived restriction enzymes, such as PCR restriction fragment length polymorphism (RFLP) analysis.

  10. Integrating biotinylated polyalkylthiophene thin films with biological macromolecules: biosensing organophosphorus pesticides and metal ions with surface immobilized alkaline phosphatase utilizing chemiluminescence measurements

    NASA Astrophysics Data System (ADS)

    Pande, Rajiv; Kamtekar, S.; Ayyagari, Madhu S. R.; Marx, Kenneth A.; Kumar, Jayant; Tripathy, Sukant K.; Kaplan, David L.

    1995-05-01

    We describe a methodology for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer poly (3-undecylthiophene-co-3- thiophenecarboxaldehyde) 6-biotinamido hexanohydrazide attached hydrophobically to silanized glass. The biotin-streptavidin protein interaction is used to carry out this immobilization. Alkaline phosphatase catalyzes the dephosphorylation of a class of macrocyclic compounds: including CSPD {chloro 3-[4-methoxy spiro(1,2 dioxetane-3-2-trichloro-(3.3.1.1)-decan]-4 yl}phenyl phosphate to a product species which emits energy by chemiluminescence. We can detect this chemiluminescence signal with a photomultiplier tube for both enzymatic catalysis in solution and the surface immobilized enzyme (streptavidin conjugate). This enzyme is inhibited by the organophosphorus class of pesticides as well as nerve agents. The enzyme is also inhibited by Be(II), Bi(III) as well as excess Zn(II), while the apoenzyme is reactivated by Zn(II). We demonstrate in this study that two representative organophosphorus pesticides inhibit the enzymatic production of chemiluminescent products. This is true for the enzyme conjugate both free in solution and immobilized. We can detect pesticides down to about 50 ppb for the enzyme in solution and 500 ppb for surface immobilized enzyme in a 100 (mu) l capillary. Detection of Zn(II) by apoenzyme reactivation occurs down to 3 ppb. Be(II) and Bi(III) are detected by inhibition down to 1 ppm.

  11. Activity of hydrolytic enzymes in fungi isolated from diabetic pregnant women: is there any relationship between fungal alkaline and acid phosphatase activity and glycemic control?

    PubMed

    Nowakowska, Dorota; Kurnatowska, Alicja; Stray-Pedersen, Babill; Wilczyński, Jan

    2004-06-01

    Ability to respond to environmental changes and secretion of hydrolases are considered to be important for Candida virulence. In this study we determined and compared the activities of 19 different hydrolases of the fungal strains isolated from diabetic and non-diabetic pregnant women. We also looked for the presence of a relationship between hydrolase activities and glycemic control, and, furthermore, evaluated the influence of gestational age on the activity of hydrolases. Mycological examinations were performed for 119 diabetic pregnant women: 47 with diabetes mellitus type I (DM), 72 with gestational diabetes (GDM), and for 132 healthy women (CON). Samples were collected from the vagina, rectum and oral cavity and cultured on Sabouraud media. The fungal hydrolase activities were evaluated using the API ZYM test (bioMerieux). For the 19 different fungal hydrolases tested, 13 activities were present in the isolated fungal strains. The activity of alkaline phosphatase (ALP) in vaginal strains (p=0.028) and acid phosphatase (ACP) in strains from the vagina (p=0.006) and rectum (p=0.049) was significantly lower in DM than in GDM and CON women. In conclusion, we describe for the first time that fungi isolated from pregnant diabetic women have lower activity of both phosphatases compared to fungi isolated from healthy women. Furthermore, similar differences of mean ALP and ACP activities were observed in the course of pregnancy in strains from the vagina and rectum of DM and CON women. However, strains from DM had lower activity at each stage of pregnancy. The highest activity of ALP and ACP was detected at the beginning, then declined, and had the lowest values between the 24(th) and 33(rd) week of gestation. After that period the activity of both phosphatases increased.

  12. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. PMID:25476378

  13. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis.

    PubMed

    Zhang, Jingjing; Xiang, Yu; Novak, Donna E; Hoganson, George E; Zhu, Junjie; Lu, Yi

    2015-10-01

    The personal glucose meter (PGM) was recently shown to be a general meter to detect many targets. Most studies, however, focus on transforming either target binding or enzymatic activity that cleaves an artificial substrate into the production of glucose. More importantly, almost all reports exhibit their methods by using artificial samples, such as buffers or serum samples spiked with the targets. To expand the technology to even broader targets and to validate its potential in authentic, more complex clinical samples, we herein report expansion of the PGM method by using alkaline phosphatase (ALP) that links the enzymatic activity of galactose-1-phosphate uridyltransferase to the production of glucose, which allows point-of-care galactosemia diagnosis in authentic human clinical samples. Given the presence of ALP in numerous enzymatic assays for clinical diagnostics, the methods demonstrated herein advance the field closer to point-of-care detection of a wide range of targets in real clinical samples.

  14. Variation of alkaline phosphatase activity in sediments of shrimp culture ponds and its relationship with the contents of C, N and P

    NASA Astrophysics Data System (ADS)

    Su, Yuepeng; Ma, Shen; Dong, Shuanglin

    2005-01-01

    Nine enclosures (5 m × 5 m) were built in a Fenneropenaeus chinensis culture pond of Rushan Gulf in April, 2001. The probiotics and BIO ENERGIZER solution were applied for disparate treatments. Variations of alkaline phosphatase activity (APA) and its relationship with the contents of C, N and P in sediments were studied. Results show that APA of sediments increases from 3.096 nmol g-1min-1 to 5.407nmol g-1min-1 in culture period; the bacteria biomass is not the only factor to determine APA; the contents of total P and total organic carbon have a significant positive correlation with APA, while that of total nitrogen has a negative correlation. In addition, the contents of inorganic P and organic P are not regular with APA. By comparison, TOC shows a more significant coherence with APA, meaning that organic pollution in sediments affects APA remarkably.

  15. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders.

  16. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics.

  17. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Bravo, Alejandra; Soberón, Mario

    2013-03-01

    Bacillus thuringiensis Cry toxins recognizes their target cells in part by the binding to glycosyl-phosphatidyl-inositol (GPI) anchored proteins such as aminopeptidase-N (APN) or alkaline phosphatases (ALP). Treatment of Tenebrio molitor brush border membrane vesicles (BBMV) with phospholipase C that cleaves out GPI-anchored proteins from the membranes, showed that GPI-anchored proteins are involved in binding of Cry3Aa toxin to BBMV. A 68 kDa GPI-anchored ALP was shown to bind Cry3Aa by toxin overlay assays. The 68 kDa GPI-anchored ALP was preferentially expressed in early instar larvae in comparison to late instar larvae. Our work shows for the first time that GPI-anchored ALP is important for Cry3Aa binding to T. molitor BBMV suggesting that the mode of action of Cry toxins is conserved in different insect orders. PMID:22743140

  18. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    PubMed Central

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  19. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    PubMed Central

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  20. Expression of a Functional zipFv Antibody Fragment and Its Fusions with Alkaline Phosphatase in the Cytoplasm of an Escherichia coli

    PubMed Central

    Hur, Byung-ung; Choi, Hyo-jung; Yoon, Jae-bong

    2010-01-01

    Background Expression of recombinant antibodies and their derivatives fused with other functional molecules such as alkaline phosphatase in Escherichia coli is important in the development of molecular diagnostic reagents for biomedical research. Methods We investigated the possibility of applying a well-known Fos-Jun zipper to dimerize VH and VL fragments originated from the Fab clone (SP 112) that recognizes pyruvate dehydrogenase complex-E2 (PDC-E2), and demonstrated that the functional zipFv-112 and its alkaline phosphatase fusion molecules (zipFv-AP) can be produced in the cytoplasm of Origami(DE3) trxB gor mutant E. coli strain. Results The zipFv-AP fusion molecules exhibited higher antigen-binding signals than the zipFv up to a 10-fold under the same experimental conditions. However, conformation of the zipFv-AP seemed to be influenced by the location of an AP domain at the C-terminus of VH or VL domain [zipFv-112(H-AP) or zipFv-112(L-AP)], and inclusion of an AraC DNA binding domain at the C-terminus of VH of the zipFv-112(L-AP), termed zipFv-112(H-AD/L-AP), was also beneficial. Cytoplasmic co-expression of disulfide-binding isomerase C (DsbC) helped proper folding of the zipFv-112(H-AD/L-AP) but not significantly. Conclusion We believe that our zipFv constructs may serve as an excellent antibody format bi-functional antibody fragments that can be produced stably in the cytoplasm of E. coli. PMID:20532123

  1. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: localization, kinetics and potential signatures in the fossil record

    NASA Astrophysics Data System (ADS)

    Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina

    2015-12-01

    Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.

  2. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Menzorova, Natalie I; Seitkalieva, Alexandra V; Rasskazov, Valerу A

    2014-02-15

    A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0-8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15-150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples.

  3. Loss of Skeletal Mineralization by the Simultaneous Ablation of PHOSPHO1 and Alkaline Phosphatase Function: A Unified Model of the Mechanisms of Initiation of Skeletal Calcification

    PubMed Central

    Yadav, Manisha C; Simão, Ana Maria Sper; Narisawa, Sonoko; Huesa, Carmen; McKee, Marc D; Farquharson, Colin; Millán, José Luis

    2011-01-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PPi). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1−/− mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1−/− tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1−/− mice show reduced levels of TNAP and elevated plasma PPi concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1−/− mice despite normalization of their plasma PPi levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization. © 2011 American Society for Bone and Mineral Research. PMID:20684022

  4. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification.

    PubMed

    Yadav, Manisha C; Simão, Ana Maria Sper; Narisawa, Sonoko; Huesa, Carmen; McKee, Marc D; Farquharson, Colin; Millán, José Luis

    2011-02-01

    Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PP(i)). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1(-/-) mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1(-/-) tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1(-/-) mice show reduced levels of TNAP and elevated plasma PP(i) concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1(-/-) mice despite normalization of their plasma PP(i) levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and P(i) influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization.

  5. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...

  6. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid.

    PubMed

    Scheibe, R J; Kuehl, H; Krautwald, S; Meissner, J D; Mueller, W H

    2000-01-01

    The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells. PMID:10649440

  7. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    PubMed Central

    Saini, Deepti; Kala, Mrinalini; Jain, Vishal; Sinha, Subrata

    2005-01-01

    Background The isozymes of alkaline phosphatase, the tissue non-specific, intestinal and placental, have similar properties and a high degree of identity. The placental isozyme (PLAP) is an oncofetal antigen expressed in several malignancies including choriocarcinoma, seminoma and ovarian carcinoma. We had earlier attempted to isolate PLAP-specific scFv from a synthetic human immunoglobulin library but were unable to do so, presumably because of the similarity between the isozymes. In this work, we have employed a PLAP-specific uncompetitive inhibitor, L-Phe-Gly-Gly, to select isozyme specific scFvs. An uncompetitive inhibitor binds to the enzyme in the presence of substrate and stabilizes the enzyme-substrate complex. Several uncompetitive inhibitors have varying degrees of isozyme specificity for human alkaline phosphatase isozymes. A specific uncompetitive inhibitor would be able to unmask conformational differences between the otherwise very similar molecules. Also, such inhibitors would be directed to regions at/close to the active site of the enzyme. In this work, the library was first incubated with PLAP and the bound clones then eluted by incubation with L-Phe-Gly-Gly along with the substrate, para-nitro phenyl phosphate (pNPP). The scFvs were then studied with regard to the biochemical modulation of their binding, isozyme specificity and effect on enzyme activity. Results Of 13 clones studied initially, the binding of 9 was inhibited by L-Phe-Gly-Gly (with pNPP) and 2 clones were inhibited by pNPP alone. Two clones had absolute and 2 clones had partial specificity to PLAP. Two clones were cross-reactive with only one other isozyme. Three scFv clones, having an accessible His6-tag, were purified and studied for their modulation of enzyme activity. All the three scFvs inhibited PLAP activity with the kinetics of competitive inhibition. Cell ELISA could demonstrate binding of the specific scFvs to the cell surface expressed PLAP. Conclusion The results

  8. Stimulation by parathyroid hormone of sup 45 Ca sup 2+ uptake in osteoblast-like cells: Possible involvement of alkaline phosphatase

    SciTech Connect

    Fukayama, S.; Tashjian, A.H. Jr. )

    1990-04-01

    We have investigated the actions of human PTH (hPTH-(1-34)) on the association of 45Ca2+ with two human (SaOS-2 and MG-63) and two rat (ROS 17/2.8 and UMR-106) osteoblast-like cell types. In SaOS-2 cells, hPTH-(1-34) binds to specific membrane receptors to activate adenylate cyclase. Treatment of SaOS-2 cells with hPTH-(1-34) resulted in an increase in 45Ca2+ uptake, in a dose-dependent fashion, up to 2- to 4-fold above control values. The increase was first evident at 10 min and persisted for at least 30 min. Treatment with nimodipine, a calcium channel antagonist, was without effect on the stimulatory action of PTH. A similar enhancement of cell-associated 45Ca2+ was observed when the cells were incubated with vasoactive intestinal peptide, which acts via different receptors to activate adenylate cyclase in SaOS-2 cells. Treatment with (Bu)2cAMP also induced an increase in cell-associated 45Ca2+. Pretreatment of SaOS-2 cells with hPTH-(1-34) for 4 h, which induced homologous desensitization to a second challenge with the same peptide for stimulation of cAMP production, did not attenuate the further enhancement of cell-associated 45Ca2+ by a second treatment with hPTH-(1-34). We then examined a possible relationship between alkaline phosphatase (ALPase) and 45Ca2+ uptake. SaOS-2 cells contained high levels of alkaline phosphatase activity and continuously released the enzyme into the medium. Release was enhanced by treatment with hPTH-(1-34) for 10 min. Incubation of cells with levamisole (an inhibitor of the liver/bone/kidney type of ALPase) resulted in a rapid decrease in basal and PTH-stimulated 45Ca2+ uptake, while treatment with L-Phe-Gly-Gly was without effect. Treatment of the cells with ALPase (bovine kidney) enhanced 45Ca2+ uptake. In MG-63 cells, a stimulatory effect of hPTH-(1-34) on cell-associated 45Ca2+ was also observed; however, hPTH-(1-34) did not stimulate cAMP production in MG-63 cells.

