Science.gov

Sample records for alkaline phosphate activity

  1. Tubulin polymerization by paclitaxel (taxol) phosphate prodrugs after metabolic activation with alkaline phosphatase.

    PubMed

    Mamber, S W; Mikkilineni, A B; Pack, E J; Rosser, M P; Wong, H; Ueda, Y; Forenza, S

    1995-08-01

    Paclitaxel (taxol) phosphate derivatives BMY46366, BMY-46489, BMS180661 and BMS180820 were used to determine the ability of alkaline phosphatase to convert these water-soluble potential prodrugs to tubulin-polymerizing metabolites (i.e., paclitaxel). Compounds were treated up to 180 min with an in vitro metabolic activation system composed of 10% bovine alkaline phosphatase in 0.2 M tris, pH 7.4, or in 0.2 M glycine, pH 8.8, plus 0.05 M MgCl2. Samples were tested (either by direct addition or after methylene chloride extraction/dimethyl-sulfoxide resuspension) in spectrophotometric tubulin polymerization assays utilizing bovine-derived microtubule protein. Pretreatment of 2'- and 7-phosphonoxyphenylpropionate prodrugs BMS180661 and BMS180820 with alkaline phosphatase for 30 to 120 min yielded relative initial slopes of about 20 to 100% at test concentrations equimolar to paclitaxel. High-performance liquid chromatography/mass spectrometry of BMS180661 treated with alkaline phosphatase confirmed the production of paclitaxel from the prodrug. In contrast, 2'- and 7-phosphate analogs BMY46366 and BMY46489 treated with alkaline phosphatase were not active in tubulin assays. None of the paclitaxel phosphate prodrugs polymerized tubulin in the absence of metabolic activation. The differences in tubulin polymerization with metabolic activation may be related both to accessibility of the phosphate group to the enzyme and to anionic charge effects. These results demonstrate that certain paclitaxel phosphate prodrugs can be metabolized by alkaline phosphatase to yield effective tubulin polymerization. PMID:7636751

  2. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions

    PubMed Central

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  3. Alkaline Phosphatase Activity : an overlooked player on the phosphate behavior in macrotidal estuaries

    NASA Astrophysics Data System (ADS)

    Delmas, Daniel; Labry, Claire; Youenou, Agnes; Quere, Julien; Auguet, Jean Christophe; Montanie, Helene

    2014-05-01

    The non-conservative behavior of phosphate within the estuarine salinity gradient is essentially assigned to physico-chemical processes, such as desorption at low salinity and to benthic exchanges. Microbial phosphatase activity (APA), generally related to phosphate deficiency, is seldom studied in phosphate rich estuarine waters. In order to address the impact of microbial activity (bacterial abundance, production BSP, APA) on phosphate behavior, we studied these activities on a seasonal basis within the salinity gradient of two macrotidal estuaries presenting different levels of suspended solids. Whatever the season the Charente estuary is characterized by high levels of Suspended Particulate Matter (SPM > 1g.L-1), particularly in the Maximum Turbidity Zone (MTZ) located at the 5-10 psu. In this area characterized by high BSP and APA there is a significant increase of PO4 levels especially during summer. In the Aulne estuary the particle load is significantly lower (1/10) but high BSP and APA are equally recorded. In the highly turbid waters of the Charente estuary, active phytoplankton is virtually absent as pheopigments constitute up to 80% of the total pigments, particularly in the MTZ, therefore APA may essentially have a bacterial origin. In the Aulne estuary attached bacteria are dominant, both in numbers and production, and their distribution along the haline gradient perfectly follows those of APA and phosphate levels. These observations, associated with the very close relationships observed between APA, SPM and BSP, suggest that APA derive mainly from bacterial (attached) origin and operate at the expense of particulate phosphorus and hence contribute to PO4 regeneration, especially in spring and summer. Finally, as APA increased as PO4, whereas the reverse is observed in both fresh and marine waters, an original scheme for APA regulation, related to the large dominance of attached bacteria can be described for the estuarine waters.

  4. Alkaline phosphatase activity in Zostera noltii hornem. and its contribution to the release of phosphate in the palmones river estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 0C (22·6 μmol pNP released g dry wt-1 h-1), pH 8·8 (35·6 μmol pNP g dry wt-1 h-1) and salinity 43·8 (27·8 pmol pNP g dry wt-1 h-1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0 20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day-1 was found.

  5. Alkaline Phosphatase Activity in Zostera noltii Hornem. and its Contribution to the Release of Phosphate in the Palmones River Estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 °C (22·6 μmol pNP released g dry wt -1 h -1), pH 8·8 (35·6 μmol pNP g dry wt -1 h -1) and salinity 43·8 (27·8 μmol pNP g dry wt -1 h -1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0-20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day -1 was found.

  6. Alkaline phosphatase activity in Zostera noltii hornem. and its contribution to the release of phosphate in the palmones river estuary

    NASA Astrophysics Data System (ADS)

    Hernández, I.; Pérez-Llorens, J. L.; Fernández, J. A.; Niell, F. X.

    Alkaline phosphatase activity (APA) was studied in Zostera noltii Hornem., a sea-grass collected in the Palmones river estuary (southern Spain). The higher activity was found in the leaves, with minor contributions in the stem and the underground parts of the plant. The enzymatic activity showed a two-phase kinetic versus substrate concentration between 5 μM and 25 mM. The influence of some environmental factors important in nature (temperature, pH, salinity, photon irradiance and external phosphate) on the enzymatic activity is discussed. Over an ecophysiological range of these factors, maximum APA was found at 30 0C (22·6 μmol pNP released g dry wt -1 h -1), pH 8·8 (35·6 μmol pNP g dry wt -1 h -1) and salinity 43·8 (27·8 pmol pNP g dry wt -1 h -1). With regard to light, APA and phosphate uptake in shoots were light-saturated and showed similar values for maximum velocity and half-saturation constant. In the range of phosphate concentration tested (0-20 μM), APA was independent of the external phosphate concentration. Finally, as Z. noltii incorporated only 16% of the phosphate hydrolysed from the model phosphomonoester used in the assay, the significance of Z. noltii population in the enzymatic release of phosphate to the estuary was estimated. A minimum of 8·4 nM Pi liberated per day and a maximum of 99·8 nM Pi day -1 was found.

  7. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    SciTech Connect

    Aisha, M.D.; Nor-Ashikin, M.N.K.; Sharaniza, A.B.R.; Nawawi, H.; Froemming, G.R.A.

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  8. Enhanced osteogenic activity of a poly(butylene succinate)/calcium phosphate composite by simple alkaline hydrolysis.

    PubMed

    Arphavasin, Suphakit; Singhatanadgit, Weerachai; Ngamviriyavong, Patcharee; Janvikul, Wanida; Meesap, Preeyapan; Patntirapong, Somying

    2013-10-01

    Bone engineering offers the prospect of alternative therapies for clinically relevant skeletal defects. Poly(butylene succinate) (PBSu) is a biodegradable and biocompatible polyester which may possess some limitations in clinical use due to its hydrophobicity. In order to overcome these limitations and increase the bioactivity, a simple and convenient surface hydrolysis of PBSu, PBSu/hydroxyapatite and PBSu/β-tricalcium phosphate (TCP) films was performed. The resulting surfaces (i.e., HPBSu, HPBSu/HA and HPBSu/TCP) were tested for their physicochemical property, biocompatibility and osteogenic potency. The results showed that surface hydrolysis significantly increased surface roughness and hydrophilicity of the composites, with the HPBSu/TCP possessing the most pronounced results. All the materials appeared to be biocompatible and supported in vitro growth and osteoblast differentiation of hMSCs, and the alkaline hydrolysis significantly enhanced the hMSC cell proliferation and the osteogenic potency of PBSu/TCP compared with the non-hydrolyzed sample. In conclusion, the HPBSu/TCP possessed better hydrophilicity, biocompatibility and osteogenic potency in vitro, suggesting that this simple and convenient alkaline hydrolysis could be used to augment the biological property of PBSu-based composites for bone engineering in vivo.

  9. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  10. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  11. Cortisol modification of HeLa 65 alkaline phosphatase. Decreased phosphate content of the induced enzyme.

    PubMed

    Bazzell, K L; Price, G; Tu, S; Griffin, M

    1976-01-15

    Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues. PMID:1248469

  12. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  13. Calcium-phosphate biomineralization induced by alkaline phosphatase activity in Escherichia coli: localization, kinetics and potential signatures in the fossil record

    NASA Astrophysics Data System (ADS)

    Cosmidis, Julie; Benzerara, Karim; Guyot, François; Skouri-Panet, Fériel; Duprat, Elodie; Férard, Céline; Guigner, Jean-Michel; Babonneau, Florence; Coelho, Cristina

    2015-12-01

    Bacteria are thought to play an important role in the formation of calcium-phosphate minerals composing marine phosphorites, as supported by the common occurrence of fossil microbes in these rocks. Phosphatase enzymes may play a key role in this process. Indeed, they may increase the supersaturation with respect to Ca-phosphates by releasing orthophosphate ions following hydrolysis of organic phosphorus. However, several questions remain unanswered about the cellular-level mechanisms involved in this model, and its potential signatures in the mineral products. We studied Ca-phosphate precipitation by different strains of Escherichia coli which were genetically modified to differ in the abundance and cellular localization of the alkaline phosphatase (PHO A) produced. The mineral precipitated by either E. coli or purified PHO A was invariably identified as a carbonate-free non-stoichiometric hydroxyapatite. However, the bacterial precipitates could be discriminated from the ones formed by purified PHO A at the nano-scale. PHO A localization was shown to influence the pattern of Ca-phosphate nucleation and growth. Finally, the rate of calcification was proved to be consistent with the PHO A enzyme kinetics. Overall, this study provides mechanistic keys to better understand phosphogenesis in the environment, and experimental references to better interpret the microbial fossil record in phosphorites.

  14. Phosphate glass electrode with good selectivity for alkaline-earth cations

    USGS Publications Warehouse

    Truesdell, A.H.; Pommer, A.M.

    1963-01-01

    A phosphate glass has been found to have a significant electrode specificity toward alkaline-earth ions. The order of selectivity is 2H + > Ba++ > Sr++ > Ca++ > 2K+ > 2Na+ > Mg++. Exchange properties are discussed in relation to possible structure. Its use to determine activity of Ca++ in natural systems containing Mg++ is suggested.

  15. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-06-15

    Determination of phosphate ions concentration is very important from both, environmental and clinical point of view. In this study, a simple and novel conductometric biosensor for indirect determination of the phosphate ions in aqueous solution has been developed. The developed biosensor is based on the inhibition of immobilized alkaline phosphatase activity, in the presence of the phosphate ions. This is the first time we developed a mono-enzymatic biosensor for indirect estimation of phosphate ions. The developed biosensor showed a broad linear response (as compared to other reported biosensors) for phosphate ions in the range of 0.5-5.0 mM (correlation coefficient=0.995), with a detection limit of 50 µM. Different optimized parameters were obtained as the buffer concentration of 30 mM, substrate concentration of 1.0mM, and a pH of 9.0. All the optimized parameters were analyzed by analysis of variance, and were found to be statistically significant at a level of α=0.05. The developed biosensor is also suitable to determine the serum phosphate concentration, with a recovery of 86-104%, while a recovery of 102% was obtained from the water samples that were spiked with 500 µM phosphate. A relative standard deviation in the conductance response for five successive measurements (n=5) did not exceed 7%, with a shelf life of 30 days. With a lower detection limit and a higher recovery, the biosensor provides a facile approach for phosphate estimation in biological fluids.

  16. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    PubMed Central

    Wei, Mei

    2013-01-01

    The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation. PMID:24455730

  17. Responses of Phosphate Transporter Gene and Alkaline Phosphatase in Thalassiosira pseudonana to Phosphine

    PubMed Central

    Fu, Mei; Song, Xiuxian; Yu, Zhiming; Liu, Yun

    2013-01-01

    Phosphine, which is released continuously from sediment, can affect the eco-physiological strategies and molecular responses of phytoplankton. To examine the effects of phosphine on phosphorus uptake and utilization in Thalassiosira pseudonana, we examined the transcriptional level of the phosphate transporter gene (TpPHO) and the activity of alkaline phosphatase (AKP) in relation to supplement of various concentrations of phosphine. TpPHO expression was markedly promoted by phosphine in both the phosphate-deficient and phosphate-4 µM culture. However, high phosphine concentrations can inhibit TpPHO transcription in the declining growth phase. AKP activity was also higher in the phosphine treatment groups than that of the control. It increased with increasing phosphine concentration in the range of 0 to 0.056 µM but was inhibited by higher levels of phosphine. These responses revealed that phosphine can affect phosphate uptake and utilization in T. pseudonana. This result was consistent with the effect of phosphine on algal growth, while TpPHO expression and AKP were even more sensitive to phosphine than algal growth. This work provides a basic understanding for further research about how phosphine affects phytoplankton. PMID:23544096

  18. A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity.

    PubMed

    Cox, W G; Singer, V L

    1999-11-01

    We describe a high-resolution, fluorescence-based method for localizing endogenous alkaline phosphatase in tissues and cultured cells. This method utilizes ELF (Enzyme-Labeled Fluorescence)-97 phosphate, which yields an intensely fluorescent yellow-green precipitate at the site of enzymatic activity. We compared zebrafish intestine, ovary, and kidney cryosections stained for endogenous alkaline phosphatase using four histochemical techniques: ELF-97 phosphate, Gomori method, BCIP/NBT, and naphthol AS-MX phosphate coupled with Fast Blue BB (colored) and Fast Red TR (fluorescent) diazonium salts. Each method localized endogenous alkaline phosphatase to the same specific sample regions. However, we found that sections labeled using ELF-97 phosphate exhibited significantly better resolution than the other samples. The enzymatic product remained highly localized to the site of enzymatic activity, whereas signals generated using the other methods diffused. We found that the ELF-97 precipitate was more photostable than the Fast Red TR azo dye adduct. Using ELF-97 phosphate in cultured cells, we detected an intracellular activity that was only weakly labeled with the other methods, but co-localized with an antibody against alkaline phosphatase, suggesting that the ELF-97 phosphate provided greater sensitivity. Finally, we found that detecting endogenous alkaline phosphatase with ELF-97 phosphate was compatible with the use of antibodies and lectins. (J Histochem Cytochem 47:1443-1455, 1999)

  19. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways

    PubMed Central

    Wang, Weizhuo; Li, Fang; Wang, Kunzheng; Cheng, Bin; Guo, Xiong

    2012-01-01

    Several studies have indicated that PAPSS2 (3′-phosphoadenosine-5′-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways. PMID:22916269

  20. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  1. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    SciTech Connect

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  2. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  3. Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5'-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study.

    PubMed Central

    Fedde, K N; Whyte, M P

    1990-01-01

    To clarify its physiologic role, alkaline phosphatase (ALP) was examined in normal skin fibroblasts and was shown to be the tissue-nonspecific (TNS) isoenzyme type (as evidenced by heat and inhibition profiles) and to be active toward millimolar concentrations of the putative natural substrates phosphoethanolamine (PEA) and pyridoxal-5'-phosphate (PLP). Fibroblast ALP has a low-affinity activity, with a distinctly alkaline pH optimum (9.3), toward 4-methylumbelliferyl phosphate (4-MUP), PEA, and PLP but a more physiologic pH optimum (8.3) toward physiologic concentrations (micromolar) of PEA and PLP. Normal fibroblast ALP is linked to the outside of the plasma membrane, since in intact cell monolayers (1) dephosphorylation rates of the membrane-impermeable substrates PEA and PLP in the medium at physiologic pH were similar to those observed with disrupted cell monolayers, (2) brief exposure to acidic medium resulted in greater than 90% inactivation of the total ALP activity, and (3) digestion with phosphatidylinositol-specific phospholipase C (PI-PLC) released about 80% of the ALP activity. Hypophosphatasia fibroblasts were markedly deficient (2%-5% control values) in alkaline and physiologic ALP activity when 4-MUP, PLP, and PEA were used as substrate. The majority of the detectable ALP activity, however, appeared to be properly lipid anchored in ecto-orientation. Thus, our findings of genetic deficiency of PEA- and PLP-phosphatase activity in hypophosphatasia fibroblasts, as well as our biochemical findings, indicate that TNS-ALP acts physiologically as a lipid-anchored PEA and PLP ectophosphatase. PMID:2220817

  4. Alkaline phosphatase assay using a near-infrared fluorescent substrate merocyanine 700 phosphate.

    PubMed

    Gong, Haibiao; Little, Garrick; Cradduck, Mark; Draney, Daniel R; Padhye, Nisha; Olive, D Michael

    2011-05-15

    Alkaline phosphatase (ALP) is a phosphomonoester hydrolase that is commonly used as a conjugating enzyme in biological research. A wide variety of substrates have been developed to assay its activity. In this study, we developed an ALP assay method utilizing merocyanine 700 (MC700) based substrate MC700 phosphate (MC700p). MC700 is a near-infrared fluorescent merocyanine dye, and has excitation/emission maxima at 686 nm/722 nm in ALP assay buffer. Upon hydrolysis by ALP, MC700p is converted to MC700. The fluorescence of MC700 is dependent on the pH and detergent concentration in the buffer. The fluorescence signal produced by MC700p hydrolysis is linearly related to the ALP amount and substrate concentration. A stop solution containing EDTA could be used to stop the ALP/MC700p reaction. It was also demonstrated that MC700p could substitute pNpp as the ALP substrate in a commercial 17β-Estradiol enzyme immunoassay kit. PMID:21482307

  5. Rapid hydrolysis of model phosphate diesters by alkaline-earth cations in aqueous DMSO: speciation and kinetics.

    PubMed

    Taran, Olga; Medrano, Felipe; Yatsimirsky, Anatoly K

    2008-12-14

    Kinetics of the cleavage of two phosphate diesters, bis(4-nitrophenyl) phosphate and 2-hydroxypropyl 4-nitrophenyl phosphate and a triester, 4-nitrophenyl diphenyl phosphate, in the presence of Mg(II), Ca(II) and Sr(II) were studied in 90% vol. DMSO at 37 degrees C. The alkaline hydrolysis of the triester was inhibited by all cations, but with both phosphodiesters strong catalytic effects were observed. Potentiometric titrations of metal perchlorates by Bu4N(OH) revealed formation of M2(OH)3+, M(OH)+, M(OH)2 and M2(OH)5- species. Rate constants for phosphodiester cleavage by individual species were obtained from analysis of rate-concentration profiles. Observed first-order rate constants in the presence of 1-2 mM Mg(II) or Ca(II) in neutral and weakly basic solutions were 10(8)-10(11) times higher than those for background hydrolysis at the same pH while in water additions of up to 50 mM metal produced <100-fold accelerations. Possible structures of DMSO solvated catalyst-substrate complexes were modeled by DFT calculations with Mg(II). The increased catalytic activity in 90% DMSO is attributed to stronger association of hydroxide ions and anionic phosphodiesters with metal ions and to preferable solvation of cations by DMSO, which creates favorable for reaction anhydrous microenvironment in the coordination sphere of the catalyst.

  6. Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

    PubMed Central

    Spencer, D B; Chen, C P; Hulett, F M

    1981-01-01

    The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium. PMID:7462163

  7. Phosphate solubilization potential and phosphatase activity of rhizospheric trichoderma spp.

    PubMed

    Anil, Kapri; Lakshmi, Tewari

    2010-07-01

    Trichoderma sp., a well known biological control agent against several phytopathogens, was tested for its phosphate (P) solubilizing potential. Fourteen strains of Trichoderma sp. were isolated from the forest tree rhizospheres of pinus, deodar, bamboo, guava and oak on Trichoderma selective medium. The isolates were tested for their in-vitro P-solubilizing potential using National Botanical Research Institute Phosphate (NBRIP) broth containing tricalcium phosphate (TCP) as the sole P source, and compared with a standard culture of T. harzianum. All the cultures were found to solubilize TCP but with varying potential. The isolate DRT-1 showed maximum amount of soluble phosphate (404.07 εg.ml(-1)), followed by the standard culture of T. harzianum (386.42 εg.ml(-1)) after 96 h of incubation at 30±1(0)C. Extra-cellular acid and alkaline phosphatases of the fungus were induced only in the presence of insoluble phosphorus source (TCP). High extra-cellular alkaline phosphatase activity was recorded for the isolate DRT-1 (14.50 U.ml(-1)) followed by the standard culture (13.41 U.ml(-1)) at 72h. The cultures showed much lesser acid phosphatase activities. Under glasshouse conditions, Trichoderma sp. inoculation increased chickpea (Cicer arietinum) growth parameters including shoot length, root length, fresh and dry weight of shoot as well as roots, in P-deficient soil containing only bound phosphate (TCP). Shoot weight was increased by 23% and 33% by inoculation with the isolate DRT-1 in the soil amended with 100 and 200 mg TCP kg(-1) soil, respectively, after 60 d of sowing. The study explores high P-solubilizing potential of Trichoderma sp., which can be exploited for the solubilization of fixed phosphates present in the soil, thereby enhancing soil fertility and plant growth.

  8. Imaging of alkaline phosphatase activity in bone tissue.

    PubMed

    Gade, Terence P; Motley, Matthew W; Beattie, Bradley J; Bhakta, Roshni; Boskey, Adele L; Koutcher, Jason A; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with (19)Flourine magnetic resonance spectroscopic imaging ((19)FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19)Fluorine magnetic resonance spectroscopy ((19)FMRS) and (19)FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19)FMRS and (19)FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19)FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19)FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19)FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19)FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  9. Mineralization of alkaline phosphatase-complexed collagen implants in the rat in relation to serum inorganic phosphate.

    PubMed

    van den Bos, T; Oosting, J; Everts, V; Beertsen, W

    1995-04-01

    The present study was designed to determine the relationship between mineralization of collagenous matrices and serum levels of calcium and inorganic phosphate. Collagen slices were prepared from bovine dentin or cortical bone and complexed with varying amounts of intestinal alkaline phosphatase (ALP). The enzyme was added to induce de novo mineralization. The ALP-complexed slices were implanted subcutaneously over the skull and in the dorsolateral aspect of the abdominal wall in female Wistar rats of various ages (5-, 10-, 20-, or 35-week-old) and in young male rats fed on a low-P diet. After 1-4 weeks, the implants were removed and analyzed for calcium and phosphate content. In addition, serum levels of calcium and phosphate (total and inorganic) were determined. It was shown that the highest mineral influx occurred in the younger rats (which were also highest in serum P(i)), whereas almost no mineral uptake occurred in the older ones. Also in rats fed on a low-P diet (which were low in serum P(i), a strongly decreased mineral influx was noted. In all animal groups a positive correlation was found between the degree of mineralization and serum P(i). No distinct relationship was found between serum Ca/organic phosphate levels and mineral influx in the implants. In vitro incubation of ALP-collagen conjugates in serum from younger and older rats confirmed our view that serum P(i), besides local levels of ALP, is important in de novo mineral deposition. For accretion of mineral in partially remineralized collagenous carriers, ALP activity was not required.

  10. Direct determination of total mercury in phosphate rock using alkaline fusion digestion.

    PubMed

    D'Agostino, Fabio; Oliveri, Elvira; Bagnato, Emanuela; Falco, Francesca; Mazzola, Salvatore; Sprovieri, Mario

    2014-12-10

    The aim of this work was to develop a new method to determine the mercury (Hg) concentrations in phosphate rock using a dedicated analytical instrument (the DMA80 Tricell by Milestone) that employs an integrated sequence of thermal decomposition followed by catalyst conversion, amalgamation and atomic absorption spectrophotometry. However, this instrument underestimates Hg concentrations when phosphorite and apatite rocks are investigated with a classic thermal decomposition treatment that complies with US EPA method 7473. Therefore, to improve the recovery of total Hg, we performed alkaline fusion digestion (AFD) directly inside the furnace of the instrument, using BCR(32) as a certified reference material (Moroccan phosphate rock--phosphorite). The salts used for the AFD were a mixture of Na2CO3, K2CO3 and Li2CO3, which melt at about 400°C, due to their ability to form a ternary eutectic and to decompose the phosphorite matrices at 700°C. By adopting this analytical approach, the Hg recovery in BCR(32) was about 100%, compared to 40% when the reference material was analysed without using the alkaline fusion salt. We suggest that the AFD allowed the decomposition of the sample matrix and that some Hg compounds linked with other functional groups may be transformed in carbonates that sublimate at lower temperatures than other Hg compounds. This original method was tested on a number of different geological samples to compare the differences between the AFD method and the thermal treatment in order to verify the working range and to check the robustness of the new approach.

  11. Low serum alkaline phosphatase activity in Wilson's disease.

    PubMed

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  12. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  13. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    PubMed

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  14. Phase Stability of Chromium(III) Oxide Hydroxide in Alkaline Sodium Phosphate Solutions

    SciTech Connect

    S.E. Ziemniak; E.P. Opalka

    2003-07-08

    Grimaldiite ({alpha}-CrOOH) is shown to transform to a sodium-chromium(III)-hydroxyphosphate compound (SCHP) in alkaline sodium phosphate solutions at elevated temperatures via CrOOH(s) + 4Na{sup +} + 2HPO{sub 4}{sup 2-} = Na{sub 4}Cr(OH)(PO{sub 4}){sub 2}(s) + H{sub 2}O. X-ray diffraction analyses indicate that SCHP possesses an orthorhombic lattice having the same space group symmetry (Ibam, No.72) as sodium ferric hydroxyphosphate. A structurally-consistent designation for SCHP is Na{sub 3}Cr(PO{sub 4}){sub 2} {center_dot} NaOH; the molar volume of SCHP is estimated to be 1552 cm{sup 3}. The thermodynamic equilibrium for the above reaction was defined in the system Na{sub 2}O-P{sub 2}O{sub 5}-Cr{sub 2}O{sub 3}-H{sub 2}O for Na/P molar ratios between 2.0 and 2.4. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard molar entropy (S{sup o}), heat capacity (C{sub p}{sup o}) and free energy of formation ({Delta}G{sub f}{sup o}) for SCHP were calculated to be 690 J/(mol-K), 622 J/(mol-K) and -3509.97 kJ/mol, respectively.

  15. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P.

    1993-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na{sup +} + H{sub 2}PO{sub 4}{sup {minus}} {r_reversible} NaZnPO{sub 4}(s) + H{sub 2}O or 2 ZnO(s) + H{sub 3}PO{sub 4}(aq) {r_reversible} Zn{sub 2}(OH)PO{sub 4}(s) + H{sub 2}O. X-ray diffraction analyses indicate that NaZnPO{sub 4} possesses an orthorhombic unit cell having lattice parameters a = 8.710 {+-} 0.013, b = 15.175 {+-} 0.010, and c = 8.027 {+-} 0.004 {angstrom}. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O for Na/P molar ratios between 2.1 and 3. Based on observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S{degrees}) and free energy of formation ({Delta}G{sub f}{degrees}) for NaZnPO{sub 4} were calculated to be 169.0 J/mol-K and {minus}1510.6 kJ/mol, respectively; similar values for Zn{sub 2}(OH)PO{sub 4} (tarbuttite) were 235.9 J/mol-K and {minus}1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions.

  16. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P. )

    1994-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na[sup +] + H[sub 2]PO[sub 4]- [l reversible] NaZnPO[sub 4](s) + H[sub 2]O or 2ZnO(s) + H[sub 3]PO[sub 4](aq) [l reversible] Zn[sub 2](OH)PO[sub 4](s) + H[sub 2]O. X-ray diffraction analyses indicate that NaZnPO[sub 4] possesses an orthorhombic unit cell having lattice parameters a = 8.710 [+-] 0.013, b = 15.175 [+-] 0.010, c = 8.027 [+-] 0.004 [angstrom]. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na[sub 2]O-P[sub 2]O[sub 5]-H[sub 2]O for Na/P molar ratios between 2.1 and 3. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S[degrees]) and free energy of formation ([delta]G[sub f][degrees]) for NaZnPO[sub 4] were calculated to be 169.0 J/(mol K) and -1510.6 kJ/mol, respectively; similar values for Zn[sub 2](OH)PO[sub 4] (tarbuttite) were 235.9 J/(mol K) and -1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions. 26 refs., 5 figs., 7 tabs.

  17. Oral antibodies to human intestinal alkaline phosphatase reduce dietary phytate phosphate bioavailability in the presence of dietary 1α-hydroxycholecalciferol.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E

    2016-03-01

    While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks. PMID:26666254

  18. Oral antibodies to human intestinal alkaline phosphatase reduce dietary phytate phosphate bioavailability in the presence of dietary 1α-hydroxycholecalciferol.

    PubMed

    Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E

    2016-03-01

    While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks.

  19. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  20. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  1. Phosphate Sorption and Desorption on Pyrite in Primitive Aqueous Scenarios: Relevance of acidic → Alkaline Transitions

    NASA Astrophysics Data System (ADS)

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M. B.; Bonapace, José A. P.; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P i) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P i sorption whereas mild alkaline media as well as those simulating sulfur oxidation to SO2- 4 revert this capture process. Several mechanisms relevant to P i availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg2+ bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO2- 4 trapping by the mineral interface would provoke the release of sorbed P i due to charge polarization. Moreover it is shown that P i self-modulates its sorption, a mechanism that depends on the abundance of SO2- 4 in the interface. The relevance of the proposed mechanisms of P i capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since similarly to contemporary aqueous media inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P i could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  2. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions.

    PubMed

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  3. Novel cyanobacterial bioreporters of phosphorus bioavailability based on alkaline phosphatase and phosphate transporter genes of Anabaena sp. PCC 7120.

    PubMed

    Muñoz-Martín, M Angeles; Mateo, Pilar; Leganés, Francisco; Fernández-Piñas, Francisca

    2011-07-01

    There is heterogeneity in the way cyanobacteria respond to P starvation and subsequently how they adapt to environments with low or fluctuating P concentrations. In this study, we have fused the promoterless lux operon luxCDABE to the promoter regions of Anabaena sp. PCC 7120 phoA genes putatively encoding alkaline phosphatases, phoA (all2843) and phoA-like (alr5291) and to the promoter region of one operon putatively encoding a high affinity phosphate transporter pst1 (all4575-4572). The self-bioluminescent strains constructed in this way, Anabaena AP (phoA promoter), Anabaena AP-L (phoA-like promoter), and Anabaena PST (pst1 promoter) have been used to study the expression of these genes in response to P starvation and P re-feeding with inorganic and organic phosphate sources. Our data showed that the pst1 promoter was activated at much higher level than the phoA-like promoter following P starvation; however, we did not observe activation of the phoA promoter. The P re-feeding experiments revealed that both strains, Anabaena (A.) PST and A. AP-L could be used as novel bioreporters of P availability in environmental samples. Both strains were used to estimate bioavailable P in environmental samples (fresh- and wastewaters) with a wide range of soluble P concentrations. The results indicated that most of the P in the water samples was in chemical forms available to the cyanobacterium; however there were some differences in the estimates given by both strains as A. PST appeared to be more adequate for the samples with the lowest P load while A. AP-L gave similar or even higher values of P concentrations than those chemically measured in samples with higher P load.

  4. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils

    PubMed

    Johri; Surange; Nautiyal

    1999-08-01

    An ecological survey was conducted to characterize 4800 bacterial strains isolated from the root-free soil, rhizosphere, and rhizoplane of Prosopis juliflora growing in alkaline soils. Of the 4800 bacteria, 857 strains were able to solubilize phosphate on plates. The incidence of phosphate-solubilizing bacteria (PSB) in the rhizoplane was highest, followed by rhizosphere and root-free soil. Eighteen bacterial strains out of 857 PSB were able to produce halo at 30 degrees C in a plate assay in the presence of 5% salt (NaCl) and solubilize tricalcium phosphate in National Botanical Research Institute's phosphate growth medium (NBRIP) broth, in the presence of various salts, pHs, and temperatures. Among the various bacteria tested, NBRI4 and NBRI7 did not produced halo in a plate assay at 30 degrees C in the absence of salt. Contrary to indirect measurement of phosphate solubilization by plate assay, the direct measurement of phosphate solubilization in NBRIP broth assay always resulted in reliable results. The phosphate solubilization ability of NBRI4 was higher than in the control in the presence of salts (NaCl, CaCl2, and KCl) at 30 degrees C. Phosphate solubilization further increased in the presence of salts at 37 degrees C as compared with 30 degrees C. At 37 degrees C, CaCl2 reduced phosphate solubilization ability of NBRI4 compared with the control. The results indicated the role of calcium salt in the phosphate solubilization ability of NBRI4.http://link.springer-ny. com/link/service/journals/00284/bibs/39n2p89.html PMID:10398833

  5. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    PubMed

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-01

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  6. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed Central

    Weinberg, R A; Zusman, D R

    1990-01-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  7. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis.

    PubMed

    Zhang, Jingjing; Xiang, Yu; Novak, Donna E; Hoganson, George E; Zhu, Junjie; Lu, Yi

    2015-10-01

    The personal glucose meter (PGM) was recently shown to be a general meter to detect many targets. Most studies, however, focus on transforming either target binding or enzymatic activity that cleaves an artificial substrate into the production of glucose. More importantly, almost all reports exhibit their methods by using artificial samples, such as buffers or serum samples spiked with the targets. To expand the technology to even broader targets and to validate its potential in authentic, more complex clinical samples, we herein report expansion of the PGM method by using alkaline phosphatase (ALP) that links the enzymatic activity of galactose-1-phosphate uridyltransferase to the production of glucose, which allows point-of-care galactosemia diagnosis in authentic human clinical samples. Given the presence of ALP in numerous enzymatic assays for clinical diagnostics, the methods demonstrated herein advance the field closer to point-of-care detection of a wide range of targets in real clinical samples.

  8. Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus.

    PubMed

    Singal, R; Gupta, R; Saxena, R K

    1994-01-01

    Aspergillus japonicus and A. foetidus were found to solubilize five types of Indian rock phosphates at pH 8 and 9. Solubilization was higher in the presence of pyrite than in controls lacking either pyrite or fungal inoculum. Both the aspergilli were found to be good pyrite solubilizers and could grow over a wide pH range. Solubilization of rock phosphates was the result of organic acid release and pyrite oxidation.

  9. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  10. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    PubMed

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.

  11. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    PubMed

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil. PMID:26720809

  12. Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium phosphates such as struvite (MgNH4PO4x6H2O) can be recovered from municipal, industrial and agricultural wastewaters. However, minimal research has been conducted on the beneficial reuse of these recovered products; conducted research has focused on low pH soils. This study determined wh...

  13. Overproduction of acetate kinase activates the phosphate regulon in the absence of the phoR and phoM functions in Escherichia coli.

    PubMed Central

    Lee, T Y; Makino, K; Shinagawa, H; Nakata, A

    1990-01-01

    A DNA fragment of Escherichia coli cloned on pBR322 elevated the production of alkaline phosphatase and phosphate-binding protein in a phoR phoM strain. Nucleotide sequence analysis and enzyme assays revealed that the DNA fragment contained the ackA gene, which codes for acetate kinase. A high gene dosage of ackA was needed to induce the production of alkaline phosphatase and phosphate-binding protein in this strain. Overexpression of ackA elevated the intracellular ATP concentration, an effect that might be related to activation of the phosphate regulon in the phoR phoM strain. Images PMID:2158965

  14. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

    PubMed

    Zalatan, Jesse G; Catrina, Irina; Mitchell, Rebecca; Grzyska, Piotr K; O'brien, Patrick J; Herschlag, Daniel; Hengge, Alvan C

    2007-08-01

    Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.

  15. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  16. Green/red dual fluorescence detection of total protein and alkaline phosphate-conjugated probes on blotting membranes.

    PubMed

    Top, K P; Hatleberg, G; Berggren, K N; Ryan, D; Kemper, C; Haugland, R P; Patton, W F

    2001-03-01

    A two-color fluorescence detection method is described based upon covalently coupling the succinimidyl ester of BODIPY FL-X to proteins immobilized on poly(vinylidene difluoride) (PVDF) membranes, followed by detection of target proteins using the fluorogenic substrate 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl(DDAO)-phosphate in combination with alkaline-phosphatase-conjugated reporter molecules. This results in all proteins in the profile being visualized as green signal while those detected specifically with the alkaline-phosphatase conjugate appear as red signal. The dichromatic detection system is broadly compatible with a wide range of analytical imaging devices including UV epi- or transilluminators combined with photographic or charge-coupled device (CCD) cameras, xenon-arc sources equipped with appropriate excitation/emission filters, and dual laser gel scanners outfitted with a 473 nm second-harmonic generation or 488 nm argon-ion laser as well as a 633 nm helium-neon or 635 nm diode laser. The dichromatic detection method permits detection of low nanogram amounts of protein and allows for unambiguous identification of target proteins relative to the entire protein profile on a single electroblot, obviating the need to run replicate gels that would otherwise require visualization of total proteins by silver staining and subsequent alignment with chemiluminescent or colorimetric signals generated on electroblots. PMID:11332758

  17. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  18. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  19. Crystallization and preliminary X-ray diffraction analysis of a high-affinity phosphate-binding protein endowed with phosphatase activity from Pseudomonas aeruginosa PAO1.

    PubMed

    Djeghader, Ahmed; Gotthard, Guillaume; Suh, Andrew; Gonzalez, Daniel; Scott, Ken; Chabriere, Eric; Elias, Mikael

    2013-10-01

    In prokaryotes, phosphate starvation induces the expression of numerous phosphate-responsive genes, such as the pst operon including the high-affinity phosphate-binding protein (PBP or pstS) and alkaline phosphatases such as PhoA. This response increases the cellular inorganic phosphate import efficiency. Notably, some Pseudomonas species secrete, via a type-2 secretion system, a phosphate-binding protein dubbed LapA endowed with phosphatase activity. Here, the expression, purification, crystallization and X-ray data collection at 0.87 Å resolution of LapA are described. Combined with biochemical and enzymatic characterization, the structure of this intriguing phosphate-binding protein will help to elucidate the molecular origin of its phosphatase activity and to decipher its putative role in phosphate uptake.

  20. Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing.

    PubMed

    Smith, I O; Baumann, M J; Obadia, L; Bouler, J-M

    2004-08-01

    This study examines the link(s) between the suspension behavior of calcium deficient apatites (CDAs) and biphasic calcium phosphate (BCP), as measured by the zeta-potential, with respect to both whole bone and osteoblasts. CDA is fabricated by hydrolyzing an acidic CaP such as dicalcium diphosphate dihydrate (DCPD; CaHPO4.2H2O) and has a structure and composition close to bone apatite. Sintering CDA results in the formation of BCP ceramics consisting of mixtures of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), with the HA/beta-TCP weight ratio proportional to the Ca/P ratio of CDA. The choice of the base for the DCPD hydrolysis allows various ionic partial substitution of the formed CDA. Na for Ca partial substitution is of interest because of the resulting improvement in mechanical properties of the resulting BCP ceramics and NH4OH was used as a negative control. The zeta-potential was measured for these materials and the stability of the ceramic to bone interaction calculated. zeta-potential values decrease for CDA(NH4OH) versus CDA(NaOH) and increase for BCP(NH4OH) versus BCP(NaOH). While results of these analyses indicate that NH4OH and NaOH processed CDA and BCP will likely yield osteoblast attachment in vivo, differences in the zeta-potentials may explain varying degrees of cell attachment.