  9. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    PubMed

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  10. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    PubMed

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  11. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojiao; He, Yao; Zhang, Youyu; Liu, Meiling; Liu, Yang; Li, Jinghong

    2014-09-01

    A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode

  12. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    NASA Astrophysics Data System (ADS)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  13. Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect

    NASA Astrophysics Data System (ADS)

    Martínez Medina, Juan J.; Islas, María S.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2014-01-01

    Calculations based on density functional methods are carried out for two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline (o-phen): [Cu(o-phen)2(cnge)](NO3)2ṡ2H2O (1) and [Cu(o-phen)(cnge)(H2O)(NO3)2] (2). The calculated geometrical parameters are in agreement with the experimental values. The results of Atoms in Molecules (AIM) topological analysis of the electron density indicate that the Cu-N(phen) bonds in complex (1) have lower electron density, suggesting that those bonds are stronger in complex (2). Moreover, the ionic character of the Cu-N bond in the complex (1) is slightly stronger than that in the complex (2) and this situation would explain the fact that only complex (2) was stable in water solution. For this reason, the antimicrobial and enzymatic assays were performed using complex (2). It is well known that the increased use of antibiotics has resulted in the development of resistant bacterial and fungal strains. In this context, the study of novel antimicrobial agents has an enormous importance and metal complexes represent an interesting alternative for the treatment of infectious diseases. The aim of this work is to prove the modification of some biological properties like antimicrobial activity or alkaline phosphatase inhibitory activity upon copper complexation.

  14. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice.

    PubMed

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-08-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota.

  15. Naked-eye sensitive detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) based on a horseradish peroxidase catalytic colorimetric system with Cu(ii).

    PubMed

    Shi, Dongmin; Sun, Yue; Lin, Lin; Shi, Chunjun; Wang, Guangfeng; Zhang, Xiaojun

    2016-10-01

    In this paper, a novel colorimetric method for the detection of alkaline phosphatase (ALP) and pyrophosphate (PPi) was designed based on a Cu(2+)-horseradish peroxidase (HRP)-3,3',5,5'-tetra-methylbenzidine (TMB)-H2O2 system. In the presence of ALP, l-ascorbic acid-2-phosphate (AAP) could be hydrolyzed to ascorbic acid which could reduce Cu(2+) to Cu(+) to inhibit the enzymatic activity of HRP in the colorimetric system. The change in absorbance was found to be proportional to the ALP concentration with a linear detection range and a limit of detection of 5.4 mU mL(-1). In the presence of PPi, because Cu(2+) was chelated by PPi, the conversion of Cu(ii) by AA was effectively inhibited. The color of the HRP-TMB-H2O2 system with Cu(2+) showed blue. The HRP-TMB-H2O2 system with the Cu(2+) colorimetric system could also detect PPi with a satisfying result. In summary, this method possesses sensitivity, reproducibility, and cost-effectiveness without labelling and separation and the use of a colorimetric method is more in line with the requirements of on-site detection and green chemistry. PMID:27412643

  16. [Increase in Alkaline Phosphatase Activity after High-Fat Meal Ingestion is Correlated to the Amount of ABH Substances in Saliva].

    PubMed

    Matsushita, Makoto; Otani, Kana; Sakamoto, Yui; Arai, Tomoko; Yukimasa, Nobuyasu; Muramoto, Yoshimi; Komoda, Tsugikazu

    2015-05-01

    Intestinal alkaline phosphatase (IAP) appears in the circulation more frequently in blood group B or O secretors than in blood group A or AB secretors and non-secretors, and serum IAP activity rises following the ingestion of a high-fat meal. In a previous study, the occurrence of two IAP isoforms, with high (HIAP) and normal molecular mass (NIAP), in healthy sera was demonstrated by 6.0% polyacrylamide gel electrophoresis in the presence of 1% Triton X-100. NIAP was present in the fasting serum of only healthy blood group B or O secretors, but was present in all subjects following ingestion of a high-fat meal. We classified 56 healthy subjects into 3 blood groups: B (n = 19), O (n = 17), and A (n = 20), and measured their serum ALP activity in a fasting state and 6 h after a high-fat meal. The amount of ABH substances in the saliva of each subject was determined by the hemagglutination inhibition test. Correlation coefficients between the change in ALP activity after high-fat meal ingestion and the hemagglutination inhibition values in saliva were 0.925 in blood group B, 0.879 in blood group O, and 0.906 in blood group A. These results suggest that increases in ALP activity in the circulation following the ingestion of a high-fat meal are closely related to the amount of ABH substances in saliva. PMID:26524892

  17. Stabilizing effects of hydrated fullerenes C₆₀ in a wide range of concentrations on luciferase, alkaline phosphatase, and peroxidase in vitro.

    PubMed

    Voeikov, Vladimir L; Yablonskaya, Olga I

    2015-01-01

    Hydrated fullerene (HyFnC60) is a highly hydrophilic supra-molecular complex consisting of unmodified С60 fullerene molecule enclosed into a hydrated shell. It has been shown in numerous experiments that aqueous solutions of HyFnC60 manifest a wide range of biological activities both in vivo and in vitro even at very low concentrations of HyFnC60. We used a spectrophotometric method and a method of biochemoluminescence to demonstrate that HyFnC60 in concentrations below 10(-9) M down to 10(-23) M stabilizes peroxidase, alkaline phosphatase, and bacterial luciferase against inactivation due to long-term incubation of the enzymes at room temperature and also against heat inactivation. In addition, HyFnC60 was able to "revive" heat inactivated enzymes. These effects cannot be explained by the direct action of the fullerene molecules upon the enzymes. We suggest that the effects of HyFnC60 on the enzymes are related to the ability of hydrated fullerene C60 molecules to organize thick aqueous shells around them. One of the specific properties of water phase in these shells is its ability to optimize redox reactions, which can support enzyme stability against factors deteriorating their structure.

  18. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    NASA Astrophysics Data System (ADS)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  19. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic

    PubMed Central

    Baltar, Federico; Lundin, Daniel; Palovaara, Joakim; Lekunberri, Itziar; Reinthaler, Thomas; Herndl, Gerhard J.; Pinhassi, Jarone

    2016-01-01

    To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates—assumed to be related to autotrophic metabolisms—were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  20. An effective and practical immunohistochemical protocol for bone specimens characterized by hyaluronidase and pepsin predigestion combined with alkaline phosphatase-mediated chromogenic detection.

    PubMed

    Li, Shangfu; Liu, Bin; Tian, Ming; Zhang, Liangming; Tickner, Jennifer; Xu, Jiake; Rong, Limin

    2015-03-01

    The aim of this study was to provide an effective procedure for immunohistochemistry (IHC) investigations of bone specimens. Samples from rat femoral and human vertebral bone were processed with a detailed and effective IHC protocol summarized here. First, a novel antigen retrieval (AR) method of hyaluronidase combined pepsin predigestion (H+P) was established and the optimal concentration and pH value for AR of bone specimens were determined. Second, the newly developed method was compared with existing AR methods (boiling in sodium citrate, hyaluronidase predigestion (H) and pepsin predigestion (P), with PBS only as the negative control) using two chromogenic detection systems (horseradish peroxidase (HRP) and alkaline phosphatase (AP)) to evaluate their efficacy in obtaining the best IHC results for bone samples. Considering the drawbacks of significant shrinking and detachment from slide for heat retrieval methods and the only moderate immunolabeling for H and P, H+P was the optimal AR method for IHC of bone specimens with the advantages of both good morphological preservation and strong immunoreactivity. Moreover, AP-mediated chromogenic detection was superior to HRP-labeled chromogenic detection due to significantly less non-specific staining. In conclusion, we presented an effective and practical IHC protocol for bone specimens characterized by H+P predigestion combined with AP-mediated chromogenic detection. Finally, a detailed troubleshooting guide was provided for common mistakes that occur during IHC processing of the bone tissue samples.

  1. Alkaline Phosphatase Tagged Antibodies on Gold Nanoparticles/TiO2 Nanotubes Electrode: A Plasmonic Strategy for Label-Free and Amplified Photoelectrochemical Immunoassay.

    PubMed

    Zhu, Yuan-Cheng; Zhang, Nan; Ruan, Yi-Fan; Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-06-01

    This work reports a plasmonic strategy capable of label-free yet amplified photoelectrochemical (PEC) immunoassay for the sensitive and specific detection of model protein p53, an important transcription factor that regulates the cell cycle and functions as a tumor suppressor. Specifically, on the basis of Au nanoparticles (NPs) deposited on hierarchically ordered TiO2 nanotubes (NTs), a protein G molecular membrane was used for immobilization of alkaline phosphatase (ALP) conjugated anti-p53 (ALP-a-p53). Due to the immunological recognition between the receptor and target, the plasmonic charge separation from Au NPs to the conduction band of TiO2 NTs could be influenced greatly that originated from multiple factors. The degree of signal suppression is directly associated with the target concentration, so by monitoring the changes of the plasmonic photocurrent responding after the specific binding, a new plasmonic PEC immunoassay could be tailored for label-free and amplified detection. The operating principle of this study could be extended as a general protocol for numerous other targets of interest. PMID:27150939

  2. Partial Enteral Nutrition Preserves Elements of Gut Barrier Function, Including Innate Immunity, Intestinal Alkaline Phosphatase (IAP) Level, and Intestinal Microbiota in Mice

    PubMed Central

    Wan, Xiao; Bi, Jingcheng; Gao, Xuejin; Tian, Feng; Wang, Xinying; Li, Ning; Li, Jieshou

    2015-01-01

    Lack of enteral nutrition (EN) during parenteral nutrition (PN) leads to higher incidence of infection because of gut barrier dysfunction. However, the effects of partial EN on intestina linnate immunity, intestinal alkaline phosphatase (IAP) and microbiota remain unclear. The mice were randomized into six groups to receive either standard chow or isocaloric and isonitrogenous nutritional support with variable partial EN to PN ratios. Five days later, the mice were sacrificed and tissue samples were collected. Bacterial translocation, the levels of lysozyme, mucin 2 (MUC2), and IAP were analyzed. The composition of intestinal microbiota was analyzed by 16S rRNA pyrosequencing. Compared with chow, total parenteral nutrition (TPN) resulted in a dysfunctional mucosal barrier, as evidenced by increased bacterial translocation (p < 0.05), loss of lysozyme, MUC2, and IAP, and changes in the gut microbiota (p < 0.001). Administration of 20% EN supplemented with PN significantly increased the concentrations of lysozyme, MUC2, IAP, and the mRNA levels of lysozyme and MUC2 (p < 0.001). The percentages of Bacteroidetes and Tenericutes were significantly lower in the 20% EN group than in the TPN group (p < 0.001). These changes were accompanied by maintained barrier function in bacterial culture (p < 0.05). Supplementation of PN with 20% EN preserves gut barrier function, by way of maintaining innate immunity, IAP and intestinal microbiota. PMID:26247961

  3. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family.

  4. Stabilization of Different Types of Transition States in a Single Enzyme Active Site: QM/MM Analysis of Enzymes in the Alkaline Phosphatase Superfamily

    PubMed Central

    Hou, Guanhua; Cui, Qiang

    2013-01-01

    The first step for the hydrolysis of a phosphate monoester (pNPP2−) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bi-metallic site plays a minor role in accommodating multiple types of transition states, and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states. PMID:23786365

  5. The utility of alkaline phosphatase measurement as a screening test for rickets in breast-fed infants and toddlers: a study from the puget sound pediatric research network.

    PubMed

    Taylor, James A; Richter, Monica; Done, Stephen; Feldman, Kenneth W

    2010-12-01

    To determine if alkaline phosphatase (AP) levels are a useful screening test for rickets, the authors measured serum AP levels in children 6 to 15 months old who were predominantly breast-fed for > 6 months without vitamin D supplementation. Radiographs were obtained on children with elevated AP levels to determine the presence of rickets. AP levels were obtained on 246 children; levels were elevated in 33 (13.4%). Rickets was present in 4 of 18 children with elevated levels on whom radiographs were obtained. The sensitivity and specificity of AP levels as a test for rickets was maximal at a cutoff value of 552 U/L. Using this cutoff value, the specificity of AP levels as a test for rickets was 97.4%, and the positive predictive value (PPV) was 40.0%. These results suggest that AP levels may be a useful screening test for rickets in children who are breast-fed for prolonged periods without vitamin D supplementation.

  6. Differential effect of age, gender and puberty on bone formation rate assessed by measurement of bone-specific alkaline phosphatase in healthy Italian children and adolescents.

    PubMed

    Mora, Stefano; Cafarelli, Laura; Erba, Paola; Puzzovio, Maria; Zamproni, Ilaria; Giacomet, Vania; Viganò, Alessandra

    2009-01-01

    Bones undergo intensive modeling during growth, a process involving both formation and resorption processes. Bone formation can be accurately monitored by measurements of bone-specific alkaline phosphatase (BAP) in serum. The lack of appropriate reference values has hampered the use of BAP in pediatric subjects. The purposes of the present study were to verify the effect of age, gender, and puberty on BAP concentration in healthy children, and to generate reference curves. Morning blood samples were collected from 239 healthy children and adolescents (113 boys), aged 4.5-20.9 years. Anthropometric measurements and pubertal stage were recorded. Blood samples were also obtained from 37 healthy young adults (13 men), aged 21.5-30.2 years. BAP concentration varied significantly with age, showing a peak at age 10-12 years in girls and 12-14 years in boys. Prepubertal concentration of BAP was six- to sevenfold higher than in healthy adults. We observed significantly higher BAP values at the beginning of puberty (stage II) compared to prepubertal stage in both sexes. The effect of puberty was independent from age and gender. We demonstrated that BAP serum concentration varies with age in children and adolescents, and we provided equations to calculate reference values. Because BAP concentrations vary markedly according to the pubertal stage, the values of BAP obtained in single patients should be compared to reference considering not only age and sex, but also the stage of pubertal development.

  7. Treatment of Wilson's disease with zinc. V. Changes in serum levels of lipase, amylase, and alkaline phosphatase in patients with Wilson's disease.

    PubMed

    Yuzbasiyan-Gurkan, V; Brewer, G J; Abrams, G D; Main, B; Giacherio, D

    1989-11-01

    We noted a frequent increase in the serum enzymes amylase, lipase, and alkaline phosphatase in patients with Wilson's disease who are receiving zinc acetate therapy (25 or 50 mg elemental zinc three times daily). Typically, values are normal before the initiation of zinc therapy, increase to slightly above normal after a few weeks of therapy, and stabilize at the high normal range after approximately a year of treatment. Very large dosages of zinc (800 mg/day) produce even further elevation of serum lipase and amylase without the symptoms of pancreatitis. Pancreatic pathologic studies of a zinc-treated rat model receiving dosages equivalent to up to 25 times the effective dosage in a human being, which is based on milligrams of zinc per kilogram of body weight, reveal that no lesions are induced by zinc treatment in the pancreas. We interpret these findings to indicate that extended maintenance therapy with zinc does not pose a risk of pancreatic damage in patients with Wilson's disease.

  8. Effects of dietary vitamin E on mucosal maltase and alkaline phosphatase enzyme activities and on the amount of mucosal malonyldialdehyde in broiler chickens

    PubMed Central

    Farrokhifar, Seyed Hamid; Ali Jafari, Ramezan; Erfani Majd, Naeem; Fatemi Tabatabaee, Seyed Reza; Mayahi, Mansour

    2013-01-01

    The effects of dietary vitamin E levels on mucosal maltase and alkaline phosphatase (ALP) enzyme activities and on the amount of mucosal malonyldialdehyde (MDA) in broiler chickens were studied in the present study. One hundred and eighty of male day old broiler chicks (Ross 308 strain) were randomly assigned into five groups, each with three replicates and 12 chicks in each replicate. Chickens in group A were fed corn-soy- based diet, while those in groups B, C, D and E were fed the same diet with 20, 60, 180, and 540 mg kg-1 vitamin E supplement (d-alpha tocopherol), respectively. Six birds were randomly chosen from each group, and were euthanized on days 10, 21, 32, and 42 of age. One segment of small intestine outset was homogenized and mucosal ALP and maltase activity were measured. Moreover, mucosal lipid peroxidate amount was measured to reveal the impact of vitamin E on oxidative stress. Maltase activity was increased with the increase of vitamin E up to 60 mg kg-1 of diet while with further levels, it was decreased. Addition of 60 mg kg-1 of vitamin E to the diet significantly increased ALP enzyme activity (p ≤ 0.001). Addition of 540 mg kg-1 of vitamin E supplement to the diet led to the minimum amount of MDA at 32 days of age. It may be concluded that supplementation of broiler's diet with 60 mg kg-1 of vitamin E can increase mucosal maltase and ALP enzyme activity. PMID:25568675

  9. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. PMID:24259184

  10. Effect of dietary caraway (Carum carvi L.) on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis.

    PubMed

    Kamaleeswari, Muthaiyan; Deeptha, Kumaraswami; Sengottuvelan, Murugan; Nalini, Namasivayam

    2006-08-01

    Colon cancer is one of the most common malignancies in many regions of the world and is thought to arise from the accumulation of mutations in a single epithelial cell of the colon and rectum. Caraway (Carum carvi L. Umbelliferae) is a shrub with a long history as a medicinal plant since ancient times. The effect of different doses of caraway (CC) on the formation of aberrant crypt foci (ACF) and the levels of fecal bile acids, neutral sterols, and alkaline phosphatase (ALP) activities were studied in 1,2-dimethylhydrazine (DMH)-induced colon cancer in rats. Animals were randomized into 6 groups. Group 1 served as control, and group 2 received 90 mg/kg body weight caraway orally everyday. Groups 3-6 rats were given subcutaneous injections of DMH (20 mg/kg body weight) once a week for the first 4 weeks to induce ACF. Rats in groups 4-6, in addition to DMH injections, received caraway at 30, 60, and 90 mg/kg body weight respectively p.o. everyday until the end of whole experimental period of 15 weeks. Caraway supplementation significantly reduced ACF development and also decreased the levels of fecal bile acids, neutral sterols, and tissue ALP activities. The histological alterations induced by DMH were also significantly improved. Overall, our results showed that all 3 doses of caraway inhibited tumorigenesis though the effect of the intermediary dose of 60 mg/kg body weight was more pronounced.

  11. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  12. Comparison of measurements of canine plasma creatinine, glucose, proteins, urea, alanine aminotransferase, and alkaline phosphatase obtained with Spotchem SP 4430 and Vitros 250 analyzers.

    PubMed

    Trumel, C; Diquélou, A; Germain, C; Palanché, F; Braun, J P

    2005-12-01

    The suitability of the Spotchem 4430 benchtop biochemistry analyzer for canine blood samples was tested for creatinine, glucose, proteins, urea, alkaline phosphatases and alanine aminotransferase. Results obtained from whole blood and corresponding heparin plasma were identical except for proteins which were higher in plasma (n=10). Between series imprecision (n=10) was <5% for substrates and <10% for enzymes. Comparison of results from 100 Li-heparin samples with those measured with a Vitros 250 analyzer showed good correlation (r>0.93). The slopes of the Passing-Bablock's regression ranged from 0.90 to 1.20 and intercepts were low. The mean biases were low, except for creatinine for which the results obtained by Spotchem (Jaffe reaction) were about 20 micromol/L higher than with the Vitros (enzymatic reaction). The results of this study show that the Spotchem analyzer is suitable for use in canine whole blood or plasma when small numbers of tests are to be performed and large analyzers are not available. PMID:16054888

  13. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal.

    PubMed

    Shu, Mei; Xu, Yang; Liu, Xing; Li, Yanping; He, Qinghua; Tu, Zhui; Fu, Jinheng; Gee, Shirley J; Hammock, Bruce D

    2016-06-14

    A rapid and sensitive one-step competitive enzyme immunoassay for the detection of FB1 was developed. The anti-idiotypic nanobody-alkaline phosphatase (Ab2β-Nb-AP) was validated by the AP enzyme activity and the properties of bounding to anti-FB1-mAb (3F11) through colorimetric and chemiluminescence analyses. The 50% inhibitory concentration and the detection limit (LOD) of colorimetric enzyme-linked immunosorbent assay (ELISA) for FB1 were 2.69 and 0.35 ng mL(-1), respectively, with a linear range of 0.93-7.73 ng mL(-1). The LOD of the chemiluminescence ELISA (CLIA) was 0.12 ng mL(-1), and the IC50 was 0.89 ± 0.09 ng mL(-1) with a linear range of 0.29-2.68 ng mL(-1). Compared with LC-MS/MS, the results of this assay indicated the reliability of the Ab2β-Nb-AP fusion protein based one-step competitive immunoassay for monitoring FB1 contamination in cereals. The Ab2β-Nb-AP fusion proteins have the potential to replace chemically-coupled probes in competitive enzyme immunoassay systems.

  14. Effects of hydrogen sulfide on the expression of alkaline phosphatase, osteocalcin and collagen type I in human periodontal ligament cells induced by tension force stimulation.

    PubMed

    Qin, Jing; Hua, Yongmei

    2016-10-01

    Periodontal ligament cells (PDLCs) are important in homeostasis and remodeling in the mechanically‑stimulated periodontium. The aim of the present study was to investigate the effects of hydrogen sulfide (H2S) on periodontal tissue remodeling by examining the mRNA and protein expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and collagen type I (COL‑1) in human (h)PDLCs induced by tension force application. Cultured hPDLCs were treated with H2S for 24 h, followed by application of a tension force for 1, 3 and 6 h. Cell proliferation and apoptosis were determined using a Cell Counting Kit 8 assay and flow cytometric analysis, respectively. The mRNA expression levels of ALP, OCN and COL‑1 were quantified using reverse transcription‑quantitative polymerase chain reaction analysis, and western blot analysis was used to detect the protein levels of ALP, OCN and COL‑1. The results demonstrated that the mRNA and protein expression levels of ALP, OCN and COL‑1 increased with H2S treatment in a concentration‑dependent manner, which was enhanced by the application of tension force in a relatively short period of time. These findings suggested that H2S may be important in periodontal tissue remodeling during orthodontic tooth movement via increasing hPDLC differentiation, tissue mineralization, bone formation and collagen synthesis. PMID:27573279

  15. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal.

    PubMed

    Liu, Xing; Xu, Yang; Wan, De-bin; Xiong, Yong-hua; He, Zhen-yun; Wang, Xian-xian; Gee, Shirley J; Ryu, Dojin; Hammock, Bruce D

    2015-01-20

    A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for ochratoxin A (OTA) based on a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The VHH (variable domain of heavy chain antibody) gene of Nb28 was subcloned into the expression vector pecan45 containing the AP double-mutant gene. The Nb28-AP construct was transformed into Escherichia coli BL21(DE3)plysS, and soluble expression in bacteria was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot. Both the Nb properties and AP enzymatic activity were validated by colorimetric and fluorometric analysis. The 50% inhibitory concentration and the detection limit of the dc-FEIA were 0.13 and 0.04 ng/mL, respectively, with a linear range of 0.06-0.43 ng/mL. This assay was compared with LC-MS/MS, and the results indicated the reliability of Nb-AP fusion protein-based dc-FEIA for monitoring OTA contamination in cereal.

  16. Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp. israelensis Cry toxins.

    PubMed

    Stalinski, Renaud; Laporte, Frédéric; Després, Laurence; Tetreau, Guillaume

    2016-03-01

    Bacillus thuringiensis subsp. israelensis (Bti) is a natural pathogen of dipterans widely used as a biological insecticide for mosquito control. To characterize the response of mosquitoes to intoxication with Bti, the transcriptome profile of Bti-exposed susceptible Aedes aegypti larvae was analysed using Illumina RNA-seq. Gene expression of 11 alkaline phosphatases (ALPs) was further investigated by real time quantitative polymerase chain reaction and ALP activity was measured in the susceptible strain and in four strains resistant to a single Bti Cry toxin or to Bti. These strains were unexposed or exposed to their toxin of selection. Although all resistant strains constitutively exhibited a higher level of transcription of ALP genes than the susceptible strain, they showed a lower total ALP activity. The intoxication with different individual Cry toxins triggered a global pattern of ALP gene under-transcription in all the one-toxin-resistant strains but involving different specific sets of ALPs in each resistant phenotype. Most of the ALPs involved are not known Cry-binding proteins. RNA interference experiment demonstrated that reducing ALP expression conferred increased the survival of larvae exposed to Cry4Aa, confirming the involvement of ALP in Cry4Aa toxicity. PMID:26663676

  17. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase.