  1. EF-G Activation by Phosphate Analogs.

    PubMed

    Salsi, Enea; Farah, Elie; Ermolenko, Dmitri N

    2016-05-22

    Elongation factor G (EF-G) is a universally conserved translational GTPase that promotes the translocation of tRNA and mRNA through the ribosome. EF-G binds to the ribosome in a GTP-bound form and subsequently catalyzes GTP hydrolysis. The contribution of the ribosome-stimulated GTP hydrolysis by EF-G to tRNA/mRNA translocation remains debated. Here, we show that while EF-G•GDP does not stably bind to the ribosome and induce translocation, EF-G•GDP in complex with phosphate group analogs BeF3(-) and AlF4(-) promotes the translocation of tRNA and mRNA. Furthermore, the rates of mRNA translocation induced by EF-G in the presence of GTP and a non-hydrolyzable analog of GTP, GDP•BeF3(-) are similar. Our results are consistent with the model suggesting that GTP hydrolysis is not directly coupled to mRNA/tRNA translocation. Hence, GTP binding is required to induce the activated, translocation-competent conformation of EF-G while GTP hydrolysis triggers EF-G release from the ribosome. PMID:27063503

  2. Structural investigation of Eu{sup 2+} emissions from alkaline earth zirconium phosphate

    SciTech Connect

    Hirayama, Masaaki; Sonoyama, Noriyuki; Yamada, Atsuo; Kanno, Ryoji

    2009-04-15

    Eu{sup 2+} doped A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) phosphors with the NASICON structure were synthesized by a co-precipitation method. Their photoluminescent and structural properties were investigated by photoluminescent spectroscopy and powder X-ray Rietveld analysis, which determined two sites for Eu{sup 2+} ions in the host structure, 3a and 3b. The Eu-O bond lengths were increased by changing alkaline earth ions from Ca to Ba, causing Eu{sup 2+} emission bands to shift from blue-green to blue. A correlation was observed between the peak wavelength positions and the Eu-O bond length. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect, and a schematic diagram of Eu{sup 2+} emissions is proposed for the Eu{sup 2+} doped NASICON phosphor. - Graphical abstract: Eu{sup 2+} doped NASICON structured A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) showed the blue and blue-green colored emissions attributed to 4f{sup 6}5d{sup 1}-4f{sup 7} transitions. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect using powder X-ray Rietveld analysis.

  3. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  4. [The pentose phosphate pathway and NADP-dependent glycerol-3-phosphate dehydrogenase activity in some tissues of albino rat].

    PubMed

    Glushankov, E P; Epifanova, Iu E; Kolotilova, A I

    1976-10-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity in liver, heart and skeletal muscle of rat was studied. The activity is found when glyceraldehyde-3-phosphate or ribose-5-phosphate in the presence of ATP are taken as substrates. The data obtained confirm that NADP-dependent glycerol-3-phosphate dehydrogenase exists in skeletal muscle and demonstrate that it is found in heart muscle as well.

  5. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. PMID:25476378

  6. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics.

  7. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed. PMID

  8. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  9. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters.

    PubMed

    Katsumata, Yuri; Kajiya, Hiroshi; Okabe, Koji; Fukushima, Tadao; Ikebe, Tetsuro

    2015-12-25

    We previously reported the promotion of bone regeneration in calvarial defects of both normal and ovariectomy-induced osteoporotic rats, with the use of biodegradable DNA/protamine scaffold. However, the method by which this DNA-containing scaffold promotes bone formation is still not understood. We hypothesize that the salmon DNA, from which this scaffold is derived, has an osteoinductive effect on pre-osteoblasts and osteoblasts. We examined the effects of salmon DNA on osteoblastic differentiation and calcification in MC3T3-E1 cells, mouse osteoblasts, in vitro and bone regeneration in a calvarial defect model of aged mouse in vivo. The salmon DNA fragments (300 bps) upregulated the expression of the osteogenic markers, such as alkaline phosphatase, Runx2, and osterix (Osx) in MC3T3E1 cells compared with incubation with osteogenic induction medium alone. Measurement of phosphate ion concentrations in cultures showed that the DNA scaffold degraded phosphate ions were released to the cell cultures. Interestingly, we found that the inclusion of DNA in osteoblastic cell cultures upregulated the expression of sodium-dependent phosphate (NaPi) cotransporters, SLC20A1 and SLC34A2, in MC3T3-E1 cells in a time dependent manner. Furthermore, the inclusion of DNA in cell cultures increased the transcellular permeability of phosphate. Conversely, the incubation of phosphonoformic acid, an inhibitor of NaPi cotransporters, attenuated the DNA-induced expression and activation of SLC20A1 and SLC34A2 in MC3T3-E1 cells, resulting in suppression of the osteogenic markers. The implantation of a salmon DNA scaffold disk promoted bone regeneration using calvarial defect models in 30-week-old mice. Our results indicate that the phosphate released from salmon DNA upregulated the expression and activation of NaPi cotransporters, resulting in the promotion of bone regeneration. PMID:26551467

  10. Microbial activities and phosphorus cycling: An application of oxygen isotope ratios in phosphate

    NASA Astrophysics Data System (ADS)

    Stout, Lisa M.; Joshi, Sunendra R.; Kana, Todd M.; Jaisi, Deb P.

    2014-08-01

    Microorganisms carry out biochemical transformations of nutrients that make up their cells. Therefore, understanding how these nutrients are transformed or cycled in natural environments requires knowledge of microbial activity. Commonly used indicators for microbial activity typically include determining microbial respiration by O2/CO2 measurements, cell counts, and measurement of enzyme activities. However, coupled studies on nutrient cycling and microbial activity are not given enough emphasis. Here we apply phosphate oxygen isotope ratios (δ18OP) as a tool for measurement of microbial activity and compare the rate of isotope exchange with methods of measuring microbial activities that are more commonly applied in environmental studies including respiration, dehydrogenase activity, alkaline phosphatase activity, and cell counts. Our results show that different bacteria may have different strategies for P uptake, storage and release, their respiration and consequently expression of DHA and APase activities, but in general the trend of their enzyme activities are comparable. Phosphate δ18OP values correlated well with these other parameters used to measure microbial activity with the strongest linear relationships between δ18OP and CO2 evolution (r = -0.99). Even though the rate of isotope exchange for each microorganism used in this study is different, the rate per unit CO2 respiration showed one general trend, where δ18OP values move towards equilibrium while CO2 is generated. While this suggests that P cycling among microorganisms used in this study can be generalized, further research is needed to determine whether the microorganism-specific isotope exchange trend may occur in natural environments. In summary, phosphate oxygen isotope measurements may offer an alternative for use as a tracer to measure microbial activity in soils, sediments, and many other natural environments.

  11. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-01

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP.

  12. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors.

    PubMed Central

    Bond, P L; Hugenholtz, P; Keller, J; Blackall, L L

    1995-01-01

    The bacterial community structures of phosphate- and non-phosphate-removing activated sludges were compared. Sludge samples were obtained from two sequencing batch reactors (SBRs), and 16S rDNA clone libraries of the bacterial sludge populations were established. Community structures were determined by phylogenetic analyses of 97 and 92 partial clone sequences from SBR1 (phosphate-removing sludge) and SBR2 (non-phosphate-removing sludge), respectively. For both sludges, the predominant bacterial group with which clones were affiliated was the beta subclass of the proteobacteria. Other major groups represented were the alpha proteobacterial subclass, planctomycete group, and Flexibacter-Cytophaga-Bacteroides group. In addition, several clone groups unaffiliated with known bacterial assemblages were identified in the clone libraries. Acinetobacter spp., thought to be important in phosphate removal in activated sludge, were poorly represented by clone sequences in both libraries. Differences in community structure were observed between the phosphate- and non-phosphate-removing sludges; in particular, the Rhodocyclus group within the beta subclass was represented to a greater extent in the phosphate-removing community. Such differences may account for the differing phosphate-removing capabilities of the two activated sludge communities. PMID:7544094

  13. A highly fluorescent simultaneous azo dye technique for demonstration of nonspecific alkaline phosphatase activity.

    PubMed

    Ziomek, C A; Lepire, M L; Torres, I

    1990-03-01

    We describe a fluorescent histochemical technique for detection of nonspecific alkaline phosphatase (APase) in cells. The technique utilizes standard azo dye chemistry with naphthol AS-MX phosphate as substrate and fast red TR as the diazonium salt. The reaction product is a highly fluorescent red precipitate. Pre-implantation mouse embryos were used to establish optimal fixation and staining protocols and the specificity and sensitivity of the method. Fixation was in 4% paraformaldehyde for 1 hr, as glutaraldehyde induced autofluorescence of the cells. Maximal discriminable staining was detected after 15-20 min in the stain solution. The stain solution itself proved to be non-fluorescent, thus allowing visual observation of the progress of the staining reaction by fluorescence microscopy in its presence. To test the specificity of this fluorescent APase stain, a variety of cell types of known APase reactivity were stained by this protocol. Mouse lymphocytes and STO fibroblasts were negative, whereas F9 teratocarcinoma cells, intestinal epithelial cells, and rat fetal primordial germ cells were all found to be highly positive for APase activity, in agreement with published results on APase localization in these cells.

  14. Complete Deficiency of Leukocyte Glucose-6-Phosphate Dehydrogenase with Defective Bactericidal Activity

    PubMed Central

    Cooper, M. Robert; DeChatelet, Lawrence R.; McCall, Charles E.; La Via, Mariano F.; Spurr, Charles L.; Baehner, Robert L.

    1972-01-01

    A 52 yr old Caucasian female (F. E.) had hemolytic anemia, a leukemoid reaction, and fatal sepsis due to Escherichia coli. Her leukocytes ingested bacteria normally but did not kill catalase positive Staphylococcus aureus, Escherichia coli, and Serratia marcescens. An H2O2-producing bacterium, Streptococcus faecalis, was killed normally. Granule myeloperoxidase, acid and alkaline phosphatase, and beta glucuronidase activities were normal, and these enzymes shifted normally to the phagocyte vacuole (light and electron microscopy). Intravacuolar reduction of nitroblue tetrazolium did not occur. Moreover, only minimal quantities of H2O2 were generated, and the hexose monophosphate shunt (HMPS) was not stimulated during phagocytosis. These observations suggested the diagnosis of chronic granulomatous disease. However, in contrast to control and chronic granulomatous disease leukocytes, glucose-6-phosphate dehydrogenase activity was completely absent in F. E. leukocytes whereas NADH oxidase and NADPH oxidase activities were both normal. Unlike chronic granulomatous disease, methylene blue did not stimulate the hexose monophosphate shunt in F. E. cells. Thus, F. E. and chronic granulomatous disease leukocytes appear to share certain metabolic and bactericidal defects, but the metabolic basis of the abnormality differs. Chronic granulomatous disease cells lack oxidase activity which produces H2O2; F. E. cells had normal levels of oxidase activity but failed to produce NADPH due to complete glucose-6-phosphate dehydrogenase deficiency. These data indicate that a complete absence of leukocyte glucose-6-phosphate dehydrogenase with defective hexose monophosphate shunt activity is associated with low H2O2 production and inadequate bactericidal activity, and further suggest an important role for NADPH in the production of H2O2 in human granulocytes. Images PMID:4401271

  15. The dynamics of alkaline phosphatase activity during operculum regeneration in the polychaete Pomatoceros lamarckii.

    PubMed

    Szabó, Réka; Ferrier, David E K

    2014-01-01

    Alkaline phosphatase enzymes are found throughout the living world and fulfil a variety of functions. They have been linked to regeneration, stem cells and biomineralisation in a range of animals. Here we describe the pattern of alkaline phosphatase activity in a spiralian appendage, the operculum of the serpulid polychaete Pomatoceros lamarckii. The P. lamarckii operculum is reinforced by a calcified opercular plate and is capable of rapid regeneration, making it an ideal model system to study these key processes in annelids. Alkaline phosphatase activity is present in mesodermal tissues of both intact and regenerating opercular filaments, in a strongly regionalised pattern correlated with major morphological features. Based on the lack of epidermal activity and the broad distribution of staining in mesodermal tissues, calcification- or stem cell-specific roles are unlikely. Transcriptomic data reveal that at least four distinct genes contribute to the detected activity. Opercular alkaline phosphatase activity is sensitive to levamisole. Phylogenetic analysis of metazoan alkaline phosphatases indicates homology of the P. lamarckii sequences to other annelid alkaline phosphatases, and shows that metazoan alkaline phosphatase evolution was characterised by extensive lineage-specific duplications. PMID:25690977

  16. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  17. Oxygen-18 Labeling evidence against a hexacoordinate phosphorus intermediate in the alkaline hydrolysis of ethyl ethylene phosphate

    SciTech Connect

    Gorenstein, D.G.; Taira, K.

    1982-11-03

    The role of the hexacoordinate phosphorus intermediate in the reactions of phosphate esters is elucidated in this report. This report presents /sup 18/O labeling results that argue against the formation of such a species in the hydrolysis of a related five-membered ring phosphate ester, ethyl ethylene phosphate. Results confirm that no oxygen exchange from solvent occurs during the course of the reaction or with starting material or products and that there is 100% P-O cleavage for all products at pH2-15 (other results not reported). In addition, most significantly we have found no evidence under any conditions for formation of a hexacoordinate intermediate.

  18. Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2012-08-30

    In this work, a solid phase extraction sequential injection methodology for the determination of alkaline phosphatase activity in dynamic water systems was developed. The determination of the enzymatic activity was based on the spectrophotometric detection of a coloured product, p-nitrophenol, at 405 nm. The p-nitrophenol is the product of the catalytic decomposition of p-nitrophenyl phosphate, a non-coloured substrate. Considering the low levels expected in natural waters and exploiting the fact of alkaline phosphatase being a metalloprotein, the enzyme was pre-concentrated in-line using a NTA Superflow resin charged with Zn(2+) ions. The developed sequential injection method enabled a quantification range of 0.044-0.441 unit mL(-1) of enzyme activity with a detection limit of 0.0082 unit mL(-1) enzyme activity (1.9 μmol L(-1) of pNP) and a determination rate of 17 h(-1). Recovery tests confirmed the accuracy of the developed sequential injection method and it was effectively applied to different natural waters and to plant root extracts. PMID:22939148

  19. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  20. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-01-01

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease. PMID:27525888

  1. Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2014-11-01

    There is a need to measure proteins that are present in concentrations below the detection limits of existing colorimetric approaches with enzyme-linked immunoabsorbent assays (ELISA). The powerful enzyme alkaline phosphatase conjugated to the highly specific bacterial protein streptavidin binds to biotinylated macromolecules like proteins, antibodies, or other ligands and receptors with a high affinity. The binding of the biotinylated detection antibody, with resulting amplification of the signal by the catalytic production of reporter molecules, is key to the sensitivity of ELISA. The specificity and amplification of the signal by the enzyme alkaline phosphatase in ELISA together with the sensitivity of liquid chromatography electrospray ionization and mass spectrometry (LC-ESI-MS) to detect femtomole to picomole amounts of reporter molecules results in an ultrasensitive enzyme-linked immune mass spectrometric assay (ELIMSA). The novel ELIMSA substrate pyridoxamine-5-phosphate (PA5P) is cleaved by the enzyme alkaline phosphatase to yield the basic and hydrophilic product pyridoxamine (PA) that elutes rapidly with symmetrical peaks and a flat baseline. Pyridoxamine (PA) and (13)C PA were both observed to show a linear relationship between log ion intensity and quantity from picomole to femtomole amounts by liquid chromatography-electrospray ionization and mass spectrometry. Four independent methods, (i) internal (13)C isotope PA dilution curves, (ii) internal (13)C isotope one-point calibration, (iii) external PA standard curve, and (iv) external (13)C PA standard curve, all agreed within 1 digit in the same order of magnitude on the linear quantification of PA. Hence, a mass spectrometer can be used to robustly detect 526 ymol of the alkaline phosphatase streptavidin probe and accurately quantify zeptomole amounts of PSA against log linear absolute standard by micro electrospray on a simple ion trap.

  2. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs

    PubMed Central

    Scott, Latanya M.; Chen, Liwei; Daniel, Kenyon G.; Brooks, Wesley H.; Guida, Wayne C.; Lawrence, Harshani R.; Sebti, Said M.; Lawrence, Nicholas J.; Wu, Jie

    2010-01-01

    Shp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17- phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate. A search for estramustine phosphate analogs led to identification of two triperpenoids, enoxolone and celastrol, having Shp2 PTP inhibitor activity. With the previously reported PTP1B inhibitor trodusquemine, our study reveals steroids and triterpenoids with negatively charged phosphate, carboxylate, or sulfonate groups as novel pharmacophores of selective PTP inhibitors. PMID:21193311

  3. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots.

    PubMed

    Qian, Zhao Sheng; Chai, Lu Jing; Huang, Yuan Yuan; Tang, Cong; Shen, Jia Jia; Chen, Jian Rong; Feng, Hui

    2015-06-15

    A convenient and real-time fluorometric assay with the assistance of copper ions based on aggregation and disaggregation of carbon quantum dots (CQDs) was developed to achieve highly sensitive detection of alkaline phosphatase activity. CQDs and pyrophosphate anions (PPi) were used as the fluorescent indicator and substrate for ALP activity assessment respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by copper ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, PPi can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to copper ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by re-dispersion of CQDs in the presence of ALP and PPi. Quantitative evaluation of ALP activity in a broad range from 16.7 to 782.6 U/L with the detection limit of 1.1 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility, and provides an example based on disaggregation in optical probe development.

  4. AMP/GMP Analogs as Affinity ESIPT Probes for Highly Selective Sensing of Alkaline Phosphatase Activity in Living Systems.

    PubMed

    Jia, Yan; Li, Peng; Han, Keli

    2015-11-01

    Current probes for alkaline phosphatase (ALP) detection had been developed mainly by adding a phosphate group to a dye, which would lead to indistinct performance when implemented in a living system as several phosphatases exist together. In this study, the nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) were introduced into 2'-(2'-hydroxyphenyl)-benzothiazole-based probes, and highly fluorescent turn-on probes with good selectivity towards ALP over several phosphatases, as well as high affinity and low toxicity were obtained. In the presence of L-phenylalanine, an ALP inhibitor, a strong decrease in fluorescence recovery was observed. These probes allowed for real-time imaging of endogenous ALP activity in living cells as well as in a zebrafish model.

  5. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    PubMed Central

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  6. Enhancing alkaline hydrogen evolution reaction activity through Ni-Mn3O4 nanocomposites.

    PubMed

    Li, Xu; Liu, Peng Fei; Zhang, Le; Zu, Meng Yang; Yang, Yun Xia; Yang, Hua Gui

    2016-08-18

    Developing efficient, stable and cost-effective electrocatalysts towards hydrogen production in alkaline environments is vital to improve energy efficiency for water splitting. In this work, we prepared Ni-Mn3O4 nanocomposites on Ni foam which exhibit an excellent hydrogen evolution reaction catalytic activity with a current density (j) of 10 mA cm(-2) at an overpotential (η) of 91 mV and show good stability in an alkaline medium. PMID:27500290

  7. Removal of lead from aqueous solutions by activated phosphate.

    PubMed

    Mouflih, M; Aklil, A; Sebti, S

    2005-03-17

    The potential of using activated phosphate as a new adsorbent for the removal of Pb from aqueous solutions was investigated. The kinetic of lead adsorption and the adsorption process were compared for natural phosphate (NP) and activated phosphate (AP). The results indicate that equilibrium was established in about 1h for NP and 3 h for AP. The effect of the pH was examined in the range 2-6. The maximum removal obtained is between two and three for NP and between three and four for AP. The maximum adsorption capacities at 25 degrees C are 155.04 and 115.34 mg/g for AP and NP, respectively. The effect of temperature has been carried out at 25, 35 and 45 degrees C. The data obtained from adsorption isotherms of lead at different temperatures fit to linear form of Langmuir adsorption equation. The thermodynamic parameters such as enthalpy (DeltaH), free energy (DeltaG) and entropy (DeltaS) were calculated. They show that adsorption of lead on NP and AP is an endothermic process more effective at high temperatures. These results show that AP is a good adsorbent for heavy metals from aqueous solutions and could be used as a purifier for water and wastewater. PMID:15752864

  8. Alkalosis and Dialytic Clearance of Phosphate Increases Phosphatase Activity: A Hidden Consequence of Hemodialysis

    PubMed Central

    Villa-Bellosta, Ricardo; González-Parra, Emilio; Egido, Jesús

    2016-01-01

    Background Extracellular pyrophosphate is a potent endogenous inhibitor of vascular calcification, which is degraded by alkaline phosphatase (ALP) and generated by hydrolysis of ATP via ectonucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1). ALP activity (as routinely measured in clinical practice) represents the maximal activity (in ideal conditions), but not the real activity (in normal or physiological conditions). For the first time, the present study investigated extracellular pyrophosphate metabolism during hemodialysis sessions (including its synthesis via eNPP1 and its degradation via ALP) in physiological conditions. Methods and Findings 45 patients in hemodialysis were studied. Physiological ALP activity represents only 4–6% of clinical activity. ALP activity increased post-hemodialysis by 2% under ideal conditions (87.4 ± 3.3 IU/L vs. 89.3 ± 3.6 IU/L) and 48% under physiological conditions (3.5 ± 0.2 IU/L vs. 5.2 ± 0.2 IU/L). Pyrophosphate synthesis by ATP hydrolysis remained unaltered post-hemodialysis. Post-hemodialysis plasma pH (7.45 ± 0.02) significantly increased compared with the pre-dialysis pH (7.26 ± 0.02). The slight variation in pH (~0.2 units) induced a significant increase in ALP activity (9%). Addition of phosphate in post-hemodialysis plasma significantly decreased ALP activity, although this effect was not observed with the addition of urea. Reduction in phosphate levels and increment in pH were significantly associated with an increase in physiological ALP activity post-hemodialysis. A decrease in plasma pyrophosphate levels (3.3 ± 0.3 μmol/L vs. 1.9 ± 0.1 μmol/L) and pyrophosphate/ATP ratio (1.9 ± 0.2 vs. 1.4 ± 0.1) post-hemodialysis was also observed. Conclusion Extraction of uremic toxins, primarily phosphate and hydrogen ions, dramatically increases the ALP activity under physiological conditions. This hitherto unknown consequence of hemodialysis suggests a reinterpretation of the clinical value of this parameter

  9. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa.

    PubMed

    Ben Farhat, Mounira; Farhat, Ameny; Bejar, Wacim; Kammoun, Radhouan; Bouchaala, Kameleddine; Fourati, Amin; Antoun, Hani; Bejar, Samir; Chouayekh, Hichem

    2009-11-01

    The mineral phosphate solubilizing (MPS) ability of a Serratia marcescens strain, namely CTM 50650, isolated from the phosphate mine of Gafsa, was characterized on a chemically defined medium (NBRIP broth). Various insoluble inorganic phosphates, including rock phosphate (RP), calcium phosphate (CaHPO(4)), tri-calcium phosphate (Ca(3)(PO(4))(2)) and hydroxyapatite were tested as sole sources of phosphate for bacterial growth. Solubilization of these phosphates by S. marcescens CTM 50650 was very efficient. Indeed, under optimal conditions, the soluble phosphorus (P) concentration it produced reached 967, 500, 595 and 326 mg/l from CaHPO(4), Ca(3)(PO(4))(2), hydroxyapatite and RP, respectively. Study of the mechanisms involved in the MPS activity of CTM 50650, showed that phosphate solubilization was concomitant with significant drop in pH. HPLC-analysis of culture supernatants revealed the secretion of gluconic acid (GA) resulting from direct oxidation pathway of glucose when the CTM 50650 cells were grown on NBRIP containing glucose as unique carbon source. This was correlated with the simultaneous detection by PCR for the first time in a S. marcescens strain producing GA, of a gene encoding glucose dehydrogenase responsible for GA production, as well as the genes pqqA, B, C and E involved in biosynthesis of its PQQ cofactor. This study is expected to lead to the development of an environmental-friendly process for fertilizer production considering the capacity of S. marcescens CTM 50650 to achieve yields of P extraction up to 75% from the Gafsa RP.

  10. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa.

    PubMed

    Ben Farhat, Mounira; Farhat, Ameny; Bejar, Wacim; Kammoun, Radhouan; Bouchaala, Kameleddine; Fourati, Amin; Antoun, Hani; Bejar, Samir; Chouayekh, Hichem

    2009-11-01

    The mineral phosphate solubilizing (MPS) ability of a Serratia marcescens strain, namely CTM 50650, isolated from the phosphate mine of Gafsa, was characterized on a chemically defined medium (NBRIP broth). Various insoluble inorganic phosphates, including rock phosphate (RP), calcium phosphate (CaHPO(4)), tri-calcium phosphate (Ca(3)(PO(4))(2)) and hydroxyapatite were tested as sole sources of phosphate for bacterial growth. Solubilization of these phosphates by S. marcescens CTM 50650 was very efficient. Indeed, under optimal conditions, the soluble phosphorus (P) concentration it produced reached 967, 500, 595 and 326 mg/l from CaHPO(4), Ca(3)(PO(4))(2), hydroxyapatite and RP, respectively. Study of the mechanisms involved in the MPS activity of CTM 50650, showed that phosphate solubilization was concomitant with significant drop in pH. HPLC-analysis of culture supernatants revealed the secretion of gluconic acid (GA) resulting from direct oxidation pathway of glucose when the CTM 50650 cells were grown on NBRIP containing glucose as unique carbon source. This was correlated with the simultaneous detection by PCR for the first time in a S. marcescens strain producing GA, of a gene encoding glucose dehydrogenase responsible for GA production, as well as the genes pqqA, B, C and E involved in biosynthesis of its PQQ cofactor. This study is expected to lead to the development of an environmental-friendly process for fertilizer production considering the capacity of S. marcescens CTM 50650 to achieve yields of P extraction up to 75% from the Gafsa RP. PMID:19771411

  11. Peroxymonosulfate activation by phosphate anion for organics degradation in water.

    PubMed

    Lou, Xiaoyi; Wu, Liuxi; Guo, Yaoguang; Chen, Chuncheng; Wang, Zhaohui; Xiao, Dongxue; Fang, Changling; Liu, Jianshe; Zhao, Jincai; Lu, Shuyu

    2014-12-01

    Activation of peroxygens is a critical method to generate oxidative species, but often consumes additional chemical reagents and/or energy. Here we report a novel and efficient activation reaction for peroxymonosulfate (PMS) by phosphate anions (PBS). The PBS/PMS coupled system, at neutral pH, is able to decompose efficiently even mineralize a variety of organic pollutants, such as Acid Orange 7, Rhodamine B and 2,4,6-trichlorophenol. In contrast, no measurable degradation was observed when the PMS was replaced by other peroxygens (i.e. hydrogen peroxide and peroxydisulfate). Both PMS and PBS are indispensable for the oxidative degradation of pollutants. Increasing pH and concentrations of PMS and PBS significantly accelerate the degradation of organics. It is proposed that OH would be the major radical for contamination degradation at pH 7.0 through the radical quenching experiments. This work provides a new way of PMS activation for decontamination at neutral pH, in particular for phosphate-rich wastewater treatment.

  12. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields. PMID:24738440

  13. Sucrolytic Enzyme Activities in Cotyledons of the Faba Bean (Developmental Changes and Purification of Alkaline Invertase).

    PubMed Central

    Ross, H. A.; McRae, D.; Davies, H. V.

    1996-01-01

    In terms of maximum extractable catalytic activity, sucrose synthase is the predominant sucrolytic enzyme in developing cotyledons of faba bean (Vicia faba L.). Although acid invertase activity is extremely low, there is significant activity of alkaline invertase, the majority of which is extractable only with high concentrations of NaCl. Calculations of potential activity in vivo indicate that alkaline invertase is the predominant sucrolytic enzyme from 50 days after anthesis onward. However, at almost all stages of cotyledon development analyzed, the maximum extractable catalytic activities of both enzymes is in excess of the actual rate of starch deposition. Two forms of alkaline invertase were identified in developing cotyledons. The major form has been purified to homogeneity, and antibodies have been raised against it. The native protein has a molecular mass of about 238 [plus or minus] 4.5 kD. It is apparently a homotetramer (subunit molecular mass 53.4 [plus or minus] 0.9 kD). The enzyme has a pH optimum of 7.4, an isoelectric point of 5.2, and a Km[sucrose] of 10 mM and is inhibited by Tris (50% inhibition at 5 mM) and fructose (30% inhibition at 10 mM). Bean alkaline invertase is a [beta]-fructofuranosidase with no significant activity against raffinose, stachyose, trehalose, maltose, or lactose. PMID:12226291

  14. The activity of uridine diphosphate glucose–d-fructose 6-phosphate 2-glucosyltransferase in leaves

    PubMed Central

    Hawker, J. S.

    1967-01-01

    1. By using EDTA in reaction mixtures it was possible to determine the activity of sucrose phosphate synthetase in freshly prepared leaf extracts without the complications caused by sucrose phosphatase. 2. EDTA was found also to increase the activity of sucrose phosphate synthetase by as much as 100%. 3. High sucrose phosphate synthetase activities were found in leaf preparations in which sucrose phosphatase was inhibited by EDTA. By contrast with previous reports, the activities were sufficient to allow sucrose synthesis in leaves during photosynthesis to occur via sucrose phosphate. 4. Sugar-cane plants having different rates of photosynthesis also had different activities of sucrose phosphate synthetase in their leaves. 5. It is suggested that the activity of sucrose phosphate synthetase in leaves may play a role in the control of the rate of photosynthesis. PMID:16742569

  15. Transketolase activity modulates glycerol-3-phosphate levels in Escherichia coli.

    PubMed

    Vimala, A; Harinarayanan, R

    2016-04-01

    Transketolase activity provides an important link between the metabolic pathways of glycolysis and pentose phosphate shunt and catalyzes inter-conversions between pentose phosphates and glycolytic intermediates. It is widely conserved in life forms. A genetic screen for suppression of the growth defect of Escherichia coli tktA tktB mutant in LB medium revealed two mutations, one that rendered the glpK expression constitutive and another that inactivated deoB. Characterizing these mutations aided in uncovering the role of ribose-5-P (a transketolase substrate) as an inhibitor of glycerol assimilation and de novo glycerol-3-P synthesis. Using lacZ fusions, we show that ribose-5-P enhances GlpR-mediated repression of the glpFKX operon and inhibits glycerol assimilation. Electrophoretic Mobility Shift Assay (EMSA) showed ribose-5-P made the DNA-GlpR complex less sensitive to the inducer glycerol-3-P. In addition to inhibition of glycerol assimilation, obstruction of ribose-5-P metabolism retards growth from glycerol-3-P limitation. Glucose helps to overcome this limitation through a mechanism involving catabolite repression. To our knowledge, this report is the first to show ribose-5-P can modulate glycerol-3-P concentration in the cell by regulation of glycerol assimilation as well as its de novo synthesis. This regulation could be prevalent in other organisms. PMID:26691989

  16. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite.

    PubMed

    Trajano, V C C; Costa, K J R; Lanza, C R M; Sinisterra, R D; Cortés, M E

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1day, 7day, and 14days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7days and 14days, and mineral nodule formation after 14days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25μg/mL DOX/βCD had increased cell proliferation (p<0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p<0.05 vs. controls) and reached a maximum after 14days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite.

  17. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  18. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition.

  19. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.

    PubMed

    Koutsioulis, Dimitris; Lyskowski, Andrzej; Mäki, Seija; Guthrie, Ellen; Feller, Georges; Bouriotis, Vassilis; Heikinheimo, Pirkko

    2010-01-01

    Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology. PMID:19916164

  20. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the Western north pacific ocean.

    PubMed

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L(-1), chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62-92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22-39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean. PMID:22457661

  1. Dissolved phosphorus pools and alkaline phosphatase activity in the euphotic zone of the Western north pacific ocean.

    PubMed

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L(-1), chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62-92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22-39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean.

  2. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity

    PubMed Central

    Hürlimann, Hans Caspar; Pinson, Benoît; Stadler-Waibel, Martha; Zeeman, Samuel C; Freimoser, Florian M

    2009-01-01

    Yeast has two phosphate-uptake systems that complement each other: the high-affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low-affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino-terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate-uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split-ubiquitin assays and co-immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low-affinity phosphate transport through a physical interaction with Spl2. PMID:19590579

  3. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.

  4. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  5. Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products

    NASA Astrophysics Data System (ADS)

    Fernández-Jimenez, A.; García-Lodeiro, I.; Palomo, A.

    2015-11-01

    The alkaline activation of aluminosiliceous industrial by-products such as blast furnace slag and fly ash is widely known to yield binders whose properties make them comparable to or even stronger and more durable than ordinary Portland cement. The present paper discusses activation fundamentals (such as the type and concentration of alkaline activator and curing conditions) as well as the structure of the cementitious gels formed (C-A-S-H, N-A-S-H). The durability and strength of these systems make these materials apt for use in many industrial applications, such as precast concrete elements (masonery blocks, railroad sleepers), protective coatings for materials with low fire ratings and lightweight elements.

  6. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  7. Increase in alkaline phosphatase activity in calvaria cells cultured with diphosphonates.

    PubMed Central

    Felix, R; Fleisch, H

    1979-01-01

    1. Dichloromethanediphosphonate and to a lesser degree 1-hydroxyethane-1,1-diphosphonate, two compounds characterized by a P-C-P bond, increased the alkaline phosphatase activity of cultured rat calvaria cells up to 30 times in a dose-dependent fashion. 2. Both diphosphonates also slightly inhibited the protein synthesis in these cells. 3. Thymidine, an inhibitor of cell division, did not inhibit the induction of the enzyme, indicating that the increase in enzyme activity was not due to the formation of a specific population of cells with high alkaline phosphatase activity. 4. The effect on alkaline phosphatase was suppressed by the addition of cycloheximide, an inhibitor of protein synthesis. 5. After subculturing the stimulated cells in medium without diphosphonates, the enzyme activity fell almost to the control value. 6. Bovine parathyrin diminished the enzyme activity of the control cells and the cells treated with dichloromethanediphosphonate; however, at high concentration the effect of parathyrin was greater on the diphosphonate-treated cells than on the control cells. 7. The electrophoretic behaviour, heat inactivation, inhibition by bromotetramisole or by phenylalanine, and the Km value of the induced enzyme were identical with that of the control enzyme. PMID:534490

  8. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    PubMed

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities.

  9. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  10. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP

  11. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    PubMed

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments. PMID:19515201

  12. Choline phosphate potentiates sphingosine-1-phosphate-induced Raf-1 kinase activation dependent of Ras--phosphatidylinositol-3-kinase pathway.

    PubMed

    Lee, Michael; Han, Sang Seop

    2002-04-01

    In NIH3T3 cells, sphingosine-1-phosphate (S1P) caused a significant increase of Raf-1 kinase activity as early as 2 min. Interestingly, choline phosphate (ChoP) produced synergistic increase of S1P-stimulated Raf-1 kinase activation in the presence of ATP while showing additive effect in the absence of ATP. However, Raf-1 kinase activation induced by S1P decreased in the presence of ATP when applied alone. The overexpression of N-terminal fragment of Raf-1 (RfI) to inhibit Raf--Ras interaction caused the inhibition of S1P-induced Raf-1 kinase activation. Also, wortmannin, phosphatidylinositol-3-kinase (PI3K) inhibitor, exhibited inhibitory effects on S1P-induced activation of Raf-1 kinase. In addition, we demonstrated that the chemical antioxidant, N-acetylcysteine attenuated Raf-1 activation induced by S1P, suggesting that H(2)O(2) may be required for the signalling pathway leading to Raf-1 activation. This H(2)O(2)-induced Raf-1 kinase activation was also blocked by inhibition of Ras--PI3K signalling pathway using alpha-hydroxyfarnesylphosphonic acid and wortmannin. Taken together, these results indicate that S1P-induced Raf-1 kinase activation is mediated by H(2)O(2) stimulation of Ras--PI3K pathway, and is enhanced by ChoP in the presence of ATP.

  13. Evidence for alkaline igneous activity and associated metasomatism in the Reelfoot rift, south-central Midcontinent, U. S. A

    SciTech Connect

    Goldhaber, M.B.; Diehl, S.F.; Sutley, S.J. ); Flohr, M.J.K. )

    1993-03-01

    Alkaline igneous magmatism is commonly associated with intracontinental rifts such as the Reelfoot rift (RR). Direct evidence for alkaline magmatism in the area of the RR occurs as lamprophyre and syenite encountered in deep wells. The authors' new studies of lamprophyres and sedimentary rocks from wells in the region provide additional examples of alkaline magmatism and emphasize the effects of related metasomatism. Sedimentary rocks in the Dow Chemical No. 1 Garrigan well, which is not known to contain lamprophyre dikes, probably also were metasomatically altered, as they contain authigenic fluorapatite, Ce-phosphates, and other REE-rich minerals. Enrichments of incompatible and large ion lithophile elements commonly associated with alkaline magmatism occur in the New Madrid test well, near the crest of the Pascola Arch. The carbonate-free fraction of Paleozoic rocks in this well is highly enriched in Nb (500 ppm), Ba (> 5,000 ppm), La (500 ppm), Th (1,000 ppm), and F (2,400 ppm). Abundant inclusion-rich potassium-feldspar cement in a nearby well may also be the result of alkaline metasomatism. Fluorite and elevated F concentrations are found in several wells in the RR, and contrast with stratigraphically correlative platform carbonates of the Ozark uplift, which lack F enrichment. Well and spring water samples above the RR are enriched in fluorine (as much as 5,000 ppb) compared to samples away from the rift which typically have concentrations two orders of magnitude smaller. The data and observations are consistent with relatively widespread alkaline metasomatism, which was associated with the intrusion of alkaline magmas in the RR.

  14. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase

    PubMed Central

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0–9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30–32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG* (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol−1, 57.6 kJ mol−1, 62.9 mM and 746.2 s−1, respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged. PMID:27553125

  15. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase.

    PubMed

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0-9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30-32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG(*) (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol(-1), 57.6 kJ mol(-1), 62.9 mM and 746.2 s(-1), respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged. PMID:27553125

  16. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway.

    PubMed

    Keller, Markus A; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V; Griffin, Julian L; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks.

  17. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway

    PubMed Central

    Keller, Markus A.; Zylstra, Andre; Castro, Cecilia; Turchyn, Alexandra V.; Griffin, Julian L.; Ralser, Markus

    2016-01-01

    Little is known about the evolutionary origins of metabolism. However, key biochemical reactions of glycolysis and the pentose phosphate pathway (PPP), ancient metabolic pathways central to the metabolic network, have non-enzymatic pendants that occur in a prebiotically plausible reaction milieu reconstituted to contain Archean sediment metal components. These non-enzymatic reactions could have given rise to the origin of glycolysis and the PPP during early evolution. Using nuclear magnetic resonance spectroscopy and high-content metabolomics that allowed us to measure several thousand reaction mixtures, we experimentally address the chemical logic of a metabolism-like network constituted from these non-enzymatic reactions. Fe(II), the dominant transition metal component of Archean oceanic sediments, has binding affinity toward metabolic sugar phosphates and drives metabolism-like reactivity acting as both catalyst and cosubstrate. Iron and pH dependencies determine a metabolism-like network topology and comediate reaction rates over several orders of magnitude so that the network adopts conditional activity. Alkaline pH triggered the activity of the non-enzymatic PPP pendant, whereas gentle acidic or neutral conditions favored non-enzymatic glycolytic reactions. Fe(II)-sensitive glycolytic and PPP-like reactions thus form a chemical network mimicking structural features of extant carbon metabolism, including topology, pH dependency, and conditional reactivity. Chemical networks that obtain structure and catalysis on the basis of transition metals found in Archean sediments are hence plausible direct precursors of cellular metabolic networks. PMID:26824074

  18. Lithium Iron Phosphate Cell Performance Evaluations for Lunar Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2007-01-01

    Lithium-ion battery cells are being evaluated for their ability to provide primary power and energy storage for NASA s future Exploration missions. These missions include the Orion Crew Exploration Vehicle, the Ares Crew Launch Vehicle Upper Stage, Extravehicular Activities (EVA, the advanced space suit), the Lunar Surface Ascent Module (LSAM), and the Lunar Precursor and Robotic Program (LPRP), among others. Each of these missions will have different battery requirements. Some missions may require high specific energy and high energy density, while others may require high specific power, wide operating temperature ranges, or a combination of several of these attributes. EVA is one type of mission that presents particular challenges for today s existing power sources. The Portable Life Support System (PLSS) for the advanced Lunar surface suit will be carried on an astronaut s back during eight hour long sorties, requiring a lightweight power source. Lunar sorties are also expected to occur during varying environmental conditions, requiring a power source that can operate over a wide range of temperatures. Concepts for Lunar EVAs include a primary power source for the PLSS that can recharge rapidly. A power source that can charge quickly could enable a lighter weight system that can be recharged while an astronaut is taking a short break. Preliminary results of Al23 Ml 26650 lithium iron phosphate cell performance evaluations for an advanced Lunar surface space suit application are discussed in this paper. These cells exhibit excellent recharge rate capability, however, their specific energy and energy density is lower than typical lithium-ion cell chemistries. The cells were evaluated for their ability to provide primary power in a lightweight battery system while operating at multiple temperatures.