    PubMed

    Kaku, Yoshihiro; Noguchi, Akira; Marsh, Glenn A; Barr, Jennifer A; Okutani, Akiko; Hotta, Kozue; Bazartseren, Boldbaatar; Fukushi, Shuetsu; Broder, Christopher C; Yamada, Akio; Inoue, Satoshi; Wang, Lin-Fa

    2012-01-01

    Nipah virus (NiV), Paramyxoviridae, Henipavirus, is classified as a biosafety level (BSL) 4 pathogen, along with the closely related Hendra virus (HeV). A novel serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing secreted alkaline phosphatase (SEAP) and pseudotyped with NiV F/G proteins (VSV-NiV-SEAP). A unique characteristic of this novel assay is the ability to obtain neutralization titers by measuring SEAP activity in supernatant using a common ELISA plate reader. This confers a remarkable advantage over the first generation of NiV-pseudotypes expressing green fluorescent protein or luciferase, which require expensive and specific measuring equipment. Using panels of NiV- and HeV-specific sera from various species, the VSV-NiV-SEAP assay demonstrated neutralizing antibody status (positive/negative) consistent with that obtained by conventional live NiV test, and gave higher antibody titers than the latter. Additionally, when screening sixty-six fruit bat sera at one dilution, the VSV-NiV-SEAP assay produced identical results to the live NiV test and only required a very small amount (2μl) of sera. The results suggest that this novel VSV-NiV-SEAP assay is safe, useful for high-throughput screening of sera using an ELISA plate reader, and has high sensitivity and specificity. PMID:22115786

  18. Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives — A Review

    PubMed Central

    Melo, A. D. B.; Silveira, H.; Luciano, F. B.; Andrade, C.; Costa, L. B.; Rostagno, M. H.

    2016-01-01

    The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP’s role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets. PMID:26732323

  19. A signal "on" photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase.

    PubMed

    Yin, Huanshun; Sun, Bing; Dong, Linfeng; Li, Bingchen; Zhou, Yunlei; Ai, Shiyun

    2015-02-15

    A highly sensitive and selective photoelectrochemical (PEC) biosensor is fabricated for the detection of protein kinase activity based on visible-light active graphite-like carbon nitride (g-C3N4) and the specific recognition utility of Phos-tag for protein kinase A (PKA)-induced phosphopeptides. For assembling the substrate peptides, g-C3N4 and gold nanoparticles (g-C3N4-AuNPs) complex is synthesized and characterized. When the immobilized peptides on g-C3N4-AuNPs modified ITO electrode are phosphorylated under PKA catalysis, they can be specifically identified and binded with biotin functionalized Phos-tag (Phos-tag-biotin) in the presence of Zn(2+). Then, through the specific interaction between biotin and avidin, avidin functionalized alkaline phosphatase (avidin-ALP) is further assembled to catalyze its substrate of l-ascorbic acid-2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting an increased photocurrent compared with the absence of phosphorylation event. Based on the specific identification effect of Phos-tag, the fabricated biosensor presents excellent selectivity for capturing the phosphorylated serine residues in the substrate peptides. With the good photoactivity of g-C3N4 and ALP-catalyzed signal amplification, the fabricated biosensor presents high sensitivity and low detection limit (0.015 unit/mL, S/N = 3) for PKA. The applicability of this PEC biosensor is further testified by the evaluation of PKA inhibition by HA-1077 with the IC50 value of 1.18μM. This new strategy is also successfully applied to detect the change of PKA activity in cancer cell lysate with and without drug stimulation. Therefore, the developed PEC method has great potential in screening of kinase inhibitors and highly sensitive detection of kinase activity.

  20. Glycosylation-deficient mutations in tissue-nonspecific alkaline phosphatase impair its structure and function and are linked to infantile hypophosphatasia.

    PubMed

    Komaru, Keiichi; Satou, Yasuhito; Al-Shawafi, Hiba A; Numa-Kinjoh, Natsuko; Sohda, Miwa; Oda, Kimimitsu

    2016-03-01

    Tissue-nonspecific alkaline phosphatase (TNSALP) is a membrane glycoprotein with a proposed role in bone mineralization. Indeed, mutations in TNSALP have been identified in patients with hypophosphatasia (HPP), a genetic disease characterized by hypomineralization of bone and teeth and a deficiency in serum ALP activity. TNSALP has five potential N-glycosylation sites at N140, N230, N271, N303 and N430 by standard nomenclature. A mutation at one of these sites, N430, was recently detected in a patient with infantile HPP. Using site-directed mutagenesis, we demonstrated that TNSALP has five N-glycans in transfected COS-1 cells and that individual single N-glycan deletion mutants of TNSALP retain the dimeric structure required for ALP activity, excluding the possibility that any single N-glycan plays a vital role in the structure and function of TNSALP. However, we found that TNSALP (N430Q) and TNSALP (N430E) mutants, but not a TNSALP (N430D) mutant, failed to form dimers. The TNSALP (N430S) mutant linked to infantile HPP was glycosylation-defective and unable to dimerise, similar to TNSALP (N430Q) and TNSALP (N430E) mutants; therefore, TNSALP (N430S) was established as a severe allele without strong ALP activity. By contrast to individual single N-glycan deletion mutants, TNSALP devoid of all five N-glycans was present to a much lesser extent than wild-type TNSALP in transfected cells, possibly reflecting its instability. A comprehensive analysis of a series of multiple N-glycan depletion mutants in TNSALP revealed that three N-glycans on N230, N271 and N303 were the minimal requirement for the structure and function of TNSALP and a prerequisite for its stable expression in a cell.

  1. Oral antibodies to human intestinal alkaline phosphatase reduce dietary phytate phosphate bioavailability in the presence of dietary 1α-hydroxycholecalciferol.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E

    2016-03-01

    While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks. PMID:26666254

  2. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5'-nucleotidase, and alkaline phosphatase inhibitors.

    PubMed

    al-Rashida, Mariya; Iqbal, Jamshed

    2014-07-01

    The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.

  3. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China.

    PubMed

    Ding, Yanqing; Qin, Boqiang; Xu, Hai; Wang, Xiaodong

    2016-08-01

    Sediments play important roles, as nutrient reservoir, especially in shallow lake ecosystem. The water column of large shallow lakes is often stable but also disturbed by turbulence causing resuspension of sediments. While considerable research has been carried out to investigate the influence of sediment resuspension on nutrient release, fewer studies have been done to understand the contribution of alkaline phosphatase activity (APA) in water as a response to the two conditions (turbulence and stability). Also, effects of the two lake conditions on photosynthetic efficiency of phytoplankton are still poorly understood. This study will evaluate the effect of these two conditions on photosynthetic efficiency and APA. Sediments used in the indoor experiments were collected from Zhushan Bay in Lake Taihu. Turbulence was generated by rotors to simulate the strong wind-induced disturbance in Lake Taihu. Results of the experiments showed that TN and TP in the stable and episodically turbulent conditions were not significantly different, with TN ranging from 1.34 to 1.90 mg/L and TP from 0.08 to 0.18 mg/L. Whereas, the soluble reactive phosphorus in the episodically turbulent condition was significantly higher than in the stable condition. Episodic turbulence could enhance P cycling by resuspending sediment-associated P, which alleviated algal P limitation. In stable conditions, P deficiency induced the production of high APA, which enhanced the availability of P. Although episodic turbulence could also cause increased algal biomass, photosynthetic efficiency of the algae was also affected not only by the nutrients but also by many other factors, especially light availability. Our results suggest that episodic turbulence is an important driver of biogeochemical cycling in large shallow hypertrophic lake ecosystem.

  4. Ultrasensitive electroanalysis of low-level free microRNAs in blood by maximum signal amplification of catalytic silver deposition using alkaline phosphatase-incorporated gold nanoclusters.

    PubMed

    Si, Yanmei; Sun, Zongzhao; Zhang, Ning; Qi, Wei; Li, Shuying; Chen, Lijun; Wang, Hua

    2014-10-21

    An ultrasensitive sandwich-type analysis method has been initially developed for probing low-level free microRNAs (miRNAs) in blood by a maximal signal amplification protocol of catalytic silver deposition. Gold nanoclusters (AuNCs) were first synthesized and in-site incorporated into alkaline phosphatase (ALP) to form the ALP-AuNCs. Unexpectedly, the so incorporated AuNCs could dramatically enhance the catalysis activities of ALP-AuNCs versus native ALP. A sandwiched hybridization protocol was then proposed using ALP-AuNCs as the catalytic labels of the DNA detection probes for targeting miRNAs that were magnetically caught from blood samples by DNA capture probes, followed by the catalytic ligation of two DNA probes complementary to the targets. Herein, the ALP-AuNC labels could act as the bicatalysts separately in the ALP-catalyzed substrate dephosphorylation reaction and the AuNCs-accelerated silver deposition reaction. The signal amplification of ALP-AuNCs-catalyzed silver deposition was thereby maximized to be measured by the electrochemical outputs. The developed electroanalysis strategy could allow for the ultrasensitive detection of free miRNAs in blood with the detection limit as low as 21.5 aM, including the accurate identification of single-base mutant levels in miRNAs. Such a sandwich-type analysis method may circumvent the bottlenecks of the current detection techniques in probing short-chain miRNAs. It would be tailored as an ultrasensitive detection candidate for low-level free miRNAs in blood toward the diagnosis of cancer and the warning or monitoring of cancer metastasis in the clinical laboratory.

  5. Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line.

    PubMed

    Graser, Stephanie; Mentrup, Birgit; Schneider, Doris; Klein-Hitpass, Ludger; Jakob, Franz; Hofmann, Christine

    2015-10-01

    Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies.

  6. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.

    PubMed

    Picart, Laëtitia; Thiebaud, Maryse; René, Malika; Pierre Guiraud, Joseph; Cheftel, Jean Claude; Dumay, Eliane

    2006-11-01

    Raw whole milk of high microbial quality (alkaline phosphatase (ALP); (ii) endogenous milk flora and (iii) two Gram positive (Listeria innocua and Micrococcus luteus) and one Gram negative (Pseudomonas fluorescens) strains inoculated into milk. Temperatures T1 and T2 measured before and immediately after the HP valve, and fat globule size distributions were also determined. ALP activity slightly decreased after homogenisation above 250 MPa when Tin=4 degrees C (corresponding T2>58 degrees C), but markedly decreased above 200 MPa when Tin=24 degrees C (T2>60 degrees C). In contrast to inactivation induced by continuous short-time thermal treatments, ALP inactivation induced by HP homogenisation was clearly due to mechanical forces (shear, cavitation and/or impact) in the HP valve and not to the short (<1 s) residence time at temperature T2 in the same valve. Inactivation of the three exogenous microorganisms led to similar conclusions. Homogenisation at 250 MPa or 300 MPa (Tin=24 degrees C) induced a 2-3 log cycle reduction of the total endogenous milk flora and a 1.5-1.8 log cycle reduction of inoculated List. innocua. Higher reduction ratios (2-4 log cycles) were obtained for the two other microorganisms. The highest levels of ALP inactivation corresponded to the highest extents of microbial reduction. Running the milk twice or three times through the homogeniser (recycling), keeping temperature T1 approximately 29 degrees C and pressure=200 MPa, increased homogenisation efficiency. PMID:16834813

  7. Divergence of Chemical Function in the Alkaline Phosphatase Superfamily: Structure and Mechanism of the P-C Bond Cleaving Enzyme Phosphonoacetate Hydrolase+

    PubMed Central

    Kim, Alexander; Benning, Matthew M.; OkLee, Sang; Quinn, John; Martin, Brian M.; Holden, Hazel M.; Dunaway-Mariano, Debra

    2011-01-01

    Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite, yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and 32P-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group. PMID:21366328

  8. Boron Induces Early Matrix Mineralization via Calcium Deposition and Elevation of Alkaline Phosphatase Activity in Differentiated Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Movahedi Najafabadi, Bent-al-hoda; Abnosi, Mohammad Hussein

    2016-01-01

    Objective Boron (B) is essential for plant development and might be an essential micronutrient for animals and humans. This study was conducted to characterize the impact of boric acid (BA) on the cellular and molecular nature of differentiated rat bone marrow mesenchymal stem cells (BMSCs). Materials and Methods In this experimental study, BMSCs were extracted and expanded to the 3rdpassage, then cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) complemented with osteogenic media as well as 6 ng/ml and 6 µg/ml of BA. After 5, 10, 15 and 21 days the viability and the level of mineralization was determined using MTT assay and alizarin red respectively. In addition, the morphology, nuclear diameter and cytoplasmic area of the cells were studied with the help of fluorescent dye. The concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) as well as sodium and potassium levels were also evaluated using commercial kits and a flame photometer respectively. Results Although 6 µg/ml of BA was found to be toxic, a concentration of 6 ng/ml increased the osteogenic ability of the cell significantly throughout the treatment. In addition it was observed that B treatment caused the early induction of matrix mineralization compared to controls. Conclusion Although more investigation is required, we suggest the prescription of a very low concentration of B in the form of BA or foods containing BA, in groups at high risk of osteoporosis or in the case of bone fracture. PMID:27054120

  9. Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines.