  19. Distinct expression of alkaline phosphatase activity in epilimnetic bacteria: Implication for persistent DOC consumption in a P-limited reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.; Kao, S.; Shiah, F.

    2013-12-01

    In a P-deficient system, P availability usually controls the microbial activity and thus the ecosystem function. Thingstad et al. (1997) first addressed a 'Malfunctioning Microbial-loop' theory, which stated that low bacterial production (BP) caused by insufficient nutrient supply would result in DOC accumulation in an oligotrophic ecosystem. In this study we re-examined the theory by conducting seasonal patterns and correlations among soluble reactive phosphate (SRP) and DOC, microbial abundances (picocyanobacteria, bacteria, and heterotrophic nanoflagellate; HNF) and activities (primary production, bacterial production, and alkaline phosphatase activity; APA) coupled with enzyme-labeled fluorescence (ELF) assays on bacterioplankton in a subtropical reservoir sharing the common features, nitrate-replete and P-deficient, with most natural freshwater system during Oct 2007-Oct 2008. Persistently high APA was recorded during most of time, implying that the system was P-deficient. Size fractionated APA and ELF assay revealed that bacteria were the major APA contributor. However, significantly low epilimnion DOC was recorded during the stratified summer season accompanying with high BP and APA as well as high PP, implying that heterotrophic bacteria can well sustain in P-deficient system by utilizing DOP to rapidly lower down DOC under relatively high PP. Such findings oppose the 'Malfunctioning Microbial-loop' theory. On the other hand, strong epilimnetic DOC accumulation occurred in Oct 2007 under low light and low PP condition accompanying with high abundance of HNF, implying that HNF grazing may contribute to a certain degree of DOC accumulation. Correlation matrix supported our suggestions. This study testified the DOC dynamics in P-deficient ecosystem are tightly coupled with the source (PP and grazing) and sink (BP). We also suggested that in SRP-limited freshwater systems bacteria are capable of breaking down autochthonous DOC to reduce the chance of DOC

  20. Occurrence and activity of iron and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1980-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (1) acidic pyrite-rich waste coal, (2) oxidation halo material, and (3) alkaline, which was the most widespread type. Bacterial numbers, sulfur oxidation, and /sup 14/CO/sub 2/ uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH indicating that bacterial pyrite oxidation occurred in localized areas where groundwaters contacted either replaced spoils or coal which contained either pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching which occur in the area.

  1. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1981-01-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron-and sulphur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal; (b) oxidation halo material; and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulphur oxidation and /SUP/1/SUP/4CO/SUB/2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulphur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils of coal that contained pyrite or other metal sulphides. Bacterial activity may contribute to trace metal and sulphate leaching in the area. (27 refs.)

  2. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  3. Osteopontin gene expression and alkaline phosphatase activity in avian tibial dyschondroplasia.

    PubMed

    Knopov, V; Leach, R M; Barak-Shalom, T; Hurwitz, S; Pines, M

    1995-04-01

    Osteopontin (OPN) gene expression and alkaline phosphatase activity were evaluated in the epiphyseal growth plates of normal chickens and in diet-induced tibial dyschdroplasia (TD)-afflicted chickens. In the normal growth plate, OPN gene was expressed by a) cells of the subperichondrial zone surrounding the articular cartilage, b) a narrow layer of hypertrophic chondrocytes at the hypertrophic zone, and c) lower hypertrophic chondrocytes at the zone of matrix calcification and endochondral bone formation. The latter two layers were separated by OPN-negative chondrocytes. Osteopontin gene was not expressed throughout the zone of articular cartilage in the nonhypertrophic or upper hypertrophic portions of the growth plate cartilage. Only at sites of calcification of the lower hypertrophic zone was the expression of the OPN gene associated with alkaline phosphatase activity. In all TD lesions, regardless of the induction procedure, the layer of chondrocytes of the lower hypertrophic zone expressing the OPN gene and the layer of OPN-negative cells separating the two areas of OPN-expressing cells were grossly enlarged. This resulted in a wide discontinuity between the chondrocytes of the lower hypertrophic zone expressing the OPN gene and the cells expressing the OPN gene that are associated with mineralization. In TD, no alkaline phosphatase activity was detected within the growth plate cartilage, but normal OPN gene expression was observed at the subperichondrium zone and at the zone of endochondral bone formation. The results of this study suggest that in the epiphyseal growth plate, OPN expression is not restricted to sites of bone calcification.

  4. Alkaline phosphatase activity at the southwest coast of India: A comparison of locations differently affected by upwelling

    NASA Astrophysics Data System (ADS)

    Mamatha, S. S.; Malik, Ashish; Varik, Sandesh; Parvathi, V.; Jineesh, V. K.; Gauns, Mangesh U.; LokaBharathi, P. A.

    2015-01-01

    The realization of the potential importance of phosphorus (P) as a limiting nutrient in marine ecosystem is increasing globally. Hence, the contribution of biotic variables in mobilizing this nutrient would be relevant especially in productive coastal waters. As alkaline phosphatase activity (APA) indicates the status of P for primary production in aquatic environments, we asked the following question: is the level of APA indicative of P sufficiency or deficiency in coastal waters, especially, where upwelling is a regular phenomenon? Therefore, we have examined the total APA, chlorophyll a along with phosphatase producing bacteria (PPB) and related environmental parameters from nearshore to offshore in coastal waters off Trivandrum and Kochi regions differently affected by upwelling during the onset of monsoon. Off Trivandrum, APA in the offshore waters of 5-m layer at 2.23 μM P h- 1 was > 4 times higher than nearshore. Thus, low APA could be indicative of P sufficiency in coastal waters and higher activity suggestive of deficiency in offshore waters off Trivandrum. In contrast, there was less difference in APA between near and offshore surface waters off Kochi. Our results show that the regions differently affected by upwelling respond differently according to ambient P concentration, distance from shore or depth of water. These observations could apparently be applicable to other coastal systems as well, where gradients in upwelling and phosphate runoff have been noticed. Further studies on other transects would throw more light on the extent and direction of the relationship between APA and ambient P concentration. Such studies would help in understanding the level of control of this nutrient on the productivity of coastal waters.

  5. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    PubMed

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.

  6. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  7. Alkaline phosphatase isoenzyme activities in rheumatoid arthritis: hepatobiliary enzyme dissociation and relation to disease activity.

    PubMed Central

    Aida, S

    1993-01-01

    OBJECTIVES--Hyperphosphatasaemia has been observed occasionally in patients with rheumatoid arthritis (RA), and it has been suggested that the serum alkaline phosphatase (ALP) level is related to the activity of the disease. Therefore, the relationship between serum ALP and RA was studied. METHODS--The serum activities of hepatobiliary enzymes (ALP isoenzymes, gamma-glutamyltranspeptidase (GTP), leucine aminopeptidase (LAP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)), immunoglobulins, RA haemagglutinin test (RAHA), C reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were observed in 288 patients with rheumatoid arthritis. RESULTS--Serum biliary ALP (ALP1) activity was detected in 31.6% of the patients. In patients positive for ALP1 the respective values of total ALP (ALPt) (p < 0.001), liver ALP (ALP2) (p < 0.001), bone ALP (ALP3) (p < 0.05), gamma-GTP (p < 0.001), LAP (p < 0.001), immunoglobulins IgG (p < 0.01), IgA (p < 0.01), and IgM (p < 0.01), RAHA (p < 0.001), CRP (p < 0.001), ESR (p < 0.001), and articular index (p < 0.001) were significantly higher than in patients who did not have ALP1. Significant Spearman's rank correlations (rs) were demonstrated between serum ALP2 level and the respective values of ALPt (rs = 0.9128, p < 0.001), ALP1 (rs = 0.4443, p < 0.001), ALP3 (rs = 0.5898, p < 0.001), gamma-GTP (rs = 0.2903, p < 0.001), LAP (rs = 0.3093, p < 0.001), IgA (rs = 0.2299, p < 0.01), IgM (rs = 0.1773, p < 0.05), RAHA (rs = 0.2420, p < 0.01), CRP (rs = 0.3532, p < 0.001), ESR (rs = 0.4006, p < 0.001). the articular index (rs = 0.4006, p < 0.001). However, no significant difference or correlation was noted for either AST or ALT. In many patients who showed abnormal hyperphosphatasaemia, hepatobiliary enzyme dissociation was observed: levels of ALPt (in 12.8%), ALP1 (in 31.6%), ALP2 (18.8%), gamma-GTP (in 4.3%), and LAP (in 19.3%) were abnormally high, but both AST and ALT were within normal limits. CONCLUSION

  8. Stabilization of Different Types of Transition States in a Single Enzyme Active Site: QM/MM Analysis of Enzymes in the Alkaline Phosphatase Superfamily

    PubMed Central

    Hou, Guanhua; Cui, Qiang

    2013-01-01

    The first step for the hydrolysis of a phosphate monoester (pNPP2−) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bi-metallic site plays a minor role in accommodating multiple types of transition states, and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states. PMID:23786365

  9. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation. PMID:27433601

  10. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation.

  11. Three-step preparation and purification of phosphorus-33-labeled creatine phosphate of high specific activity

    SciTech Connect

    Savabi, F.; Geiger, P.J.; Bessman, S.P.

    1984-03-01

    Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references.

  12. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces

    SciTech Connect

    Sheng, WC; Myint, M; Chen, JGG; Yan, YS

    2013-05-01

    The slow reaction kinetics of the hydrogen evolution and oxidation reactions (HER/HOR) on platinum in alkaline electrolytes hinders the development of alkaline electrolysers, solar hydrogen cells and alkaline fuel cells. A fundamental understanding of the exchange current density of the HER/HOR in alkaline media is critical for the search and design of highly active electrocatalysts. By studying the HER on a series of monometallic surfaces, we demonstrate that the HER exchange current density in alkaline solutions can be correlated with the calculated hydrogen binding energy (HBE) on the metal surfaces via a volcano type of relationship. The HER activity varies by several orders of magnitude from Pt at the peak of the plot to W and Au located on the bottom of each side of the plot, similar to the observation in acids. Such a correlation suggests that the HBE can be used as a descriptor for identifying electrocatalysts for HER/HOR in alkaline media, and that the HER exchange current density can be tuned by modifying the surface chemical properties.

  13. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates

    PubMed Central

    Watson, Peter J.; Millard, Christopher J.; Riley, Andrew M.; Robertson, Naomi S.; Wright, Lyndsey C.; Godage, Himali Y.; Cowley, Shaun M.; Jamieson, Andrew G.; Potter, Barry V. L.; Schwabe, John W. R.

    2016-01-01

    Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation. PMID:27109927

  14. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding.

  15. Host plant effects on alkaline phosphatase activity in the whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum.

    PubMed

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding. PMID:21521136

  16. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    PubMed

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water.

  17. A Relationship Between Microbial Activity in Soils and Phosphate Levels in Tributaries to Lake Champlain

    NASA Astrophysics Data System (ADS)

    Larose, R.; Lee, S.; Lane, T.

    2015-12-01

    Lake Champlain is a large natural freshwater lake. It forms the western boundary of Vermont and drains over half of the state. It is bordered by the state of New York on its western side and drains to the north into Quebec, Canada. Lake Champlain is the source of fresh drinking water for over quarter of a million people and provides for the livelihoods and recreational opportunities of many well beyond its borders. The health of this lake is important. During the summer month's algae blooms plague the lake. These unsightly growths, which affect other aquatic organisms, are the result of excess phosphate flowing into the lake from many sources. Examining whether there is a relationship between microbial activity in the soils bordering tributaries to Lake Champlain and phosphate levels in those tributaries sheds insight into the origins and paths by which phosphate moves into Lake Champlain. Understanding the how phosphate moves into the water system may assist in mitigation efforts.Total Phosphate levels and Total Suspended Solids were measured in second and third order streams in the Lake Champlain Basin over a three-year period. In addition microbial activity was measured within the toe, bank and upland riparian zone areas of these streams during the summer months. In general in areas showing greater microbial activity in the soil(s) there were increased levels of phosphate in the streams.

  18. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Hidaka, Hiroshi; Higuchi, Takuya; Yoneda, Shigekazu E-mail: s-yoneda@kahaku.go.jp

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  19. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation

    SciTech Connect

    Yip, C.K.; Lukey, G.C.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au

    2005-09-01

    Scanning electron microscopy was used to study the effects of the addition of ground granulated blast furnace slag (GGBFS) on the microstructure and mechanical properties of metakaolin (MK) based geopolymers. It was found that it is possible to have geopolymeric gel and calcium silicate hydrate (CSH) gel forming simultaneously within a single binder. The coexistence of these two phases is dependent on the alkalinity of the alkali activator and the MK / GGBFS mass ratio. It has been found that the formation of CSH gel together with the geopolymeric gel occurs only in a system at low alkalinity. In the presence of high concentrations of NaOH (> 7.5 M), the geopolymeric gel is the predominant phase formed with small calcium precipitates scattered within the binder. The coexistence of the two phases is not observed unless a substantial amount of a reactive calcium source is present initially. It is thought that voids and pores within the geopolymeric binder become filled with the CSH gel. This helps to bridge the gaps between the different hydrated phases and unreacted particles; thereby resulting in the observed increase in mechanical strength for these binders.

  20. [Activity of NADP-dependent glycerol-3-phosphate dehydrogenase in skeletal muscles of animals].

    PubMed

    Epifanova, Iu E; Glushankov, E P; Kolotilova, A I

    1978-01-01

    The NADP-dependent glycerol-3-phosphate dehydrogenase activity was studied in sketetal muscles of the rat, rabbit and frog. The dehydrogenase activity in the skeletal muscles of the rat and rabbit was higher than that of the frog. The enzyme activity was found to depend upon the buffer, being higher in tris-HCl buffer than in triethanolamine buffer.

  1. Endothelial alkaline phosphatase activity loss as an early stage in the development of radiation-induced heart disease in rats

    SciTech Connect

    Lauk, S.

    1987-04-01

    Alkaline phosphatase activity of capillary endothelial cells in the heart of Wistar and Sprague-Dawley rats was studied sequentially after single doses of 10, 15, 20, or 25 Gy. Following irradiation capillary density and alkaline phosphatase activity were focally lost before myocardial degeneration or clinical symptoms of heart disease developed. Recovery from both changes took place after doses of 10 or 15 Gy. The decrease in capillary density and enzyme activity showed the same strain difference in latency times and in the extent of the lesions as previously described for pathological and clinical signs of heart disease.

  2. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    SciTech Connect

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  3. Substrate activity of synthetic formyl phosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Smithers, G.W.; Jahansouz, H.; Kofron, J.L.; Himes, R.H.; Reed, G.H.

    1987-06-30

    Formyl phosphate, a putative enzyme-bound intermediate in the reaction catalyzed by formyltetrahydrofolate synthetase (EC 6.3.4.3), was synthesized from formyl fluoride and inorganic phosphate, and the product was characterized by /sup 31/P, /sup 1/H, and /sup 13/C nuclear magnetic resonance (NMR). Measurement of hydrolysis rates by /sup 31/P NMR indicates that formyl phosphate is particularly labile, with a half-life of 48 min in a buffered neutral solution at 20 /sup 0/C. At pH 7, hydrolysis occurs with P-O bond cleavage, as demonstrated by /sup 18/O incorporation from H/sub 2//sup 18/O into P/sub i/, while at pH 1 and pH 13 hydrolysis occurs with C-O bond cleavage. The substrate activity of formyl phosphate was tested in the reaction catalyzed by formyltetrahydrofolate synthetase isolated from Clostridium cylindrosporum. Formyl phosphate supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formyltetrahydrofolate is produced from tetrahydrofolate and formyl phosphate in a reaction mixture that contains enzyme, Mg(II), and ADP, and ATP is produced from formyl phosphate and ADP with enzyme, Mg(II), and tetrahydrofolate present. The requirements for ADP and for tetrahydrofolate as cofactors in these reactions are consistent with previous steady-state kinetic and isotope exchange studies, which demonstrated that all substrate subsites must be occupied prior to catalysis. The k/sub cat/ values for both the forward and reverse directions, with formyl phosphate as the substrate, are much lower than those for the normal forward and reverse reactions. Kinetic analysis of the formyl phosphate supported reactions indicates that the low steady-state rates observed for the synthetic intermediate are most likely due to the sequential nature of the normal reaction.

  4. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. PMID:25865133

  5. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions.

  6. Correlation of alkaline phosphatase activity to clinical parameters of inflammation in smokers suffering from chronic periodontitis

    PubMed Central

    Grover, Vishakha; Malhotra, Ranjan; Kapoor, Anoop; Bither, Rupika; Sachdeva, Sonia

    2016-01-01

    Context: Current clinical periodontal diagnostic techniques emphasize the assessment of clinical and radiographic signs of periodontal diseases which can provide a measure of history of disease. Hence, new methodologies for early identification and determination of periodontal disease activity need to be explored which will eventually result in expedited treatment. Aim: To evaluate the correlation of alkaline phosphatase (ALP) activity in gingival crevicular fluid (GCF) to clinical parameters of periodontal inflammation in smokers with chronic periodontitis. Materials and Methods: Study population included 15 smoker male patients in the age group of 35–55 years suffering from moderate generalized chronic periodontitis with history of smoking present. Following parameters were evaluated at baseline, 1 month and 3 months after scaling and root planing: plaque index, bleeding index, probing pocket depth (PD), relative attachment level (RAL), and GCF ALP activity. Statistical Analysis Used: Independent variables for measurements over time were analyzed by using Wilcoxon signed rank test. Results: A statistically significant reduction in all the clinical parameters and GCF ALP activity was observed from baseline to 1 month and 3 months. A correlation was observed between change in GCF ALP activity and PD reduction as well as gain in RAL at 3 months. Conclusion: The present study emphasizes that total ALP activity could be used as a marker for periodontal disease activity in smokers. Estimation of changes in the levels of this enzyme has a potential to aid in the detection of progression of periodontal disease and monitoring the response to periodontal therapy. PMID:27563197

  7. An alkaline D-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus.

    PubMed

    Asano, Y; Ito, H; Dairi, T; Kato, Y

    1996-11-22

    We purified a novel extracellular D-stereospecific endopeptidase, alkaline D-peptidase (D-stereospecific peptide hydrolase, EC 3.4.11.-), to homogeneity from the culture broth of the soil bacterium Bacillus cereus strain DF4-B. The Mr of the enzyme was 37,952, and it was composed of a single polypeptide chain. The optimal pH for activity was approximately 10.3. The enzyme was strictly D-stereospecific toward oligopeptides composed of Dphenylalanine such as (D-Phe)3 and (D-Phe)4. The enzyme also acted to a lesser extent on (D-Phe)6, Boc-(D-Phe)4 (where Boc is tert-butoxycarbonyl), Boc-(D-Phe)4 methyl ester, Boc-(D-Phe)3 methyl ester, Boc-(D-Phe)2, (D-Phe)2, and others, but not upon their corresponding peptides composed of L-Phe, (D-Ala)n (n = 2-5), (D-Val)3, and (D-Leu)2. The mode of action of the enzyme was clarified with synthetic substrates ((D-Phe)2-D-Tyr and D-Tyr-(D-Phe)2) and eight stereoisomers of (Phe)3. The enzyme had beta-lactamase activity toward ampicillin and penicillin G, although carboxypeptidase DD and D-aminopeptidase activities were undetectable. The gene coding for alkaline D-peptidase (adp) was cloned into plasmid pUC118, and a 1164-base pair open reading frame consisting of 388 codons was identified as the adp gene. The predicted polypeptide was similar to carboxypeptidase DD from Streptomyces R61, penicillin-binding proteins from Streptomyces lactamdurans and Bacillus subtilis, and class C beta-lactamases. Thus, the enzyme was categorized as a new "penicillin-recognizing enzyme." PMID:8939979

  8. A binary palladium-bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Chuan; Lin, Cheng-Lan; Chen, Lin-Chi

    2015-08-01

    Binary palladium-bismuth nanocatalysts supported on functionalized multi-walled carbon nanotubes (Pd-Bi/C) are synthesized using a one-pot polyol method. The prepared Pd-Bi/C catalysts have a metal particle range from 5.25 to 12.98 nm and are investigated for alkaline electrocatalytic glucose oxidation reaction (GOR). The physical properties of the catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical activities are determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis and chronoamperomtry (CA) for comparing the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate and cycling stability of the Pd-Bi/C catalysts. It is found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd/C and as well as has a 3.7-fold lower poisoning rate. The in-use stability of Pd-Bi/C (1:0.14) is also remarkably improved, according to the results of the 200 cycling CV test. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C (1:0.14) are further studied in this work. The highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium.

  9. Effect of starvation and sampling time on plasma alkaline phosphatase activity and calcium homeostasis in the rat.

    PubMed

    Thompson, C S; Mikhailidis, D P; Gill, D S; Jeremy, J Y; Bell, J L; Dandona, P

    1989-01-01

    The effect of starvation and sampling time on plasma alkaline phosphatase activity, total plasma calcium concentration and whole blood ionized calcium concentration was determined in the rat. Starvation caused a significant fall in total and ionized calcium concentrations as well as in alkaline phosphatase activity. These changes were accompanied by a fall in whole blood pH and an increase in the anion gap and a decrease in urinary excretion of calcium. These indices were restored to normal following refeeding. There was no change in serum 25-OH vitamin D concentrations following starvation for 3 days. Alkaline phosphatase activity showed a pattern compatible with the presence of a circadian rhythm when sampling took place between 0800 and 1800 h. Total and ionized calcium concentrations did not show such a rhythm when animals were fed the present diet. PMID:2786112

  10. Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    PubMed Central

    Stock, Roberto P.; Brewer, Jonathan; Wagner, Kerstin; Ramos-Cerrillo, Blanca; Duelund, Lars; Jernshøj, Kit Drescher; Olsen, Lars Folke; Bagatolli, Luis A.

    2012-01-01

    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes. PMID:22558302

  11. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum.

    PubMed

    Cassera, María B; Gozzo, Fabio C; D'Alexandri, Fabio L; Merino, Emilio F; del Portillo, Hernando A; Peres, Valnice J; Almeida, Igor C; Eberlin, Marcos N; Wunderlich, Gerhard; Wiesner, Jochen; Jomaa, Hassan; Kimura, Emilia A; Katzin, Alejandro M

    2004-12-10

    Two genes encoding the enzymes 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase have been recently identified, suggesting that isoprenoid biosynthesis in Plasmodium falciparum depends on the methylerythritol phosphate (MEP) pathway, and that fosmidomycin could inhibit the activity of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. The metabolite 1-deoxy-D-xylulose-5-phosphate is not only an intermediate of the MEP pathway for the biosynthesis of isopentenyl diphosphate but is also involved in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6) in plants and many microorganisms. Herein we report the first isolation and characterization of most downstream intermediates of the MEP pathway in the three intraerythrocytic stages of P. falciparum. These include, 1-deoxy-D-xylulose-5-phosphate, 2-C-methyl-D-erythritol-4-phosphate, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol-2-phosphate, and 2-C-methyl-D-erythritol-2,4-cyclodiphosphate. These intermediates were purified by HPLC and structurally characterized via biochemical and electrospray mass spectrometric analyses. We have also investigated the effect of fosmidomycin on the biosynthesis of each intermediate of this pathway and isoprenoid biosynthesis (dolichols and ubiquinones). For the first time, therefore, it is demonstrated that the MEP pathway is functionally active in all intraerythrocytic forms of P. falciparum, and de novo biosynthesis of pyridoxal in a protozoan is reported. Its absence in the human host makes both pathways very attractive as potential new targets for antimalarial drug development.

  12. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  13. Segregated Pt on Pd nanotubes for enhanced oxygen reduction activity in alkaline electrolyte.

    PubMed

    St John, Samuel; Atkinson, Robert W; Dyck, Ondrej; Sun, Cheng-Jun; Zawodzinski, Thomas A; Papandrew, Alexander B

    2015-12-01

    Nanoscaled Pt domains were integrated with Pd nanotubes via vapor deposition to yield a highly active electrocatalyst for the oxygen reduction reaction (ORR) in alkaline media. The surface-area-normalized ORR activity of these bi-metallic Pt-on-Pd nanotubes (PtPdNTs) was nearly 6× the corresponding carbon-supported Pt nanoparticle (Pt/C) activity at 0.9 V vs. RHE (1.5 vs. 0.24 mA cmmetal(-2), respectively). Furthermore, the high specific activity of the PtPdNTs was achieved without sacrificing mass-normalized activity, which is more than twice that of Pt/C (0.333 A mgPtPdNT(-1)vs. 0.141 A mgPt/C(-1)) and also greater than that of Pd/C (0.221 A mgPd/C(-1)). We attribute the enhancements in specific and mass activity to modifications of the segregated Pt electronic structure and to nanoscale porosity, respectively. PMID:26553367

  14. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. PMID:25902402

  15. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site.

    PubMed

    Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel

    2015-01-01

    Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called 'catalytic residues' are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.

  16. Spatial variability of dissolved phosphorous concentrations and alkaline phosphatase activity in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chang, J.; Ho, T.; Gong, G.

    2010-12-01

    The concentrations of dissolved inorganic phosphorus (DIP) and alkaline phosphatase activity (APA) have been determined at about 25 sampling stations in the East China Sea since 2003. The stations are mainly distributed from the Changjiang river mouth to northern Taiwan and east to the shelf break. In addition to the Changjiang discharge, we have found a specific nutrient source around a coastal site (122° 2’30’’ E, 28° 40’ N). Elevated DIP and nitrate concentrations have been constantly observed around the sampling station for 8 years, where the surface DIP concentrations are generally around 0.3 µM. The nutrient source may either originate from ground water discharge or coastal upwelling, where lower temperature has been observed in the water column around the station. In general, APA has been negatively correlated with DIP concentrations in the studies sites, with lowest APA around the high DIP station and the Changjiang river mouth.

  17. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.

    PubMed

    Ost, Kyla S; O'Meara, Teresa R; Huda, Naureen; Esher, Shannon K; Alspaugh, J Andrew

    2015-04-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.

  18. Alkaline phosphatase activity in the western English Channel: Elevations induced by high summertime rainfall

    NASA Astrophysics Data System (ADS)

    Rees, Andrew P.; Hope, Sam B.; Widdicombe, Claire E.; Dixon, Joanna L.; Woodward, E. Malcolm S.; Fitzsimons, Mark F.

    2009-03-01

    Alkaline phosphatase activity (APA) was determined in bulk particulate material and in a single-cell (ELF) assay at station L4 in the western English Channel during the summer of 2007. Throughout this period, the UK experienced its heaviest summertime rainfall since records began in 1914; with the result that riverine run-off into coastal waters was also elevated relative to long-term averages. Between May and August 2007, three distinct periods of elevated river run-off were observed which resulted in salinity minima at L4 on days 141, 190 and 232. An extended period of high river run-off between days 170 and 210 was responsible for decreases in near-surface salinity at L4 from 35.2068 to a minimum on day 190 of 34.7422. This contributed to the development of haline stratification which supported the development of an intense bloom of the centric diatom Chaetoceros debelis, with maximum observed chlorophyll a concentration of 8.69 μg l -1. Minima in salinity, and maxima in chlorophyll concentration on day 190 were coincident with a peak in river-derived dissolved inorganic nitrogen (DIN) of 1.9 μmol l -1 which was >5 times greater than the summertime mean and 24 times the concentrations experienced at L4 on weeks immediately before and after. There was no accompanying increase in dissolved inorganic phosphorus (DIP), and the DIN:DIP ratio increased to 49. With the inherent phosphorus stress that this caused, rates of APA increased from <4 to 42.4 nmolP l -1 h -1. ELF analysis on day 197 identified two taxa actively expressing alkaline phosphatase: the dinoflagellate Prorocentrum micans and ciliate Tiarana sp.

  19. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  20. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.

    PubMed

    Kim, Tak-Hyun; Nam, Youn-Ku; Park, Chulhwan; Lee, Myunjoo

    2009-12-01

    The recovery of an organic carbon source from a waste activated sludge by using alkaline hydrolysis and radiation treatment was studied, and the feasibility of the solubilized sludge carbon source for a biological denitrification was also investigated. The effects of an alkaline treatment and gamma-ray irradiation on a biodegradability enhancement of the sludge were also studied. A modified continuous bioreactor for a denitrification (MLE reactor) was operated by using a synthetic wastewater for 47 days. Alkaline treatment of pH 10 and gamma-ray irradiation of 20 kGy were found to be the optimum carbon source recovery conditions. COD removal of 84% and T-N removal of 51% could be obtained by using the solubilized sludge carbon source through the MLE denitrification process. It can be concluded that the carbon source recovered from the waste activated sludge was successfully employed as an alternative carbon source for a biological denitrification.

  1. High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development.

    PubMed

    Min, Ki-Ha; Son, Ryeo Gang; Ki, Mi-Ran; Choi, Yoo Seong; Pack, Seung Pil

    2016-01-01

    Carbonic anhydrase (CA) is a biocatalyst for CO2 sequestration because of its distinctive ability to accelerate CO2 hydration. High production and efficient immobilization of alkaline-active CAs are required, because one potential application of CA is its use in the alkaline solvent-based CO2 absorption/desorption process. Here, we designed and applied an α-type CA from Hahella chejuensis (HCA), which was reported as highly active in alkaline conditions, but was mostly expressed as insoluble forms. We found that the signal peptide-removed form of HCA [HCA(SP-)] was successfully expressed in the soluble form [∼70mg of purified HCA(SP-) per L of culture]. HCA(SP-) also displayed high pH stability in alkaline conditions, with maximal activity at pH 10; at this pH, ∼90% activity was maintained for 2h. Then, we prepared HCA(SP-)-encapsulated silica particles [HCA(SP-)@silica] via a spermine-mediated bio-inspired silicification method. HCA(SP-)@silica exhibited high-loading and highly stable CA activity. In addition, HCA(SP-)@silica retained more than 90% of the CA activity even after 10 cycles of use in mild conditions, and ∼80% in pH 10 conditions. These results will be useful for the development of practical CO2 sequestration processes employing CA.

  2. Effects of adenosine triphosphate and alkaline phosphatase on solubilized 3,5,3'-triiodothyronine-binding activity.

    PubMed

    Faure, R; Dussault, J H

    1988-09-01

    The T3-binding activity of salt-extractable nuclear proteins from rat liver was affected when ATP (2-10 mM; pH 8.0) was added concomitantly with T3 in the incubation medium. Scatchard analysis revealed that the equilibrium association constant was significantly reduced [5 mM ATP, 0.3 +/- 0.1 (+/- SE) 10(10) M-1; control, 1.1 +/- 0.15 X 10(10) M-1], but the maximum binding capacity remained unchanged. Similar values of inhibition were obtained when unbound receptors were preincubated with ATP. ATP achieved its maximal effect after 45 min of incubation at 30 C. Dilution experiments indicated that the effect of ATP was reversible. The inhibiting potency of nucleoside triphosphates at pH 8.0 was in the following order: ATP = CTP greater than GTP, whereas UTP had no effect. Nonhydrolyzable analogs of ATP were also inhibitory, and HPLC fractionation showed an approximately 98% recovery of ATP after incubation with nuclear extract. The adenine ring with at least two phosphates was essential, since ADP was as potent as ATP, whereas AMP had no effect. When the pH of the incubation medium was lowered to 7.3, the T3-binding activity was inhibited by ATP in the 0.1-1 mM range. Magnesium (3 mM) greatly increases the ATP effect at pH 7.3, but not at pH 8. The T3-binding activity was also drastically reduced when calf intestine alkaline phosphatase was added concomitantly in the incubation medium. Eight micrograms per ml enzyme were necessary to inhibit the T3 specific binding by 50% (30 C for 45 min). Scatchard analysis showed that the receptor affinity for T3 was decreased (control, 1.1 +/- 0.02 x 10(10) M-1; alkaline phosphatase, 0.41 +/- 0.03 x 10(10) M-1; n = 6), whereas the maximum binding capacity remained unchanged. Incubations performed with increasing concentrations of beta-mercaphoethanol (2.5, 5, 10, and 25 mM) revealed that the phosphatase inhibitory effect is thiol dependent. The inhibition was maximal at 2.5 mM and progressively decreased at 5 and 10 mM. No

  3. A facile stable-isotope dilution method for determination of sphingosine phosphate lyase activity.

    PubMed

    Suh, Jung H; Eltanawy, Abeer; Rangan, Apoorva; Saba, Julie D

    2016-01-01

    A new technique for quantifying sphingosine phosphate lyase activity in biological samples is described. In this procedure, 2-hydrazinoquinoline is used to convert (2E)-hexadecenal into the corresponding hydrazone derivative to improve ionization efficiency and selectivity of detection. Combined utilization of liquid chromatographic separation and multiple reaction monitoring-mass spectrometry allows for simultaneous quantification of the substrate S1P and product (2E)-hexadecenal. Incorporation of (2E)- d5-hexadecenal as an internal standard improves detection accuracy and precision. A simple one-step derivatization procedure eliminates the need for further extractions. Limits of quantification for (2E)-hexadecenal and sphingosine-1-phosphate are 100 and 50fmol, respectively. The assay displays a wide dynamic detection range useful for detection of low basal sphingosine phosphate lyase activity in wild type cells, SPL-overexpressing cell lines, and wild type mouse tissues. Compared to current methods, the capacity for simultaneous detection of sphingosine-1-phosphate and (2E)-hexadecenal greatly improves the accuracy of results and shows excellent sensitivity and specificity for sphingosine phosphate lyase activity detection.

  4. Ethnic differences in pre-adipocyte intracellular lipid accumulation and alkaline phosphatase activity.

    PubMed

    Ali, Aus T; Chirambo, George; Penny, Clement; Paiker, Janice E; Ikram, Faisel; Psaras, George; Crowther, Nigel J

    2015-01-01

    Alkaline phosphatase (ALP) increases lipid accumulation in human pre-adipocytes. This study was performed to assess whether ethnic differences in the prevalence of obesity in African and European females are related to differences in pre-adipocyte lipid accretion and ALP activity. Pre-adipocytes were isolated from 13 black and 14 white females. Adipogenesis was quantified using the lipid dye, Oil red O, whilst ALP activity was assayed in cell extracts on day zero and 12days after initiating adipogenesis. Lipid levels (OD units/mg protein) were lower in pre-adipocytes from white than black females on day 0 (0.36±0.05 versus 0.44±0.03, respectively; p<0.0005) and day 12 (1.18±0.14 versus 1.80±0.22, respectively; p<0.0005), as was ALP activity (mU/mg protein) on day zero (36.5±5.8 versus 136.4±10.9, respectively; p<0.0005) and day 12 (127±16 versus 278±27, respectively; p<0.0005). Treatment of pre-adipocytes with histidine, an ALP inhibitor, blocked lipid accumulation. Thus, lipid uptake is higher in pre-adipocytes isolated from black compared to white females which parallels the obesity prevalence rates in these population groups. The reason for higher fat accumulation in pre-adipocytes isolated from black females may be related to higher ALP activity.

  5. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    SciTech Connect

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.

  6. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPtmore » for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  7. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.

    PubMed

    Martinez, Ronny; Jakob, Felix; Tu, Ran; Siegert, Petra; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2013-03-01

    Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (K(cat)) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5-fold increased specific activity (15°C) and over 100 times prolonged half-life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity-altering amino acid substitutions were from non-charged to non-charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions.

  8. The Effect of Covalently Immobilized FGF-2 on Biphasic Calcium Phosphate Bone Substitute on Enhanced Biological Compatibility and Activity

    PubMed Central

    Moon, Kyung-Suk; Choi, Eun-Joo; Oh, Seunghan; Kim, Sungtae

    2015-01-01

    The purpose of this research was to covalently graft fibroblast growth factor 2 (FGF-2) onto biphasic calcium phosphate (BCP) via a bifunctional cross-linker technique and to estimate the optimal dose of FGF-2 resulting in the best osteogenic differentiation of human mesenchymal stem cells (hMSCs). SEM observation revealed that the surface of the 100 ng FGF-2 coated BCP was completely covered with the nanoparticles expected to be from the silane coupling agent. XRD, FT-IR, and XPS analysis showed that silane treatment, bifunctional cross-linker coating, and FGF-2 covalent grafts were conducted successfully without deforming the crystalline structure of BCP. An MTT assay demonstrated that FGF-2 coated BCP had good biocompatibility, regardless of the concentration of FGF-2, after 24 or 48 h of incubation. An alkaline phosphatase (ALP) activity assay (14 days of incubation) and the ALP gene expression level of real-time PCR analysis (7 days of incubation) revealed that 50, 100, and 200 ng FGF-2 coated BCP induced the highest activities among all experimental groups and control group (P < 0.05). Thus, low concentrations of FGF-2 facilitated excellent osteogenesis and were effective at enhancing osteogenic potential. Also, the bifunctional cross-linker technique is expected to be a more feasible way to induce osteogenic differentiation while minimizing the risk of FGF-2 overdose. PMID:26436096

  9. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    PubMed

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  10. Pyrophosphate-regulated Zn(2+)-dependent DNAzyme activity: an amplified fluorescence sensing strategy for alkaline phosphatase.

    PubMed

    Kong, Rong-Mei; Fu, Ting; Sun, Ni-Na; Qu, Feng-Li; Zhang, Shu-Fang; Zhang, Xiao-Bing

    2013-12-15

    In this work, based on the fact that pyrophosphate (PPi) could regulate the activity of Zn(2+)-dependent DNAzyme, we for the first time report a fluorescence turn-on sensing system for alkaline phosphatase (ALP) with improved sensitivity via nonprotein-enzymatic signal amplification. A catalytic and molecular beacon (CAMB) design was employed to further improve its sensitivity. Taking advantage of the strong interactions between PPi and the Zn(2+), the cofactor Zn(2+) was caged, and the DNAzyme activity was effectively inhibited. The introduction of ALP, however, could catalyze the hydrolysis of PPi and release free Zn(2+), resulting in the activation of DNAzyme to catalyze the cleavage of the molecular beacon substrate with a remarkable increase of fluorescent signal. These optimized designs together allow a high sensitivity for ALP, with a detection limit of 20 pM observed, much lower than previously reported methods. It has also been used for detection of ALP in human serum with satisfactory results, demonstrating its potential applications in clinical diagnosis.

  11. Structure characterization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom.

    PubMed

    Liu, Xinkui; Wang, Lin; Zhang, Chunmei; Wang, Hongmin; Zhang, Xiaohong; Li, Yuexia

    2015-03-15

    A water-soluble polysaccharide, designated as KOMAP, was isolated and purified from the alkaline extract of king oyster mushroom, which was composed of glucose (Glc), mannose (Man) and arabinose (Ara) in a molar ratio of 6.2:2.1:2.0. It had an average molecular weight of 2.1×10(4)Da. GC-MS analysis revealed that KOMAP was a linear structure of the polymer with a backbone composed of β-1,4-linked glucopyranosyl and β-1,3,6-linked mannopyranosyl units, which was terminated with α-1-linked arabinofuranosyl unit at C-6 position of β-1,3,6-linked mannopyranosyl residue along the main chain in the ratio of 3.1:1. The results in the animal experiment showed that 50, 100 and 200mg/mL of KOMAP not only inhibited the tumor growth, but also increased relative thymus and spleen indices, LPS- or ConA-induced lymphocytes proliferation, and serum cytokine IL-2, TNF-α, and IFN-γ levels, as well as the activities of NK cells and CTLs in spleen of Renca tumor-bearing mice. In summary, our data indicate that the KOMAP exerts effective immunoregulatory and anti-tumor activities in vivo. PMID:25542113

  12. Surface alkaline phosphatase activities of macroalgae on coral reefs of the central Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Schaffelke, B.

    2001-05-01

    Inshore reefs of the Great Barrier Reef (GBR) are subject to episodic nutrient supply, mainly by flood events, whereas midshelf reefs have a more consistent low nutrient availability. Alkaline phosphatase activity (APA) enables macroalgae to increase their phosphorus (P) supply by using organic P. APA was high (~4.0 to 15.5 µmol PO4 3- g DW-1 h-1) in species colonising predominantly inshore reefs and low (<2 µmol PO4 3- g DW-1 h-1) in species with a cross-shelf distribution. However, APA values of GBR algae in this study were much lower than data reported from other coral reef systems. In experiments with two Sargassum species tissue P levels were correlated negatively, and N:P ratios were positively correlated with APA. High APA can compensate for a relative P-limitation of macroalgae in coral reef systems that are subject to significant N-inputs, such as the GBR inshore reefs. APA and other mechanisms to acquire a range of nutrient species allow inshore species to thrive in habitats with episodic nutrient supply. These species also are likely to benefit from an increased nutrient supply caused by human activity, which currently is a global problem.

  13. Structure characterization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom.

    PubMed

    Liu, Xinkui; Wang, Lin; Zhang, Chunmei; Wang, Hongmin; Zhang, Xiaohong; Li, Yuexia

    2015-03-15

    A water-soluble polysaccharide, designated as KOMAP, was isolated and purified from the alkaline extract of king oyster mushroom, which was composed of glucose (Glc), mannose (Man) and arabinose (Ara) in a molar ratio of 6.2:2.1:2.0. It had an average molecular weight of 2.1×10(4)Da. GC-MS analysis revealed that KOMAP was a linear structure of the polymer with a backbone composed of β-1,4-linked glucopyranosyl and β-1,3,6-linked mannopyranosyl units, which was terminated with α-1-linked arabinofuranosyl unit at C-6 position of β-1,3,6-linked mannopyranosyl residue along the main chain in the ratio of 3.1:1. The results in the animal experiment showed that 50, 100 and 200mg/mL of KOMAP not only inhibited the tumor growth, but also increased relative thymus and spleen indices, LPS- or ConA-induced lymphocytes proliferation, and serum cytokine IL-2, TNF-α, and IFN-γ levels, as well as the activities of NK cells and CTLs in spleen of Renca tumor-bearing mice. In summary, our data indicate that the KOMAP exerts effective immunoregulatory and anti-tumor activities in vivo.

  14. Molecular properties and antioxidant activities of polysaccharides isolated from alkaline extract of wild Armillaria ostoyae mushrooms.

    PubMed

    Siu, Ka-Chai; Xu, Lijian; Chen, Xia; Wu, Jian-Yong

    2016-02-10

    This study aims to discover novel and bioactive polysaccharides (PS) from wild Armillaria ostoyae, a honey mushroom species. Two PS designated AkPS1V-1 (66.6 kDa) and AkPS1V-2 (15.3 kDa) were isolated and fractionated by anion ion exchange (IEC) and size exclusion chromatography (SEC) from the alkaline extract of A. ostoyae mushrooms. AkPS1V-1 was a glucan composed of solely glucose residues and AkPS1V-2 a heteropolysaccharide composed of glucose and galactose at 6:1 molar ratio. AkPS1V-2 exhibited higher antioxidant activities than AkPS1V-1 based on reducing power, radical scavenging and metal chelating assays. The structure of AkPS1V-2 was further analyzed and elucidated as a branched galactoglucan with a backbone composed of (1→6)-β-D-glucopyranosyl, (1→3)-β-D-glucopyranosyl, (1→3)-α-D-galactopyranosyl and (1→3,6)-β-D-glucopyranosyl residues at 3:1:1:1 ratio, and side chain of (1→3)-β-D-glucopyranosyl residue. This is the first report on a pure PS structure and its antioxidant activities from this mushroom species. PMID:26686187

  15. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    PubMed

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.

  16. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto B.; Zaitseva, Svetlana V.; Gorlenko, Vladimir M.; Kozyreva, Ludmila P.; Namsaraev, Bair B.

    2015-11-01

    A striking feature of the Mongolian plateau is the wide range of air temperatures during a year, -30 to 30°C. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L•d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L•d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L•d), while that of methanogenesis was 75.6 μL CN4/(L•d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.

  17. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants.

  18. Benzylic Phosphates in Friedel-Crafts Reactions with Activated and Unactivated Arenes: Access to Polyarylated Alkanes.

    PubMed

    Pallikonda, Gangaram; Chakravartya, Manab

    2016-03-01

    Easily reachable electron-poor/rich primary and secondary benzylic phosphates are suitably used as substrates for Friedel-Crafts benzylation reactions with only 1.2 equiv activated/deactivated arenes (no additional solvent) to access structurally and electronically diverse polyarylated alkanes with excellent yields and selectivities at room temperature. Specifically, diversely substituted di/triarylmethanes are generated within 2-30 min using this approach. A wide number of electron-poor polyarylated alkanes are easily accomplished through this route by just tuning the phosphates. PMID:26835977

  19. The active centre of rabbit muscle triose phosphate isomerase. The site that is labelled by glycidol phosphate.

    PubMed

    Miller, J C; Waley, S G

    1971-06-01

    1. Glycidol (2,3-epoxypropanol) phosphate is a specific irreversible inhibitor of rabbit muscle triose phosphate isomerase (EC 5.3.1.1); the site of attachment has now been studied. 2. The labelled enzyme was digested with pepsin and a modified peptide isolated. The sequence of the peptide is: Ala-Tyr-Glu-Pro-Val-Trp. 3. It is the glutamic acid residue in this peptide that is labelled: the peptide is thus a gamma-glutamyl ester derived from glycerol phosphoric acid. The same site is labelled by a mixture of glycidol and inorganic phosphate. 4. Kinetic and stereochemical features of these reactions are discussed.

  20. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change. PMID:26895537

  1. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.

  2. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  3. Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia.

    PubMed

    Pei, Juan-Juan; Wang, Zhen-Bin; Ma, Hai-Le; Yan, Jing-Kun

    2015-01-22

    A novel high molecular weight polysaccharide (PL-N1) was isolated from alkaline extract of the cultured Phellinus linteus mycelia. The weight average molecular weight (Mw) of PL-N1 was estimated at 343,000kDa. PL-N1 comprised arabinose, xylose, glucose, and galactose in the molar ratio of 4.0:6.7:1.3:1.0. The chemical structure of PL-N1 was investigated by FTIR and NMR spectroscopies and methylation analysis. The results showed that the backbone of PL-N1 comprised (1→4)-linked β-D-xylopyranosyl residues, (1→2)-linked α-D-xylopyranosyl residues, (1→4)-linked α-D-glucopyranosyl residues, (1→5)-linked β-D-arabinofuranosyl residues, (1→4)-linked β-D-xylopyranosyl residues which branched at O-2, and (1→4)-linked β-D-galactopyranosyl residues which branched at O-6. The branches consisted of (1→)-linked α-D-arabinofuranosyl residues. Antitumor activity assay in vitro showed that PL-N1 could inhibit the growth of HepG2 cells to a certain extent in a dose-dependent manner. Thus, PL-N1 may be developed as a potential, natural antitumor agent and functional food.

  4. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  5. The effect of ultrasound on the catalytic activity of alkaline carbons: preparation of N-alkyl imidazoles

    NASA Astrophysics Data System (ADS)

    Durán-Valle, C. J.; Ferrera-Escudero, S.; Calvino-Casilda, V.; Díaz-Terán, J.; Martín-Aranda, R. M.

    2004-11-01

    N-Alkyl imidazoles have been prepared by sonochemical irradiation of imidazole and 1-bromobutane using alkaline promoted carbons. Under the experimental conditions, N-alkyl imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing basicity of the catalyst. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  6. Properties of Ce-activated alkali-lutetium double phosphate scintillators

    SciTech Connect

    Wiśniewski, D.; Wojtowicz, A. J.; Boatner, Lynn A

    2010-01-01

    The scintillation properties of Ce-activated alkali-lutetium double phosphate single crystals that vary with the alkali ion type and activation level are summarized and compared. The materials investigated here have been identified as fast and efficient scintillators for the detection of x-ray and radiation, and in case of Li3Lu(PO4)2:Ce, for thermal neutron detection as well.

  7. Effect of neonatal MSG treatment on day-night alkaline phosphatase activity in the rat duodenum.

    PubMed

    Martinková, A; Lenhardt, L; Mozes, S

    2000-01-01

    The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to

  8. Determination of phosphate in natural waters by activation analysis of tungstophosphoric acid

    USGS Publications Warehouse

    Allen, Herbert E.; Hahn, Richard B.

    1969-01-01

    Activation analysis may be used to determine quantitatively traces of phosphate in natural waters. Methods based on the reaction 31P(n,γ)32P are subject to interference by sulfur and chlorine which give rise to 32P through n,p and n,α reactions. If the ratio of phosphorus to sulfur or chlorine is small, as it is in most natural waters, accurate analyses by these methods are difficult to achieve. In the activation analysis method, molybdate and tungstate ions are added to samples containing phosphate ion to form tungstomolybdophosphoric acid. The complex is extracted with 2,6-dimethyl-4-heptanone. After activation of an aliquot of the organic phase for 1 hour at a flux of 1013 neutrons per cm2, per second, the gamma spectrum is essentially that of tungsten-187. The induced activity is proportional to the concentration of phosphate in the sample. A test of the method showed it to give accurate results at concentrations of 4 to at least 200 p.p.b. of phosphorus when an aliquot of 100 μl. was activated. By suitable reagent purification, counting for longer times, and activation of larger aliquots, the detection limit could be lowered several hundredfold.

  9. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  10. [Influences of uncommon isoenzymes on determination of alkaline phosphatase activity by dry-chemistry analyzers].

    PubMed

    Tozawa, T; Hashimoto, M

    2001-04-01

    Dry-chemistry(DC) analysis may be influenced by some matrix effects for measuring uncommon isoenzyme forms. Placental and intestinal alkaline phosphatase(AP) are overestimated by the VITROS DC, compared with results obtained with the wet-chemistry(WC) method of Bretaudiere, et al. using 2-amino-2-methyl-1-propanol (AMP) buffer, however, no such discrepancy between AP results in any DC method and that with a routine WC method recommended by Japanese Society of Clinical Chemistry in that 2-ethylaminoethanol(EAE) buffer is used, has been demonstrated. The type of buffer used affects differently the rates of AP isoenzymes activities. We therefore examined whether the presence of uncommon AP isoenzyme forms in serum caused aberrant DC results for AP in comparison with a routine WC method using EAE buffer. Here, serum samples with only liver AP and bone AP(n : 32); high-molecular-mass AP(n : 11); placental AP(n : 12); intestinal AP(n : 13) and immunoglobulin (Ig) bound AP(n : 12) were analyzed for total AP activity on three different DC analyzers: VITROS 700XR, FUJIDRYCHEM 5000, SPOTCHEM 4410 and a WC analyzer: HITACHI 7350. Values obtained in all of the DCs for sera containing only liver/bone AP agreed with those with the WC method. For sera containing placental AP, the VITROS values were higher than those with the WC method, while the FUJIDRYCHEM values and the SPOTCHEM values were lower. The VITROS values and the FUJIDRYCHEM values for sera containing intestinal AP were lower than those with the WC method, while the SPOTCHEM values were higher. All of the DCs did not affect high-molecular-mass AP and Ig bound liver/bone AP types of macro AP, but underestimated Ig bound intestinal type. Ig bound intestinal AP may be sieved by DC multilayer elements. PMID:11391954

  11. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation.

    PubMed

    Tong, Juan; Chen, Yinguang

    2007-10-15

    This paper examines the feasibility of using alkaline fermentative short-chain fatty acids (SCFAs) as the carbon sources of enhanced biological phosphorus removal (EBPR) microorganisms. First, the released phosphorus was recovered from the SCFA-containing alkaline fermentation liquid by the formation of struvite precipitation, and 92.8% of the soluble ortho-phosphorus (SOP) could be recovered under conditions of Mg/P = 1.8 (mol/mol), pH 10.0, and a reaction time of 2 min. One reason for a Mg addition required in this study that was higher than the theoretical value was thatthe organic compounds consumed Mg. Then, two sequencing batch reactors (SBRs) were operated, respectively, with acetic acid and alkaline fermentative SCFAs as the carbon source of EBPR. The transformations of SOP, polyhydroxyalkanoates (PHAs), and glycogen and the removal of phosphorus were compared between two SBRs. It was observed that the phosphorus removal efficiency was around 98% with the fermentative SCFAs, and about 71% with acetic acid, although the former showed much lower transformations of both PHAs and glycogen. The reasons that fermentative SCFAs caused much higher SOP removal than acetic acid were due to less PHAs used for glycogen synthesis and a higher PHA utilization efficiency for SOP uptake. Finally, the toxicity of fermentation liquid to EBPR microorganisms was examined, and no inhibitory effect was observed. It can be concluded from this studythatthe SCFAs from alkaline fermentation of waste activated sludge were a superior carbon source for EBPR microorganisms than pure acetic acid.

  12. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light.

    PubMed

    Li, Hao; Guo, Sijie; Li, Chuanxi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-05-13

    The phosphate functionalized carbon dots (PCDs) with high biocompatibility and low toxicity can be used as efficient additives for the construction of laccase/PCDs hybrids catalyst. A series of experiments indicated that the activity of laccase/PCDs was higher than that of free laccase (increased by 47.7%). When laccase/PCDs hybrids catalyst was irradiated with visible light (laccase/PCDs-Light), its activity was higher than that of laccase/PCDs hybrids without light irradiation (increased by 92.1%). In the present system, the T1 Cu in laccase was combined with the phosphate group on PCDs, which can increase binding capacity of laccase/PCDs hybrids and substrate. Further, the visible light irradiation increased the donating and accepting electronic capability of the laccase/PCDs hybrids, improving their catalytic activity.

  13. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    PubMed Central

    Saini, Deepti; Kala, Mrinalini; Jain, Vishal; Sinha, Subrata

    2005-01-01

    Background The isozymes of alkaline phosphatase, the tissue non-specific, intestinal and placental, have similar properties and a high degree of identity. The placental isozyme (PLAP) is an oncofetal antigen expressed in several malignancies including choriocarcinoma, seminoma and ovarian carcinoma. We had earlier attempted to isolate PLAP-specific scFv from a synthetic human immunoglobulin library but were unable to do so, presumably because of the similarity between the isozymes. In this work, we have employed a PLAP-specific uncompetitive inhibitor, L-Phe-Gly-Gly, to select isozyme specific scFvs. An uncompetitive inhibitor binds to the enzyme in the presence of substrate and stabilizes the enzyme-substrate complex. Several uncompetitive inhibitors have varying degrees of isozyme specificity for human alkaline phosphatase isozymes. A specific uncompetitive inhibitor would be able to unmask conformational differences between the otherwise very similar molecules. Also, such inhibitors would be directed to regions at/close to the active site of the enzyme. In this work, the library was first incubated with PLAP and the bound clones then eluted by incubation with L-Phe-Gly-Gly along with the substrate, para-nitro phenyl phosphate (pNPP). The scFvs were then studied with regard to the biochemical modulation of their binding, isozyme specificity and effect on enzyme activity. Results Of 13 clones studied initially, the binding of 9 was inhibited by L-Phe-Gly-Gly (with pNPP) and 2 clones were inhibited by pNPP alone. Two clones had absolute and 2 clones had partial specificity to PLAP. Two clones were cross-reactive with only one other isozyme. Three scFv clones, having an accessible His6-tag, were purified and studied for their modulation of enzyme activity. All the three scFvs inhibited PLAP activity with the kinetics of competitive inhibition. Cell ELISA could demonstrate binding of the specific scFvs to the cell surface expressed PLAP. Conclusion The results

  14. Measurements of metabolically active inorganic phosphate in plants growing in natural and agronomic settings and under water stress. [Stromal Phosphate

    SciTech Connect

    Sharkey, T.D.

    1988-01-01

    At high rates of photosynthesis, the conflicting requirements of adenosine triphosphate (ATP) synthesis for phosphate and starch and sucrose synthesis for low phosphate, may limit the overall rate of photosynthesis. This is called feedback limitation of photosynthesis. A nonaqueous fractionation technique was used to measure stromal phosphate levels without contamination from vacuolar phosphate. Under normal conditions the stromal phosphate level was found to be 7mM. Under feedback limited photosynthesis, this value dropped to <1mM. In a related study, the effect of water stress on photosynthesis was examined. Water stress was shown to cause a decrease in total leaf photosynthesis, due not to a total loss of photosynthetic ability, but rather due to photosynthesis only occurring in patches of the leaf. Water stress was shown to cause a reduction in starch and sucrose synthesis. Since this decline can be reversed by increasing the CO{sub 2} level around the plant, this is proposed to be due to closing of stomata due to the water stress. (MHB)

  15. Activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) by rubisco activase : effects of some sugar phosphates.

    PubMed

    Lilley, R M; Portis, A R

    1990-09-01

    The activation of purified ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) has been studied in the presence of sugar phosphates, and the effect of rubisco activase on this process determined. During an 11-minute time course at pH 7.7 and 11 micromolar CO(2), the activation of rubisco was strongly inhibited by ribulose-1,5-bisphosphate (4 millimolar), fructose-1,6-bisphosphate (1 millimolar) and ribose 5-phosphate (5 millimolar), but this inhibition was overcome by the addition of rubisco activase and activation then proceeded to a greater extent than spontaneous activation of rubisco. Glycerate 3-phosphate (20 millomolar) slowed the initial rate but not the extent of activation and rubisco activase had no effect on this. The activation of rubisco was shown to be affected by phosphoenolpyruvate (3 millimolar) but not by creatine phosphate (3 millimolar) or ATP (3 millimolar), and the creatine-phosphate/creatine phosphokinase system was used to generate the high ATP/ADP quotients required for rubisco activase to function. ATP was shown to be required for the rubisco activase-dependent rubisco activation in the presence of fructose-1,6-bisphosphate (1 millimolar). It is concluded that rubisco activase has a mixed specificity for some sugar phosphate-bound forms of rubisco, but has low or no activity with others. Some possible bases for these differences among sugar phosphates are discussed but remain to be established.

  16. Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase.

    PubMed

    McDonald, Charles J; Acheff, Eric; Kennedy, Ryan; Taylor, Lynn; Curthoys, Norman P

    2015-09-01

    The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.

  17. Acetyl cholinesterase activity and muscle contraction in the sea urchin Lytechinus variegatus (Lamarck) following chronic phosphate exposure.

    PubMed

    Boettger, S Anne; McClintock, James B

    2012-03-01

    The common shallow-water sea urchin Lytechinus variegatus is capable of surviving inorganic phosphate exposures as high as 3.2 mg L(-1) and organic phosphate exposures of 1000 mg L(-1) . Nonetheless, chronic exposure to low, medium, and high-sublethal concentrations of organic phosphate inhibits the muscle enzyme acetyl cholinesterase (AChE), responsible for the break down of the neurotransmitter acetylcholine, as well as inhibiting contractions in the muscles associated with the Aristotle's lantern. AChE activity, measured in both a static enzyme assay and by vesicular staining, displayed concentration-dependent declines of activity in individuals maintained in organic phosphate for 4 weeks. The activity of AChE was not adversely affected by exposure to inorganic phosphate or seawater controls over the same time period. Maximum force of muscle contraction and rates of muscle contraction and relaxation also decreased with chronic exposure to increasing concentrations of organic phosphate. Chronic exposure to inorganic phosphates elicited no response except at the highest concentration, where the maximum force of muscular contraction increased compared to controls. These findings indicate that shallow-water populations of Lytechinus variegatus subjected to organic phosphate pollutants may display impaired muscular activity that is potentially related to the inhibition of the muscle relaxant enzyme AChE, and subsequently muscular overstimulation, and fatigue.

  18. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  19. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    SciTech Connect

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. )

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  20. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  1. Effect of endosulfan on acid and alkaline phosphatase activity in liver, kidney, and muscles of Channa gachua

    SciTech Connect

    Sharma, R.M. )

    1990-03-01

    The widespread use of a great many toxic chemicals to eliminate unwanted plant or animal species has resulted in the contamination of most aquatic habitats with these substances on a regular basis. Endosulfan, a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known organochlorine insecticide on the activity of acid and alkaline phosphatase in liver, kidney and muscles of a freshwater teleost, Channa gachua.

  2. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  3. Leucine Aminopeptidase, β-Glucosidase and Alkaline Phosphatase Activity Rates and Their Significance in Nutrient Cycles in Some Coastal Mediterranean Sites

    PubMed Central

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and β-glucosidase, β-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the “potential” metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and β-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. β-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  4. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    PubMed

    Caruso, Gabriella

    2010-01-01

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  5. Leucine aminopeptidase, beta-glucosidase and alkaline phosphatase activity rates and their significance in nutrient cycles in some coastal Mediterranean sites.

    PubMed

    Caruso, Gabriella

    2010-03-29

    In aquatic microbial ecology, knowledge of the processes involved in the turnover of organic matter is of utmost importance to understand ecosystem functioning. Microorganisms are major players in the cycling of nutrients (nitrogen, phosphorus) and carbon, thanks to their enzymatic activities (leucine aminopeptidase, LAP, alkaline phosphatase, AP, and beta-glucosidase, beta-GLU) on organic polymers (proteins, organic phosphates and polysaccharides, respectively). Estimates of the decomposition rates of organic polymers are performed using fluorogenic compounds, whose hydrolysis rate allow us to obtain information on the "potential" metabolic activity of the prokaryotic community. This paper refers the enzyme patterns measured during recent oceanographic cruises performed in some coastal Mediterranean sites, not yet fully investigated in terms of microbial biogeochemical processes. Mean enzyme activity rates ranged from 5.24 to 5558.1 nM/h, from 12.68 to 244.73 nM/h and from 0.006 to 9.51 nM/h for LAP, AP and beta-GLU, respectively. The highest LAP and AP activity rates were measured in the Gulf of Milazzo (Tyrrhenian Sea) and in the Straits of Messina, in association with the lowest bacterioplankton abundance; in contrast, the lowest ones were found in the northern Adriatic Sea. beta-GLU was more active in the Straits of Messina. Activity rates were analysed in relation to the main environmental variables. Along the northern Adriatic coastal side affected by the Po river, significant inverse relationships linked LAP and AP with salinity, pointing out that fluvial inputs provided organic substrates for microbial metabolism. Both in the Gulf of Manfredonia and in the Straits of Messina, LAP and AP levels were inversely related with the concentration of nitrate and inorganic phosphorus, respectively. In the Gulf of Milazzo, high cell-specific AP measured in spite of phosphorus availability suggested the role of this enzyme not only in phosphorus, but also in carbon

  6. Allosteric properties of phosphate-activated glutaminase of human liver mitochondria.

    PubMed

    Snodgrass, P J; Lund, P

    1984-03-22

    The kinetics of human liver phosphate-activated glutaminase were studied in mitochondria isolated from surgical biopsies. The pH profile and activation by phosphate closely resembled rat liver glutaminase and differed clearly from human or rat kidney mitochondrial glutaminases. The activity responses to glutamine or phosphate were allosteric, showing positive cooperativity, as in the rat liver enzyme. Exogenous 1 mM NH4Cl shifted the glutamine concentration at half-maximal velocity, [Gln]0.5, to lower values without changing Vmax or sigmoidicity. Hill plots showed a parallel shift to the left with NH4Cl and the apparent number of binding sites, nH, was 2-3. 25 mM KHCO3 gave the same effects as NH4Cl on [Gln]0.5, Vmax, sigmoidicity and nH. The combination of the two activators was less than additive. Glutamate did not inhibit. We postulate that liver glutaminase is allosteric in its kinetics because it plays a key role in urea synthesis by regulating provision of glutamate for synthesis of N-acetylglutamate, the obligatory co-factor of carbamoylphosphate synthetase. PMID:6704422

  7. A Novel Bifunctional Hybrid with Marine Bacterium Alkaline Phosphatase and Far Eastern Holothurian Mannan-Binding Lectin Activities

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Kovalchuk, Svetlana; Bulgakov, Alexander; Likhatskaya, Galina; Son, Oksana; Rasskazov, Valery

    2014-01-01

    A fusion between the genes encoding the marine bacterium Cobetia marina alkaline phosphatase (CmAP) and Far Eastern holothurian Apostichopus japonicus mannan-binding C-type lectin (MBL-AJ) was performed. Expression of the fusion gene in E. coli cells resulted in yield of soluble recombinant chimeric protein CmAP/MBL-AJ with the high alkaline phosphatase activity and specificity of the lectin MBL-AJ. The bifunctional hybrid CmAP/MBL-AJ was produced as a dimer with the molecular mass of 200 kDa. The CmAP/MBL-AJ dimer model showed the two-subunit lectin part that is associated with two molecules of alkaline phosphatase functioning independently from each other. The highly active CmAP label genetically linked to MBL-AJ has advantaged the lectin-binding assay in its sensitivity and time. The double substitution A156N/F159K in the lectin domain of CmAP/MBL-AJ has enhanced its lectin activity by 25±5%. The bifunctional hybrid holothurian's lectin could be promising tool for developing non-invasive methods for biological markers assessment, particularly for improving the MBL-AJ-based method for early detection of a malignant condition in cervical specimens. PMID:25397876

  8. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    PubMed

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  9. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.

    PubMed

    Eyckmans, Jeroen; Roberts, Scott J; Bolander, Johanna; Schrooten, Jan; Chen, Christopher S; Luyten, Frank P

    2013-06-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 h after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved.

  10. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.

    PubMed

    Blake, Ruth E; Chang, Sae Jung; Lepland, Aivo

    2010-04-15

    Oxygen and silicon isotope compositions of cherts and studies of protein evolution have been interpreted to reflect ocean temperatures of 55-85 degrees C during the early Palaeoarchaean era ( approximately 3.5 billion years ago). A recent study combining oxygen and hydrogen isotope compositions of cherts, however, makes a case for Archaean ocean temperatures being no greater than 40 degrees C (ref. 5). Ocean temperature can also be assessed using the oxygen isotope composition of phosphate. Recent studies show that (18)O:(16)O ratios of dissolved inorganic phosphate (delta(18)O(P)) reflect ambient seawater temperature as well as biological processing that dominates marine phosphorus cycling at low temperature. All forms of life require and concentrate phosphorus, and as a result of biological processing, modern marine phosphates have delta(18)O(P) values typically between 19-26 per thousand (VSMOW), highly evolved from presumed source values of approximately 6-8 per thousand that are characteristic of apatite in igneous rocks and meteorites. Here we report oxygen isotope compositions of phosphates in sediments from the 3.2-3.5-billion-year-old Barberton Greenstone Belt in South Africa. We find that delta(18)O(P) values range from 9.3 per thousand to 19.9 per thousand and include the highest values reported for Archaean rocks. The temperatures calculated from our highest delta(18)O(P) values and assuming equilibrium with sea water with delta(18)O = 0 per thousand (ref. 12) range from 26 degrees C to 35 degrees C. The higher delta(18)O(P) values are similar to those of modern marine phosphate and suggest a well-developed phosphorus cycle and evolved biologic activity on the Archaean Earth. PMID:20393560

  11. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean.

    PubMed

    Blake, Ruth E; Chang, Sae Jung; Lepland, Aivo

    2010-04-15

    Oxygen and silicon isotope compositions of cherts and studies of protein evolution have been interpreted to reflect ocean temperatures of 55-85 degrees C during the early Palaeoarchaean era ( approximately 3.5 billion years ago). A recent study combining oxygen and hydrogen isotope compositions of cherts, however, makes a case for Archaean ocean temperatures being no greater than 40 degrees C (ref. 5). Ocean temperature can also be assessed using the oxygen isotope composition of phosphate. Recent studies show that (18)O:(16)O ratios of dissolved inorganic phosphate (delta(18)O(P)) reflect ambient seawater temperature as well as biological processing that dominates marine phosphorus cycling at low temperature. All forms of life require and concentrate phosphorus, and as a result of biological processing, modern marine phosphates have delta(18)O(P) values typically between 19-26 per thousand (VSMOW), highly evolved from presumed source values of approximately 6-8 per thousand that are characteristic of apatite in igneous rocks and meteorites. Here we report oxygen isotope compositions of phosphates in sediments from the 3.2-3.5-billion-year-old Barberton Greenstone Belt in South Africa. We find that delta(18)O(P) values range from 9.3 per thousand to 19.9 per thousand and include the highest values reported for Archaean rocks. The temperatures calculated from our highest delta(18)O(P) values and assuming equilibrium with sea water with delta(18)O = 0 per thousand (ref. 12) range from 26 degrees C to 35 degrees C. The higher delta(18)O(P) values are similar to those of modern marine phosphate and suggest a well-developed phosphorus cycle and evolved biologic activity on the Archaean Earth.

  12. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium.

    PubMed

    Zhu, Yansong; Zhang, Bingsen; Wang, Da-Wei; Su, Dang Sheng

    2015-12-01

    In alkaline medium, it seems that both metal-free and iron-containing carbon-based catalysts, such as nitrogen-doped nanocarbon materials, FeOx -doped carbon, and Fe/N/C catalysts, are active for the oxygen reduction reaction (ORR). However, the order of activity of these different active compositions has not been clearly determined. Herein, we synthesized nitrogen-doped carbon black (NCB), Fe3 O4 /CB, Fe3 O4 /NCB, and FeN4 /CB. Through the systematic study of the ORR catalytic activity of these four catalysts in alkaline solution, we confirmed the difference in the catalytic activity and catalytic mechanism for nitrogen, iron oxides, and Fe-N complexes, respectively. In metal-free NCB, nitrogen can improve the ORR catalytic activity with a four-electron pathway. Fe3 O4 /CB catalyst did not exhibit improved activity over that of NCB owing to the poor conductivity and spinel structure of Fe3 O4 . However, FeN4 coordination compounds as the active sites showed excellent ORR catalytic activity.

  13. Inactivation of highly activated spinach leaf sucrose-phosphate synthase by dephosphorylation. [Spinacia oleracea

    SciTech Connect

    Huber, J.L. ); Huber, S.C. North Carolina State Univ., Raleigh ); Hite, D.R.C.; Outlaw, W.H. Jr. )

    1991-01-01

    Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be phosphorylated and inactivated in vitro with ({gamma}-{sup 32}P)ATP. Thus, it was surprising to find that SPS, extracted from leaves fed mannose in the light to highly activate the enzyme, could be inactivated in an ATP-independent manner when desalted crude extracts were preincubated at 25{degrees}C before assay. The spontaneous inactivation involved a loss in activity measured with limiting substrate concentrations in the presence of the inhibitor, Pi, without affecting maximum catalytic activity. The spontaneous inactivation was unaffected by exogenous carrier proteins and protease inhibitors, but was inhibited by inorganic phosphate, fluoride, and molybdate, suggesting that a phosphatase may be involved. Okadaic acid, a potent inhibitor of mammalian type 1 and 2A protein phosphatases, had no effect up to 5 micromolar. Inactivation was stimulated about twofold by exogenous Mg{sup 2+} and was relatively insensitive to Ca{sup 2+} and to pH over the range pH 6.5 to 8.5. Radioactive phosphate incorporated into SPS during labeling of excised leaves with ({sup 32}P)Pi (initially in the dark and then in the light with mannose) was lost with time when desalted crude extracts were incubated at 25 C, and the loss in radiolabel was substantially reduced by fluoride. These results provide direct evidence for action of an endogenous phosphatase(s) using SPS as substrate.

  14. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.

    PubMed

    Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; Rasskazov, Valery

    2015-04-01

    The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters. PMID:25260971

  15. Variation in alkaline-phosphatase activity with changing load on the mandibular condylar cartilage in the rat.

    PubMed

    Bouvier, M

    1987-01-01

    Biomechanical loads were varied by feeding diets of different consistencies. One group was fed hard diet for eight weeks, a second soft diet for eight weeks, and a third soft diet for four weeks followed by four weeks of hard diet. In all groups, alkaline-phosphatase activity was localized primarily in cells and extracellular matrix of the hypertrophic zone, and in cells lining trabeculae of the subcondylar bone. The staining intensity in the hypertrophic zone was slightly less in the soft-diet and soft/hard-diet groups than in the hard-diet group. The thickness of the cell layer staining positively for alkaline-phosphatase was significantly less in the soft-diet group than in the hard- and soft/hard-diet groups.

  16. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate

    SciTech Connect

    Stankiewicz, P.J.; Gresser, M.J.; Tracey, A.S.; Hass, L.F.

    1987-03-10

    The binding of inorganic vanadate (V/sub i/) to rabbit muscle phosphoglycerate mutase (PGM), studied by using /sup 51/V nuclear magnetic resonance spectroscopy, shows a sigmoidal dependence on vanadate concentration with a stoichiometry of four vanadium atoms per PGM molecule at saturating (V/sub i/). The data are consistent with binding of one divanadate ion to each of the two subunits of PGM in a noncooperative manner with an intrinsic dissociation constant of 4 x 10/sup -6/ M. The relevance of this result to other studies which have shown that the V/sub i/-stimulated 2,3-diphosphoglycerate (2,3-DPG) phosphatase activity of PGM has a sigmoidal dependence on (V/sub i/) with a Hill coefficient of 2.0 is discussed. At pH 7.0, inorganic phosphate has little effect on the 2,3-DPG phosphatase activity of PGM, even at concentrations as high as 50 mM. Similarly, 25 ..mu..M V/sub i/ has little effect on the phosphatase activity. However, in the presence of 25 ..mu..M V/sub i/, a phosphate concentration of 20 mM increases the phosphatase activity by more than 3-fold. This behavior is rationalized in terms of activation of the phosphatase activity by a phosphate/vanadate mixed anhydride. This interpretation is supported by the observation of strong activation of the phosphatase activity by inorganic pyrophosphate. A molecular mechanism for the observed effects of vanadate is proposed, and the relevance of this study to the possible use of vanadate as a therapeutic agent for the treatment of sickle cell anemia is discussed.

  17. A signal "on" photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase.

    PubMed

    Yin, Huanshun; Sun, Bing; Dong, Linfeng; Li, Bingchen; Zhou, Yunlei; Ai, Shiyun

    2015-02-15

    A highly sensitive and selective photoelectrochemical (PEC) biosensor is fabricated for the detection of protein kinase activity based on visible-light active graphite-like carbon nitride (g-C3N4) and the specific recognition utility of Phos-tag for protein kinase A (PKA)-induced phosphopeptides. For assembling the substrate peptides, g-C3N4 and gold nanoparticles (g-C3N4-AuNPs) complex is synthesized and characterized. When the immobilized peptides on g-C3N4-AuNPs modified ITO electrode are phosphorylated under PKA catalysis, they can be specifically identified and binded with biotin functionalized Phos-tag (Phos-tag-biotin) in the presence of Zn(2+). Then, through the specific interaction between biotin and avidin, avidin functionalized alkaline phosphatase (avidin-ALP) is further assembled to catalyze its substrate of l-ascorbic acid-2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting an increased photocurrent compared with the absence of phosphorylation event. Based on the specific identification effect of Phos-tag, the fabricated biosensor presents excellent selectivity for capturing the phosphorylated serine residues in the substrate peptides. With the good photoactivity of g-C3N4 and ALP-catalyzed signal amplification, the fabricated biosensor presents high sensitivity and low detection limit (0.015 unit/mL, S/N = 3) for PKA. The applicability of this PEC biosensor is further testified by the evaluation of PKA inhibition by HA-1077 with the IC50 value of 1.18μM. This new strategy is also successfully applied to detect the change of PKA activity in cancer cell lysate with and without drug stimulation. Therefore, the developed PEC method has great potential in screening of kinase inhibitors and highly sensitive detection of kinase activity.

  18. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts.

  19. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    PubMed

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  20. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis.

    PubMed

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng; Angelidaki, Irini; Luo, Gang

    2016-10-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10. PMID:27420808

  1. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  2. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  3. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media.

    PubMed

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-08-27

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media.

  4. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  5. Mutational analysis of the active site of indoleglycerol phosphate synthase from Escherichia coli.

    PubMed Central

    Darimont, B.; Stehlin, C.; Szadkowski, H.; Kirschner, K.

    1998-01-01

    Indoleglycerol phosphate synthase catalyzes the ring closure of 1-(2-carboxyphenylamino)-1-deoxyribulose 5'-phosphate to indoleglycerol phosphate, the fifth step in the pathway of tryptophan biosynthesis from chorismate. Because chemical synthesis of indole derivatives from arylamino ketones requires drastic solvent conditions, it is interesting by what mechanism the enzyme catalyzes the same condensation reaction. Seven invariant polar residues in the active site of the enzyme from Escherichia coli have been mutated directly or randomly, to identify the catalytically essential ones. A strain of E. coli suitable for selecting and classifying active mutants by functional complementation was constructed by precise deletion of the trpC gene from the genome. Judged by growth rates of transformants on selective media, mutants with either S58 or S60 replaced by alanine were indistinguishable from the wild-type, but R186 replaced by alanine was still partially active. Saturation random mutagenesis of individual codons showed that E53 was partially replaceable by aspartate and cysteine, whereas K114, E163, and N184 could not be replaced by any other residue. Partially active mutant proteins were purified and their steady-state kinetic and inhibitor binding constants determined. Their relative catalytic efficiencies paralleled their relative complementation efficiencies. These results are compatible with the location of the essential residues in the active site of the enzyme and support a chemically plausible catalytic mechanism. It involves two enzyme-bound intermediates and general acid-base catalysis by K114 and E163 with the support of E53 and N184. PMID:9605328

  6. Phosphate oxygen isotope ratio proxy for specific microbial activity in marine sediments (Peru Margin)

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2005-12-01

    Oxygen (O) isotope ratios of biogenic apatites have been widely used as paleotemperature and environmental geochemical proxies. With improved knowledge of the phosphate O isotope effects of different P cycling pathways, the δ18O value of inorganic phosphate (δ18OP) has been proposed as a useful proxy and tracer of biological reactions and P cycling in natural environments[1,2,3,4]. Being the only way of removing P from oceanic water, sedimentary P burial is one of the most important processes during biogeochemical cycling of P. The high concentrations of organic matter and pronounced microbial activity at ODP Site 1230 along the Peru Margin result in unusually high interstitial water phosphate concentrations, which provides a unique opportunity to use δ18OP to investigate inorganic phosphate (Pi) regeneration and P cycling pathways in marine sediments. The isotopic measurements of both dissolved inorganic phosphate (DIP) and bulk sediment Pi show that DIP δ18OP values are affected by three different processes, which are all induced by specific microbial activities present in the sediments. In sediments at ~ 65 to 120 mbsf, porewater DIP is derived from dissolved organophosphorus compounds (DOP) through enzymatic degradation pathways, evidenced by both DIP δ18OP values and interstitial water chemistry. Measured porewater DIP δ18OP values also suggest that 4 to 8% of interstitial water DIP reflects regeneration of Pi from Porg by microbially-synthesized enzymes. Throughout the sediment column and especially at ~ 120 to 150 mbsf, DIP is released from the sediments by microbially-induced reductive dissolution of Fe-oxides, which contributes to the overall high DIP concentrations at Site 1230. The third and dominant process controlling measured DIP δ18OP values is microbial turnover of regenerated Pi. The presence of high microbial activities in organic-rich Site 1230 sediments promotes the remobilization of P and affects marine P cycling by potentially enhancing

  7. TWEAK favors phosphate-induced calcification of vascular smooth muscle cells through canonical and non-canonical activation of NFκB

    PubMed Central

    Hénaut, L; Sanz, A B; Martin-Sanchez, D; Carrasco, S; Villa-Bellosta, R; Aldamiz-Echevarria, G; Massy, Z A; Sanchez-Nino, M D; Ortiz, A

    2016-01-01

    Vascular calcification (VC) is associated with increased cardiovascular mortality in aging, chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM) and atherosclerosis. TNF-like weak inducer of apoptosis (TWEAK) recently emerged as a new biomarker for the diagnosis and prognosis of cardiovascular diseases. TWEAK binding to its functional receptor Fn14 was reported to promote several steps of atherosclerotic plaque progression. However, no information is currently available on the role of TWEAK/Fn14 on the development of medial calcification, which is highly prevalent in aging, CKD and T2DM. This study explored the involvement of TWEAK in human vascular smooth muscle cells (h-VSMCs) calcification in vitro. We report that TWEAK binding to Fn14 promotes inorganic phosphate-induced h-VSMCs calcification, favors h-VSMCs osteogenic transition, decreasing acta2 and myh11 and increasing bmp2 mRNA and tissue non-specific alkaline phosphatase (TNAP), and increases MMP9 activity. Blockade of the canonical NFκB pathway reduced by 80% TWEAK pro-calcific properties and decreased osteogenic transition, TNAP and MMP9 activity. Blockade of non-canonical NFκB signaling by a siRNA targeting RelB reduced by 20% TWEAK pro-calcific effects and decreased TWEAK-induced loss of h-VSMCs contractile phenotype and MMP9 activity, without modulating bmp2 mRNA or TNAP activity. Inhibition of ERK1/2 activation by a MAPK kinase inhibitor did not influence TWEAK pro-calcific properties. Our results suggest that TWEAK/Fn14 directly favors inorganic phosphate-induced h-VSMCs calcification by activation of both canonical and non-canonical NFκB pathways. Given the availability of neutralizing anti-TWEAK strategies, our study sheds light on the TWEAK/Fn14 axis as a novel therapeutic target in the prevention of VC. PMID:27441657

  8. Endocytosis of Ligand-Activated Sphingosine 1-Phosphate Receptor 1 Mediated by the Clathrin-Pathway.

    PubMed

    Reeves, Patrick M; Kang, Yuan-Lin; Kirchhausen, Tom

    2016-01-01

    The sphingosine 1-phosphate receptor 1 (S1PR1) is one of five G protein-coupled receptors activated by the lipid sphingosine 1-phosphate (S1P). Stimulation of S1PR1 by binding S1P or the synthetic agonist FTY720P results in rapid desensitization, associated in part with depletion of receptor from the cell surface. We report here combining spinning disc confocal fluorescence microscopy and flow cytometry to show that rapid internalization of activated S1PR1 relies on a functional clathrin-mediated endocytic pathway. Uptake of activated S1PR1 was strongly inhibited in cells disrupted in their clathrin-mediated endocytosis by depleting clathrin or AP-2 or by treating cells with dynasore-OH. The uptake of activated S1P1R was strongly inhibited in cells lacking both β-arrestin 1 and β-arrestin 2, indicating that activated S1PR1 follows the canonical route of endocytosis for G-protein coupled receptor's (GPCR)'s.