    PubMed

    Lee, D H; Lim, B-S; Lee, Y-K; Yang, H-C

    2006-01-01

    Hydrogen peroxide (H(2)O(2)), an oxidizing agent, has been widely used as a disinfectant. Recently, because of its reactive properties, H(2)O(2) has also been used as a tooth bleaching agent in dental care. This is a cause for concern because of adverse biological effects on the soft and hard tissues of the oral environment. To investigate the influence of H(2)O(2) on odontoblasts, the cells producing dentin in the pulp, we assessed cellular viability, generation of reactive oxygen species (ROS), alkaline phosphatase (ALP) activity, and nodule formation of an odontoblastic cell line (MDPC-23) after treatment with H(2)O(2), and compared those with the effects on preosteoblastic MC3T3-E1 cells. Cytotoxic effects of H(2)O(2) began to appear at 0.3 mmol/L in both MDPC-23 and MC3T3-E1 cells. At that concentration, the accumulation of intracellular ROS was confirmed by a fluorescent probe, DCFH-DA. Although more ROS were detected in MDPC-23, the increasing pattern and rate are similar between the two cells. When the cells were treated with H(2)O(2) at concentrations below 0.3 mmol/L, MDPC-23 displayed a significant increase in ALP activity and mineralized bone matrix, while MC3T3-E1 cells showed adverse effects of H(2)O(2). It is known that ROS are generally harmful by-products of aerobic life and represent the primary cause of aging and numerous diseases. These data, however, suggest that ROS can induce in vitro cell differentiation, and that they play a more complex role in cell physiology than simply causing oxidative damage.

  10. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China.

    PubMed

    Ding, Yanqing; Qin, Boqiang; Xu, Hai; Wang, Xiaodong

    2016-08-01

    Sediments play important roles, as nutrient reservoir, especially in shallow lake ecosystem. The water column of large shallow lakes is often stable but also disturbed by turbulence causing resuspension of sediments. While considerable research has been carried out to investigate the influence of sediment resuspension on nutrient release, fewer studies have been done to understand the contribution of alkaline phosphatase activity (APA) in water as a response to the two conditions (turbulence and stability). Also, effects of the two lake conditions on photosynthetic efficiency of phytoplankton are still poorly understood. This study will evaluate the effect of these two conditions on photosynthetic efficiency and APA. Sediments used in the indoor experiments were collected from Zhushan Bay in Lake Taihu. Turbulence was generated by rotors to simulate the strong wind-induced disturbance in Lake Taihu. Results of the experiments showed that TN and TP in the stable and episodically turbulent conditions were not significantly different, with TN ranging from 1.34 to 1.90 mg/L and TP from 0.08 to 0.18 mg/L. Whereas, the soluble reactive phosphorus in the episodically turbulent condition was significantly higher than in the stable condition. Episodic turbulence could enhance P cycling by resuspending sediment-associated P, which alleviated algal P limitation. In stable conditions, P deficiency induced the production of high APA, which enhanced the availability of P. Although episodic turbulence could also cause increased algal biomass, photosynthetic efficiency of the algae was also affected not only by the nutrients but also by many other factors, especially light availability. Our results suggest that episodic turbulence is an important driver of biogeochemical cycling in large shallow hypertrophic lake ecosystem. PMID:27151245

  11. Genotype-by-sex and environment-by-sex interactions influence variation in serum levels of bone-specific alkaline phosphatase in adult baboons (Papio hamadryas).

    PubMed

    Havill, L M; Mahaney, M C; Rogers, J

    2004-07-01

    While more than 77% of the people in the US with osteoporosis are women, the contributions of genotype-by-sex (G x S) and environment-by-sex interactions to sex differences in osteoporosis risk factors have not been studied. To address this issue, we conducted a statistical genetic analysis of serum concentrations of bone-specific alkaline phosphatase (Bone ALP), a highly specific marker of osteoblast function that is elevated in persons with conditions like osteoporosis characterized by excessive bone turnover or rapid bone loss. We assayed Bone ALP from 657 pedigreed baboons using a commercially available ELISA kit. Using a maximum likelihood variance decomposition approach, we treated sex as an environmental milieu in which genes influencing Bone ALP levels are expressed. We modeled the genetic covariance in Bone ALP between all relative pairs conditional on their sex so that the covariance is the product of the kinship, the genetic correlation between trait levels in the two sexes, and the genetic variances in the two sexes. Sex-specific maximum likelihood estimates (MLE) of residual heritability for Bone ALP were greater for females than for males (h2 = 0.44 vs. h2 = 0.26, respectively), but likelihood ratio tests revealed only a marginally significant difference in sex-specific genetic variances (P = 0.057). In contrast, the between-sex genetic correlation (rhoG = 0.43) was significantly less than 1.0 (P = 0.037), and the difference in sex-specific environmental variances was highly significant (P = 0.00006). We report the first evidence for G x S interactions influencing variation in an osteoporosis risk factor. The diminished between-sex genetic correlation implies that different genes influence Bone ALP levels in the two sexes. The significant differences between environmental variances suggest that unmeasured factors, including those from the internal, biological environments of the two sexes, account for a greater proportion of the Bone ALP variation in

  12. Oral antibodies to human intestinal alkaline phosphatase reduce dietary phytate phosphate bioavailability in the presence of dietary 1α-hydroxycholecalciferol.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E

    2016-03-01

    While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks.

  13. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification.

    PubMed

    Zhang, Lianfang; Hou, Ting; Li, Haiyin; Li, Feng

    2015-06-21

    Alkaline phosphatase (ALP), a class of enzymes that catalyzes the dephosphorylation of a variety of substrates, is one of the most commonly assayed enzymes in routine clinical practice, and an important biomarker related to many human diseases. Herein, a facile and highly sensitive homogeneous electrochemical biosensing strategy was proposed for the ALP activity detection based on single molecular beacon-initiated T7 exonuclease-assisted signal amplification. One 3'-phosphorylated and 5'-methylene blue (MB) labeled hairpin probe (HP) is ingeniously designed. In the presence of ALP, the dephosphorylation of HP, the subsequent Klenow fragment (KF) polymerase-catalyzed elongation and T7 exonuclease-catalyzed digestion of the duplex stem of HP take place, releasing MB-labeled mononucleotides and the trigger DNA (tDNA). tDNA then hybridizes with another HP and initiates the subsequent cycling cleavage process. As a result, a large amount of MB-labeled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ALP activity assay. A directly measured detection limit as low as 0.1 U L(-1) is obtained, which is comparable to that of the fluorescence method and up to three orders of magnitude lower than that of the immobilization-based electrochemical strategy previously reported. In addition to high sensitivity and good selectivity, the as-proposed strategy also exhibits the advantages of simplicity and convenience, because the assay is carried out in the homogeneous solution phase and sophisticated electrode modification processes are avoided. Therefore, the homogeneous electrochemical method we proposed here is an ideal candidate for ALP activity detection in biochemical research and clinical practices. PMID:25924941

  14. Cell-specific effects of TNF-α and IL-1β on alkaline phosphatase: implication for syndesmophyte formation and vascular calcification.

    PubMed

    Lencel, Philippe; Delplace, Séverine; Pilet, Paul; Leterme, Damien; Miellot, Flore; Sourice, Sophie; Caudrillier, Axelle; Hardouin, Pierre; Guicheux, Jérome; Magne, David

    2011-10-01

    Tumor necrosis factor (TNF)-α and interleukin (IL)-1β stimulate tissue non-specific alkaline phosphatase (TNAP) activity and mineralization in cultures of vascular smooth muscle cells (VSMCs). They are, therefore, considered as stimulators of vascular calcification in the context of atherosclerosis and diabetes type 2. In contrast, although ankylosing spondylitis (AS) leads to the formation of syndesmophytes, which are ectopic ossifications from entheses (where ligaments, tendons and capsules are attached to bone), anti-TNF-α therapies fail to block bone formation in this disease. In this context, our aims were to compare the effects of TNF-α and IL-1β on TNAP activity and mineralization in entheseal cells and VSMCs. Organotypic cultures of mouse ankle entheses were treated or not with TNF-α and IL-1β for 5 days. Micro-computed tomography was performed to determine trabecular bone parameters, and histology to assess TNAP activity and mineralization. Human mesenchymal stem cells cultured in pellets in chondrogenic conditions and human VSMCs were also used to determine the effects of cytokines on TNAP activity and expression, measured by quantitative PCR. In organotypic cultures, TNF-α and IL-1β significantly reduced the tibia BV/TV ratio. They also inhibited TNAP activity in entheseal chondrocytes in situ, and in mouse and human chondrocytes in vitro. In contrast, TNF-α stimulated TNAP expression and activity in human VSMCs. These differences were likely due to cell-specific effects of peroxisome proliferator-activated receptor γ (PPARγ), which is inhibited by TNF-α. Indeed, in human chondrocytes and VSMCs, the PPARγ inhibitor GW-9662 displayed the same opposite effects as TNF-α on TNAP expression. In conclusion, whereas TNF-α and IL-1β stimulate TNAP activity in VSMCs, they inhibit it in entheseal cells in situ and on chondrocytes in vitro. The identification of PPARγ as a likely mediator of cytokine effects deserves consideration for future

  15. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    PubMed Central

    Abedini, Fatemeh; Hosseinkhani, Hossein; Ismail, Maznah; Domb, Abraham J; Omar, Abdul Rahman; Chong, Pei Pei; Hong, Po-Da; Yu, Dah-Shyong; Farber, Ira-Yudovin

    2012-01-01

    Purpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP) levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer. Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles. Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was correlation between CXCR4 expression and serum ALP. Conclusion: CXCR4 siRNA/dextran-spermine nanoparticles appear to be highly effective, and may be suitable for further in vivo applications. Further research evaluation will be needed to determine the effect of CXCR4 silencing on serum ALP levels, which may be a useful marker to predict liver metastasis in colorectal cancer. PMID:22888250

  16. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification.

    PubMed

    Zhang, Lianfang; Hou, Ting; Li, Haiyin; Li, Feng

    2015-06-21

    Alkaline phosphatase (ALP), a class of enzymes that catalyzes the dephosphorylation of a variety of substrates, is one of the most commonly assayed enzymes in routine clinical practice, and an important biomarker related to many human diseases. Herein, a facile and highly sensitive homogeneous electrochemical biosensing strategy was proposed for the ALP activity detection based on single molecular beacon-initiated T7 exonuclease-assisted signal amplification. One 3'-phosphorylated and 5'-methylene blue (MB) labeled hairpin probe (HP) is ingeniously designed. In the presence of ALP, the dephosphorylation of HP, the subsequent Klenow fragment (KF) polymerase-catalyzed elongation and T7 exonuclease-catalyzed digestion of the duplex stem of HP take place, releasing MB-labeled mononucleotides and the trigger DNA (tDNA). tDNA then hybridizes with another HP and initiates the subsequent cycling cleavage process. As a result, a large amount of MB-labeled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ALP activity assay. A directly measured detection limit as low as 0.1 U L(-1) is obtained, which is comparable to that of the fluorescence method and up to three orders of magnitude lower than that of the immobilization-based electrochemical strategy previously reported. In addition to high sensitivity and good selectivity, the as-proposed strategy also exhibits the advantages of simplicity and convenience, because the assay is carried out in the homogeneous solution phase and sophisticated electrode modification processes are avoided. Therefore, the homogeneous electrochemical method we proposed here is an ideal candidate for ALP activity detection in biochemical research and clinical practices.

  17. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    PubMed Central

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  18. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    PubMed

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  19. Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation.

    PubMed

    Homchaudhuri, L; Sarma, Navanita; Swaminathan, Rajaram

    2006-12-01

    The cell cytosol is crowded with macromolecules such as proteins, nucleic acids, and membranes. The consequences of such crowding remain unclear. How is the rate of a typical enzymatic reaction, involving a freely diffusing enzyme and substrate, affected by the presence of macromolecules of different sizes, shapes, and concentrations? Here, we mimic the cytosolic crowding in vitro, using dextrans and Ficolls, for the first time in a variety of sizes ranging from 15 to 500 kDa, in a concentration range 0-30% w/w. Alkaline phosphatase-catalyzed hydrolysis of p-nitrophenyl phosphate (PNPP) was chosen as the model reaction. A pronounced decrease in the rate with increase in fractional volume occupancy of dextran is observed for larger dextrans (200 and 500 kDa) in contrast to smaller dextrans (15-70 kDa). Our results indicate that, at 20% w/w, smaller dextrans (15-70 kDa) reduce the initial rate moderately (1.4- to 2.4-fold slowing), while larger dextrans (>200 kDa) slow the reaction considerably (>5-fold). Ficolls (70 and 400 kDa) slow the reaction moderately (1.3- to 2.3-fold). The influence of smaller dextrans was accounted by a combination of increase in viscosity as sensed by PNPP and a minor offsetting increase in enzyme activity due to crowding. Larger dextrans apparently reduce the frequency of enzyme substrate encounter. The reduced influence of Ficolls is attributed to their compact and quasispherical shape, much unlike the dextrans.

  20. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis).