  9. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  10. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID

  11. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice.

    PubMed

    Okada, Atsushi; Shimizu, Takafumi; Okada, Kazunori; Kuzuyama, Tomohisa; Koga, Jinichiro; Shibuya, Naoto; Nojiri, Hideaki; Yamane, Hisakazu

    2007-09-01

    Diterpenoid phytoalexins such as momilactones and phytocassanes are produced via geranylgeranyl diphosphate in suspension-cultured rice cells after treatment with a chitin elicitor. We have previously shown that the production of diterpene hydrocarbons leading to phytoalexins and the expression of related biosynthetic genes are activated in suspension-cultured rice cells upon elicitor treatment. To better understand the elicitor-induced activation of phytoalexin biosynthesis, we conducted microarray analysis using suspension-cultured rice cells collected at various times after treatment with chitin elicitor. Hierarchical cluster analysis revealed two types of early-induced expression (EIE-1, EIE-2) nodes and a late-induced expression (LIE) node that includes genes involved in phytoalexins biosynthesis. The LIE node contains genes that may be responsible for the methylerythritol phosphate (MEP) pathway, a plastidic biosynthetic pathway for isopentenyl diphosphate, an early precursor of phytoalexins. The elicitor-induced expression of these putative MEP pathway genes was confirmed by quantitative reverse-transcription PCR. 1-Deoxy-D: -xylulose 5-phosphate synthase (DXS), 1-deoxy-D: -xylulose 5-phosphate reductoisomerase (DXR), and 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol synthase (CMS), which catalyze the first three committed steps in the MEP pathway, were further shown to have enzymatic activities that complement the growth of E. coli mutants disrupted in the corresponding genes. Application of ketoclomazone and fosmidomycin, inhibitors of DXS and DXR, respectively, repressed the accumulation of diterpene-type phytoalexins in suspension cells treated with chitin elicitor. These results suggest that activation of the MEP pathway is required to supply sufficient terpenoid precursors for the production of phytoalexins in infected rice plants.

  12. [Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo].

    PubMed

    Sibirnyi, A A; Shavlovskii, G M

    1978-01-01

    The rate of p-nitrophenyl phosphate and flavin mononucleotide (FMN) hydrolysis by the partially purified preparation of alkaline phosphatase I of Pichia guilliermondii flavinogenic yeast was studied as affected by different substrates and inorganic ions. Their Km was established to be 2.0 X 10(-4) m and 2.5 X 10(-4) M, respectively. Dephosphorylation of p-nitrophenylphosphate and FMN was inhibited competitively by beta-glycerophosphate (Ki = 3.1 X 10(-3) M, respectively). The presence of inorganic phosphate ions in the reaction mixture decreases or removes inhibition of these compounds hydrolysis by other substrates of alkaline phosphatase I. The activity of alkaline phosphatase I increases in the presence of Mg2+ and was strongly inhibited in the presence of Be2+, Cu2+, Zn2+, Cd2+ and inorganic phosphate, the mixture of Be2+ and F- being the most effective. This mixture inhibited the phosphatase activity of the partially purified preparation of alkaline phosphatase I of the cell-free extract as well as of intact cells in both the alkaline and acid zones of pH (8.6 and 5.5, respectively). Incubation of the washed iron-deficient P. guilliermondii cells in the presence of Be2+ and F- did not result in accumulation of FMN in the yeast culture. A possible role of nonspecific phosphomonoesterases in hydrolysis of FMN in vivo is discussed. PMID:208203

  13. Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa.

    PubMed

    Bucci, Diego; Giaretta, Elisa; Spinaci, Marcella; Rizzato, Giovanni; Isani, Gloria; Mislei, Beatrice; Mari, Gaetano; Tamanini, Carlo; Galeati, Giovanna

    2016-01-15

    Alkaline phosphatase (AP) has been studied in several situations to elucidate its role in reproductive biology of the male from different mammalian species; at present, its role in horse sperm physiology is not clear. The aim of the present work was to measure AP activity in seminal plasma and sperm extracts from freshly ejaculated as well as in frozen-thawed stallion spermatozoa and to verify whether relationship exists between AP activity and sperm quality parameters. Our data on 40 freshly ejaculated samples from 10 different stallions demonstrate that the main source of AP activity is seminal plasma, whereas sperm extracts contribution is very low. In addition, we found that AP activity at physiological pH (7.0) is significantly lower than that observed at pH 8.0, including the optimal AP pH (pH 10.0). Alkaline phosphatase did not exert any effect on sperm-oocyte interaction assessed by heterologous oocyte binding assay. Additionally, we observed a thermal stability of seminal plasma AP, concluding that it is similar to that of bone isoforms. Positive correlations were found between seminal plasma AP activity and sperm concentration, whereas a negative correlation was present between both spermatozoa extracts and seminal plasma AP activity and seminal plasma protein content. A significant decrease in sperm extract AP activity was found in frozen-thawed samples compared with freshly ejaculated ones (n = 21), concomitantly with the decrease in sperm quality parameters. The positive correlation between seminal plasma AP activity measured at pH 10 and viability of frozen-thawed spermatozoa suggests that seminal plasma AP activity could be used as an additional predictive parameter for stallion sperm freezability. In conclusion, we provide some insights into AP activity in both seminal plasma and sperm extracts and describe a decrease in AP after freezing and thawing.

  14. Regulation of Phosphate Accumulation in the Unicellular Cyanobacterium Synechococcus

    PubMed Central

    Grillo, John F.; Gibson, Jane

    1979-01-01

    The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent Km of about 0.5 μM, but Vmax was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15°C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity. PMID:227842

  15. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the decrease in the activities began prior to the onset of budding, reaching a low, basal level in early May. The profile of changes in the two dehydrogenase activities appeared to coincide with the increase and decrease of soluble proteins.Normal concentrations of total hexose phosphates in the glycolytic pathway plus 6-phosphogluconate were found to be 288 to 895 mumoles/kilogram dry weight. During the metabolism transition (September and April), a transient and striking increase of 6-phosphogluconate was observed. In September, 6-phosphogluconate reached a level on the order of 10(-4)m and was 4 times that of fructose 6-phosphate. The increase in 6-phosphogluconate coincided with the increase in the glucose 6-phosphate dehydrogenase activity. Coincidentally, with the change of 6-phosphogluconate level, a large deviation of the in vivo ratio of fructose 6-phosphate to glucose 6-phosphate from the known equilibrium constant was observed, showing the relation of pentose phosphate cycle enzyme activity to the control of glycolysis. The ratio of glucose 6-phosphate to glucose 1-phosphate deviated from that predicted. These ratios

  16. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates.

    PubMed

    Sagisaka, S

    1974-10-01

    Activities of glucose 6-phosphate, 6-phosphogluconate, and isocitrate dehydrogenases, together with intermediate levels of the glycolytic pathway and the pentose phosphate cycle, were measured throughout a year in the living bark of poplar (Populus gelrica). Shoots, immediately after budding (early May), contained very high levels of the three enzyme activities, which fell gradually by early or mid-July to a level, roughly equivalent to budding (May) or growing (July) 2-year-old twigs. In September, the former two dehydrogenase activities of the new shoots and 2-year-old twigs began to rise, while the latter activity started to decrease. The rise of the two dehydrogenase activities continued until late November (or early December). The high level of the two dehydrogenase activities lasted until early in April of the following year and then the decrease in the activities began prior to the onset of budding, reaching a low, basal level in early May. The profile of changes in the two dehydrogenase activities appeared to coincide with the increase and decrease of soluble proteins.Normal concentrations of total hexose phosphates in the glycolytic pathway plus 6-phosphogluconate were found to be 288 to 895 mumoles/kilogram dry weight. During the metabolism transition (September and April), a transient and striking increase of 6-phosphogluconate was observed. In September, 6-phosphogluconate reached a level on the order of 10(-4)m and was 4 times that of fructose 6-phosphate. The increase in 6-phosphogluconate coincided with the increase in the glucose 6-phosphate dehydrogenase activity. Coincidentally, with the change of 6-phosphogluconate level, a large deviation of the in vivo ratio of fructose 6-phosphate to glucose 6-phosphate from the known equilibrium constant was observed, showing the relation of pentose phosphate cycle enzyme activity to the control of glycolysis. The ratio of glucose 6-phosphate to glucose 1-phosphate deviated from that predicted. These ratios

  17. Toxic impact of aldrin on acid and alkaline phosphatase activity of penaeid prawn, Metapenaeus monoceros: In vitro study

    SciTech Connect

    Reddy, M.S.; Jayaprada, P.; Rao, K.V.R. )

    1991-03-01

    The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).

  18. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere.

    PubMed Central

    Kragelund, L; Hosbond, C; Nybroe, O

    1997-01-01

    The purpose of this study was to determine the metabolic activity of Pseudomonas fluorescens DF57 in the barley rhizosphere and to assess whether sufficient phosphate was available to the bacterium. Hence, two DF57 reporter strains carrying chromosomal luxAB gene fusions were introduced into the rhizosphere. Strain DF57-40E7 expressed luxAB constitutively, making bioluminescence dependent upon the metabolic activity of the cells under defined assay conditions. The DF57-P2 reporter strain responded to phosphate limitation, and the luxAB gene fusion was controlled by a promoter containing regulatory sequences characteristic of members of the phosphate (Pho) regulon. DF57 generally had higher metabolic activity in a gnotobiotic rhizosphere than in the corresponding bulk soil. Within the rhizosphere the distribution of metabolic activity along the root differed between the rhizosphere soil and the rhizoplane, suggesting that growth conditions may differ between these two habitats. The DF57-P2 reporter strain encountered phosphate limitation in a gnotobiotic rhizosphere but not in a natural rhizosphere. This difference in phosphate availability seemed to be due to the indigenous microbial population, as DF57-P2 did not report phosphate limitation when established in the rhizosphere of plants in sterilized soil amended with indigenous microorganisms. PMID:9406412

  19. Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity

    SciTech Connect

    Huber, J.L.A.; Huber, S.C. )

    1989-04-01

    Protein phosphorylation has been identified as a mechanism for the light-dark regulation of spinach sucrose-phosphate synthase (SPS) activity, previously shown to involve some type of covalent modification of the enzyme. The 120 kD subunit of SPS in extracts of light-treated leaves was labeled with {sup 32}P in the presence of ({gamma}-{sup 32}P) ATP. In this in vitro system, {sup 32}P incorporation into light-activated SPS was dependent upon ATP and magnesium concentrations as well as time, and was closely paralleled by inactivation of the enzyme. The soluble protein kinase involved in the interconversion of SPS between activated and deactivated forms may be specific for SPS as it co-purifies with SPS during partial purification of the enzyme. The kinase appears not to be calcium activated and no evidence has been obtained for metabolite control of SPS phosphorylation/inactivation.

  20. Alterations in activities of acid phosphatase, alkaline phosphatase, ATPase and ATP content in response to seasonally varying Pi status in okra (Abelmoschus esculentus).

    PubMed

    Sen, Supatra; Mukherji, S

    2004-04-01

    Phosphorus (P) is the second most important macronutrient for plant growth. Plants exhibit numerous physiological and metabolic adaptations in response to seasonal variations in phosphorus content. Activities of acid and alkaline phosphatases, ATPase and ATP content were studied in summer, rainy and winter seasons at two different developmental stages (28 and 58 days after sowing) in Okra. Activities of both acid and alkaline phosphatases increased manifold in winter to cope up with low phosphorus content. ATP content and ATPase activity were high in summer signifying an active metabolic period. Phosphorus deficiency is characterized by low ATP content and ATPase activity (which are in turn partly responsible for a drastic reduction in growth and yield) and enhanced activities of acid and alkaline phosphatases which increase the availability of P in P-deficient seasons.

  1. Bacillus cereus Phosphopentomutase Is an Alkaline Phosphatase Family Member That Exhibits an Altered Entry Point into the Catalytic Cycle

    SciTech Connect

    Panosian, Timothy D.; Nannemann, David P.; Watkins, Guy R.; Phelan, Vanessa V.; McDonald, W. Hayes; Wadzinski, Brian E.; Bachmann, Brian O.; Iverson, Tina M.

    2011-09-15

    Bacterial phosphopentomutases (PPMs) are alkaline phosphatase superfamily members that interconvert {alpha}-D-ribose 5-phosphate (ribose 5-phosphate) and {alpha}-D-ribose 1-phosphate (ribose 1-phosphate). We investigated the reaction mechanism of Bacillus cereus PPM using a combination of structural and biochemical studies. Four high resolution crystal structures of B. cereus PPM revealed the active site architecture, identified binding sites for the substrate ribose 5-phosphate and the activator {alpha}-D-glucose 1,6-bisphosphate (glucose 1,6-bisphosphate), and demonstrated that glucose 1,6-bisphosphate increased phosphorylation of the active site residue Thr-85. The phosphorylation of Thr-85 was confirmed by Western and mass spectroscopic analyses. Biochemical assays identified Mn{sup 2+}-dependent enzyme turnover and demonstrated that glucose 1,6-bisphosphate treatment increases enzyme activity. These results suggest that protein phosphorylation activates the enzyme, which supports an intermolecular transferase mechanism. We confirmed intermolecular phosphoryl transfer using an isotope relay assay in which PPM reactions containing mixtures of ribose 5-[{sup 18}O{sub 3}]phosphate and [U-{sup 13}C{sub 5}]ribose 5-phosphate were analyzed by mass spectrometry. This intermolecular phosphoryl transfer is seemingly counter to what is anticipated from phosphomutases employing a general alkaline phosphatase reaction mechanism, which are reported to catalyze intramolecular phosphoryl transfer. However, the two mechanisms may be reconciled if substrate encounters the enzyme at a different point in the catalytic cycle.

  2. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  3. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  4. Regulation of serum phosphate

    PubMed Central

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  5. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks.

    PubMed

    Jiang, Guanjie; Liu, Yonghong; Huang, Li; Fu, Qingling; Deng, Youjun; Hu, Hongqing

    2012-01-01

    Lead (Pb) chemical fixation is an important environmental aspect for human health. Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution. Raw PRs and oxalic acid-activated PRs (APRs) were used to investigate the effect of chemical modification on the Pb-binding capacity in the pH range 2.0-5.0. The Pb adsorption rate of all treatments above pH 3.0 reached 90%. The Pb binding on PRs and APRs was pH-independent, except at pH 2.0 in activated treatments. The X-ray diffraction analysis confirmed that the raw PRs formed cerussite after reacting with the Pb solution, whereas the APRs formed pyromorphite. The Fourier Transform Infrared spectroscopy analysis indicated that carbonate (CO3(2-)) in raw PRs and phosphate (PO4(3)) groups in APRs played an important role in the Pb-binding process. After adsorption, anomalous block-shaped particles were observed by scanning electron microscopy with energy dispersive spectroscopy. The X-ray photoelectron spectroscopy data further indicated that both chemical and physical reactions occurred during the adsorption process according to the binding energy. Because of lower solubility of pyromorphite compared to cerussite, the APRs are more effective in immobilizing Pb than that of PRs.

  6. The structural role of manganese ions in soil active silicate-phosphate glasses.

    PubMed

    Szumera, Magdalena

    2014-08-14

    Silicate-phosphate glasses of SiO2P2O5K2OMgOCaO system containing manganese ions were synthesized by the melt-quenching technique and were investigated to obtain information about the influence of Mn-cations on the glass structure and their chemical activity. Structural properties were studied using X-ray method, FTIR and Raman spectroscopies. The chemical activity of analyzed glasses in the 2 wt.% citric acid solution was measured by chemical analysis (ICP-AES, EDS) and SEM observations. It has been found that increasing amount of MnO2 in the structure of investigated glasses causes their gradual depolymerization. This process is more apparent in the case of the silico-oxygen subnetwork than phospho-oxygen one. This is related to increasing amounts of SiO4 tetrahedra containing two nonbridging oxygen atoms in silico-oxygen subnetwork. It has been also found that the presence of "weaker" chemical bonds of SiOMn type in comparison to SiOCa and SiOMg bonds is responsible for the increase in solubility of the analyzed silicate-phosphate glasses in conditions simulating natural soil environment.

  7. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942.

    PubMed Central

    Ray, J M; Bhaya, D; Block, M A; Grossman, A R

    1991-01-01

    The alkaline phosphatase of Synechococcus sp. strain PCC 7942 is 145 kDa, which is larger than any alkaline phosphatase previously characterized and approximately three times the size of the analogous enzyme in Escherichia coli. The gene for the alkaline phosphatase, phoA, was cloned and sequenced, and the protein that it encodes was found to have little similarity to other phosphatases. Some sequence similarities were observed between the Synechococcus sp. strain PCC 7942 alkaline phosphatase, the alpha subunit of the ATPase from bacteria and chloroplasts, and the UshA sugar hydrolase of E. coli. Also, limited sequence similarity was observed between a region of the phosphatase and a motif implicated in nucleotide binding. Interestingly, although the alkaline phosphatase is transported across the inner cytoplasmic membrane and into the periplasmic space, it does not appear to have a cleavable signal sequence at its amino terminus. The half-life of the mRNA encoding the alkaline phosphatase, measured after inhibition of RNA synthesis, is approximately 5 min. Similar kinetics for the loss of alkaline phosphatase mRNA occur upon the addition of phosphate to phosphate-depleted cultures, suggesting that high levels of this nutrient inhibit transcription from phoA almost immediately. The phoA gene also appears to be the first gene of an operon; the largest detectable transcript that hybridizes to a phoA gene-specific probe is 11 kb, over twice the size needed to encode the mature protein. Other phosphate-regulated mRNAs are also transcribed upstream of the phoA gene. Insertional inactivation of phoA results in the loss of extracellular, phosphate-regulated phosphatase activity but does not alter the capacity of the cell for phosphate uptake. Images PMID:1712356

  8. Comparison of the expression, activity, and fecal concentration of intestinal alkaline phosphatase between healthy dogs and dogs with chronic enteropathy.

    PubMed

    Ide, Kaori; Kato, Kazuki; Sawa, Yuki; Hayashi, Akiko; Takizawa, Rei; Nishifuji, Koji

    2016-07-01

    OBJECTIVE To compare expression, activity, and fecal concentration of intestinal alkaline phosphatase (IAP) between healthy dogs and dogs with chronic enteropathy (CE). ANIMALS 9 healthy university-owned Beagles and 109 healthy client-owned dogs (controls) and 28 dogs with CE (cases). PROCEDURES Cases were defined as dogs with persistent (> 3 weeks) gastrointestinal signs that failed to respond to antimicrobials and anti-inflammatory doses of prednisolone or dietary trials, did not have mechanical gastrointestinal abnormalities as determined by abdominal radiography and ultrasonography, and had a diagnosis of lymphoplasmacytic enteritis or eosinophilic gastroenteritis on histologic examination of biopsy specimens. Duodenal and colonic mucosa biopsy specimens were obtained from the 9 university-owned Beagles and all cases for histologic examination and determination of IAP expression (by real-time quantitative PCR assay) and activity (by enzyme histochemical analysis). Fecal samples were obtained from all dogs for determination of fecal IAP concentration by a quantitative enzyme reaction assay. RESULTS For dogs evaluated, IAP expression and activity were localized at the luminal side of epithelial cells in the mucosa and intestinal crypts, although both were greater in the duodenum than in the colon. Active IAP was detected in the feces of all dogs. Intestinal alkaline phosphatase expression and activity were lower for cases than for controls, and fecal IAP concentration for dogs with moderate and severe CE was lower than that for dogs with mild CE. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that dogs with CE had impaired IAP expression and activity. Additional research is necessary to elucidate the role of IAP in the pathogenesis of CE. PMID:27347825

  9. Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules

    PubMed Central

    Weichel, Michael; Jaussi, Rolf; Rhyner, Claudio; Crameri, Reto

    2008-01-01

    Active alkaline phosphatase of Escherichia coli (PhoA, EC 3.1.3.1) was displayed via the leucine zipper element of the Jun-Fos heterodimer on the surface of filamentous phage and the kinetic parameters Km and kcat were determined. The phoA gene was cloned downstream of fos while jun was inserted upstream of pIII or pVIII, alternatively, in the pJuFo phagemid vector. Both fusion genes are regulated by independent lacZ promoters. PhoA displayed on the phagemid pIII surface exhibited a Km of 11.2 µM with 4-nitrophenyl phosphate as substrate, which is consistent with data published for soluble PhoA. Based on these data we calculated the decoration of pJuFo phagemid with PhoA using the minor and major coat proteins pIII and pVIII as fusion partners under variable inducing conditions. We found that, even if the promoters are fully induced at a concentration of 1000 µM IPTG, the phagemids display maximally one copy of PhoA-Fos-Jun-coat protein fusion, irrespective of whether the protein is presented via pIII or pVIII. However, since PhoA is displayed in a native-like fashion, as deduced from the kinetic parameters of the enzymatic reaction, the pJuFo technology provides a versatile tool for the functional screening of complex cDNA libraries displayed on the phagemids' surface. PMID:18949073

  10. Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: contribution of metal-phosphate coordination.

    PubMed

    Pashkovskaya, Alina A; Sokolenko, Elena A; Sokolov, Valeri S; Kotova, Elena A; Antonenko, Yuri N

    2007-10-01

    Photosensitized efficacy of tetrasulfonated phthalocyanines of zinc, aluminum and nickel (ZnPcS(4), AlPcS(4) and NiPcS(4), respectively) as studied by gramicidin channel (gA) photoinactivation was compared with adsorption of the dyes on the surface of a bilayer lipid membrane as measured by the inner field compensation method. The adsorption of the negatively charged phthalocyanines on diphytanoylphosphatidylcholine (DPhPC) membranes led to formation of a negative boundary potential difference between the membrane/water interfaces. Good correlation was shown between the photodynamic activity and the membrane binding of the three metallophthalocyanines. ZnPcS(4) appeared to be the most potent of these photosensitizers, while NiPcS(4) was completely ineffective. All of these phthalocyanines displayed no binding and negligible gA photoinactivation with membranes formed of glycerol monooleate (GMO), whereas Rose Bengal exhibited significant binding and photodynamic efficacy with GMO membranes. Gramicidin photoinactivation in the presence of AlPcS(4), being insensitive to the ionic strength of the bathing solution, was inhibited by fluoride and attenuated by phosphate ions. A blue shift of the fluorescence peak position of ZnPcS(4) dissolved in ethanol was elicited by phosphate, similarly to fluoride, which was indicative of the coordination interaction of these ions with the central metal atom of the phthalocyanine macrocycle. This interaction was enhanced in the medium modeling the water-membrane interface. The results obtained imply that binding of tetrasulfonated metallophthalocyanines to phospholipid membranes is determined primarily by metal-phosphate coordination.

  11. The "Bridge" in the Epstein-Barr virus alkaline exonuclease protein BGLF5 contributes to shutoff activity during productive infection.

    PubMed

    Horst, Daniëlle; Burmeister, Wim P; Boer, Ingrid G J; van Leeuwen, Daphne; Buisson, Marlyse; Gorbalenya, Alexander E; Wiertz, Emmanuel J H J; Ressing, Maaike E

    2012-09-01

    Replication of the human herpesvirus Epstein-Barr virus drastically impairs cellular protein synthesis. This shutoff phenotype results from mRNA degradation upon expression of the early lytic-phase protein BGLF5. Interestingly, BGLF5 is the viral DNase, or alkaline exonuclease, homologues of which are present throughout the herpesvirus family. During productive infection, this DNase is essential for processing and packaging of the viral genome. In contrast to this widely conserved DNase activity, shutoff is only mediated by the alkaline exonucleases of the subfamily of gammaherpesviruses. Here, we show that BGLF5 can degrade mRNAs of both cellular and viral origin, irrespective of polyadenylation. Furthermore, shutoff by BGLF5 induces nuclear relocalization of the cytosolic poly(A) binding protein. Guided by the recently resolved BGLF5 structure, mutants were generated and analyzed for functional consequences on DNase and shutoff activities. On the one hand, a point mutation destroying DNase activity also blocks RNase function, implying that both activities share a catalytic site. On the other hand, other mutations are more selective, having a more pronounced effect on either DNA degradation or shutoff. The latter results are indicative of an oligonucleotide-binding site that is partially shared by DNA and RNA. For this, the flexible "bridge" that crosses the active-site canyon of BGLF5 appears to contribute to the interaction with RNA substrates. These findings extend our understanding of the molecular basis for the shutoff function of BGLF5 that is conserved in gammaherpesviruses but not in alpha- and betaherpesviruses.

  12. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis

    PubMed Central

    Liu, Ying; Yan, Zhihui; Lu, Xiaoyun; Xiao, Dongguang; Jiang, Huifeng

    2016-01-01

    Protein rational design has become more and more popular for protein engineering with the advantage of biological big-data. In this study, we described a method of rational design that is able to identify desired mutants by analyzing the coevolution of protein sequence. We employed this approach to evolve an archaeal isopentenyl phosphate kinase that can convert dimethylallyl alcohol (DMA) into precursor of isoprenoids. By designing 9 point mutations, we improved the catalytic activities of IPK about 8-fold in vitro. After introducing the optimal mutant of IPK into engineered E. coli strain for β-carotenoids production, we found that β-carotenoids production exhibited 97% increase over the starting strain. The process of enzyme optimization presented here could be used to improve the catalytic activities of other enzymes. PMID:27052337

  13. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis.

    PubMed

    Liu, Ying; Yan, Zhihui; Lu, Xiaoyun; Xiao, Dongguang; Jiang, Huifeng

    2016-01-01

    Protein rational design has become more and more popular for protein engineering with the advantage of biological big-data. In this study, we described a method of rational design that is able to identify desired mutants by analyzing the coevolution of protein sequence. We employed this approach to evolve an archaeal isopentenyl phosphate kinase that can convert dimethylallyl alcohol (DMA) into precursor of isoprenoids. By designing 9 point mutations, we improved the catalytic activities of IPK about 8-fold in vitro. After introducing the optimal mutant of IPK into engineered E. coli strain for β-carotenoids production, we found that β-carotenoids production exhibited 97% increase over the starting strain. The process of enzyme optimization presented here could be used to improve the catalytic activities of other enzymes. PMID:27052337

  14. NOx reduction Activity over Phosphate-supported Platinum Catalysts with Hydrogen under Oxygen-rich Condition

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Takehara, M.; Saito, M.; Machida, K.

    2011-10-01

    The phosphate supported Pt catalysts (Pt/AlPO4, Pt/CePO4, Pt/CeP2O7, Pt/SnP2O7, Pt/TiP2O7, Pt/Zn3(PO4)2) were prepared by a conventional impregnation method to evaluate their selective catalytic reduction activity of NOx under excess oxygen condition. Among them, good NOx reduction activity was obtained on the Pt/AlPO4 catalyst. Specific adsorption species during the NOx reduction were checked by a diffuse reflectance infrared Fourier transform spectrum (DRIFTs) measurement to examine the reaction mechanism. Also NH3 temperature programmed desorption measurements were performed for all catalysts and their catalytic properties were discussed from the viewpoints of solid acidity.

  15. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.

    PubMed

    Wang, Xiaobo; Zhang, Zhiyang; Ma, Xiaoyan; Wen, Jinghan; Geng, Zhirong; Wang, Zhilin

    2015-05-01

    An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.

  16. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration. PMID:26606195

  17. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration.

  18. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-01

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  19. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis.

    PubMed

    Bruggeman, Quentin; Mazubert, Christelle; Prunier, Florence; Lugan, Raphaël; Chan, Kai Xun; Phua, Su Yin; Pogson, Barry James; Krieger-Liszkay, Anja; Delarue, Marianne; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile

    2016-03-01

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. PMID:26747283

  20. Potassium and ammonium dihydrogen phosphates activated with thallium: Growth and luminescence and scintillation properties

    SciTech Connect

    Voronov, A. P. Salo, V. I.; Puzikov, V. M.; Tkachenko, V. F.; Vydai, Yu. T.

    2006-07-15

    The conditions for the growth of potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP) crystals with concentrations of the thallium activator in the initial solution of 0.01, 0.1, and 1.0 wt % are investigated. It is shown that the character of incorporation and distribution of thallium in the KDP and ADP lattices is limited, apparently, by the difference in the ionic radii of K{sup +}, NH{sub 4}{sup +}, and Tl{sup +} cations and the charge state of prismatic {l_brace}100{r_brace} and pyramidal {l_brace}101{r_brace} growth planes. Doping of KDP and ADP with thallium (to 0.1 and 1.0 wt %, respectively) does not deteriorate the structural quality of these crystals. The dependence of the lattice parameters a and c on the thallium impurity concentration is investigated. The absorption bands of thallium in the KDP:Tl{sup +} and ADP:Tl{sup +} crystals peak at 218 and 215 nm, respectively, while the photoluminescence band peaks at 280 nm for both types of crystals. The relative light yield upon excitation of scintillations by {alpha} particles (Pu{sup 239}) and {beta} particles (Bi{sup 207}) is measured.

  1. Phosphate-affinity electrophoresis on a microchip for determination of protein kinase activity.

    PubMed

    Han, Aishan; Hosokawa, Kazuo; Maeda, Mizuo

    2009-10-01

    We describe microchip-based phosphate-affinity electrophoresis (microPAE) for separation of peptides aimed at determination of kinase activity. The microPAE exploits two recently published technologies: autonomous sample injection for PDMS microchips and a phosphate-specific affinity ligand, Phos-tag. We prepared a fluorescently labeled substrate peptide, specific to human c-Src, and its phosphorylated form. We synthesized a Phos-tag-poly(dimethylacrylamide) conjugate. The conjugate and the sample solutions were autonomously injected into a PDMS-glass hybrid microchip. The two solutions were contacted together in the microchannel. When the peptides were electrophoresed into the Phos-tag-poly(dimethylacrylamide) region, the phosphorylated peptide was specifically trapped, and separated from the nonphosphorylated peptide in 10 s. The results were quantified by the areas of the fluorescence peaks. The calibration plot obtained with standard samples showed an excellent linearity and a LOD of 0.9% phosphorylated peptide among the total peptides. For c-Src-reacted samples, the results from the microPAE were in good agreement with those from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The microPAE was also successful in the presence of inhibitors for c-Src. The measured 50% inhibitory concentration values for staurosporine, PP2, and SU6656 were in good agreement with the literature values. PMID:19784951

  2. Ascorbate-2-phosphate in red cell preservation. Clinical trials and active components.

    PubMed

    Moore, G L; Marks, D H; Carmen, R A; Ledford, M E; Nelson, E J; Fishman, R J; Leng, B S

    1988-01-01

    A red cell additive solution (AS-005) containing ascorbate-2-phosphate (AsP) to maintain 2,3-diphosphoglycerate, plus adenine, phosphate, and mannitol to retain viability and reduce hemolysis, was evaluated by human clinical trials. A crossover design was used with another additive solution (Nutricel AS-3, Cutter Laboratories) serving as the control for each donor. Each additive solution was evaluated at 35 and 42 days of storage. There was no significant difference between the red cell viability of the two storage solutions at either time period. Split-bag, AS-005 in vitro studies at two temperatures (2.5 and 5.5 degrees C), both within the range of 1 to 6 degrees C approved by the American Association of Blood Banks and the Food and Drug Administration, resulted in dramatically different in vitro parameters, including a threefold difference in 2,3-diphosphoglycerate (2,3-DPG), a fivefold difference in glucose, and significant differences in pH and adenosine triphosphate. High-pressure liquid chromatography data confirmed the preliminary report that 1 to 2 percent (wt/wt) oxalate was present in preparations of AsP. In vitro storage data confirmed that oxalate is the active component of AsP that preserves 2,3-DPG during storage.

  3. Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate.

    PubMed

    Weiss, Paulo H E; Álvares, Alice C M; Gomes, Anderson A; Miletti, Luiz C; Skoronski, Everton; da Silva, Gustavo F; de Freitas, Sonia M; Magalhães, Maria L B

    2015-08-15

    Optimization of cellulose enzymatic hydrolysis is crucial for cost effective bioethanol production from lignocellulosic biomass. Enzymes involved in cellulose hydrolysis are often inhibited by their end-products, cellobiose and glucose. Efforts have been made to produce more efficient enzyme variants that are highly tolerant to product accumulation; however, further improvements are still necessary. Based on an alternative approach we initially investigated whether recently formed glucose could be phosphorylated into glucose-6-phosphate to circumvent glucose accumulation and avoid inhibition of beta-glucosidase from Bacillus polymyxa (BGLA). The kinetic properties and structural analysis of BGLA in the presence of glucose-6-phosphate (G6P) were investigated. Kinetic studies demonstrated that enzyme was not inhibited by G6P. In contrast, the presence of G6P activated the enzyme, prevented beta glucosidase feedback inhibition by glucose accumulation and improved protein stability. G6P binding was investigated by fluorescence quenching experiments and the respective association constant indicated high affinity binding of G6P to BGLA. Data reported here are of great impact for future design strategies for second-generation bioethanol production.

  4. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme.

    PubMed

    Stránský, Jan; Koval', Tomáš; Podzimek, Tomáš; Týcová, Anna; Lipovová, Petra; Matoušek, Jaroslav; Kolenko, Petr; Fejfarová, Karla; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan

    2015-11-01

    Tomato multifunctional nuclease TBN1 belongs to the type I nuclease family, which plays an important role in apoptotic processes and cell senescence in plants. The newly solved structure of the N211D mutant is reported. Although the main crystal-packing motif (the formation of superhelices) is conserved, the details differ among the known structures. A phosphate ion was localized in the active site of the enzyme. The binding of the surface loop to the active centre is stabilized by the phosphate ion, which correlates with the observed aggregation of TBN1 in phosphate buffer. The conserved binding of the surface loop to the active centre suggests biological relevance of the contact in a regulatory function or in the formation of oligomers. PMID:26527269

  5. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  6. Heterologous desensitization of the sphingosine-1-phosphate receptors by purinoceptor activation in renal mesangial cells

    PubMed Central

    Xin, Cuiyan; Ren, Shuyu; Pfeilschifter, Josef; Huwiler, Andrea

    2004-01-01

    Sphingosine-1-phosphate (S1P) is considered a potent mitogen for mesangial cells and activates the classical mitogen-activated protein kinase (MAPK) cascade via S1P receptors. In this study, we show that S1P signalling is rapidly desensitized upon S1P receptor activation. A complete loss of S1P sensitivity occurs after 10 min of S1P pretreatment and remains for at least 8 h. A similar desensitization is also seen with the S1P mimetic FTY720-phosphate, but not with the nonphosphorylated FTY720, nor with sphingosine or ceramide. Prestimulating the cells with extracellular ATP or UTP, which bind to and activate P2Y receptors on mesangial cells, a similar rapid desensitization of the S1P receptor occurs, suggesting a heterologous desensitization of S1P receptors by P2Y receptor activation. Furthermore, adenosine binding to P1 receptors triggers a similar desensitization. In contrast, two other growth factors, PDGF-BB and TGFβ2, have no significant effect on S1P-induced MAPK activation. S1P also triggers increased inositol trisphosphate (IP3) formation, which is completely abolished by S1P pretreatment but only partially by ATP pretreatment, suggesting that IP3 formation and MAPK activation stimulated by S1P involve different receptor subtypes. Increasing intracellular cAMP levels by forskolin pretreatment has a similar effect on desensitization as adenosine. Moreover, a selective A3 adenosine receptor agonist, which couples to phospholipase C and increases IP3 formation, exerted a similar effect. Pretreatment of cells with various protein kinase C (PKC) inhibitors prior to ATP prestimulation and subsequent S1P stimulation leads to a differential reversal of the ATP effect. Whereas the broad-spectrum protein kinase inhibitor staurosporine potently reverses the effect, the PKC-α inhibitor CGP41251, the PKC-δ inhibitor rottlerin and calphostin C show only a partial reversal at maximal concentrations. Suramin, which is reported as a selective S1P3 receptor antagonist

  7. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  8. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs).

  9. Conversion of UMP, an allosteric inhibitor of carbamyl phosphate synthetase, to an activator by modification of the UMP ribose moiety.

    PubMed

    Boettcher, B; Meister, A

    1981-06-25

    UMP is known to be an allosteric inhibitor of carbamyl phosphate synthetase, whereas IMP activates the enzyme. Surprisingly, dialdehyde UMP (prepared by periodate oxidation of UMP) was found to be a potent activator of the enzyme. Dialdehyde IMP, like IMP, produced activation. The corresponding dialcohol analogs of UMP and IMP (prepared by borohydride reduction of the dialdehyde analogs) had no effect on activity. These nucleotide interactions were further characterized by sedimentation velocity studies and by examination of the effects of inorganic phosphate on enzymatic activity. Although UMP promotes formation of an enzyme dimer, and IMP promotes formation of a tetramer (Powers, S. G., Meister, A., and Haschemeyer, R. H. (1980) J. Biol. Chem. 255, 1554-1558), the dialdehyde analogs of UMP and IMP both promote formation of mixed species. Low levels (less than 10 mM) of inorganic phosphate decrease the extent of activation by IMP, dialdehyde IMP, and dialdehyde UMP, but increase the extent of inhibition by UMP. The marked activation observed with dialdehyde UMP, and other considerations, suggest that the binding sites on the enzyme for IMP and UMP may overlap substantially. The findings also suggest that physiological levels of inorganic phosphate function in the modulation of the allosteric regulation of this enzyme by nucleotides. PMID:7240186

  10. Molecular Basis of Reduced Pyridoxine 5′-Phosphate Oxidase Catalytic Activity in Neonatal Epileptic Encephalopathy Disorder*

    PubMed Central

    Musayev, Faik N.; Di Salvo, Martino L.; Saavedra, Mario A.; Contestabile, Roberto; Ghatge, Mohini S.; Haynes, Alexina; Schirch, Verne; Safo, Martin K.

    2009-01-01

    Mutations in pyridoxine 5′-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5′-phosphate oxidase catalyzes the oxidation of pyridoxine 5′-phosphate to pyridoxal 5′-phosphate, the active cofactor form of vitamin B6 required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is ∼850-fold less efficient than the wild-type enzyme due to an ∼192-fold decrease in pyridoxine 5′-phosphate affinity and an ∼4.5-fold decrease in catalytic activity. There is also an ∼50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 Å crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a β-strand-loop-β-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5′-phosphate oxidase mutations. PMID:19759001

  11. Activation of a PARACEST agent for MRI through selective outersphere interactions with phosphate diesters.

    PubMed

    Huang, Ching-Hui; Hammell, Jacob; Ratnakar, S James; Sherry, A Dean; Morrow, Janet R

    2010-07-01

    Ln(S-THP)(3+) complexes are paramagnetic chemical exchange saturation transfer (PARACEST) agents for magnetic resonance imaging (MRI; S-THP = (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane, Ln(III) = Ce(III), Eu(III), Yb(III)). CEST spectra at 11.7 T show that the PARACEST effect of these complexes is enhanced at neutral pH in buffered solutions containing 100 mM NaCl upon the addition of 1-2 equiv of diethylphosphate (DEP). CEST images of phantoms at 4.7 T confirm that DEP enhances the properties of Yb(S-THP)(3+) as a PARACEST MRI agent in buffered solutions at neutral pH and 100 mM NaCl. Studies using (1)H NMR, direct excitation Eu(III) luminescence spectroscopy, and UV-visible spectroscopy show that DEP is an outersphere ligand. Dissociation constants for [Ln(S-THP)(OH(2))](DEP) are 1.9 mM and 2.8 mM for Ln(III) = Yb(III) at pH 7.0 and Eu(III) at pH 7.4. Related ligands including phosphorothioic acid, O,O-diethylester, ethyl methylphosphonate, O-(4-nitrophenylphosphoryl)choline, and cyclic 3,5-adenosine monophosphate do not activate PARACEST. BNPP (bis(4-nitrophenyl phosphate) activates PARACEST of Ln(S-THP)(3+) (Ln(III) = Eu(III), Yb(III)), albeit less effectively than does DEP. These data show that binding through second coordination sphere interactions is selective for phosphate diesters with two terminal oxygens and two identical ester groups. A crystal structure of [Eu(S-THP)(OH(2))]((O(2)NPhO)(2)PO(2))(2)(CF(3)SO(3)) x 2 H(2)O x iPrOH has two outersphere BNPP anions that form hydrogen bonds to the alcohol groups of the macrocycle and the bound water ligand. This structure supports (1)H NMR spectroscopy studies showing that outersphere interactions of the phosphate diester with the alcohol protons modulate the rate of alcohol proton exchange to influence the PARACEST properties of the complex. Further, DEP interacts only with the nonionized form of the complex, Ln(S-THP)(OH(2))(3+) contributing to the pH dependence of the

  12. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters

    SciTech Connect

    Esswein, AJ; Surendranath, Y; Reece, SY; Nocera, DG

    2011-02-01

    A high surface area electrode is functionalized with cobalt-based oxygen evolving catalysts (Co-OEC = electrodeposited from pH 7 phosphate, Pi, pH 8.5 methylphosphonate, MePi, and pH 9.2 borate electrolyte, Bi). Co-OEC prepared from MePi and operated in Pi and Bi achieves a current density of 100 mA cm(-2) for water oxidation at 442 and 363 mV overpotential, respectively. The catalyst retains activity in near-neutral pH buffered electrolyte in natural waters such as those from the Charles River (Cambridge, MA) and seawater (Woods Hole, MA). The efficacy and ease of operation of anodes functionalized with Co-OEC at appreciable current density together with its ability to operate in near neutral pH buffered natural water sources bodes well for the translation of this catalyst to a viable renewable energy storage technology.

  13. The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase.

    PubMed

    Raverdy, Sylvine; Foster, Jeremy M; Roopenian, Erica; Carlow, Clotilde K S

    2008-08-01

    Genome analysis of the glycolytic/gluconeogenic pathway in the Wolbachia endosymbiont from the filarial parasite Brugia malayi (wBm) has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP:pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate (PEP) into ATP, Pi and pyruvate. The glycolytic pathway of most organisms, including mammals, contains exclusively PK for the production of pyruvate from PEP. Therefore, the absence of PPDK in mammals makes the enzyme an attractive Wolbachia drug target. In the present study, we have cloned and expressed an active wBm-PPDK, thereby providing insight into the energy metabolism of the endosymbiont. Our results support the development of wBm-PPDK as a promising new drug target in an anti-symbiotic approach to controlling filarial infection.

  14. Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite.

    PubMed

    Rathore, Bhim Singh; Sharma, Gaurav; Pathania, Deepak; Gupta, Vinod Kumar

    2014-03-15

    Cellulose acetate-tin (IV) phosphate nanocomposite (CA/TPNC) was prepared using simple method at 0-1 pH. The nanocomposite ion exchanger was characterized using some techniques such as Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA/DTA/DSC). The nanocomposite material was explored for different properties such as ion exchange capacity, pH titration, elution behavior, thermal stability, and distribution coefficient. The ion exchange capacity of CA/TPNC was found higher compared to their inorganic counterpart. The distribution coefficient studies of nanocomposite ion exchanger were investigated for different metal ions. On the basis of distribution coefficient studies CA/TPNC material was found more selective for Cd(2+) and Mg(2+). CA/TPNC ion exchange was explored for antibacterial activities against E. coli bacteria.

  15. Cellulose acetate-zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity.

    PubMed

    Gupta, Vinod Kumar; Pathania, Deepak; Singh, Pardeep; Rathore, Bhim Singh; Chauhan, Priyanka

    2013-06-01

    Cellulose acetate-zirconium (IV) phosphate nanocomposite (CA/ZPNC) was synthesized by sol-gel technique at pH 0-1 and was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, Fourier infrared spectroscopy (FTIR) and thermal analysis (TGA/DTA/DSC). Ion exchange capacity, pH titration, elution concentration, elution behaviour, thermal stability and distribution coefficient were investigated to explore ion exchange behaviour of CA/ZPNC. The nanocomposite showed an ion-exchange capacity of 1.4 mequiv. g(-1) for Na(+) and was highly selective for Pb(2+) and Zn(2+) over many other metal ions. The photocatalytic activity of the CA/ZPNC was explored for degradation of a model Congo red dye from aqueous phase. 90% of dye was removed in 60 min of irradiation. Simultaneous adsorption and photocatalysis had synergetic effect on dye degradation.

  16. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    PubMed

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  17. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock.

    PubMed

    Zhu, Jun; Cai, Zhijian; Su, Xiaojuan; Fu, Qingling; Liu, Yonghong; Huang, Qiaoyun; Violante, Antonio; Hu, Hongqing

    2015-02-01

    Pot experiments were conducted to investigate the effects of γ-polyglutamic acid (γ-PGA), phosphate rock (PR), and γ-PGA-activated PR (γ-PGA-PR) on the immobilization and phytotoxicity of Pb in a contaminated soil. The proportion of residual Pb (Re-Pb) in soil was reduced by the addition of γ-PGA but was increased by the application of PR and γ-PGA-PR. The addition of γ-PGA in soil improved the accumulation of Pb in pak choi and decreased the growth of pak choi, suggesting the intensification of Pb phytotoxicity to pak choi. However, opposite effects of PR and γ-PGA-PR on the phytotoxicity of Pb to pak choi in soil were observed. Moreover, in the examined range, γ-PGA-PR activated by a higher amount of γ-PGA resulted in a greater proportion of Re-Pb in soil and weaker phytotoxicity of Pb to pak choi. The predominance of γ-PGA-PR in relieving the phytotoxicity of Pb was ascribed mainly to the increase of soil pH and available phosphate after the amendment, which could facilitate the precipitation of Pb in soil and provide pak choi with more phosphorus nutrient.

  18. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected. PMID:24638260

  19. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  20. Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men.

    PubMed

    Davis, Cindy D

    2003-02-01

    One possible dietary factor that may increase susceptibility to colon cancer is inadequate copper intake. The objective of this study was to investigate the effects of low and adequate copper intakes on copper nutriture and putative risk factors for colon cancer susceptibility in healthy men. Seventeen healthy free-living nonsmoking men aged 21-52 y completed a 13-wk controlled feeding study in a randomized crossover design. The basal diet contained 0.59 mg Cu/13.65 MJ. After a 1-wk equilibration period in which the men consumed the basal diet supplemented with 1.0 mg Cu/d, they were randomly assigned to receive either the basal diet or the basal diet supplemented with 2 mg Cu/d for 6 wk. After the first dietary period, the men immediately began to consume the other level of Cu for the last 6 wk. They collected their feces during the equilibration period and during the last 2 wk of the two dietary periods for free radical and fecal water analysis. Low dietary copper significantly (P < 0.01) increased fecal free radical production and fecal water alkaline phosphatase activity. Low dietary copper significantly (P < 0.0001) decreased fecal water copper concentrations but did not affect fecal water volume, pH, iron or zinc concentrations. In contrast to the fecal analysis, hematological indicators of copper status were not significantly affected by the dietary treatments. These results suggest that low dietary copper adversely affects fecal free radical production and fecal water alkaline phosphatase activity, which are putative risk factors for colon cancer.

  1. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  2. Quantification of Galactose-1-Phosphate Uridyltransferase Enzyme Activity by Liquid Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Li, Yijun; Ptolemy, Adam S.; Harmonay, Lauren; Kellogg, Mark; Berry, Gerard T.

    2013-01-01

    Background The diagnosis of galactosemia usually involves the measurement of galactose-1-phosphate uridyltransferase (GALT) activity. Traditional radioactive and fluorescent GALT assays are nonspecific, laborious, and/or lack sufficient analytical sensitivity. We developed a liquid chromatography–tandem mass spectrometry (LC-MS/MS)–based assay for GALT enzyme activity measurement. Method Our assay used stable isotope-labeled α-galactose-1-phosphate ([13C6]-Gal-1-P) as an enzyme substrate. Sample cleanup and separation were achieved by reversed-phase ion-pair chromatography, and the enzymatic product, isotope-labeled uridine diphosphate galactose ([13C6]-UDPGal), was detected by MS/MS at mass transition (571 > 323) and quantified by use of [13C6]-Glu-1-P (265 > 79) as an internal standard. Results The method yielded a mean (SD) GALT enzyme activity of 23.8 (3.8) µmol · (gHgb)−1 · h−1 in erythrocyte extracts from 71 controls. The limit of quantification was 0.04 µmol · (g Hgb)−1 · h−1 (0.2% of normal control value). Intraassay imprecision was determined at 4 different levels (100%, 25%, 5%, and 0.2% of the normal control values), and the CVs were calculated to be 2.1%, 2.5%, 4.6%, and 9.7%, respectively (n = 3). Interassay imprecision CVs were 4.5%, 6.7%, 8.2%, and 13.2% (n = 5), respectively. The assay recoveries at the 4 levels were higher than 90%. The apparent Km of the 2 substrates, Gal-1-P and UDPGlc, were determined to be 0.38 mmol/L and 0.071 mmol/L, respectively. The assay in erythrocytes of 33 patients with classical galactosemia revealed no detectable activity. Conclusions This LC-MS/MS–based assay for GALT enzyme activity will be useful for the diagnosis and study of biochemically heterogeneous patients with galactosemia, especially those with uncommon genotypes and detectable but low residual activities. PMID:20348403

  3. Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic reticulum: possible implication in the metabolic syndrome.

    PubMed

    Senesi, Silvia; Legeza, Balázs; Balázs, Zoltán; Csala, Miklós; Marcolongo, Paola; Kereszturi, Eva; Szelényi, Péter; Egger, Christine; Fulceri, Rosella; Mandl, József; Giunti, Roberta; Odermatt, Alex; Bánhegyi, Gábor; Benedetti, Angelo

    2010-10-01

    Both fructose consumption and increased intracellular glucocorticoid activation have been implicated in the pathogenesis of the metabolic syndrome. Glucocorticoid activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) depends on hexose-6-phosphate dehydrogenase (H6PD), which physically interacts with 11β-HSD1 at the luminal surface of the endoplasmic reticulum (ER) membrane and generates reduced nicotinamide adenine dinucleotide phosphate for the reduction of glucocorticoids. The reducing equivalents for the reaction are provided by glucose-6-phosphate (G6P) that is transported by G6P translocase into the ER. Here, we show that fructose-6-phosphate (F6P) can substitute for G6P and is sufficient to maintain reductase activity of 11β-HSD1 in isolated microsomes. Our findings indicate that the mechanisms of F6P and G6P transport across the ER membrane are distinct and provide evidence that F6P is converted to G6P in the ER lumen, thus yielding substrate for H6PD-dependent reduced nicotinamide adenine dinucleotide phosphate generation. Using the purified enzyme, we show that F6P cannot be directly dehydrogenated by H6PD, and we also excluded H6PD as a phosphohexose isomerase. Therefore, we postulate the existence of an ER luminal hexose-phosphate isomerase different from the cytosolic enzyme. The results suggest that cytosolic F6P promotes prereceptor glucocorticoid activation in white adipose tissue, which might have a role in the pathophysiology of the metabolic syndrome.

  4. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area.

  5. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area. PMID:23890977

  6. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  7. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  8. A multi-scale model of the oxygen reduction reaction on highly active graphene nanosheets in alkaline conditions

    NASA Astrophysics Data System (ADS)

    Vazquez-Arenas, Jorge; Ramos-Sanchez, Guadalupe; Franco, Alejandro A.

    2016-10-01

    A multi-scale model based on a mean field approach, is proposed to describe the ORR mechanism on N-GN catalysts in alkaline media. The model implements activation energies calculated with Density Functional Theory (DFT) at the atomistic level, and scales up them into a continuum framework describing the cathode/electrolyte interface at the mesoscale level. The model also considers mass and momentum transports arising in the region next to the rotating electrode for all ionic species and O2; correction of potential drop and electrochemical double-layer capacitance. Most fitted parameters describing the kinetics of ORR elementary reactions are sensitive in the multi-scale model, which results from the incorporation of activation energies using the mean field method, unlike single-scale modelling Errors in the deviations from activation energies are found to be moderate, except for the elementary step (2) related to the formation of O2ads, which can be assigned to the inherent DFT limitations. The consumption of O2ads to form OOHads is determined as the rate-determining step as a result of its highest energy barrier (163.10 kJ mol-1) in the system, the largest error obtained for the deviation from activation energy (28.15%), and high sensitivity. This finding is confirmed with the calculated surface concentration and coverage of electroactive species.

  9. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation.

    PubMed

    Martínez-Moreno, Julio M; Muñoz-Castañeda, Juan R; Herencia, Carmen; Oca, Addy Montes de; Estepa, Jose C; Canalejo, Rocio; Rodríguez-Ortiz, Maria E; Perez-Martinez, Pablo; Aguilera-Tejero, Escolástico; Canalejo, Antonio; Rodríguez, Mariano; Almadén, Yolanda

    2012-10-15

    The present study investigates the differential effect of two vitamin D receptor agonists, calcitriol and paricalcitol, on human aortic smooth muscle cells calcification in vitro. Human vascular smooth muscle cells were incubated in a high phosphate (HP) medium alone or supplemented with either calcitriol 10(-8)M (HP + CTR) or paricalcitol 3·10(-8) M (HP + PC). HP medium induced calcification, which was associated with the upregulation of mRNA expression of osteogenic factors such as bone morphogenetic protein 2 (BMP2), Runx2/Cbfa1, Msx2, and osteocalcin. In these cells, activation of Wnt/β-catenin signaling was evidenced by the translocation of β-catenin into the nucleus and the increase in the expression of direct target genes as cyclin D1, axin 2, and VCAN/versican. Addition of calcitriol to HP medium (HP + CTR) further increased calcification and also enhanced the expression of osteogenic factors together with a significant elevation of nuclear β-catenin levels and the expression of cyclin D1, axin 2, and VCAN. By contrast, the addition of paricalcitol (HP + PC) not only reduced calcification but also downregulated the expression of BMP2 and other osteoblastic phenotype markers as well as the levels of nuclear β-catenin and the expression of its target genes. The role of Wnt/β-catenin on phosphate- and calcitriol-induced calcification was further demonstrated by the inhibition of calcification after addition of Dickkopf-related protein 1 (DKK-1), a specific natural antagonist of the Wnt/β-catenin signaling pathway. In conclusion, the differential effect of calcitriol and paricalcitol on vascular calcification appears to be mediated by a distinct regulation of the BMP and Wnt/β-catenin signaling pathways.

  10. Array of amorphous calcium phosphate particles improves cellular activity on a hydrophobic surface.

    PubMed

    Kim, InAe; Kim, Hyun Jung; Kim, Hyun-Man

    2010-04-01

    Poor interaction between cells and surfaces, especially hydrophobic surfaces, results in delayed proliferation and increased apoptosis due to low cell adhesion signaling. To improve cell adhesion, hydrophilic array of amorphous calcium phosphate (ACP) was fabricated on a surface. A phosphate-buffered solution containing calcium ions was prepared at low temperature to prevent spontaneous precipitation. Then, the ion solution was heated to generate nuclei of ACP nanoparticles. The ACP nanoparticles adhered to the hydrophobic polystyrene surface forming an array composed of ACP particles. Multiple treatments of these nuclei with fresh CaP ion solutions increased the diameter and decreased the solubility of ACP particles enough to mediate cellular adhesion. The particle density in the array was dependent on the ion concentration of the CaP ion solutions. The ACP array improved a wide variety of activities when osteoblastic MC3T3-E1 cells were cultured on the ACP array fabricated on a hydrophobic bacteriological dish surface, compared to those cultured without the ACP array in vitro. The use of ACP array resulted in a lower apoptosis and also increased the spreading of cells to form stress fibers and focal contacts. Cells cultured on the ACP array proliferated more than cells cultured on a hydrophobic surface without the ACP array. The ACP array increased the expression of markers of differentiation in osteoblast. These results indicate that an array of ACP can be used as a coating material for enhancing biocompatibility in tissue engineering or biomaterials rather than modifying the surface with organic molecules. PMID:20119940

  11. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    NASA Astrophysics Data System (ADS)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX n·H 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphateO-atom and the azomethineN-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  12. Determination of pentose phosphate and Embden-Meyerhof pathway activities in bovine embryos.

    PubMed

    Javed, M H; Wright, R W

    1991-05-01

    Quantitative determination was made of the activity of pentose phosphate pathway (PPP) and Embden-Meyerhof pathway (EMP) in individual bovine embryos from the six-cell to the hatched blastocyst stage. Embryos were collected from superovulated cross-bred heifers and classified into good and poor categories. A single embryo in 1 microl of medium was mixed with 2 microl of medium containing 3 to 30 nCi radiolabeled glucose previously placed on a detached lid of the 1.5-ml polypropylene microcentrifugé vial. The lid was then fitted to its vial which had been loaded in advance with 1.5 ml of 0.1 N NaOH. Vials were then incubated at 37 degrees C for 3 h. At the end of the incubation period, a 1.5-ml NaOH trap was inverted and placed into a 20-ml scintillation vial containing 10 ml of aqueous counting solution and counted in a liquid scintillation spectrophotometer. The PPP activity in good-quality embryos was greatest at the six-cell stage and decreased with increasing embryo development. The EMP activity showed the reverse trend. Poor- quality embryos had a lower glucose metabolism and higher PPP activity. Similar measurements were made on embryos following 24 h of culture, and total glucose metabolism and percentage of PPP activity were increased. In conclusion, these data suggest that in good quality bovine embryos total glucose utilization is low until 16-cell stage, with PPP being the predominant pathway. Total glucose utilization increases significantly at the morula stage; EMP activity increases with increasing embryo development; and PPP activity increases significantly in poor quality embryos and in embryos 24 h in culture.

  13. Sphingosine kinase 1 activation enhances epidermal innate immunity through sphingosine-1-phosphate stimulation of cathelicidin production

    PubMed Central

    Jeong, Se Kyoo; Kim, Young Il; Shin, Kyong-Oh; Kim, Bong-Woo; Lee, Sin Hee; Jeon, Jeong Eun; Kim, Hyun Jong; Lee, Yong-Moon; Mauro, Theodora M.; Elias, Peter M.; Uchida, Yoshikazu; Park, Kyungho

    2015-01-01

    Background The ceramide metabolite, sphingosine-1-phosphate (S1P), regulates multiple cellular functions in keratinocytes (KC). We recently discovered that production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), is stimulated via a NF-κB-dependent mechanism that is activated by S1P when S1P is generated by sphingosine kinase (SPHK) 1. Objective We investigated whether pharmacological modulation of SPHK1 activity, using a novel synthetic SPHK1 activator, (S)-Methyl 2-(hexanamide)-3-(4-hydroxyphenyl) propanoate (MHP), stimulates CAMP expression. Methods MHP-mediated changes in both S1P and CAMP downstream mediators were analyzed in normal cultured human KC by qRT-PCR, Western immunoblot, ELISA, confocal microscopy for immunohistochemistry, HPLC and ESI-LC/MS/MS, and microbial pathogen invasion/colonization in a human epidermal organotypic model. Results Treatment with MHP directly activated SPHK1 and increased cellular S1P content in normal cultured human KC. Because MHP did not inhibit S1P lyase activity, which hydrolyses S1P, augumented S1P levels could be attributed to increased synthesis rather than blockade of S1P degradation. Next, we found that exogenous MHP significantly stimulated CAMP mRNA and protein production in KC, increases that were significantly suppressed by siRNA directed against SPHK1, but not by a scrambled control siRNA. NF-κB activation, assessed by nuclear translocation of NF-κB, occurred in cells following incubation with MHP. Conversely, pretreatment with a specific inhibitor of SPHK1 decreased MHP-induced nuclear translocation of NF-κB, and significantly attenuated the MHP-mediated increase in CAMP production. Finally, topical MHP significantly suppressed invasion of the virulent Staphylococcus aureus into murine skin explants. Conclusion MHP activation of SPHK1, a target enzyme of CAMP production, can stimulate innate immunity. PMID:26113114

  14. Structural flexibility, an essential component of the allosteric activation in Escherichia coli glucosamine-6-phosphate deaminase.

    PubMed

    Rudiño-Piñera, E; Morales-Arrieta, S; Rojas-Trejo, S P; Horjales, E

    2002-01-01

    A new crystallographic structure of the free active-site R conformer of the allosteric enzyme glucosamine-6-phosphate deaminase from Escherichia coli, coupled with previously reported structures of the T and R conformers, generates a detailed description of the heterotropic allosteric transition in which structural flexibility plays a central role. The T conformer's external zone [Horjales et al. (1999), Structure, 7, 527-536] presents higher B values than in the R conformers. The ligand-free enzyme (T conformer) undergoes an allosteric transition to the free active-site R conformer upon binding of the allosteric activator. This structure shows three alternate conformations of the mobile section of the active-site lid (residues 163-182), in comparison to the high B values for the unique conformation of the T conformer. One of these alternate R conformations corresponds to the active-site lid found when the substrate is bound. The disorder associated with the three alternate conformations can be related to the biological regulation of the K(m) of the enzyme for the reaction, which is metabolically required to maintain adequate concentrations of the activator, which holds the enzyme in its R state. Seven alternate conformations for the active-site lid and three for the C-terminus were refined for the T structure using isotropic B factors. Some of these conformers approach that of the R conformer in geometry. Furthermore, the direction of the atomic vibrations obtained with anisotropic B refinement supports the hypothesis of an oscillating rather than a tense T state. The concerted character of the allosteric transition is also analysed in view of the apparent dynamics of the conformers.

  15. Structural and Chemical Basis for Glucosamine 6-Phosphate Binding and Activation of the glmS Ribozyme

    SciTech Connect

    Cochrane, J.; Lipchock, S; Smith, K; Strobel, S

    2009-01-01

    The glmS ribozyme is the first naturally occurring catalytic RNA that relies on an exogenous, nonnucleotide cofactor for reactivity. From a biochemical perspective, the glmS ribozyme derived from Bacillus anthracis is the best characterized. However, much of the structural work to date has been done on a variant glmS ribozyme, derived from Thermoanaerobacter tengcongensis. Here we present structures of the B. anthracis glmS ribozyme in states before the activating sugar, glucosamine 6-phosphate (GlcN6P), has bound and after the reaction has occurred. These structures show an active site preorganized to bind GlcN6P that retains some affinity for the sugar even after cleavage of the RNA backbone. A structure of an inactive glmS ribozyme with a mutation distal from the ligand-binding pocket highlights a nucleotide critical to the reaction that does not affect GlcN6P binding. Structures of the glmS ribozyme bound to a naturally occurring inhibitor, glucose 6-phosphate (Glc6P), and a nonnatural activating sugar, mannosamine 6-phosphate (MaN6P), reveal a binding mode similar to that of GlcN6P. Kinetic analyses show a pH dependence of ligand binding that is consistent with titration of the cofactor's phosphate group and support a model in which the major determinant of activity is the sugar amine independent of its stereochemical presentation.

  16. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  17. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  18. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase

    PubMed Central

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-01-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants. PMID:21464159

  19. Elevated activity of dolichyl phosphate mannose synthase enhances biocontrol abilities of Trichoderma atroviride.

    PubMed

    Zembek, Patrycja; Perlinska-Lenart, Urszula; Brunner, Kurt; Reithner, Barbara; Palamarczyk, Grazyna; Mach, Robert L; Kruszewska, Joanna S

    2011-12-01

    Antagonism of Trichoderma spp. against phytopathogenic fungi is widely exploited for biocontrol of plant diseases. A crucial role in the biocontrol mechanism is attributed to cell-wall-degrading enzymes secreted by Trichoderma spp. Therefore, more efficient production and secretion of the enzymes should elevate the biocontrol abilities of Trichoderma spp. Because the majority of secretory hydrolases are glycoproteins, it has been postulated that the posttranslational modification of these proteins could constitute a bottleneck in their production and secretion. Our previous study showed that improvement of O-glycosylation elevated protein secretion by Trichoderma reesei. In this study, we enhanced the biocontrol abilities of T. atroviride P1 against plant pathogens by overexpressing the Saccharomyces cerevisiae DPM1 gene coding for dolichyl phosphate mannose (DPM) synthase, a key enzyme in the O-glycosylation pathway. The transformants we obtained showed doubled DPM synthase activity and, at the same time, significantly elevated cellulolytic activity. They also revealed an improved antifungal activity against the plant pathogen Pythium ultimum.

  20. Localization of d-myoinositol 1:2-cyclic phosphate 2-phosphohydrolase in rat kidney

    PubMed Central

    Clarke, N.; Dawson, R. M. C.

    1972-01-01

    1. On subcellular fractionation of rat kidney homogenates by differential and density-gradient centrifugation, the bulk of the inositol 1:2-cyclic phosphate 2-phosphohydrolase activity remains with the alkaline phosphatase activity, suggesting localization in the brush borders of the proximal tubules. 2. Histochemical studies with a medium containing inositol 1:2-cyclic phosphate and Escherichia coli phosphomonoesterase show Gomori staining around the brush borders of the proximal tubules in the outer cortex only. 3. Serial sections across the kidney from cortex perimeter to papilla suggest that the inositol 1:2-cyclic phosphate 2-phosphohydrolase has a limited distribution along the proximal tubule of the nephron, probably being limited to the pars convoluta, whereas the alkaline phosphatase extends along the pars recta. ImagesPLATE 1PLATE 2 PMID:4347783

  1. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  2. Activated platelets release sphingosine 1-phosphate and induce hypersensitivity to noxious heat stimuli in vivo

    PubMed Central

    Weth, Daniela; Benetti, Camilla; Rauch, Caroline; Gstraunthaler, Gerhard; Schmidt, Helmut; Geisslinger, Gerd; Sabbadini, Roger; Proia, Richard L.; Kress, Michaela

    2015-01-01

    At the site of injury activated platelets release various mediators, one of which is sphingosine 1-phosphate (S1P). It was the aim of this study to explore whether activated human platelets had a pronociceptive effect in an in vivo mouse model and whether this effect was based on the release of S1P and subsequent activation of neuronal S1P receptors 1 or 3. Human platelets were prepared in different concentrations (105/μl, 106/μl, 107/μl) and assessed in mice with different genetic backgrounds (WT, S1P1fl/fl, SNS-S1P1−/−, S1P3−/−). Intracutaneous injections of activated human platelets induced a significant, dose-dependent hypersensitivity to noxious thermal stimulation. The degree of heat hypersensitivity correlated with the platelet concentration as well as the platelet S1P content and the amount of S1P released upon platelet activation as measured with LC MS/MS. Despite the significant correlations between S1P and platelet count, no difference in paw withdrawal latency (PWL) was observed in mice with a global null mutation of the S1P3 receptor or a conditional deletion of the S1P1 receptor in nociceptive primary afferents. Furthermore, neutralization of S1P with a selective anti-S1P antibody did not abolish platelet induced heat hypersensitivity. Our results suggest that activated platelets release S1P and induce heat hypersensitivity in vivo. However, the platelet induced heat hypersensitivity was caused by mediators other than S1P. PMID:25954148

  3. Anti-tumor and immunomodulatory activity of iron hepta-tungsten phosphate oxygen clusters complex.

    PubMed

    Zhang, Bisong; Qiu, Jianping; Wu, Changsheng; Li, Yunxia; Liu, Zhenxiang

    2015-12-01

    Polyoxometalates (POMs) have attracted a considerable attention due to their unique structural characteristics, physicochemical properties and biological activities. In this study, iron hepta-tungsten phosphate oxygen clusters complex Na12H[Fe(HPW7O28)2]·44H2O (IHTPO) was synthesized and evaluated for in vitro cytotoxic activities on human hepatoma HepG2, leukemia K562, lung carcinoma A549, and large cell lung cancer NCI-H460 cells, therapeutic efficacies on mice transplantable tumor, and immunomodulatory potentials on the immune response in tumor-bearing mice. IHTPO exhibited lower in vitro cytotoxic activities against four human tumor cell lines, with the IC50 values being higher than 62.5μM (ca. 300μg/ml). IHTPO, however, significantly inhibited the growth of S180 sarcoma transplanted in mice. It was further showed that IHTPO could not only significantly promote splenocytes proliferation, NK cell and CTL activity from splenocytes, but remarkably enhance serum antigen-specific IgG, IgG2a and IgG2b antibody levels in S180-bearing mice. IHTPO also significantly promoted Th1 cytokines IFN-γ and IL-2 production, and up-regulated the mRNA expression levels of IFN-γ, IL-2 and Th1 transcription factors T-bet and STAT-4 in splenocytes from the S180-bearing mice. These results suggested that IHTPO significantly inhibited the growth of mice transplantable tumor, and that its in vivo antitumor activity might be achieved by improving Th1 protective cell-mediated immunity. IHTPO could act as antitumor agent with immunomodulatory activity.

  4. Catalytic Activity-d-Band Center Correlation for the O2 Reduction on Platinum in Alkaline Solutions

    SciTech Connect

    Lima,F.; Zhang, J.; Shao, M.; Sasaki, K.; Vukmirovic, M.; Ticianelli, E.; Adzic, R.

    2007-01-01

    We determined, by the rotating disk electrode technique, the kinetics of the oxygen-reduction reaction (ORR) on the surfaces of single crystals of Au(111), Ag(111), Pd(111), Rh(111), Ir(111), and Ru(0001), on Pt monolayers deposited on their surfaces, and also on nanoparticles of these metals dispersed on high-surface-area carbon. Plotting the correlation between the experimentally determined activities of these three types of electrocatalysts with the calculated metal d-band center energies,{var_epsilon}{sub d}, revealed a volcano-type dependence. In all cases, the electronic properties of the metal electrocatalysts, represented by the {var_epsilon}{sub d} value, were used for elucidating the metal-dependent catalytic activities, and establishing their electronic properties-the ORR kinetics relationship. Pt(111), Pt/C, and Pt/Pd(111) were found to top their corresponding volcano plots. Pd in alkaline solutions showed particularly high activity, suggesting it may offer potential replacement for Pt in fuel cells.

  5. Sub-cellular localisation of alkaline phosphatase activity in the cytoplasm of tammar wallaby (Macropus eugenii) neutrophils and eosinophils.

    PubMed

    Hulme-Moir, K Lisa; Clark, Phillip

    2011-07-15

    Alkaline phosphatase (ALP) has been used in studies of neutrophil morphology and function as a marker for identifying different granule populations. In human neutrophils, ALP is found within secretory vesicles, a rapidly mobilisable vesicle population important for upregulating membrane receptors during early activation. Intra-cellular ALP activity in the heterophils of rabbits and guinea pigs, in contrast, is found only in secondary granules. The neutrophils and eosinophils of tammar wallabies (Macropus eugenii) have previously been reported to contain large amounts of ALP activity when stained using routine cytochemical techniques. To define the subcellular location of ALP in this species, cell suspensions were examined using cerium chloride cytochemistry and transmission electron microscopy (TEM). ALP was found in 2 distinct cytoplasmic compartments. One compartment displayed morphology consistent with a subpopulation of secondary granules while a second tubulo-vesicular population appeared similar to the secretory vesicles of human neutrophils. Thin tubular vesicles containing ALP were also identified within the cytoplasm of tammar wallaby eosinophils. Large numbers of ALP-containing vesicles have not been recognised previously in eosinophils and this may represent a novel cytoplasmic compartment. In both cell types, ALP-containing structures showed alteration in morphology following stimulation with N-formyl-Met-Leu-Phe (fMLP) and PMA. PMID:21596444

  6. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-09-28

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters.

  7. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms.

    PubMed

    Wang, Haikuan; Wang, Xiaojie; Li, Xiaolu; Zhang, Yehong; Dai, Yujie; Guo, Changlu; Zheng, Heng

    2012-01-01

    The hydrolysis activities of three alkaline lipases, L-A1, L-A2 and L-A3 secreted by different lipase-producing microorganisms isolated from the Bay of Bohai, P. R. China were characterized with 16 kinds of esters. It was found that all the lipases have the ability to catalyze the hydrolysis of the glycerides, methyl esters, ethyl esters, especially for triglycerides, which shows that they have broad substrate spectra, and this property is very important for them to be used in detergent industry. Three QSAR models were built for L-A1, L-A2 and L-A3 respectively with GFA using Discovery studio 2.1. The models equations 1, 2 and 3 can explain 95.80%, 97.45% and 97.09% of the variances (R(2)(adj)) respectively while they could predict 95.44%, 89.61% and 93.41% of the variances (R(2)(cv)) respectively. With these models the hydrolysis activities of these lipases to mixed esters were predicted and the result showed that the predicted values are in good agreement with the measured values, which indicates that this method can be used as a simple tool to predict the lipase activities for single or mixed esters. PMID:23016923

  8. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  9. Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga.

    PubMed

    Huan, Li; Xie, Xiujun; Zheng, Zhenbing; Sun, Feifei; Wu, Songcui; Li, Moyang; Gao, Shan; Gu, Wenhui; Wang, Guangce

    2014-08-01

    Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.

  10. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes.

    PubMed

    Gutnisky, Cynthia; Dalvit, Gabriel C; Thompson, Jeremy G; Cetica, Pablo D

    2014-08-01

    The relationship between pentose phosphate pathway (PPP) activity in cumulus-oocyte complexes (COCs) and oxidative and mitochondrial activity in bovine oocytes was evaluated with the aim of analysing the impact of two inhibitors (NADPH and 6-aminonicotinamide (6-AN)) and a stimulator (NADP) of the key enzymes of the PPP on the maturation rate, oxidative and mitochondrial activity and the mitochondrial distribution in oocytes. The proportion of COCs with measurable PPP activity (assessed using brilliant cresyl blue staining), glucose uptake, lactate production and meiotic maturation rate diminished when 6-AN (0.1, 1, 5 and 10mM for 22h) was added to the maturation medium (P<0.05). The addition of NADPH did not modify glucose uptake or lactate production, but reduced PPP activity in COCs and meiotic maturation rates (P<0.05). The presence of NADP (0.0125, 0.125, 1.25 and 12.5mM for 22h of culture) in the maturation medium had no effect on PPP activity in COCs, glucose uptake, lactate production and meiotic maturation rate. However, in the absence of gonadotropin supplementation, NADP stimulated both glucose uptake and lactate production at 12.5mM (the highest concentration tested; P<0.05). NADP did not modify cleavage rate, but decreased blastocyst production (P<0.05). During IVM, oocyte oxidative and mitochondrial activity was observed to increase at 15 and 22h maturation, which was also related to progressive mitochondrial migration. Inhibiting the PPP with 6-AN or NADPH led to reduced oxidative and mitochondrial activity compared with the respective control groups and inhibition of mitochondrial migration (P<0.05). Stimulation of the PPP with NADP increased oxidative and mitochondrial activity at 9h maturation (P<0.05) and delayed mitochondrial migration. The present study shows the significance of altering PPP activity during bovine oocyte IVM, revealing that there is a link between the activity of the PPP and the oxidative status of the oocyte.

  11. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections.

    PubMed

    Sampath Kumar, T S; Madhumathi, K; Rubaiya, Y; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25-0.75, and 2.5-7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  12. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    PubMed Central

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Zhang, Dong-Jie; Guo, Zhen-Hua; Guo, Yun-Yun; Zhu, Meng; Bai, Jing

    2015-01-01

    The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (−) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes. PMID:26580437

  13. Phosphatidylinositol 4-phosphate 5-kinase α activation critically contributes to CD28-dependent signaling responses.

    PubMed

    Muscolini, Michela; Camperio, Cristina; Capuano, Cristina; Caristi, Silvana; Piccolella, Enza; Galandrini, Ricciarda; Tuosto, Loretta

    2013-05-15

    CD28 is one of the most relevant costimulatory receptors that deliver both TCR-dependent and TCR-independent signals regulating a wide range of signaling pathways crucial for cytokine and chemokine gene expressions, T cell survival, and proliferation. Most of the CD28-dependent signaling functions are initiated by the recruitment and activation of class IA PI3Ks, which catalyze the conversion of phosphatidylinositol 4,5-biphosphate (PIP2) into phosphatidylinositol 3,4,5-triphosphate, thus generating the docking sites for key signaling proteins. Hence, PIP2 is a crucial substrate in driving the PI3K downstream signaling pathways, and PIP2 turnover may be an essential regulatory step to ensure the activation of PI3K following CD28 engagement. Despite some data evidence that CD28 augments TCR-induced turnover of PIP2, its direct role in regulating PIP2 metabolism has never been assessed. In this study, we show that CD28 regulates PIP2 turnover by recruiting and activating phosphatidylinositol 4-phosphate 5-kinases α (PIP5Kα) in human primary CD4(+) T lymphocytes. This event leads to the neosynthesis of PIP2 and to its consumption by CD28-activated PI3K. We also evidenced that PIP5Kα activation is required for both CD28 unique signals regulating IL-8 gene expression as well as for CD28/TCR-induced Ca(2+) mobilization, NF-AT nuclear translocation, and IL-2 gene transcription. Our findings elucidate a novel mechanism that involves PIP5Kα as a key modulator of CD28 costimulatory signals.

  14. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder.

    PubMed

    Yuksel, C; Du, F; Ravichandran, C; Goldbach, J R; Thida, T; Lin, P; Dora, B; Gelda, J; O'Connor, L; Sehovic, S; Gruber, S; Ongur, D; Cohen, B M

    2015-09-01

    Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.

  15. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase

    SciTech Connect

    Liao, D.-I.; Zheng, Y.-J.; Viitanen, P.V.; Jordan, D.B.