    PubMed

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-03-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  1. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    PubMed

    Caruso, Gabriella

    2010-03-29

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  2. Treatment of hypophosphatasia by muscle-directed expression of bone-targeted alkaline phosphatase via self-complementary AAV8 vector

    PubMed Central

    Nakamura-Takahashi, Aki; Miyake, Koichi; Watanabe, Atsushi; Hirai, Yukihiko; Iijima, Osamu; Miyake, Noriko; Adachi, Kumi; Nitahara-Kasahara, Yuko; Kinoshita, Hideaki; Noguchi, Taku; Abe, Shinichi; Narisawa, Sonoko; Millán, Jose Luis; Shimada, Takashi; Okada, Takashi

    2016-01-01

    Hypophosphatasia (HPP) is an inherited disease caused by genetic mutations in the gene encoding tissue-nonspecific alkaline phosphatase (TNALP). This results in defects in bone and tooth mineralization. We recently demonstrated that TNALP-deficient (Akp2−/−) mice, which mimic the phenotype of the severe infantile form of HPP, can be treated by intravenous injection of a recombinant adeno-associated virus (rAAV) expressing bone-targeted TNALP with deca-aspartates at the C-terminus (TNALP-D10) driven by the tissue-nonspecific CAG promoter. To develop a safer and more clinically applicable transduction strategy for HPP gene therapy, we constructed a self-complementary type 8 AAV (scAAV8) vector that expresses TNALP-D10 via the muscle creatine kinase (MCK) promoter (scAAV8-MCK-TNALP-D10) and examined the efficacy of muscle-directed gene therapy. When scAAV8-MCK-TNALP-D10 was injected into the bilateral quadriceps of neonatal Akp2−/− mice, the treated mice grew well and survived for more than 3 months, with a healthy appearance and normal locomotion. Improved bone architecture, but limited elongation of the long bone, was demonstrated on X-ray images. Micro-CT analysis showed hypomineralization and abnormal architecture of the trabecular bone in the epiphysis. These results suggest that rAAV-mediated, muscle-specific expression of TNALP-D10 represents a safe and practical option to treat the severe infantile form of HPP. PMID:26904710

  3. Effect of estrogen in relation to dietary vitamin D3 and calcium on activity of intestinal alkaline phosphatase and Ca-ATPase in immature chicks.

    PubMed

    Qin, X; Klandorf, H

    1993-06-01

    The interaction between 17 beta-estradiol (E2), vitamin D3 (D3), and dietary Ca on the activities of Ca-ATPase and alkaline phosphatase (AP) was determined in the intestine of young female chicks. Chicks (n = 36) were assigned to two groups, one of which was transferred to a low Ca (0.2%) diet and the other maintained on a regular diet. One week later, each group was further divided into three subgroups and given daily injections of 0(oil), 0.25, or 0.5 mg E2/kg body wt for 14 days. E2 treatment as well as low dietary Ca significantly increased AP activity (P < 0.05), whereas the highest E2 dose decreased jejunal Ca-ATPase (P < 0.05). In a separate study, day-old chicks (n = 40) fed a purified diet supplemented with or without D3 for 24 days were divided into two subgroups and administered daily injections of either 0 or 0.25 mg estrogen 3-benzoate/kg body wt for 5 days. E2 alone or in combination with D3 failed to change Ca-ATPase activity in either the duodenum or the jejunum. However, E2 enhanced the D3-stimulated AP activity measured in the supernatant of duodenum (D3, P < 0.001; E2, P > 0.05; E2 x D3, P < 0.05) and jejunum (D3, P < 0.001; E2, P > 0.05; E2 x D3, P = 0.06). Daily injections of 0.5 mg E2/kg body wt for 6 days to 6-week-old D3-adequate chicks (n = 16) significantly increased AP activity in jejunum but not in liver and kidney (P < 0.05). In conclusion, E2 treatment enhanced the activity of intestinal AP but not Ca-ATPase. This enhancement was independent of dietary Ca, but was D3-dependent and tissue specific. The results suggest that the pubertal increase in plasma E2 can affect Ca absorption from the intestine by increasing the activity of AP.

  4. Effect Modifying Role of Serum Calcium on Mortality-Predictability of PTH and Alkaline Phosphatase in Hemodialysis Patients: An Investigation Using Data from the Taiwan Renal Registry Data System from 2005 to 2012

    PubMed Central

    Lin, Yen-Chung; Lin, Yi-Chun; Hsu, Chiao-Ying; Kao, Chih-Chin; Chang, Fan-Chi; Chen, Tzen-Wen; Chen, Hsi-Hsien; Hsu, Chi-Cheng; Wu, Mai-Szu

    2015-01-01

    Predicting mortality in dialysis patients based on low intact parathyroid hormone levels is difficult, because aluminum intoxication, malnutrition, older age, race, diabetes, or peritoneal dialysis may influence these levels. We investigated the clinical implications of low parathyroid hormone levels in relation to the mortality of dialysis patients using sensitive, stratified, and adjusted models and a nationwide dialysis database. We analyzed data from 2005 to 2012 that were held on the Taiwan Renal Registry Data System, and 94,983 hemodialysis patients with valid data regarding their intact parathyroid levels were included in this study. The patient cohort was subdivided based on the intact parathyroid hormone and alkaline phosphatase levels. The mean hemodialysis duration within this cohort was 3.5 years. The mean (standard deviation) age was 62 (14) years. After adjusting for age, sex, diabetes, the hemodialysis duration, serum albumin levels, hematocrit levels, calcium levels, phosphate levels, and the hemodialysis treatment adequacy score, the single-pool Kt/V, the crude and adjusted all-cause mortality rates increased when alkaline phosphatase levels were higher or intact parathyroid hormone levels were lower. In general, at any given level of serum calcium or phosphate, patients with low intact parathyroid hormone levels had higher mortality rates than those with normal or high iPTH levels. At a given alkaline phosphatase level, the hazard ratio for all-cause mortality was 1.33 (p < 0.01, 95% confidence interval 1.27–1.39) in the group with intact parathyroid hormone levels < 150 pg/mL and serum calcium levels > 9.5 mg/dL, but in the group with intact parathyroid hormone levels > 300 pg/mL and serum calcium levels > 9.5 mg/dL, the hazard ratio was 0.92 (95% confidence interval 0.85–1.01). Hence, maintaining albumin-corrected high serum calcium levels at > 9.5 mg/dL may correlate with poor prognoses for patients with low intact parathyroid hormone

  5. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  6. Histochemical and electrophoretic studies on phosphatases of some Indian trematodes.

    PubMed

    Haque, M; Siddiqi, A H

    1982-06-01

    The isoenzymes of acid and alkaline phosphatases and their histochemical localization were studied by polyacrylamide disc gel electrophoresis in four species of trematodes: Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of water buffalo (Bubalus bubalis) and Echinostoma malayanum and Fasciolopsis buski from the small intestine of the pig (Sus scrofa). Both acid and alkaline phosphatases were present in the tegument, gastrodermis, suckers, testes, ovary, eggs, vitellaria and uterus but alkaline phosphatase activity was demonstrated only in the parenchyma and excretory ducts. Polyacrylamide gel electrophoresis revealed two to four isoenzymes for both acid and alkaline phosphatase.

  7. Possible interference between tissue-non-specific alkaline phosphatase with an Arg54-->Cys substitution and acounterpart with an Asp277-->Ala substitution found in a compound heterozygote associated with severe hypophosphatasia.

    PubMed Central

    Fukushi-Irié, M; Ito, M; Amaya, Y; Amizuka, N; Ozawa, H; Omura, S; Ikehara, Y; Oda, K

    2000-01-01

    Tissue-non-specific alkaline phosphatase (TNSALP) with an Arg(54)-->Cys (R54C) or an Asp(277)-->Ala (D277A)substitution was found in a patient with hypophosphatasia [Henthorn,Raducha, Fedde, Lafferty and Whyte (1992) Proc. Natl. Acad. Sci. U.S.A.89, 9924-9928]. To examine effects of these missense mutations onproperties of TNSALP, the TNSALP mutants were expressed ectopically inCOS-1 cells. The wild-type TNSALP was synthesized as a 66-kDa endo-beta-N-acetylglucosaminidase H (Endo H)-sensitive form, and processed to an 80-kDa mature form, which is anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). Although the mutant proteins were found to be modified by GPI, digestion with phosphatidylinositol-specific phospholipase C, cell-surface biotinylation and immunofluorescence observation demonstrated that the cell-surface appearance of TNSALP (R54C) and TNSALP (D277A) was either almost totally or partially retarded respectively. The 66-kDa Endo H-sensitive band was the only form, and was rapidly degraded in the cells expressing TNSALP (R54C). In contrast with cells expressing TNSALP(R54C), where alkaline phosphatase activity was negligible, significant enzyme activity was detected and, furthermore, the 80-kDa mature form appeared on the surface of the cells expressing TNSALP (D277A). Analysis by sedimentation on sucrose gradients showed that a considerable fraction of newly synthesized TNSALP (R54C) and TNSALP(D277A) formed large aggregates, indicating improper folding and incorrect oligomerization of the mutant enzymes. When co-expressed with TNSALP (R54C), the level of the 80-kDa mature form of TNSALP (D277A)was decreased dramatically, with a concomitant reduction in enzyme activity in the co-transfected cell. These findings suggest that TNSALP(R54C) interferes with folding and assembly of TNSALP (D277A) intrans when expressed in the same cell, thus probably explaining why a compound heterozygote for these mutant alleles developed severe

  8. An in vitro study of alkaline phosphatase sensitivity to mixture of aflatoxin B1 and fumonisin B1 in the hepatopancreas of coastal lagoon wild and farmed shrimp Litopenaeus vannamei.

    PubMed

    Pérez-Acosta, Jesús A; Burgos-Hernandez, Armando; Velázquez-Contreras, Carlos A; Márquez-Ríos, Enrique; Torres-Arreola, Wilfrido; Arvizu-Flores, Aldo A; Ezquerra-Brauer, J Marina

    2016-08-01

    This study aimed to establish the combined effect of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) on wild Litopenaeus vannamei hepatopancreas alkaline phosphatase (AP) activity compared with that of farmed shrimp. AP activity in hepatopancreas extract was confirmed by several specific inhibitor assays. AP activity of wild shrimp was higher than that of farmed shrimp (p < 0.05). However, AP activity from both wild and farmed shrimp was inhibited when incubated with AFB1 and FB1. The greatest inhibition occurred when AP was incubated with a mixture of AFB1 and FB1. The IC50 for AFB1 on AP activity of wild and farmed shrimp hepatopancreases was 0.790 and 0.398 μg/mL, respectively. The IC50 of FB1 was 0.87 μg/mL for wild shrimp and 0.69 μg/mL for farmed shrimp. These results suggest that, at the mycotoxins concentrations used in the study, AP from farmed L. vannamei was sensitive to the presence of both mycotoxins; however, AP is more sensitive to the combination of AFB1 + FB1 suggesting a possible synergistic or potentiating inhibitory effect.

  9. The two neutrophil plasma membrane markers alkaline phosphatase and HLA class I antigen localize differently in granule-deficient cytoplasts. An ideal plasma membrane marker in human neutrophils is still lacking.

    PubMed

    Pellmé, Sara; Dahlgren, Claes; Karlsson, Anna

    2007-08-31

    Neutrophil function relies largely on the ability of the cell to mobilize its different granules and vesicles to the cell surface and thereby expose and/or release effector molecules to the surrounding tissue. To properly identify these subcellular compartments is thus a prerequisite for studies of neutrophil physiology. A range of specific markers for the classical granules is available, but finding optimal markers for the secretory vesicles and plasma membrane has historically been more challenging. Latent and non-latent alkaline phosphatase activities are often used to distinguish these two light membrane structures, but the outcome using this technique depends on the level of cellular activation. Therefore, HLA-I was introduced some years ago as a specific, stimulation-independent marker for the plasma membrane. In this study we however report that detailed fractionation studies of neutrophil cytoplasts, lacking secretory vesicles, granules and other dense organelles, reveal that the HLA-I antigen is not only co-localizing with the plasma membrane marker ALP, but is also present in other, more dense organelles. Further, we found the mixed enzyme-linked immunosorbent assay (MELISA), detecting the beta(2)-microglobulin/HLA-I complex, to be negatively influenced by uncomplexed beta(2)-microglobulin present in the specific granules and secretory vesicles, making it difficult to use HLA-I as a plasma membrane marker during maturation of for example phagolysosomes. PMID:17673253

  10. Stimulus Response of Au-NPs@GMP-Tb Core-Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake.

    PubMed

    Zhang, Xiaolei; Deng, Jingjing; Xue, Yumeng; Shi, Guoyue; Zhou, Tianshu

    2016-01-19

    In this study, we demonstrate a colorimetric and fluorescent dual-mode method for alkaline phosphatase activity (APA) sensing in freshwater lake with stimuli-responsive gold nanoparticles@terbium-guanosine monophosphate (Au-NPs@GMP-Tb) core-shell nanoparticles. Initially, the core-shell nanoparticles were fabricated based on Au-NPs decorated with a fluorescent GMP-Tb shell. Upon being excited at 290 nm, the as-formed Au-NPs@GMP-Tb core-shell nanoparticles emit green fluorescence, and the decorated GMP-Tb shell causes the aggregation of Au-NPs. However, the addition of ALP destroys GMP-Tb shell, resulting in the release of Au-NPs from the shell into the solvent. As a consequence, the aggregated Au-NPs solubilizes with the changes in the UV-vis spectrum of the dispersion, and in the meantime, the fluorescence of GMP-Tb shell turns off, which constitutes a new mechanism for colorimetric and fluorescent dual-mode sensing of APA. With the method developed here, we could monitor the dynamic change of APA during an algal bloom of a freshwater lake, both by the naked eye and further confirmed by fluorometric determination. This study not only offers a new method for on-site visible detection of APA but also provides a strategy for dual-mode sensing mechanisms by the rational design of the excellent optical properties of Au-NPs and the adaptive inclusion properties of the luminescent infinite coordination polymers.