    2010-03-08

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO{sub 4}{sup 2-}, E-{sub 4}{sup 2-}-Mg{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}-glycerol, and E-SO{sub 4}{sup 2-}-Zn{sup 2+} complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 {angstrom}, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg{sup 2+} cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg{sup 2+}-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  16. Simplified estimates of ion-activity products of calcium oxalate and calcium phosphate in mouse urine.

    PubMed

    Tiselius, Hans-Göran; Ferraz, Renato Ribeiro Nogueira; Heilberg, Ita Pfeferman

    2012-08-01

    This study aimed at formulating simplified estimates of ion-activity products of calcium oxalate (AP(CaOx)) and calcium phosphate (AP(CaP)) in mouse urineto find the most important determinants in order to limit the analytical work-up. Literature data on mouse urine composition was used to determine the relative effect of each urine variable on the two ion-activity products. AP(CaOx) and AP(CaP) were calculated by iterative approximation with the EQUIL2 computerized program. The most important determinants for AP(CaOx) were calcium, oxalate and citrate and for AP(CaP) calcium, phosphate, citrate, magnesium and pH. Urine concentrations of the variables were used. A simplified estimate of AP(CaOx) (AP(CaOx)-index(MOUSE)) that numerically approximately corresponded to 10(8) × AP(CaOx) was given the following expression:[Formula: see text]For a series of urine samples with various composition the coefficient of correlation between AP(CaOx)-index(MOUSE) and 10(8) × AP(CaOx) was 0.99 (p = 0.00000). A similar estimate of AP(CaP) (AP(CaP)-index(MOUSE)) was formulated so that it approximately would correspond numerically to 10(14) × AP(CaP) taking the following form:[Formula: see text]For a series of variations in urine composition the coefficient of correlation was 0.95 (p = 0.00000). The two approximate estimates shown in this article are simplified expressions of AP(CaOx) and AP(CaP). The intention of these theoretical calculations was not to get methods for accurate information on the saturation levels in urine, but to have mathematical tools useful for rough conclusions on the outcome of different experimental situations in mice. It needs to be emphasized that the accuracy will be negatively influenced if urine variables not included in the formulas differ very much from basic concentrations.

  17. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-01

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future. PMID:27093304

  18. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  19. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk.

    PubMed

    Yu, Ling; Shi, ZhuanZhuan; Fang, Can; Zhang, YuanYuan; Liu, YingShuai; Li, ChangMing

    2015-07-15

    A disposable lateral flow-through strip was developed for smartphone to fast one-step quantitatively detect alkaline phosphatase (ALP) activity in raw milk. The strip comprises two functional components, a conjugation pad loaded with phosphotyrosine-coated gold nanoparticles (AuNPs@Cys-Try-p) and a testing line coated with anti-phosphotryosine antibody (anti-Tyr-p mAb). The dephosphorylation activity of ALP at the testing zone can be quantitatively assayed by monitoring the accumulated AuNPs-induced color changes by smartphone camera, thus providing a highly convenient portable detection method. A trace amount of ALP as low as 0.1UL(-1) with a linear dynamic range of 0.1-150UL(-1) (R(2)=0.999) in pasteurized milk and raw milk can be one-step detected by the developed flow-through strip within 10min, demonstrating the potential of smartphone-based portable sensing device for pathogen detection. This bio-hazards free lateral flow-through testing strip can be also used to fabricate rapid, sensitive and inexpensive enzyme or immunosensors for broad portable clinic diagnosis and food contamination analysis, particularly in point-of-care and daily food quality inspection.

  20. Cloning, expression, purification and activation by Na ion of halophilic alkaline phosphatase from moderate halophile Halomonas sp. 593.

    PubMed

    Ishibashi, Matsujiro; Oda, Kazuki; Arakawa, Tsutomu; Tokunaga, Masao

    2011-03-01

    We have succeeded in the cloning of alkaline phosphatase gene, haalp, from moderate halophile Halomonas sp. 593. A deduced amino acid sequence showed a high ratio of acidic to basic amino acids, characteristic of halophilic proteins. The gene product was efficiently expressed in Escherichia coli BL21 Star (DE3) pLysS, but in an inactive form. The purified recombinant HaALP was separated into four fractions by gel filtration. When they were dialyzed against 50 mM Tris-HCl (pH 8.0)/2 mM MgCl₂ buffer containing 3 M NaCl, one of these four fractions was activated to almost full activity. This fraction contained a folding intermediate that was converted to the native structure by the salt. Among the additional salts tested, i.e., KCl, KBr, LiCl, MgCl₂, (NH₄)₂SO₄, and Na₂SO₄, only Na₂SO₄ was effective, suggesting the importance of Na ion.

  1. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  2. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact.

    PubMed

    Antony, Chakkiath Paul; Kumaresan, Deepak; Ferrando, Lucia; Boden, Rich; Moussard, Hélène; Scavino, Ana Fernández; Shouche, Yogesh S; Murrell, J Colin

    2010-11-01

    Lonar Lake is a unique saline and alkaline ecosystem formed by meteor impact in the Deccan basalts in India around 52,000 years ago. To investigate the role of methylotrophy in the cycling of carbon in this unusual environment, stable-isotope probing (SIP) was carried out using the one-carbon compounds methane, methanol and methylamine. Denaturing gradient gel electrophoresis fingerprinting analyses performed with heavy (13)C-labelled DNA retrieved from sediment microcosms confirmed the enrichment and labelling of active methylotrophic communities. Clone libraries were constructed using PCR primers targeting 16S rRNA genes and functional genes. Methylomicrobium, Methylophaga and Bacillus spp. were identified as the predominant active methylotrophs in methane, methanol and methylamine SIP microcosms, respectively. Absence of mauA gene amplification in the methylamine SIP heavy fraction also indicated that methylamine metabolism in Lonar Lake sediments may not be mediated by the methylamine dehydrogenase enzyme pathway. Many gene sequences retrieved in this study were not affiliated with extant methanotrophs or methylotrophs. These sequences may represent hitherto uncharacterized novel methylotrophs or heterotrophic organisms that may have been cross-feeding on methylotrophic metabolites or biomass. This study represents an essential first step towards understanding the relevance of methylotrophy in the soda lake sediments of an unusual impact crater structure.

  3. Lactobacillus rhamnosus strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol.

    PubMed

    Turner, P C; Wu, Q K; Piekkola, S; Gratz, S; Mykkänen, H; El-Nezami, H

    2008-06-01

    Deoxynivalenol (DON) contamination of cereal crops occurs frequently, and may cause acute exposure at high levels or chronic more moderate exposure. DON has proven toxicity including restriction of enterocyte differentiation, which may play a part in DON induced gastroenteritis. The probiotic bacteria Lactobacillus rhamnosus strain GG (GG) can bind DON, and therefore potentially restrict bioavailability of this toxin. Binding efficacy is not significantly altered by heat treatment, and therefore this in vitro study evaluated whether heat inactivated GG could restore the differentiation process in Caco-2 cells, using alkaline phosphatase (ALP) activity as a marker of differentiation. DON (200ng/mL) caused a significant (p<0.001) 36% reduction in ALP activity (1598+/-137U/mg protein) compared to untreated cells (2502+/-80U/mg). A dose dependant restoration of ALP activity was observed where DON treated cells were co-incubated with heat inactivated GG (1719+/-84; 2007+/-142; 2272+/-160U/mg for GG at 1x10(4) (p>0.9), 1x10(7) (p<0.001), and 1x10(10)CFU/mL (p<0.001), respectively). Co-incubation of the non-binding strain, LC-705 (1x10(10)CFU/mL), with DON did not significantly restore the ALP (1841+/-97U/mg, p<0.077) compared to DON only treated cells. When viable GG were co-incubated with DON a similar restoration of ALP activity was observed as seen for heat inactivated GG. These combined data suggest that the major effect of GG on restoring ALP activity, and therefore Caco-2 cell differentiation, was due to specific binding of DON, with possibly a more minor role of non-specific bacterial interference.

  4. Determination of Phosphate-activated Glutaminase Activity and Its Kinetics in Mouse Tissues using Metabolic Mapping (Quantitative Enzyme Histochemistry)

    PubMed Central

    Botman, Dennis; Tigchelaar, Wikky

    2014-01-01

    Phosphate-activated glutaminase (PAG) converts glutamine to glutamate as part of the glutaminolysis pathway in mitochondria. Two genes, GLS1 and GLS2, which encode for kidney-type PAG and liver-type PAG, respectively, differ in their tissue-specific activities and kinetics. Tissue-specific PAG activity and its kinetics were determined by metabolic mapping using a tetrazolium salt and glutamate dehydrogenase as an auxiliary enzyme in the presence of various glutamine concentrations. In kidney and brain, PAG showed Michaelis-Menten kinetics with a Km of 0.6 mM glutamine and a Vmax of 1.1 µmol/mL/min when using 5 mM glutamine. PAG activity was high in the kidney cortex and inner medulla but low in the outer medulla, papillary tip, glomeruli and the lis of Henle. In brain tissue sections, PAG was active in the grey matter and inactive in myelin-rich regions. Liver PAG showed allosteric regulation with a Km of 11.6 mM glutamine and a Vmax of 0.5 µmol/mL/min when using 20 mM glutamine. The specificity of the method was shown after incubation of brain tissue sections with the PAG inhibitor 6-diazo-5-oxo-L-norleucine. PAG activity was decreased to 22% in the presence of 2 mM 6-diazo-5-oxo-L-norleucine. At low glutamine concentrations, PAG activity was higher in periportal regions, indicating a lower Km for periportal PAG. When compared with liver, kidney and brain, other tissues showed 3-fold to 6-fold less PAG activity. In conclusion, PAG is mainly active in mouse kidney, brain and liver, and shows different kinetics depending on which type of PAG is expressed. PMID:25163927

  5. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase.

    PubMed

    Kolbe, Anna; Tiessen, Axel; Schluepmann, Henriette; Paul, Matthew; Ulrich, Silke; Geigenberger, Peter

    2005-08-01

    Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, and plants. Its precursor, trehalose 6-phosphate (T6P), is also indispensable for the regulation of sugar utilization and growth, but the sites of action are largely unresolved. Here we use genetic and biochemical approaches to investigate whether T6P acts to regulate starch synthesis in plastids of higher plants. Feeding of trehalose to Arabidopsis leaves led to stimulation of starch synthesis within 30 min, accompanied by activation of ADP-glucose pyrophosphorylase (AGPase) via posttranslational redox modification. The response resembled sucrose but not glucose feeding and depended on the expression of SNF1-related kinase. We also analyzed transgenic Arabidopsis plants with T6P levels increased by expression of T6P synthase or decreased by expression of T6P phosphatase (TPP) in the cytosol. Compared with wild type, leaves of T6P synthase-expressing plants had increased redox activation of AGPase and increased starch, whereas TPP-expressing plants showed the opposite. Moreover, TPP expression prevented the increase in AGPase activation in response to sucrose or trehalose feeding. Incubation of intact isolated chloroplasts with 100 muM T6P significantly and specifically increased reductive activation of AGPase within 15 min. Results provide evidence that T6P is synthesized in the cytosol and acts on plastidial metabolism by promoting thioredoxin-mediated redox transfer to AGPase in response to cytosolic sugar levels, thereby allowing starch synthesis to be regulated independently of light. The discovery informs about the evolution of plant metabolism and how chloroplasts of prokaryotic origin use an intermediate of the ancient trehalose pathway to report the metabolic status of the cytosol.

  6. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs

    PubMed Central

    Degagné, Emilie; Pandurangan, Ashok; Bandhuvula, Padmavathi; Kumar, Ashok; Eltanawy, Abeer; Zhang, Meng; Yoshinaga, Yuko; Nefedov, Mikhail; de Jong, Pieter J.; Fong, Loren G.; Young, Stephen G.; Bittman, Robert; Ahmedi, Yasmin; Saba, Julie D.

    2014-01-01

    Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL. PMID:25347472

  7. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers.

    PubMed

    Kanavarioti, A; Rosenbach, M T

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles). PMID:11538282

  8. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  9. Molecular modeling of human alkaline sphingomyelinase.

    PubMed

    Suresh, Panneer Selvam; Olubiyi, Olujide; Thirunavukkarasu, Chinnasamy; Strodel, Birgit; Kumar, Muthuvel Suresh

    2011-01-01

    Alkaline sphingomyelinase, which is expressed in the human intestine and hydrolyses sphingomyelin, is a component of the plasma and the lysosomal membranes. Hydrolase of sphingomyelin generates ceramide, sphingosine, and sphingosine 1-phosphate that have regulatory effects on vital cellular functions such as proliferation, differentiation, and apoptosis. The enzyme belongs to the Nucleotide Pyrophosphatase/Phosphodiesterase family and it differs in structural similarity with acidic and neutral sphingomyelinase. In the present study we modeled alkaline sphingomyelinase using homology modeling based on the structure of Nucleotide Pyrophosphatase/Phosphodiesterase from Xanthomonas axonopodis with which it shares 34% identity. Homology modeling was performed using Modeller9v7. We found that Cys78 and Cys394 form a disulphide bond. Further analysis shows that Ser76 may be important for the function of this enzyme, which is supported by the findings of Wu et al. (2005), that S76F abolishes the activity completely. We found that the residues bound to Zn(2+) are conserved and geometrically similar with the template. Molecular Dynamics simulations were carried out for the modeled protein to observe the effect of Zinc metal ions. It was observed that the metal ion has little effect with regard to the stability but induces increased fluctuations in the protein. These analyses showed that Zinc ions play an important role in stabilizing the secondary structure and in maintaining the compactness of the active site. PMID:21544170

  10. Effect of dietary carbohydrate and phenotype on sucrase, maltase, lactase, and alkaline phosphatase specific activity in SHR/N-cp rat.

    PubMed

    Wiesenfeld, P; Baldwin, J; Szepesi, B; Michaelis, O E

    1993-03-01

    The obese spontaneous hypertensive rat/NIH-corpulent (SHR/N-cp) rat exhibits some of the metabolic and pathologic alterations associated with non-insulin-dependent diabetes mellitus and hypertension. The current study was conducted to investigate the influence of phenotype (ob versus In) and source of dietary carbohydrate (sucrose versus starch) on intestinal sucrase, maltase, lactase, and alkaline phosphatase activity in SHR/N-cp rats. For 3 months, lean and obese male SHR/N-cp rats were fed isocaloric diets containing as the sole source of carbohydrate either 54% cooked corn starch or sucrose. Serum and urine markers for diabetes were observed in obese rats. Wet weight and length of intestines were significantly increased in obese rats compared with lean littermates. Among the intestinal enzymes measured, statistical tests confirmed that sucrase activity was significantly increased (P < 0.01) by both phenotype (ob > In) and feeding a sucrose diet. Diet alone (sucrose > starch) significantly increased (P < 0.05) maltase activity in obese rats, but had no effect on lean rats. Lactase activity was significantly higher (P < 0.05) in obese sucrose-fed rats compared with obese starch-fed and/or lean littermates. Statistical tests revealed that intestinal alkaline phosphatase activity was significantly altered (P < 0.05) by both phenotype and diet. Intestinal alkaline phosphatase was higher in starch-fed lean rats compared with lean littermates fed sucrose and to starch or sucrose-fed obese rats. These results are not indicative of a simple, nonspecific increase in intestinal enzyme activity, since the effects observed in intestinal alkaline phosphatase contrast the effects observed in intestinal sucrase, maltase, and lactase activity. These results indicate that both phenotype and diet alter structural and enzymatic intestinal activities of SHR/N-cp rats. Distinct variations in the observed intestinal enzymatic activities suggest that these enzymes are under the

  11. The activity of liver alcohol dehydrogenase with nicotinamide–adenine dinucleotide phosphate as coenzyme

    PubMed Central

    Dalziel, K.; Dickinson, F. M.

    1965-01-01

    1. The separation of nucleotide impurities from commercial NADP preparations by chromatography is described. All the preparations studied contained 0·1–0·2% of NAD. 2. The activity of pure crystalline liver alcohol dehydrogenase with NADP as coenzyme has been confirmed. Initial-rate data are reported for the reaction at pH 6·0 and 7·0 with ethanol and acetaldehyde as substrates. With NADP and NADPH2 of high purity, the maximal specific rates were similar to those obtained with NAD and NADH2, but the Michaelis constants for the former coenzymes were much greater than those for the latter. 3. The oxidation of ethanol by NADP is greatly inhibited by NADH2, and this accounts for low values of certain initial-rate parameters obtained with commercial NADP preparations containing NAD. The kinetics of the inhibition are consistent with competitive inhibition in a compulsory-order mechanism. 4. Initial-rate data with NAD and NADPH2 do not conform to the requirements of the mechanism proposed by Theorell & Chance (1951), in contrast with results previously obtained with NAD and NADH2. The possibility that the deviations are due to competing nucleotide impurity in the oxidized coenzyme cannot be excluded. The data show that the enzyme reacts more slowly with, and has a smaller affinity for, NADP and NADPH2 than NAD and NADH2. 5. Phosphate behaves as a competitive inhibitor towards NADP. PMID:14340079

  12. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles

    PubMed Central

    Chen, Chen; Weir, Michael D.; Cheng, Lei; Lin, Nancy; Lin-Gibson, Sheng; Chow, Laurence C.; Zhou, Xuedong; Xu, Hockin H. K.

    2015-01-01

    Objectives Recurrent caries at the margins is a primary reason for restoration failure. The objectives of this study were to develop bonding agent with the double benefits of antibacterial and remineralizing capabilities, to investigate the effects of NACP filler level and solution pH on Ca and P ion release from adhesive, and to examine the antibacterial and dentin bond properties. Methods Nanoparticles of amorphous calcium phosphate (NACP) and a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM) were synthesized. Scotchbond Multi-Purpose (SBMP) primer and adhesive served as control. DMADDM was incorporated into primer and adhesive at 5% by mass. NACP was incorporated into adhesive at filler mass fractions of 10%, 20%, 30% and 40%. A dental plaque microcosm biofilm model was used to test the antibacterial bonding agents. Calcium (Ca) and phosphate (P) ion releases from the cured adhesive samples were measured vs. filler level and solution pH of 7, 5.5 and 4. Results Adding 5% DMADDM and 10–40% NACP into bonding agent, and water-aging for 28 days, did not affect dentin bond strength, compared to SBMP control at 1 day (p > 0.1). Adding DMADDM into bonding agent substantially decreased the biofilm metabolic activity and lactic acid production. Total microorganisms, total streptococci, and mutans streptococci were greatly reduced for bonding agents containing DMADDM. Increasing NACP filler level from 10% to 40% in adhesive increased the Ca and P ion release by an order of magnitude. Decreasing solution pH from 7 to 4 increased the ion release from adhesive by 6–10 folds. Significance Bonding agents containing antibacterial DMADDM and remineralizer NACP were formulated to have Ca and P ion release, which increased with NACP filler level from 10% to 40% in adhesive. NACP adhesive was “smart” and dramatically increased the ion release at cariogenic pH 4, when these ions would be most-needed to inhibit caries. Therefore, bonding agent

  13. Porous Mn2 O3 : A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C.

    PubMed

    Wang, Wenhai; Geng, Jing; Kuai, Long; Li, Min; Geng, Baoyou

    2016-07-11

    Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support-free porous Mn2 O3 was synthesized by a facile aerosol-spray-assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn-based oxides, such as Mn3 O4 and MnO2 . The rotating ring disk electrode (RRDE) study indicates a typical 4-electron ORR pathway on Mn2 O3 . Furthermore, the porous Mn2 O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2 O3 is a promising candidate to be used as a cathode material in metal-air batteries and alkaline fuel cells. PMID:27258474

  14. Porous Mn2 O3 : A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C.

    PubMed

    Wang, Wenhai; Geng, Jing; Kuai, Long; Li, Min; Geng, Baoyou

    2016-07-11

    Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support-free porous Mn2 O3 was synthesized by a facile aerosol-spray-assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn-based oxides, such as Mn3 O4 and MnO2 . The rotating ring disk electrode (RRDE) study indicates a typical 4-electron ORR pathway on Mn2 O3 . Furthermore, the porous Mn2 O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2 O3 is a promising candidate to be used as a cathode material in metal-air batteries and alkaline fuel cells.

  15. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  16. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay.

    PubMed

    Hu, Xue-Lian; Wu, Xiu-Ming; Fang, Xin; Li, Zai-Jun; Wang, Guang-Li

    2016-03-15

    In this work, a novel strategy for modulating the fluorescence of gold nanoclusters (Au NCs) is developed. The fluorescence of bovine serum albumin (BSA) protected Au NCs is firstly quenched by KMnO4 and then restored by ascorbic acid (AA) due to the deterioration/restoration of the surface structure. Based on which, a novel "switch-on" fluorescent assay for probing the activity of alkaline phosphatase (ALP) is developed with a detection limit as low as 0.002 U/L. In addition, this testing protocol is also expanded to the detection of the inhibitor of ALP and mouse IgG (as a model), the detection limits are 15 ng/mL for the inhibitor of 2,4-Dichlorophenoxyacetic acid (2,4-DA) and 1.5 pg/mL for mouse IgG. The present method paves a new way to develop convenient, sensitive, and selective metal NCs-based fluorescent "turn-on" probes with promising applications in versatile biosensing.

  17. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    PubMed

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  18. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  19. Enhancement of waste activated sludge anaerobic digestion by a novel chemical free acid/alkaline pretreatment using electrolysis.

    PubMed

    Charles, W; Ng, B; Cord-Ruwisch, R; Cheng, L; Ho, G; Kayaalp, A

    2013-01-01

    Anaerobic digestion of waste activated sludge (WAS) is relatively poor due to hydrolysis limitations. Acid and alkaline pretreatments are effective in enhancing hydrolysis leading to higher methane yields. However, chemical costs often prohibit full-scale application. In this study, 12 V two-chamber electrolysis using an anion exchange membrane alters sludge pH without chemical dosing. pH dropped from 6.9 to 2.5 in the anode chamber and increased to 10.1 in the cathode chamber within 15 h. The volatile suspended solids solubilisation of WAS was 31.1% in the anode chamber and 34.0% in the cathode chamber. As a result, dissolved chemical oxygen demand increased from 164 to 1,787 mg/L and 1,256 mg/L in the anode and cathode chambers, respectively. Remixing of sludge from the two chambers brought the pH back to 6.5, hence no chemical neutralisation was required prior to anaerobic digestion. Methane yield during anaerobic digestion at 20 d retention time was 31% higher than that of untreated sludge. An energy balance assessment indicated that the non-optimised process could approximately recover the energy (electricity) expended in the electrolysis process. With suitable optimisation of treatment time and voltages, significant energy savings would be expected in addition to the benefit of decreased sludge volume.

  20. Trypanosoma cruzi cytosolic alkaline antigens (FI) induce polyclonal activation in murine normal B cells.

    PubMed

    Montes, C L; Vottero-Cima, E; Gruppi, A

    1996-08-01

    Several reports have described polyclonal activation in mice acutely infected with Trypanosoma cruzi. The aim of this work was to analyse the participation of one T. cruzi antigenic fraction in this immunological event. The antigen selected was FI, an antigenic fraction of pI 7-9 obtained from T. cruzi cytosol separated by isoelectricfocusing. FI is constituted by molecules with molecular weights of around 60 and 20 KDa. The authors assayed the ability of this antigenic fraction to induce polyclonal activation of spleen mononuclear cells from normal (NSMC) BALB/c mice. NSMC showed a marked lymphoproliferative response measured by 3H-thymidine incorporation after 3 days of culture in presence of FI. The values reached by FI-stimulated cells were 10 times higher than the controls (non-stimulated cells). This effect was dose-dependent. Furthermore, the authors observed that a purified T-cell population in the presence of adherent cells was unaffected by FI. Additionally, in a culture of NSMC, FI stimulated the proliferation of B cells as observed by the increase of the percentage of B220+ cells determined by FACS using FITC-conjugated anti-mouse B220. The authors noticed that the percentage of B220+Ly1+(CD5) populations in the presence of FI did not change with respect to the control (non-stimulated cells), indicating that FI expanded both conventional and CD5+ B cells. The isotypic pattern of the antibodies produced after 6 days of culture of NSMC in the presence of FI was predominantly IgM, which reacted with highly conserved antigens such as actin, myosin, myoglobin, thyroglobulin and carbonic anhydrase, but did not react with FI. A slight increase of IgG1 and IgG3 with respect to the control was observed but no changes on the levels of IgG2 was noticed. These results indicate that FI promotes activation, proliferation and differentiation in antibody-secreting cells of normal murine B lymphocytes.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  3. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  4. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  5. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  6. Non-genomic immunosuppressive actions of progesterone inhibits PHA-induced alkalinization and activation in T cells.

    PubMed

    Chien, Eileen Jea; Chang, Ching-Pang; Lee, Wen-Feng; Su, Tsung-Hsien; Wu, Chia-Hsun

    2006-09-01

    Progesterone is an endogenous immunomodulator, and can suppress T-cell activation during pregnancy. When analyzed under a genome time scale, the classic steroid receptor pathway does not have any effect on ion fluxes. Therefore, the aim of this study was to investigate whether the non-genomic effects on ion fluxes by progesterone could immunosuppress phytohemagglutinin (PHA)-induced human peripheral T-cell activation. The new findings indicated that, first, only progesterone stimulated both [Ca2+]i elevation and pHi decrease; in contrast, estradiol or testosterone stimulated [Ca2+]i elevation and hydrocortisone or dexamethasone stimulated pHi decrease. Secondly, the [Ca2+]i increase by progesterone was dependent on Ca2+ influx, and the acidification was blocked by Na+/H+ exchange (NHE) inhibitor, 3-methylsulphonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE-694) but not by 5-(N,N-dimethyl)-amiloride (DMA). Thirdly, progesterone blocked phorbol 12-myristate 13-acetate (PMA) or PHA-induced alkalinization, but PHA did not prevent progesterone-induced acidification. Fourthly, progesterone did not induce T-cell proliferation; however, co-stimulation progesterone with PHA was able to suppress PHA-induced IL-2 or IL-4 secretion and proliferation. When progesterone was applied 72 h after PHA stimulation, progesterone could suppress PHA-induced T-cell proliferation. Finally, immobilization of progesterone by conjugation to a large carrier molecule (BSA) also stimulated a rapid [Ca2+]i elevation, pHi decrease, and suppressed PHA-induced proliferation. These results suggested that the non-genomic effects of progesterone, especially acidification, are exerted via plasma membrane sites and suppress the genomic responses to PHA. Progesterone might act directly through membrane specific nonclassical steroid receptors to cause immunomodulation and suppression of T-cell activation during pregnancy.

  7. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  8. Characterization of cytolytic neutrophil activation in vitro by amorphous hydrated calcium phosphate as a model of biomaterial inflammation.

    PubMed

    Edwards, Felicity C; Taheri, Amir; Dann, Sophie C; Dye, Julian F

    2011-03-01

    Calcium ions are utilized in biomolecular biomaterial design for osteomimetic scaffolds and as divalent cross-linking agents, typically for gelation of alginates, stabilisation of protein structure (e.g., fibrinogen) and enzyme activation (e.g., thrombin). Biological interactions with defined calcium phosphates (e.g., hydroxyapatite) are exploited for osteogenesis, although crystalline calcium phosphates (e.g., calcium pyrophosphate) stimulate inflammation. We found that the calcium concentration used in the manufacture of prototype dermal scaffolds made from fibrin/alginate composite was related to the inflammatory infiltration during in vivo integration. In investigating a cause for this inflammatory response, we have identified and characterized a cytolytic inflammatory effect of amorphous calcium phosphate (CaP) formed in physiological solutions, relevant to biomaterial biocompatibility. Isolated human neutrophils (Nφ) were incubated in phosphate-buffered saline with CaCl(2) ranging 2.5-20 mM total calcium. Nφ activation was assessed by morphology and integrin-β2 (CD18a) expression. Mediator release (Nφ-elastase, IL-8, and TNFα) was measured from both Nφ and whole blood cultures plus CaCl(2). CaP exposure increased CD18a expression over 1 h (maximal at 10 mM calcium/ phosphate) with concurrent phagocytosis, cytolysis, and Nφ-elastase release. CaCl(2) induced expression of IL-8 and TNFα in whole blood cultures. These results suggest that CaP formed from the resorption of calcium-containing biomaterials could induce inflammation and accelerate biomaterial degradation, driving further CaP release. This demonstrates a novel mechanism for biomaterial-induced inflammation. The in vitro system described could aid preclinical evaluation of novel biomaterial inflammatory potential. PMID:21254387

  9. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  10. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom.

    PubMed

    Olmedo, Hidekel; Herrera, María; Rojas, Leonardo; Villalta, Mauren; Vargas, Mariángela; Leiguez, Elbio; Teixeira, Catarina; Estrada, Ricardo; Gutiérrez, José María; León, Guillermo; Montero, Mavis L

    2014-01-01

    The adjuvanticity of aluminum hydroxide and calcium phosphate on the antibody response in mice towards the venom of the snake Bothrops asper was studied. It was found that, in vitro, most of the venom proteins are similarly adsorbed by both mineral salts, with the exception of some basic phospholipases A2, which are better adsorbed by calcium phosphate. After injection, the adjuvants promoted a slow release of the venom, as judged by the lack of acute toxicity when lethal doses of venom were administered to mice. Leukocyte recruitment induced by the venom was enhanced when it was adsorbed on both mineral salts; however, venom adsorbed on calcium phosphate induced a higher antibody response towards all tested HPLC fractions of the venom. On the other hand, co-precipitation of venom with calcium phosphate was the best strategy for increasing: (1) the capacity of the salt to couple venom proteins in vitro; (2) the venom ability to induce leukocyte recruitment; (3) phagocytosis by macrophages; and (4) a host antibody response. These findings suggest that the chemical nature is not the only one determining factor of the adjuvant activity of mineral salts. PMID:23506358

  11. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm

    PubMed Central

    Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

    2001-01-01

    The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2−, and NO3− profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 μm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 μm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems. PMID:11229931

  12. Microbicidal activity of tripotassium phosphate and fatty acids toward spoilage and pathogenic bacteria associated with poultry.

    PubMed

    Hinton, Arthur; Ingram, Kimberly D

    2005-07-01

    The ability of solutions of tripotassium phosphate (TPP) and fatty acids (lauric and myristic acids) to reduce populations of spoilage and pathogenic microorganisms associated with processed poultry was examined. In vitro studies were conducted with cultures of bacteria (Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus) and yeasts (Candida ernobii and Yarrowia lipolytica). Cultures of the bacteria and yeasts were suspended in solutions of TPP or mixtures of TPP with lauric or myristic acid and mixed for 5 min. Viable numbers (log CFU per milliliter) in the suspensions were enumerated on microbiological agar. Results indicated that TPP solutions are highly bactericidal toward gram-negative bacteria and that mixtures of TPP and fatty acids are highly microbicidal toward gram-negative bacteria, gram-positive bacteria, and yeasts. The microbicidal activity of mixtures of TPP and fatty acids toward the native bacterial flora of skin of processed broiler carcasses was also examined. Skin samples were washed in mixtures of TPP and fatty acid, and the populations of total aerobic bacteria, campylobacters, enterococci, E. coli, lactic acid bacteria, pseudomonads, staphylococci, and yeasts in the skin rinsates were enumerated on the appropriate microbiological media. Results indicated that washing the skin in mixtures of TPP and fatty acids produced significant reductions in the number of aerobic bacteria, campylobacters, E. coli, pseudomonads, and yeasts recovered from skin rinsates, but there was no significant reduction in the populations of enterococci, lactic acid bacteria, or staphylococci. These findings indicate that mixtures of TPP and fatty acids possess microbicidal activity against several microorganisms associated with processed poultry and that these solutions could be useful as microbicides to reduce the populations of some bacteria and yeasts associated with some poultry

  13. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    NASA Astrophysics Data System (ADS)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  14. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    SciTech Connect

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  15. C-H activation in pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate Schiff bases: effect of metal chelation. A computational study.

    PubMed

    Casasnovas, Rodrigo; Frau, Juan; Ortega-Castro, Joaquin; Donoso, Josefa; Muñoz, Francisco

    2013-02-28

    This study reports the carbon acidities of Cα and C4′ atoms in the Schiff bases of pyridoxal-5′-phosphate (PLP) and pyridoxamine-5′-phosphate (PMP) complexed with several biologically available metal ions (Mg2+, Ni2+, Zn2+, Cu2+, Al3+, and Fe3+). Density functional theory calculations were carried out to determine the free energies of proton exchange reactions of a set of 18 carbon acids and a Schiff base used as a reference species. The experimental pK(a) values of such carbon acids were used to calibrate the computed free energies in a range of 30 pK(a) units. Eventually, the pK(a)s of the chelates were obtained by calculating the corresponding free energies against the same reference species and by considering the previous calibration. The carbon acidity of Cα in the chelates of Mg2+, Ni2+, Zn2+, and Cu2+ varies between pK(a) 22 and pK(a) 13 whereas the pK(a) values of C4′ range between 18 and 7. Chelation of trivalent metals Al3+ and Fe3+ causes further decrease of the pK(a) values of Cα and C4′ down to 10 and 5, respectively. The results highlight the efficiency of the combined action of Schiff base formation and metal chelation to activate the Cα carbon of amino acids (pK(a) 29 for zwitterionic alanine). Our results explain that the experimental increase of transamination rates by Zn2+ chelation is due to stabilization of the reactive Schiff base species with respect to the free ligand under physiological pH conditions. However, the increase in reactivity for transamination due to Cu2+ and Al3+ chelation is mostly due to C–H ligand activation. Each metal ion activates the Cα and C4′ carbon atoms to a different extent, which can be exploited to favor specific reactions on the amino acids in aqueous solution. Metal chelation hinders both intramolecular and intermolecular proton-transfer reactions of the imino, phenol, and carboxylate groups. This is the only apparent inconvenience of metal complexes in enzymatic reactions, which, in turn

  16. Dual Mode Antibacterial Activity of Ion Substituted Calcium Phosphate Nanocarriers for Bone Infections

    PubMed Central

    Sampath Kumar, T. S.; Madhumathi, K.; Rubaiya, Y.; Doble, Mukesh

    2015-01-01

    Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP) bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA) nanoparticles has been developed. Antibacterial ions such as zinc, silver, and strontium have been incorporated into CDHA at concentrations of 6, 0.25–0.75, and 2.5–7.5 at. %, respectively. The samples were found to be phase pure, acicular nanoparticles of length 40–50 nm and width 5–6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for 5 days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on Staphylococcus aureus and Escherichia coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria, while SrCDHA was weakly active against S. aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity, and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent

  17. Lowering effect of firefly squid powder on triacylglycerol content and glucose-6-phosphate dehydrogenase activity in rat liver.

    PubMed

    Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro

    2014-01-01

    Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.

  18. A limitation of the continuous spectrophotometric assay for the measurement of myo-inositol-1-phosphate synthase activity.

    PubMed

    Huang, Xinyi; Hernick, Marcy

    2011-10-15

    Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay-the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg(2+) and is not enhanced by other divalent metal ions (Zn(2+) and Mn(2+)), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors. PMID:21729692

  19. Distribution of activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat.

    PubMed

    Angelov, D N

    1990-05-01

    The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.

  20. Renal threshold phosphate concentration (TmPO4/GFR).

    PubMed Central

    Kruse, K; Kracht, U; Göpfert, G

    1982-01-01

    The ratio of maximum rate of renal tubular reabsorption of phosphate to glomerular filtration rate (TmPO4/GFR) was determined in 546 schoolchildren, aged between 6 and 17.9 years, using the nomogram of Walton and Bijvoet.1 TmPO4/GFR correlated with chronological age in girls and boys and in each remained significantly higher than in adults. TmPO4/GFR in the children correlated neither with fasting serum immunoreactive calcitonin and parathyroid hormone levels nor with the urinary cyclic AMP excretion. The study showed a parallel decrease in TmPO4/GFR, excretion of total hydroxyproline and serum alkaline phosphatase activities after puberty, with a significant relationship of both these indices of bone turnover to TmPO4/GFR values. This indicates that the high renal phosphate threshold of children may be an important factor for bone mineralisation by providing high extracellular inorganic phosphate concentrations during normal growth. PMID:6280622

  1. Control of physicochemical properties and catalytic activity of tris(2,2'-bipyridine)iron(II) encapsulated within the zeolite Y cavity by alkaline earth metal cations.

    PubMed

    Martis, Martin; Mori, Kohsuke; Yamashita, Hiromi

    2014-01-21

    A series of materials containing the tris(2,2'-bipyridine)iron(ii) (Fe(bpy)3(2+)) complex inside zeolite Y cavities with alkaline earth metals (Mg(2+), Ca(2+), Sr(2+), Ba(2+)) as charge compensating cations have been synthesized via a "ship in the bottle" method. The influence of the alkaline earth metal cations on the physicochemical properties and catalytic activity was investigated. The successful formation of the Fe(bpy)3(2+) complex was verified by XRD, diffuse-reflectance UV-vis spectroscopy, and Fe K-edge XAFS measurements. The BET surface area and the Fe content decreased in the presence of the larger alkaline earth metal, but the intensity of the MLCT adsorption band of Fe(bpy)3(2+) increased with the heavier cation. The electron density of the Fe atoms decreased, and the average interatomic bond distance Fe-N/O and the coordination number increased with the heavier alkaline earth metal cation. The encapsulation of Fe(bpy)3(2+) resulted in the creation of a photocatalytic system able to oxidize styrene to benzaldehyde and styrene oxide under visible light irradiation (λ > 430 nm) in the presence of molecular oxygen.

  2. Alkaline Phosphatase-Mimicking Peptide Nanofibers for Osteogenic Differentiation.

    PubMed

    Gulseren, Gulcihan; Yasa, I Ceren; Ustahuseyin, Oya; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O

    2015-07-13

    Recognition of molecules and regulation of extracellular matrix synthesis are some of the functions of enzymes in addition to their catalytic activity. While a diverse array of enzyme-like materials have been developed, these efforts have largely been confined to the imitation of the chemical structure and catalytic activity of the enzymes, and it is unclear whether enzyme-mimetic molecules can also be used to replicate the matrix-regulatory roles ordinarily performed by natural enzymes. Self-assembled peptide nanofibers can provide multifunctional enzyme-mimetic properties, as the active sequences of the target enzymes can be directly incorporated into the peptides. Here, we report enhanced bone regeneration efficiency through peptide nanofibers carrying both catalytic and matrix-regulatory functions of alkaline phosphatase, a versatile enzyme that plays a critical role in bone formation by regulating phosphate homeostasis and calcifiable bone matrix formation. Histidine presenting peptide nanostructures were developed to function as phosphatases. These molecules are able to catalyze phosphate hydrolysis and serve as bone-like nodule inducing scaffolds. Alkaline phosphatase-like peptide nanofibers enabled osteogenesis for both osteoblast-like and mesenchymal cell lines.

  3. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors in vitro and in vivo

    PubMed Central

    Eyckmans, J.; Roberts, S.J.; Bolander, J.; Schrooten, J.; Chen, C.S.; Luyten, F.P.

    2014-01-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 hours after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved. PMID:23537666

  4. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  5. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  6. Potato Dextrose Agar Antifungal Susceptibility Testing for Yeasts and Molds: Evaluation of Phosphate Effect on Antifungal Activity of CMT-3

    PubMed Central

    Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.

    2002-01-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good

  7. Modeling metal cation-phosphate interactions in nucleic acids: activated dissociation of Mg+, Al+, Cu+, and Zn+ complexes of triethyl phosphate.

    PubMed

    Ruan, Chunhai; Rodgers, M T

    2009-08-12

    Threshold collision-induced dissociation techniques are employed to determine the activation energies (AEs) and bond dissociation energies (BDEs) of metal cation-triethyl phosphate complexes, M(+)(TEP), where M(+) = Mg(+), Al(+), Cu(+), and Zn(+). Activated dissociation resulting in loss of ethene, C(2)H(4), corresponds to the primary and lowest energy pathway for all four systems examined. Sequential loss of additional C(2)H(4) molecules and loss of the intact TEP ligand is also observed at elevated energies. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TEP and the M(+)(TEP) complexes, transition states, intermediates, and products of the activated dissociation of these complexes. Theoretical AEs and BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between the calculated and measured AEs for elimination of C(2)H(4) is excellent for all four systems. In contrast, less satisfactory agreement between theory and experiment is found for the M(+)-TEP BDEs and may indicate limitations in the competitive model used to analyze these high energy dissociation pathways. The influence of the valence orbital occupation of the metal cation on the binding and activation propensities for elimination of ethene from TEP is examined. The binding of metal cations to TEP is compared to that of the nucleobases to assess the binding preferences of metal cations to nucleic acids.