  11. Yu Ping Feng San, an Ancient Chinese Herbal Decoction, Regulates the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 and the Activity of Intestinal Alkaline Phosphatase in Cultures

    PubMed Central

    Du, Crystal Y. Q.; Choi, Roy C. Y.; Dong, Tina T. X.; Lau, David T. W.; Tsim, Karl W. K.

    2014-01-01

    Yu Ping Feng San (YPFS), a Chinese herbal decoction comprising Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu), and Saposhnikoviae Radix (SR; Fangfeng), has been used clinically to treat inflammatory bowel diseases (IBD). Previously, we demonstrated a dual role of YPFS in regulating cytokine release in cultured macrophages. In this study, we elucidated the anti-inflammatory effect of YPFS that is mediated through modulating the expression of three key enzymes involved in IBD: inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intestinal alkaline phosphatase (IALP). In a lipopolysaccharide (LPS)-induced chronic-inflammation model of cultured murine macrophages, YPFS treatment suppressed the activation of iNOS and COX-2 expression in a dose-dependent manner. Conversely, application of YPFS in cultured small intestinal enterocytes markedly induced the expression of IALP in a time-dependent manner, which might strengthen the intestinal detoxification system. A duality of YPFS in modulating the expression of iNOS and COX-2 was determined here. The expression of iNOS and COX-2 in macrophages was induced by YPFS, and this activation was partially blocked by the NF-κB-specific inhibitor BAY 11-7082, indicating a role of NF-κB signaling. These YPFS-induced changes in gene regulation strongly suggest that the anti-inflammatory effects of YPFS are mediated through the regulation of inflammatory enzymes. PMID:24967898

  12. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-22

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.

  13. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  14. Osteoarthritis in the temporo-mandibular joint (TMJ) of aged mice and the in vitro effect of TGF-beta 1 on cell proliferation, matrix synthesis, and alkaline phosphatase activity.

    PubMed

    Livne, E; Laufer, D; Blumenfeld, I

    1997-05-15

    The temporo-mandibular joint of aged mice develops osteoarthritic (OA) degenerative lesions. Adult chondrocytes have a low rate of cell replication, and cartilage repair potential is very limited. One of the major problems in OA is the low rate of matrix synthesis and the inability of the chondrocytes to exceed the rate of matrix degradation. These combined factors lead to the overall destruction of the cartilage as seen in OA. Cartilage degradation is mediated by elevated proteolytic activity of enzymes. Among the enzymes degrading cartilage are the metalloproteinases, stromelysin and collagenase. Other proteinases that may potentially participate in matrix degradation are the lysosomal enzymes cathepsin B, D, and L, and acid phosphatase. On the other hand, alkaline phosphatase (ALP) is an enzyme that has been shown to be a marker for anabolic activity in skeletal tissues such as bone and cartilage. The cartilage of the mandibular condyle in the T-M-J from aged mice reveals OA lesions. An overall reduction of cell proliferation and sulfated proteoglycan synthesis has been also shown in this joint. In the present study the effects of hTGF-beta on the stimulation of DNA and sulfated GAG synthesis and ALP activity were studied. Mandibular condyle cartilage obtained from 12-month-old ICR male mice were cultured in BGJb serum-free medium for 24-72 hours, supplemented with 0.1-10 ng/ml hTGF-beta 1. 3H-thymidine and 35S-sulfate were added for the last 24 hours of the culture and their incorporation into DNA and sulfated GAGs respectively, as well as the activity of ALP, were determined. Results indicated that hTGF-beta 1 enhanced the incorporation of both 3H-thymidine and of 35S-sulfate into cartilage cultures of aged mice, and also induced ALP activity. It thus appeared that in OA degenerating articular cartilage, the chondrocytes could be stimulated in vitro to proliferate and to synthesize new matrix, thus indicating induced anabolic activity in the tissue.

  15. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression

    PubMed Central

    Jakka, Siva R. K.; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J.; Narva, Kenneth; Blanco, Carlos A.

    2015-01-01

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae. PMID:26637593

  16. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression.

    PubMed

    Jakka, Siva R K; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J; Narva, Kenneth; Blanco, Carlos A; Jurat-Fuentes, Juan L

    2015-12-04

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae.

  17. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults.

    PubMed

    Tanabe, Rieko; Kawamura, Yuka; Tsugawa, Naoko; Haraikawa, Mayu; Sogabe, Natsuko; Okano, Toshio; Hosoi, Takayuki; Goseki-Sone, Masae

    2015-01-01

    Several genes have been implicated as genetic determinants of osteoporosis. Vitamin D receptor (VDR) is an intracellular hormone receptor that specifically binds to the biologically active form of vitamin D, 1-alpha, 25- dihydroxyvitamin D3 [1, 25(OH)2D], and mediates its effects. One of the most frequently studied single nucleotide polymorphisms is the restriction fragment length polymorphism (RFLP) Fok-I (rs2228570). The presence of a Fok-I site, designated f, allows protein translation to initiate from the first ATG. An allele lacking the site (ATG>ACG: designated F), initiates from a second ATG site. In the present study, we explored the effect of the VDR Fok-I genotype on associations among serum bone-specific alkaline phosphatase (ALP), 25- hydroxyvitamin D3 [25(OH)D], 1, 25(OH)2D, and the dietary nutrient intake in healthy young Japanese subjects (n=193). Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Quantitative ultrasound (QUS) parameters at the right calcaneus (heel bone) were measured. The allele frequencies were 0.622 for the F allele and 0.378 for the f allele in all subjects. Grouped by the VDR genotype, a significant positive correlation between the levels of serum bone-specific ALP and 25(OH)D was observed in the FF-type (p=0.005), but not in the ff-type. In addition, there was a significant positive correlation between the level of serum 25(OH)D and osteo-sono assessment index (OSI) in the FF-type (p=0.008), but not in the ff-type. These results suggest that the level of circulating 25(OH)D is an important factor when assessing the VDR Fok-I polymorphism to prevent osteoporosis. PMID:26078251

  18. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults.

    PubMed

    Tanabe, Rieko; Kawamura, Yuka; Tsugawa, Naoko; Haraikawa, Mayu; Sogabe, Natsuko; Okano, Toshio; Hosoi, Takayuki; Goseki-Sone, Masae

    2015-01-01

    Several genes have been implicated as genetic determinants of osteoporosis. Vitamin D receptor (VDR) is an intracellular hormone receptor that specifically binds to the biologically active form of vitamin D, 1-alpha, 25- dihydroxyvitamin D3 [1, 25(OH)2D], and mediates its effects. One of the most frequently studied single nucleotide polymorphisms is the restriction fragment length polymorphism (RFLP) Fok-I (rs2228570). The presence of a Fok-I site, designated f, allows protein translation to initiate from the first ATG. An allele lacking the site (ATG>ACG: designated F), initiates from a second ATG site. In the present study, we explored the effect of the VDR Fok-I genotype on associations among serum bone-specific alkaline phosphatase (ALP), 25- hydroxyvitamin D3 [25(OH)D], 1, 25(OH)2D, and the dietary nutrient intake in healthy young Japanese subjects (n=193). Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Quantitative ultrasound (QUS) parameters at the right calcaneus (heel bone) were measured. The allele frequencies were 0.622 for the F allele and 0.378 for the f allele in all subjects. Grouped by the VDR genotype, a significant positive correlation between the levels of serum bone-specific ALP and 25(OH)D was observed in the FF-type (p=0.005), but not in the ff-type. In addition, there was a significant positive correlation between the level of serum 25(OH)D and osteo-sono assessment index (OSI) in the FF-type (p=0.008), but not in the ff-type. These results suggest that the level of circulating 25(OH)D is an important factor when assessing the VDR Fok-I polymorphism to prevent osteoporosis.

  19. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    PubMed Central

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  20. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite.

    PubMed

    Ma, Xiaolong; Zhang, Xin; Guo, Xinli; Kang, Qi; Shen, Dazhong; Zou, Guizheng

    2016-07-01

    Sensitive and selective determining bio-related molecule and enzyme play an important role in designing novel procedure for biological sensing and clinical diagnosis. Herein, we found that dual-stabilizers-capped CdSe quantum dots (QDs) in composite film of multi-walled carbon nanotubes (CNTs) and Nafion, displaying eye-visible monochromatic electrochemiluminescence (ECL) with fwhm of 37nm, which offers promising ECL signal for detecting ascorbic acid (AA) as well as the activity of alkaline phosphatase (ALP) in biological samples. It was also shown that the dual-stabilizers-capped CdSe QDs can preserve their highly passivated surface states with prolonged lifetime of excited states in Nafion mixtures, and facilitate electron-transfer ability of Nafion film along with CNTs. Compared with the QDs/GCE, the ECL intensity is enhanced 1.8 times and triggering potential shifted to lower energy by 0.12V on the CdSe-CNTs-Nafion/GCE. The ECL quenching degree increases with increasing concentration of AA in the range of 0.01-30nM with a limit of detection (LOD) of 5pM. The activity of ALP was determined indirectly according to the concentration of AA, generated in the hydrolysis reaction of l-ascorbic acid 2-phosphate sesquimagnesium (AA-P) in the presence of ALP as a catalyst, with an LOD of 1μU/L. The proposed strategy is favorable for developing simple ECL sensor or device with high sensitivity, spectral resolution and less electrochemical interference. PMID:27154663

  1. The parathyroid hormone-related protein is secreted during the osteogenic differentiation of human dental follicle cells and inhibits the alkaline phosphatase activity and the expression of DLX3.

    PubMed

    Klingelhöffer, C; Reck, A; Ettl, T; Morsczeck, C

    2016-08-01

    The dental follicle is involved in tooth eruption and it expresses a great amount of the parathyroid hormone-related protein (PTHrP). PTHrP as an extracellular protein is required for a multitude of different regulations of enchondral bone development and differentiation of bone precursor cells and of the development of craniofacial tissues. The dental follicle contains also precursor cells (DFCs) of the periodontium. Isolated DFCs differentiate into periodontal ligament cells, alveolar osteoblast and cementoblasts. However, the role of PTHrP during the human periodontal development remains elusive. Our study evaluated the influence of PTHrP on the osteogenic differentiation of DFCs under in vitro conditions for the first time. The PTHrP protein was highly secreted after 4days of the induction of the osteogenic differentiation of DFCs with dexamethasone (2160.5pg/ml±345.7SD. in osteogenic differentiation medium vs. 315.7pg/ml±156.2SD. in standard cell culture medium; Student's t Test: p<0.05 (n=3)). We showed that the supplementation of the osteogenic differentiation medium with PTHrP inhibited the alkaline phosphatase activity and the expression of the transcription factor DLX3, but the depletion of PTHrP did not support the differentiation of DFCs. Previous studies have shown that Indian Hedgehog (IHH) induces PTHrP and that PTHrP, in turn, inhibits IHH via a negative feedback loop. We showed that SUFU (Suppressor Of Fused Homolog) was not regulated during the osteogenic differentiation in DFCs. So, neither the hedgehog signaling pathway induced PTHrP nor PTHrP suppressed the hedgehog signaling pathway during the osteogenic differentiation in DFCs. In conclusion, our results suggest that PTHrP regulates independently of the hedgehog signaling pathway the osteogenic differentiated in DFCs. PMID:27368119

  2. Disulfide bonds are critical for tissue-nonspecific alkaline phosphatase function revealed by analysis of mutant proteins bearing a C(201)-Y or C(489)-S substitution associated with severe hypophosphatasia.

    PubMed

    Satou, Yasuhito; Al-Shawafi, Hiba A; Sultana, Sara; Makita, Saori; Sohda, Miwa; Oda, Kimimitsu

    2012-04-01

    Hypophosphatasia (HPP), a rare genetic disease characterized by reduced serum alkaline phosphatase (ALP) activity and failure in bone and tooth mineralization, is caused by mutations in tissue-nonspecific ALP (TNSALP) gene. Two missense mutations (C201Y and C489S, standardized nomenclature) of TNSALP, involved in intra-chain disulfide bonds, were reported in patients diagnosed with perinatal HPP (Taillandier A. et al. Hum. Mutat. 13 (1999) 171-172, Hum. Mutat. 15 (2000) 293). To investigate the role of the disulfide bond in TNSALP, we expressed TNSALP (C201Y) and TNSALP (C489S) in COS-1 cells transiently. Compared with the wild-type enzyme [TNSALP (W)], both the TNSALP mutants exhibited a diminished ALP activity in the cells, where a 66kDa immature form was predominant with a marginal amount of a 80kDa mature form of TNSALP. Detailed studies on Tet-On CHO established cell line expressing TNSALP (W) or TNSALP (C201Y) showed that the 66kDa form of TNSALP (C201Y) exists as a monomer in contrast to a dimer of TNSALP (W). Only a small fraction of the TNSALP (C201Y) reached cell surface as the 80kDa mature form, though most of the 66kDa form was found to be endo-β-N-acetylglucosaminidase H sensitive and rapidly degraded in proteasome following polyubiquitination. Collectively, these results indicate not only that the intra-subunit disulfide bonds are crucial for TNSALP to properly fold and assemble into the dimeric enzyme, but also that the development of HPP associated with TNSALP (C201Y) or TNSALP (C489S) is attributed to decreased cell surface appearance of the functional enzyme.

  3. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  4. Differential Role of Manduca sexta Aminopeptidase-N and Alkaline Phosphatase in the Mode of Action of Cry1Aa, Cry1Ab, and Cry1Ac Toxins from Bacillus thuringiensis

    PubMed Central

    Flores-Escobar, Biviana; Rodríguez-Magadan, Hector; Bravo, Alejandra; Soberón, Mario

    2013-01-01

    Aminopeptidase-N (APN1) and alkaline phosphatase (ALP) proteins located in the midgut epithelium of Manduca sexta have been implicated as receptors for Cry1Aa, Cry1Ab, and Cry1Ac insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki. In this study, we analyzed the roles of ALP and APN1 in the toxicity of these three Cry1A proteins. Ligand blot analysis using brush border membrane vesicles of M. sexta showed that Cry1Aa and Cry1Ab bind preferentially to ALP during early instars while binding to APN was observed after the third instar of larval development. Cry1Ac binds to APN throughout all larval development, with no apparent binding to ALP. ALP was cloned from M. sexta midgut RNA and expressed in Escherichia coli. Surface plasmon resonance binding analysis showed that recombinant ALP binds to Cry1Ac with 16-fold lower affinity than to Cry1Aa or Cry1Ab. Downregulation of APN1 and ALP expression by RNA interference (RNAi) using specific double-stranded RNA correlated with a reduction of transcript and protein levels. Toxicity analysis of the three Cry1A proteins in ALP- or APN1-silenced larvae showed that Cry1Aa relies similarly on both receptor molecules for toxicity. In contrast, RNAi experiments showed that ALP is more important than APN for Cry1Ab toxicity, while Cry1Ac relied principally on APN1. These results indicated that ALP and APN1 have a differential role in the mode of action of Cry1A toxins, suggesting that B. thuringiensis subsp. kurstaki produces different Cry1A toxins that in conjunction target diverse midgut proteins to exert their insecticidal effect. PMID:23686267

  5. Biosynthesis of glycosylphosphatidylinositol-anchored human placental alkaline phosphatase: evidence for a phospholipase C-sensitive precursor and its post-attachment conversion into a phospholipase C-resistant form.

    PubMed Central

    Wong, Y W; Low, M G

    1994-01-01

    Previous studies have shown that some cells (e.g. SKG3a) express human placental alkaline phosphatase (AP) in a form which can be released from the membrane by bacterial PtdIns-specific phospholipase C (PI-PLC) while others (e.g. HeLa) are relatively resistant to this enzyme. Chemical and enzymic degradation studies have suggested that the PI-PLC resistance of AP is due to inositol acylation of its glycosylphosphatidylinositol (GPI) anchor. In order to identify the biosynthetic origin of PI-PLC resistance we determined the PI-PLC sensitivity of AP in 35S-labelled cells (10 min pulse; 0-60 min chase) by Triton X-114 phase separation. At the beginning of the chase period, the majority of the AP synthesized was hydrophilic, indicating that it had not acquired a GPI anchor. The concentration of hydrophilic AP species decreased with a t1/2 of 30-60 min but was not processed to an endoglycosidase H-resistant species or secreted into the medium. In both SKG3a and HeLa cells all of the hydrophobic, GPI-anchored AP detectable at the beginning of the chase was PI-PLC sensitive. PI-PLC-resistant species of AP were only observed in HeLa cells and these only appeared after about 30 min. The delayed appearance of PI-PLC resistance was unexpected as previous studies have suggested that candidate GPI-anchor precursors are PI-PLC-resistant as a result of inositol acylation. This work reveals unanticipated complexities in the biosynthesis of AP and its GPI anchor. Images Figure 1 Figure 2 Figure 3 PMID:8037672

  6. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  7. Transcriptional activation of the enterocyte differentiation marker intestinal alkaline phosphatase is associated with changes in the acetylation state of histone H3 at a specific site within its promoter region in vitro.

    PubMed

    Hinnebusch, Brian F; Henderson, J Welles; Siddique, Aleem; Malo, Madhu S; Zhang, Wenying; Abedrapo, Mario A; Hodin, Richard A

    2003-02-01

    Enterocyte differentiation is thought to occur through the transcriptional regulation of a small subset of specific genes. A recent growing body of evidence indicates that post-translational modifications of chromatin proteins (histones) play an important role in the control of gene transcription. Previous work has demonstrated that one such modification, histone acetylation, occurs in an in vitro model of enterocyte differentiation, butyrate-treated HT-29 cells. In the present work, we sought to determine if the epigenetic signal of histone acetylation occurs in an identifiable pattern in association with the transcriptional activation of the enterocyte differentiation marker gene intestinal alkaline phosphatase (IAP). HT-29 cells were maintained under standard culture conditions and differentiated with sodium butyrate. The chromatin immunoprecipitation (ChIP) assay was used to compare the acetylation state of histones associated with specific regions of the IAP promoter in the two cell populations (undifferentiated vs. differentiated). Chromatin was extracted from cells and cleaved by sonication or enzymatic digestion to obtain fragments of approximately 200 to 600 base-pairs, as confirmed by polymerase chain reaction using primers designed to amplify the IAP segments of interest. The ChIP assay selects DNA sequences that are associated with acetylated histones by immunoprecipitation. Unbound segments represent DNA sequences whose histones are not acetylated. After immunoprecipitation, sequences were detected by radiolabeled polymerase chain reaction, and the relative intensity of the bands was quantified by densitometry. The relative acetylation state of histones at specific sites was determined by comparing the ratios of bound/unbound segments. We determined that in a segment of the IAP promoter between -378 and -303 base-pairs upstream from the transcriptional start site, the acetylation state of histone H3 increased twofold in the differentiated, IAP

  8. Study protocol for a multicentre randomised controlled trial: Safety, Tolerability, efficacy and quality of life Of a human recombinant alkaline Phosphatase in patients with sepsis-associated Acute Kidney Injury (STOP-AKI)

    PubMed Central

    Peters, Esther; Mehta, Ravindra L; Murray, Patrick T; Hummel, Jürgen; Joannidis, Michael; Kellum, John A; Arend, Jacques; Pickkers, Peter

    2016-01-01

    Introduction Acute kidney injury (AKI) occurs in 55–60% of critically ill patients, and sepsis is the most common underlying cause. No pharmacological treatment options are licensed to treat sepsis-associated AKI (SA-AKI); only supportive renal replacement therapy (RRT) is available. One of the limited number of candidate compounds in clinical development to treat SA-AKI is alkaline phosphatase (AP). The renal protective effect of purified bovine intestinal AP has been demonstrated in critically ill sepsis patients. To build on these observations, a human recombinant AP (recAP) was developed, of which safety and efficacy in patients with SA-AKI will be investigated in this trial. Methods This is a randomised, double-blind, placebo-controlled, 4-arm, proof-of-concept, dose-finding adaptive phase IIa/IIb study, conducted in critically ill patients with SA-AKI. A minimum of 290 patients will be enrolled at ∼50 sites in the European Union and North America. The study involves 2 parts. Patients enrolled during Part 1 will be randomly assigned to receive either placebo (n=30) or 1 of 3 different doses of recAP (n=30 per group) once daily for 3 days (0.4, 0.8 or 1.6 mg/kg). In Part 2, patients will be randomly assigned to receive the most efficacious dose of recAP (n=85), selected during an interim analysis, or placebo (n=85). Treatment must be administered within 24 hours after SA-AKI is first diagnosed and within 96 hours from first diagnosis of sepsis. The primary end point is the area under the time-corrected endogenous creatinine clearance curve from days 1 to 7. The key secondary end point is RRT incidence during days 1–28. Ethics and dissemination This study is approved by the relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this

  9. Extracellular phosphatases of Chlamydomonas reinhardi and their regulation.

    PubMed

    Patni, N J; Dhawale, S W; Aaronson, S

    1977-04-01

    Chlamydomonas reinhardi, cultured under normal growth conditions, secreted significant amounts of protein and carbohydrates but not lipids or nucleic acids. A fivefold increase in light intensity led to a tenfold increase in secreted protein and carbohydrate. Among the proteins secreted was acid phosphatase with a pH optimum at 4.8 like the enzyme in the cells. Phosphorus depleted algae grown on minimal orthophosphate contained and secreted both acid and alkaline phosphatase. The pH optimum of the intracellular alkaline phosphatase was 9.2. When phosphorus-depleted cells were grown with increasing orthophosphate, intra- and extracellular alkaline phosphatase was almost completely repressed and intra- and extracellular acid phosphatase was partially repressed. Extracellular acid and alkaline phosphatase increased with the age of the culture. Electrophoresis indicated only one acid and one alkaline phosphatase in phosphorus-satisfied and phosphorus-depleted cells. Chlamydomonas cells suspended in an inorganic salt solution secreted only acid phosphatase; the absence of any extr-cellular cytoplasmic marker enzyme indicated that there was little, if any, autolysis to account for the extracellular acid enzyme. Phosphorus-depleted cells were able to grow on organic phosphates as the sole source of orthophosphate. Ribose-5-phosphate was the best for cell multiplication, and its utility was shown to be due to the cell's ability to use the ribose as well as the orthophosphatase for cell multiplication.

  10. Effect of Bacteria and Amoebae on Rhizosphere Phosphatase Activity

    PubMed Central

    Gould, W. Douglas; Coleman, David C.; Rubink, Amy J.

    1979-01-01

    The contributions of various components of soil microflora and microfauna to rhizosphere phosphatase activity were determined with hydroponic cultures. Three treatments were employed: (i) plants alone (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) (ii) plants plus bacteria (Pseudomonas sp.), and (iii) plants plus bacteria plus amoebae (Acanthamoeba sp.). No alkaline phosphatase was detected, but an appreciable amount of acid phosphatase activity (120 to 500 nmol of p-nitrophenylphosphate hydrolyzed per h per plant) was found in the root culture solutions. The presence of bacteria or bacteria and amoebae increased the amount of acid phosphatase in solution, and properties of additional activity were identical to properties of plant acid phosphatase. The presence of bacteria or bacteria and amoebae increased both solution and root phosphatase activities at most initial phosphate concentrations. PMID:16345390

  11. Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii.

    PubMed Central

    Quisel, J D; Wykoff, D D; Grossman, A R

    1996-01-01

    We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells. PMID:8754684

  12. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  13. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  14. Structural Basis for Protein anti-Aggregation Activity of the Trigger Factor Chaperone*

    PubMed Central

    Saio, Tomohide; Guan, Xiao; Rossi, Paolo; Economou, Anastassios; Kalodimos, Charalampos G.

    2014-01-01

    Molecular chaperones prevent aggregation and misfolding of proteins but scarcity of structural data has impeded an understanding of the recognition and anti-aggregation mechanisms. Here we report the solution structure, dynamics and energetics of three Trigger Factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. NMR relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion but as the number and length of the PhoA regions engaged by TF increases, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and how by acting as unfoldases and holdases prevent the aggregation and premature (mis)folding of unfolded proteins. PMID:24812405

  15. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes. PMID:25785438

  16. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  17. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in...

  18. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in...

  19. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in...

  20. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in...

  1. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... differentiate chronic granulocytic leukemia (a malignant disease characterized by excessive overgrowth of granulocytes in the bone marrow) and reactions that resemble true leukemia, such as those occuring in...

  2. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  3. [Phosphatase activity in Amoeba proteus at low pH].

    PubMed

    Sopina, V A

    2009-01-01

    In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC 3.1.3.2). This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.

  4. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  5. Environmental photoinactivation of extracellular phosphatases and the effects of dissolved organic matter.

    PubMed

    Janssen, Elisabeth M L; McNeill, Kristopher

    2015-01-20

    Alkaline phosphatases are ubiquitous extracellular enzymes in aquatic systems and play a central role in the biogeochemical cycling of phosphorus. Yet, the photochemical stability of phosphatase and effects of natural organic matter (DOM) are not completely understood. We demonstrate that phosphatase activity in natural biofilm samples decreased during sunlight exposure similar to well-defined bacterial phosphatase solutions. Direct photoinactivation was slowed by more than 50% in the presence of redox-active dissolved organic matter (DOM, 10 mgC L(–1)) or a model antioxidant (esculetin, 50 μM), even after light screening effects had been accounted for. Thus, DOM can not only inhibit enzymes (in the dark) or sensitize photodegradatio