  8. Activity of hydrolytic enzymes in fungi isolated from diabetic pregnant women: is there any relationship between fungal alkaline and acid phosphatase activity and glycemic control?

    PubMed

    Nowakowska, Dorota; Kurnatowska, Alicja; Stray-Pedersen, Babill; Wilczyński, Jan

    2004-06-01

    Ability to respond to environmental changes and secretion of hydrolases are considered to be important for Candida virulence. In this study we determined and compared the activities of 19 different hydrolases of the fungal strains isolated from diabetic and non-diabetic pregnant women. We also looked for the presence of a relationship between hydrolase activities and glycemic control, and, furthermore, evaluated the influence of gestational age on the activity of hydrolases. Mycological examinations were performed for 119 diabetic pregnant women: 47 with diabetes mellitus type I (DM), 72 with gestational diabetes (GDM), and for 132 healthy women (CON). Samples were collected from the vagina, rectum and oral cavity and cultured on Sabouraud media. The fungal hydrolase activities were evaluated using the API ZYM test (bioMerieux). For the 19 different fungal hydrolases tested, 13 activities were present in the isolated fungal strains. The activity of alkaline phosphatase (ALP) in vaginal strains (p=0.028) and acid phosphatase (ACP) in strains from the vagina (p=0.006) and rectum (p=0.049) was significantly lower in DM than in GDM and CON women. In conclusion, we describe for the first time that fungi isolated from pregnant diabetic women have lower activity of both phosphatases compared to fungi isolated from healthy women. Furthermore, similar differences of mean ALP and ACP activities were observed in the course of pregnancy in strains from the vagina and rectum of DM and CON women. However, strains from DM had lower activity at each stage of pregnancy. The highest activity of ALP and ACP was detected at the beginning, then declined, and had the lowest values between the 24(th) and 33(rd) week of gestation. After that period the activity of both phosphatases increased.

  9. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.

    PubMed

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar

    2013-11-15

    Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in bioremediation of nuclear and other waste.

  10. Physical mapping of the herpes simplex virus type 2 nuc- lesion affecting alkaline exonuclease activity by using herpes simplex virus type 1 deletion clones.

    PubMed

    Wathen, M W; Hay, J

    1984-07-01

    The nuc- lesion affecting alkaline exonuclease activity in the herpes simplex virus type 2 (HSV-2) mutant ts1348 had previously been mapped to the EcoRI-D restriction enzyme fragment of HSV-1. Eight clones with deletions representing most of HSV-1 EcoRI fragment D were selected with lambda gtWES hybrids. These clones were tested for their ability to rescue the alkaline exonuclease activity of HSV-2 nuc- ts1348 virus. The sequences colinear with the HSV-2 nuc- lesion were found to map between 0.169 and 0.174 map units on the HSV-1 Patton genome, representing an 0.8-kilobase-pair region that is 12.9 to 13.7 kilobase pairs from the left end of HSV-1 EcoRI fragment D.

  11. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    PubMed

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  12. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-care G6PD deficiency screening tests suitable for areas of the developing world where malarial treatments are frequently administered. The development and evaluation of new G6PD tests will be greatly assisted with the availability of specimen repositories. Methods Cryopreservation of erythrocytes was evaluated as a means to preserve G6PD activity. Blood specimens from 31 patients including ten specimens with normal G6PD activity, three with intermediate activity, and 18 with deficient activity were cryopreserved for up to six months. Results Good correlation in G6PD activity between fresh and cryopreserved specimens (R2 = 0.95). The cryopreserved specimens show an overall small drop in mean G6PD activity of 0.23 U/g Hb (P=0.23). Cytochemical staining showed that intracellular G6PD activity distribution within the red blood cell populations is preserved during cryopreservation. Furthermore, the mosaic composition of red blood cells in heterozygous women is also preserved for six months or more. The fluorescent spot and the BinaxNOW qualitative tests for G6PD deficiency also showed high concordance in G6PD status determination between cryopreserved specimens and fresh specimens. Conclusions A methodology for establishing a specimen panel for evaluation of G6PD tests is described. The approach is similar to that used in several malaria research facilities for the cryopreservation of parasites in clinical specimens and axenic cultures. Specimens stored in this manner will aid

  13. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa

    PubMed Central

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice. PMID:27755566

  14. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  15. Generally recognized as safe (GRAS) Lactococcus lactis strains associated with Lippia sidoides Cham. are able to solubilize/mineralize phosphate.

    PubMed

    de Lacerda, Jackeline Rossetti Mateus; da Silva, Thais Freitas; Vollú, Renata Estebanez; Marques, Joana Montezano; Seldin, Lucy

    2016-01-01

    Eight strains isolated from the stems of Lippia sidoides were identified as belonging to Lactococcus lactis, a bacterial species considered as "generally recognized as safe". Their capacity to solubilize/mineralize phosphate was tested in vitro with different inorganic and organic phosphorus (P) sources. All strains were able to solubilize calcium phosphate as an inorganic P source, and the best result was observed with strain 003.41 which solubilized 31 % of this P source. Rock phosphate, a mined rock containing high amounts of phosphate bearing minerals, was solubilized by five strains. When calcium phytate was the organic P source used, the majority of the strains tested showed phosphate mineralization activity. Moreover, all strains were able to solubilize/mineralize phosphate from poultry litter, a complex P source containing inorganic and predominantly organic P. The presence of genes coding for phytase and alkaline phosphatase was searched within the strains studied. However, only gene sequences related to alkaline phosphatase (phoA and phoD) could be detected in the majority of the strains (excepting strain 006.29) with identities varying from 67 to 88 %. These results demonstrate for the first time the potential of L. lactis strains for phosphate solubilization/mineralization activity using a broad spectrum of P sources; therefore, they are of great importance for the future development of more safe bioinoculants with possible beneficial effects for agriculture.

  16. Identification of a sphingolipid-specific phospholipase D activity associated with the generation of phytoceramide-1-phosphate in cabbage leaves.

    PubMed

    Tanaka, Tamotsu; Kida, Takashi; Imai, Hiroyuki; Morishige, Jun-ichi; Yamashita, Ryouhei; Matsuoka, Hisatsugu; Uozumi, Sachika; Satouchi, Kiyoshi; Nagano, Minoru; Tokumura, Akira

    2013-08-01

    The structure and biosynthetic route for an unidentified lipid (lipid X) detected by TLC of cabbage (Brassica oleracea) lipids was determined. Lipid X is a phospholipid that is resistant to mild alkali and detectable by MALDI-TOF MS as an adduct with Phos-tag, a phosphate-capture zinc complex. Various α-hydroxy fatty acids (16:0, 22:0, 24:0 and 24:1) were detected by GC-MS of fatty acid methyl esters prepared from lipid X. The deacyl derivative of lipid X was determined to be 4-hydroxysphingenine (dehydrophytosphingosine)-1-phosphate by MALDI-TOF MS with Phos-tag. From these results, lipid X was determined to be phytoceramide-1-phosphate (PC1P) with an α-hydroxy fatty acid. When cabbage homogenates were incubated, PC1P was formed, with a concomitant decrease in the amount of glycosylinositol phosphoceramide (GIPC). The formation of PC1P from GIPC was confirmed by treatment of purified cabbage GIPC with a membrane fraction of cabbage homogenates. Using a partially purified enzyme fraction, we found that the enzyme hydrolyzes GIPC specifically, but not glycerophospholipids and sphingomyelin. Arabidopsis thaliana also had this enzyme activity. From these results, we conclude that a previously uncharacterized phospholipase D activity that specifically hydrolyzes GIPC produces PC1P in brassicaceous plants. PMID:23738625

  17. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonasputida isolated from mustard (Brassica compestris) rhizosphere.

    PubMed

    Ahemad, Munees; Khan, Mohammad Saghir

    2012-03-01

    This study was navigated to examine the effects of fungicide-stress on the activities of plant-growth-promoting rhizobacterium Pseudomonasputida with inherent phosphate solubilizing activity. The fungicide-tolerant and phosphate solubilizing P.putida strain PS9 was isolated from the mustard rhizosphere and tentatively identified following standard morphological, physiological and biochemical tests. To further consolidate the identity of the strain PS9, the 16S rDNA sequence analysis was performed. Following the BLAST program, the strain PS9 was identified as P.putida. In the presence of the varying concentrations (0-3200 μg mL(-1); at a two fold dilution interval) of four fungicides of different chemical families (tebuconazole, hexaconazole, metalaxyl and kitazin) amended in minimal salt agar medium, the P.putida strain PS9 showed a variable tolerance levels (1400-3200 μg mL(-1)) against the tested fungicides. The strain PS9 produced plant-growth-promoting (PGP) substances in significant amount in the absence of fungicides. In general, fungicides applied at the recommended, two and three times of the recommended rates, decreased the PGP attributes of P.putida the strain PS9 and affected the PGP activities in concentration-dependent manner. Fungicides at the recommended dose had minor reducing effect while the doses higher than the recommended dose significantly reduced the PGP activities (phosphate solubilization, salicylic acid, 2,3-dihydroxy benzoic acid, and indole-3-acetic acid production except exo-polysaccharides, hydrogen cyanate and ammonia production). Of the four fungicides, tebuconazole generally, showed maximum toxicity to the PGP activities of the strain PS9. This study inferred that fungicides must be examined in vitro for their possible adverse effects on soil micro flora before their application in agricultural fields. Moreover, the results also suggested the prerequisite of application of fungicide-tolerant PGPR strains as bioinoculants so that

  18. Synthesis of 3,3'-carbonyl-bis(chromones) and their activity as mammalian alkaline phosphatase inhibitors.

    PubMed

    Miliutina, Mariia; Ejaz, Syeda Abida; Iaroshenko, Viktor O; Villinger, Alexander; Iqbal, Jamshed; Langer, Peter

    2016-01-14

    Hitherto unknown 3,3'-carbonyl-bis(chromones) 8, dimeric chromones bridged by a carbonyl group, were prepared by reaction of chromone-3-carboxylic acid chloride with 3-(dimethylamino)-1- (2-hydroxyphenyl)-2-propen-1-ones 9. The method is generally applicable for the synthesis of novel symmetrical or non-symmetrical products which were found to inhibit mammalian alkaline phosphatases.

  19. Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice.

    PubMed

    Kirihata, Yuka; Kawarabayashi, Tetsu; Imanishi, Satoshi; Sugimoto, Miki; Kume, Shin-Ichi

    2008-02-01

    In this study, we investigated the effects of administration of coumestrol during pregnancy on calcium (Ca) metabolism in post-delivery maternal and neonatal mice. From 6.5 to 16.5 days post coitus (dpc), pregnant females were administered daily doses of coumestrol (200 microg/kg body weight/day). One day after parturition, blood samples and the kidneys, liver, jejunum and duodenum were obtained from each of maternal mouse, and blood samples and the kidneys and liver were obtained from neonatal mice. Coumestrol did not have any significant effect on the Ca and inorganic phosphorus concentrations in the sera of the maternal and neonatal mice. No notable effects of coumestrol were observed in relation to Vitamin D receptor expression in the maternal and neonatal mice by immunohistochemical analysis. Coumestrol did not affect the Vitamin D receptor and epithelial calcium channel and 2 mRNA levels in any of the organs investigated. Enzyme histochemical analysis showed that coumestrol decreased intestinal alkaline phosphatase activity in the maternal jejunum and duodenum. In the duodenum, coumestrol decreased expression of intestinal alkaline phosphatase, c-fos and vascular endothelial growth factor at the mRNA level. However, we did not observe any significant effects of coumestrol on the expression of these genes. In conclusion, coumestrol decreased intestinal alkaline phosphatase activity in the small intestines of maternal mice at the level used in the present study, and the mechanisms underlying this effect are different for the jejunum and duodenum. PMID:18160770

  20. Cerium-activated rare-earth orthophosphate and double-phosphate scintillators for x-and gamma-ray detection

    SciTech Connect

    Boatner, Lynn A; Keefer, Lara A; Farmer, James Matthew; Wisniewski, D.; Wojtowicz, A. J.

    2004-01-01

    When activated with an appropriate rare-earth ion (e.g., Ce or Nd), rare-earth orthophosphates of the form REPO4 (where RE = a rare-earth cation) and alkali rare-earth double phosphates of the form A{sub 3}RE(PO{sub 4}){sub 2} (where A = K, Rb, or Cs) are characterized by light yields and decay times that make these materials of interest for radiation-detection applications. Crystals of the compound Rb{sub 3}Lu(PO{sub 4}){sub 2} when activated with {approx}0.1 mol % Ce exhibit a light yield that is {approx}250% that of BGO with a decay time on the order of {approx}40 nsec. The cerium-activated rare-earth orthophosphate LuPO{sub 4}:Ce is also characterized by a high light yield and a relatively fast decay time of {approx}25 nsec. Additionally, the rare-earth orthophosphates are extremely chemically, physically, and thermally durable hosts that recover easily from radiation damage effects. The properties of the rare-earth orthophosphates and double phosphates that pertain to their use as X- and gamma-ray detectors are reviewed. This review includes information related to the use of Nd-doped LuPO{sub 4} as a scintillator with a sufficiently energetic, short-wavelength output ({lambda} = 90 nm) so that it can be used in conjunction with appropriately activated proportional counters. Information is presented on the details of the synthesis, structure, and luminescence properties of lanthanide double phosphates that, when activated with cerium, are efficient scintillators with output wavelengths that are sufficiently long to be well matched to the response of silicon photodiode detectors.

  1. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions.

    PubMed

    Liu, Tingting; Liu, Qian; Asiri, Abdullah M; Luo, Yonglan; Sun, Xuping

    2015-12-01

    It is attractive but still remains a big challenge to develop non-noble metal bifunctional electrocatalysts efficient for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions. Herein, an amorphous CoSe film electrodeposited on a Ti mesh (a-CoSe/Ti) is demonstrated to exhibit high electrocatalytic activity and stability for both reactions in 1.0 M KOH. It needs overpotentials of 292 and 121 mV to drive 10 mA cm(-2) for OER and HER, respectively. The two-electrode alkaline water electrolyzer affords a water-splitting current of 10 mA cm(-2) at a cell voltage of 1.65 V. This work offers an attractive cost-effective catalytic material toward full water splitting applications.

  2. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  3. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone.

    PubMed

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone.

  4. Glucose-6-Phosphate Dehydrogenase and NADPH Redox Regulates Cardiac Myocyte L-Type Calcium Channel Activity and Myocardial Contractile Function

    PubMed Central

    Rawat, Dhwajbahadur K.; Hecker, Peter; Watanabe, Makino; Chettimada, Sukrutha; Levy, Richard J.; Okada, Takao; Edwards, John G.; Gupte, Sachin A.

    2012-01-01

    We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure). PMID:23071515

  5. Similar healthy osteoclast and osteoblast activity on nanocrystalline hydroxyapatite and nanoparticles of tri-calcium phosphate compared to natural bone

    PubMed Central

    MacMillan, Adam K; Lamberti, Francis V; Moulton, Julia N; Geilich, Benjamin M; Webster, Thomas J

    2014-01-01

    While there have been numerous studies to determine osteoblast (bone forming cell) functions on nanocrystalline compared to micron crystalline ceramics, there have been few studies which have examined osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and receptor activator of nuclear factor κB [RANK]). This is despite the fact that osteoclasts are an important part of maintaining healthy bone since they resorb bone during the bone remodeling process. Moreover, while it is now well documented that bone formation is enhanced on nanoceramics compared to micron ceramics, some have pondered whether osteoblast functions (such as osteoprotegerin and RANK ligand [RANKL]) are normal (ie, non-diseased) on such materials compared to natural bone. For these reasons, the objective of the present in vitro study was to determine various functions of osteoclasts and osteoblasts on nanocrystalline and micron crystalline hydroxyapatite as well as tri-calcium phosphate materials and compare such results to cortical and cancellous bone. Results showed for the first time similar osteoclast activity (including tartrate-resistant acid phosphatase, formation of resorption pits, size of resorption pits, and RANK) and osteoblast activity (osteoprotegerin and RANKL) on nanocrystalline hydroxyapatite compared to natural bone, whereas osteoclast and osteoblast functions on micron crystalline versions of these ceramics were much different than natural bone. In this manner, this study provides additional evidence that nanocrystalline calcium phosphates can serve as suitable synthetic analogs to natural bone to improve numerous orthopedic applications. It also provides the first data of healthy osteoclast and osteoblast functions on nanocrystalline calcium phosphates compared to natural bone. PMID:25506216

  6. Alkaline phosphatase activity: new assay for the Reflotron system. Results of the evaluation in eight clinical laboratories.

    PubMed

    Schumann, G; Dominick, H C; Hellmann, D; Klauke, R; Möckesch, M; Stekel, H; von Schenck, H; Kraft, M; Nagel, R; Hänseler, E

    2001-01-01

    A new reagent carrier, Reflotron ALP, has been developed for the Reflotron system, allowing easy and rapid measurement (in less than 3 minutes) of alkaline phosphatase (ALP) activity in capillary blood, venous blood, heparinized plasma or serum. The evaluation of the analytical performance of the assay was carried out at eight clinical laboratories. The study of the imprecision using the measurements in human samples resulted in coefficients of variation ranging from 1.3% to 4.6% (within-run) and from 3.2% to 4.0% (day-to-day). The analytical specificity of the Reflotron ALP assay agrees well with ALP methods using a N-methyl-D-glucamine buffer solution. The calibration of the Reflotron ALP assay, however, is related to the reference intervals for ALP methods using a diethanolamine buffer solution. Method comparisons were performed with the ALP method on Hitachi instruments using diethanolamine buffer. Reflotron ALP measurements in blood and plasma in 157 randomly selected split samples showed excellent agreement (slope: 0.99; intercept: 0.7 U/l; median bias: 2.3%; median difference from the comparison method: -0.3%). Specimens from pregnant women and adolescents were excluded from this study. Differing values were obtained in a method comparison using 48 samples containing predominantly the ALP bone isoform (slope: 0.81; intercept: 31.5 U/l; median bias: 5.7%; median difference from the comparison method: -12.2%). Regression analysis of the results from 21 sera with prevailing placental ALP gave a slope of 1.51, and an intercept of -41.1 U/l (median bias: 8.6%; median difference from the comparison method: 35.6%). Reflotron ALP was compared with three different wet chemistry procedures using different buffer compounds: N-methyl-D-glucamine or diethanolamine or 2-amino-2-methyl-1-propanol. In samples containing predominantly ALP isoforms not of liver origin, the measurements with N-methyl-D-glucamine buffer gave the best fit with respect to Reflotron. In an

  7. Characterization of the mineral phosphate-solubilizing activity of Pantoea agglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolívar State).

    PubMed

    Sulbarán, Miguel; Pérez, Elizabeth; Ball, María M; Bahsas, Alí; Yarzábal, Luis Andrés

    2009-04-01

    The mineral phosphate-solubilizing (MPS) activity of a Pantoea agglomerans strain, namely MMB051, isolated from an iron-rich, acidic soil near Ciudad Piar (Bolívar State, Venezuela), was characterized on a chemically defined medium (NBRIP). Various insoluble inorganic phosphates, including tri-calcium phosphate [Ca(3)(PO(4))(2)], iron phosphate (FePO(4)), aluminum phosphate (AlPO(4)), and Rock Phosphate (RP) were tested as sole sources of P for bacterial growth. Solubilization of Ca(3)(PO(4))(2) was very efficient and depended on acidification of the external milieu when MMB051 cells were grown in the presence of glucose. This was also the case when RP was used as the sole P source. On the other hand, the solubilization efficiency toward more insoluble mineral phosphates (FePO(4) and AlPO(4)) was shown to be very low. Even though gluconic acid (GA) was detected on culture supernatants of strain MMB051, a consequence of the direct oxidation pathway of glucose, inorganic-P solubilization seemed also to be related to other processes dependent on active cell growth. Among these, proton release by ammonium (NH(4)(+) ) fixation appeared to be of paramount importance to explain inorganic-P solubilization mediated by strain MMB051. On the contrary, the presence of nitrate (NO(3)(-) ) salts as the sole N source affected negatively the ability of MMB051 cells to solubilize inorganic P.

  8. [Differences in the light-activation of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase and of ribulose-5-phosphate kinase between plants containing the Calvin and those containing the C4-dicarboxylic acid pathway of photosynthetic carbon reduction].

    PubMed

    Steiger, E; Ziegler, I; Ziegler, H

    1971-06-01

    1. Preceding experiments had shown that irradiance of intact leaves or of isolated chloroplasts causes a reversible increase in the activity of NADP-GPD (Ziegler and Ziegler, 1965) as well as of ribulose-5-phosphate kinase (Latzko and Gibbs, 1969). Examination of several species which carry out the Calvin type of photosynthetic CO2 fixation (Vicia faba, Spinacia oleracea, Nicotiana tabacum, Avena sativa) now revealed that the dark level of NADP-GPD activity ranges between 300-400 μmol NADPH/mg chlorophyll·h; irradiance causes an activation to an turnover rate of 900-1600 μmol NADPH/mg chlorophyll·h. 2. The dark-level of ribulose-5-phosphate kinase in these Calvin type plants corresponds to about 400 \\gmmol PO4---/mg chlorophyll\\sdh. It rises to 900\\2-1300 \\gmmol PO4---/mg chlorophyll\\sdh after irradiance. 3. In all species examined which carry out the C4-dicarboxylic acid type of CO2 fixation (Zea mays, Cyperus rotundus, Portulacca oleracea, Saccharum officinarum) the dark-level of NADP-GPD as well as of ribulose-5-phosphate kinase is already as high as the light-level of Calvin type plants. In these species irradiance either activates both enzymes only to a small extent (Saccharum officinarum, Portulacea oleracea) or it activates only one of the two enzymes to an exceptional high activity (NADP-GPD in Zea mays, ribulose-5-phosphate kinase in Cyperus rotundus), while the activity of the other one remains nearly constant. 4. The dark-level of NADP-GPD in young Zea mays (2 leaves expanded) is as high as in adult plants; moreover its further activation by light corresponds to that in adult plants. In contrast, the dark-activity of ribulose-5-phosphate kinase in young Zea mays corresponds to the lower level found in Calvin type plants and is activated by irradiance in the same manner as it is in the latter plants. 5. The activity of ribose-5-phosphate isomerase is not influenced by light.

  9. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity

    PubMed Central

    Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  10. Complete Genome Sequence of the Rhizobacterium Pseudomonas trivialis Strain IHBB745 with Multiple Plant Growth-Promoting Activities and Tolerance to Desiccation and Alkalinity.

    PubMed

    Gulati, Arvind; Swarnkar, Mohit Kumar; Vyas, Pratibha; Rahi, Praveen; Thakur, Rishu; Thakur, Namika; Singh, Anil Kumar

    2015-01-01

    The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. PMID:26337878

  11. 5'-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA-GalNAc Conjugates.

    PubMed

    Parmar, Rubina; Willoughby, Jennifer L S; Liu, Jingxuan; Foster, Donald J; Brigham, Benjamin; Theile, Christopher S; Charisse, Klaus; Akinc, Akin; Guidry, Erin; Pei, Yi; Strapps, Walter; Cancilla, Mark; Stanton, Matthew G; Rajeev, Kallanthottathil G; Sepp-Lorenzino, Laura; Manoharan, Muthiah; Meyers, Rachel; Maier, Martin A; Jadhav, Vasant

    2016-06-01

    Small interfering RNA (siRNA)-mediated silencing requires siRNA loading into the RNA-induced silencing complex (RISC). Presence of 5'-phosphate (5'-P) is reported to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the mid-domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although extensive chemical modifications are essential for siRNA-GalNAc conjugate activity, they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect of 5'-P on the activity of siRNA-GalNAc conjugates. Our results demonstrate that a subset of sequences benefit from the presence of exogenous 5'-P. For those that do, incorporation of 5'-(E)-vinylphosphonate (5'-VP), a metabolically stable phosphate mimic, results in up to 20-fold improved in vitro potency and up to a threefold benefit in in vivo activity by promoting Ago2 loading and enhancing metabolic stability.

  12. Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics.

    PubMed

    Makshakova, Olga N; Semenyuk, Pavel I; Kuravsky, Mikhail L; Ermakova, Elena A; Zuev, Yuriy F; Muronetz, Vladimir I

    2015-05-01

    Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one. We demonstrated key residues responsible for intersubunit and interdomain interactions. Effect of several residues was studied by point mutations. Overall we considered three mutations (Glu96Gln, Glu244Gln and Asp311Asn) disrupting GAPDS-specific salt bridges. Comparison of calculated interaction energies with calorimetric enthalpies confirmed that intersubunit interactions were responsible for enhanced thermostability of GAPDS whereas interdomain interactions had indirect influence on intersubunit contacts. Mutation Asp311Asn was around 10Å far from the active center and corresponded to the closest natural substitution in the isoenzymes. MD simulations revealed that this residue had slight interaction with catalytic residues but influenced the hydrogen bond net and dynamics in active site. These effects can be responsible for a strong influence of this residue on catalytic activity. Overall, our results provide new insight into glyceraldehyde-3-phosphate dehydrogenase structure-function relationships and can be used for the engineering of mutant proteins with modified properties and for development of new inhibitors with indirect influence on the catalytic site. PMID:25869789

  13. [Activity of NADP-dependent glyceraldehyde-phosphate dehydrogenase and phosphoenolpyruvate carboxylase in wheat leaves under water stress].

    PubMed

    Cherniad'ev, I I; Monakhova, O F

    2006-01-01

    The activities of NADP: glyceraldehyde-phosphate dehydrogenase (GAPDH), an enzyme complex comprising of phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde-phosphate dehydrogenase (EC 1.2.1.13), and phosphoenolpyruvate carboxylase (PEPK; EC 4.1.1.31) in seedlings and leaves of wheat (Triticum aestivum L.) plants of the cultivars Mironovskaya 808 and Lutescens 758 have been compared under conditions of normal water supply, water deficiency, and subsequent rehydration. GAPDH activity, which determines the carbohydrate route of photosynthetic metabolism at the initial stages, is decreased by water stress to a greater extent than that of PEPK, on the activity of which non-carbohydrate metabolic pathways depend. Pretreatment of seedlings and mature plants with natural (6-benzylaminopurine) and synthetic (tidiazuron, kartolin-2, and kartolin-4) cytokinins attenuates the loss of enzyme activities during drought and facilitates their recovery within the period of rehydration; both effects are underlain by augmentation of reparation processes. The relative intensification of non-carbohydrate pathways of photosynthetic metabolism, observed under conditions of water deficiency, is accompanied by an increase in the osmotic pressure of cell sap. Possible mechanisms of this protector effect of cytokinin preparations are discussed. PMID:16878554

  14. Cysteine-S-conjugate beta-lyase activity and pyridoxal phosphate binding site of onion alliin lyase.

    PubMed

    Kitamura, N; Shimomura, N; Iseki, J; Honma, M; Chiba, S; Tahara, S; Mizutani, J

    1997-08-01

    Purification of onion alliin lyase gave two fractions by cation exchange chromatography. Both fractions showed the comparable high catalytic activity of cysteine-S-conjugate beta-lyase with that of alliin lyase using S-(2-chloro-6-nitrophenyl)-L-cysteine and alliin, S-allyl-L-cysteine sulfoxide as substrates. All the active substrates tested with onion alliin lyase were also active to the cysteine-S-conjugate beta-lyase of Mucor javanicus, but the catalytic activity of the Mucor enzyme was lower for all the substrates. The pyridoxal phosphate binding site of the onion alliin lyase was identified as Lys 285 in the amino acid sequence deduced from cDNA which has been reported. This lysine was conserved in all the sequences from the alliin lyase cDNAs, while similarity was not found between the sequences around pyridoxal phosphate binding sites of both the onion alliin lyase and the Mucor cysteine-S-conjugate beta-lyase. PMID:9301115

  15. Antibacterial effect of phosphates and polyphosphates with different chain length.

    PubMed

    Lorencová, Eva; Vltavská, Pavlína; Budinský, Pavel; Koutný, Marek

    2012-01-01

    The aim of this study was to monitor the antibacterial effect of seven phosphate salts on selected strains of Gram-negative and Gram-positive bacteria, which could be considered responsible for food-borne diseases (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Citrobacter freundii, Escherichia coli, Proteus mirabilis, Salmonella enterica ser. Enteritidis and Pseudomonas aeruginosa). For these purposes, phosphates differing in chain length were used. The tested concentrations were in the range of 0.1-2.0% (wt v(-1)) applied at the model conditions. In the majority of cases the visible inhibitory effect on the growth of observed microorganisms could be seen. Due to the chemical structure of salts and their dissociation both the pH values of cultivation broth and similarly the growth characteristics of bacterial strains were affected. The inhibition of above mentioned bacteria was apparently supported by this dissociation. Phosphates obviously made the development of most Gram-positive bacteria impossible. Especially Micrococcus luteus was extremely sensitive to the presence of these substances. On the other hand, Gram-negative bacteria seemed to be resistant to the phosphate incidence. The exemption clause from the tested salts was represented by a high alkaline trisodium phosphate. It should be pointed out that generally the most significant antibacterial effects were shown by polyphosphates HEXA68 and HEXA70, trisodium phosphate undecahydrate, tetrasodium pyrophosphate and finally trisodium phosphate. By comparing the inhibitory effects of various phosphate salts can be concluded that the antibacterial activity was not determined only by the condensation degree but there was also proved the dependence on pH values.

  16. Comparison of the single molecule activity distributions of recombinant and non-recombinant bovine intestinal alkaline phosphatase.

    PubMed

    Craig, Douglas B; Hanlon-Dearman, Fiona; Beaudry, Shailah; Shek, Kevin; King, Steffany D

    2015-10-01

    Single molecule assays were performed on bovine intestinal alkaline phosphatase and the recombinant enzyme expressed in Pichia pastoris using a capillary electrophoresis-based method. The catalytic rates for the bovine and recombinant enzymes were found to be 11,000±7000min(-1) (N=161) and 12,000±7000min(-1) (N=173), respectively. Mean catalytic rates and variances did not differ significantly between the enzyme from both sources. Furthermore, the distribution of catalytic rates were indistinguishable.

  17. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-19

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  18. Control of Pyrophosphated-Fructose-6-Phosphate 1-Phosphotransferase Activity in the Cotyledons of Citrullus lanatus1

    PubMed Central

    Botha, Anna-Maria; Botha, Frederik C.

    1990-01-01

    After initiation of radicle elongation, the pyrophosphate:d-fructose-6-phosphate 1-phosphotransferase (PFP) activity sharply increases in the cotyledons of Citrullus lanatus. Removal of the radicle early during incubation prevents the increase in PFP activity in the cotyledons evident in the control. Removal of the radicle at any stage after germination results in a decrease in PFP activity in the cotyledons. Application of kinetin (0.5 micromolar) or 2-chlorophosphonic acid (0.1 micromolar) to isolated cotyledons replaces the effect of the radicle. Gibberellic acid (0.09 micromolar GA3) also partially mimics the presence of the radicle. Anaerobic conditions, as well as cycloheximide application (0.18 micromolar) to intact embryos or to kinetin and ethrel treated isolated cotyledons prevent the increase in PFP activity evident in the control. PMID:16667523

  19. International symposium on cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms: Proceedings

    SciTech Connect

    1993-12-31

    This report contains the abstracts of papers presented at the conference. Attention is focused on the following topics: regulation of phosphate metabolism in bacteria; structure-function of alkaline phosphatase; regulation of phosphate metabolism in yeast; transport of phosphate and phosphorylated compounds; and phosphate regulation in pathogenesis and secondary metabolism.

  20. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.

    PubMed

    Tong, Juan; Chen, Yinguang

    2009-07-01

    In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH(4)-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH(4)-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH(4)-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH(4)-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH(4)-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW=1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen

  1. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703.

    PubMed

    Lu, Zhenghui; Wang, Qinhong; Jiang, Sijing; Zhang, Guimin; Ma, Yanhe

    2016-01-01

    High pH condition is of special interest for the potential applications of alkaline α-amylase in textile and detergent industries. Thus, there is a continuous demand to improve the amylase's properties to meet the requirements set by specific applications. Here we reported the systematic study of modular domain engineering to improve the specific activity and stability of the alkaline α-amylase from Bacillus pseudofirmus 703. The specific activity of the N-terminal domain truncated mutant (N-Amy) increased by ~35-fold with a significantly improved thermo-stability. Kinetic analysis demonstrated that the Kcat and Kcat/Kmof N-Amy were enhanced by 1300-fold and 425.7-fold, respectively, representing the largest catalytic activity improvement of the engineered α-amylases through the methods of domain deletion, fusion or swapping. In addition, different from the wild-type Amy703, no exogenous Ca(2+) were required for N-Amy to maintain its full catalytic activity, implying its superior potential for many industrial processes. Circular dichroism analysis and structure modeling revealed that the increased compactness and α-helical content were the main contributors for the improved thermo-stability of N-Amy, while the improved catalytic efficiency was mainly attributed by the increased conformational flexibility around the active center. PMID:26926401

  2. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703

    PubMed Central

    Lu, Zhenghui; Wang, Qinhong; Jiang, Sijing; Zhang, Guimin; Ma, Yanhe

    2016-01-01

    High pH condition is of special interest for the potential applications of alkaline α-amylase in textile and detergent industries. Thus, there is a continuous demand to improve the amylase’s properties to meet the requirements set by specific applications. Here we reported the systematic study of modular domain engineering to improve the specific activity and stability of the alkaline α-amylase from Bacillus pseudofirmus 703. The specific activity of the N-terminal domain truncated mutant (N-Amy) increased by ~35-fold with a significantly improved thermo-stability. Kinetic analysis demonstrated that the Kcat and Kcat/Kmof N-Amy were enhanced by 1300-fold and 425.7-fold, respectively, representing the largest catalytic activity improvement of the engineered α-amylases through the methods of domain deletion, fusion or swapping. In addition, different from the wild-type Amy703, no exogenous Ca2+ were required for N-Amy to maintain its full catalytic activity, implying its superior potential for many industrial processes. Circular dichroism analysis and structure modeling revealed that the increased compactness and α-helical content were the main contributors for the improved thermo-stability of N-Amy, while the improved catalytic efficiency was mainly attributed by the increased conformational flexibility around the active center. PMID:26926401

  3. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon.

  4. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides.

  5. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19.

    PubMed

    Ahemad, Munees; Saghir Khan, Md

    2011-02-01

    This study examines the effect of four herbicides, quizalafop-p-ethyl, clodinafop, metribuzin and glyphosate, on plant growth promoting activities like phosphate solubilization, siderophores, indole acetic acid, exo-polysaccharides, hydrogen cyanide and ammonia production by herbicide tolerant Klebsiella sp. strain PS19. The strain was isolated from mustard rhizosphere. The selected herbicides were applied two to three times at the recommended rates. Klebsiella sp. strain PS19 tolerated a concentration of 1600 μg/ml each of quizalafop-p-ethyl and clodinafop, and 3200 and 2800 μg/ml of metribuzin and glyphosate, respectively. The activities of Klebsiella sp. strain PS19 observed under in vitro environment were persistent in the presence of all herbicides at lower rates. The plant growth promoting activities even-though decreased regularly, but was not lost completely, as the concentration of each herbicide was increased from the recommended to three times of higher doses. Among all herbicides, quizalafop-p-ethyl, generally, showed maximum toxicity to plant growth promoting activities of Klebsiella sp. strain PS19. As an example, 40, 80 and 120 μg/l of quizalafop-p-ethyl added to liquid culture Pikovskaya medium, decreased phosphate solubilizing activity of strain PS19 by 93, 95 and 97%, respectively over untreated control. The study revealed that the higher rates of herbicides though decreased the plant growth promoting activity but it did not completely inhibit the metabolic activities of strain PS19. The herbicide tolerance together with growth promoting activities observed under herbicide stress suggests that Klebsiella sp. strain PS19 could be used as bacterial preparation for facilitating the growth and yields of crops even in soils polluted with herbicides. PMID:20721665

  6. Thiamin Diphosphate Activation in 1-Deoxy-d-xylulose 5-Phosphate Synthase: Insights into the Mechanism and Underlying Intermolecular Interactions.

    PubMed

    White, Justin K; Handa, Sumit; Vankayala, Sai Lakshmana; Merkler, David J; Woodcock, H Lee

    2016-09-22

    1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a thiamin diphosphate (TDP) dependent enzyme that marks the beginning of the methylerythritol 4-phosphate isoprenoid biosynthesis pathway. The mechanism of action for DXS is still poorly understood and begins with the formation of a thiazolium ylide. This TDP activation step is thought to proceed through an intramolecular deprotonation by the 4'-aminopyrimidine ring of TDP; however, this step would occur only after an initial deprotonation of its own 4'-amino group. The mechanism of the initial deprotonation has been hypothesized, by analogy to transketolases, to occur via a histidine or an active site water molecule. Results from hybrid quantum mechanical/molecular mechanical (QM/MM) reaction path calculations reveal an ∼10 kcal/mol difference in transition state energies, favoring a water mediated mechanism over direct deprotonation by histidine. This difference was determined to be largely governed by electrostatic changes induced by conformational variations in the active site. Additionally, mutagenesis studies reveal DXS to be an evolutionarily resilient enzyme. Particularly, we hypothesize that residues H82 and H304 may act in a compensatory fashion if the other is lost due to mutation. Further, nucleus-independent chemical shifts (NICSs) and aromatic stabilization energy (ASE) calculations suggest that reduction in TDP aromaticity also serves as a factor for regulating ylide formation and controlling reactivity.

  7. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    PubMed Central

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  8. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.

    PubMed

    Park, Jung-Hui; Lee, Eun-Jung; Knowles, Jonathan C; Kim, Hae-Won

    2014-03-01

    Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for use as three-dimensional scaffolds for the culture and expansion of cells that are effective for bone tissue engineering. The calcium phosphate cement-alginate composite microcarriers were produced by an emulsification of the composite aqueous solutions mixed at varying ratios (calcium phosphate cement powder/alginate solution = 0.8-1.2) in an oil bath and the subsequent in situ hardening of the compositions during spherodization. Moreover, a porous structure could be easily created in the solid microcarriers by soaking the produced microcarriers in water and a subsequent freeze-drying process. Bone mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium phosphate cement-alginate microcarriers under moist conditions due to the conversion of the α-tricalcium phosphate phase in the calcium phosphate cement into a carbonate-hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were proven to be viable, with an active proliferative potential during 14 days of culture, and their osteogenic differentiation was confirmed by the determination of alkaline phosphatase activity. The in situ hardening calcium phosphate cement-alginate microcarriers developed herein may be used as potential three-dimensional scaffolds for cell delivery and tissue engineering of bone.

  9. Artefactual nanoparticle activation of the inflammasome platform: in vitro evidence with a nano-formed calcium phosphate

    PubMed Central

    Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan

    2015-01-01

    Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724

  10. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  11. [Phosphate binders].

    PubMed

    Heeb, Rita M

    2016-06-01

    Phosphate binders to treat hyperphosphataemia are part of the medication regime of every dialysis patient. Phosphate binders are taken with every meal (three times a day). Generally, the medication adherence rates of phosphate binders are very low. This is due to inconveniences like their bad taste or their size which makes them hard to swallow. Also nephrologists have differing opinions on phosphate binders as they are aware of the dialysis patients' difficulties to deal with the amount of drugs they are prescribed. Still, phosphate binders are important drugs which have shown potential in reducing mortality by regulating the level of serum phosphate. In order to improve adherence rates, pharmacists have to advise the patients on these drugs' side effects versus the risks associated with omitting their intake. PMID:27439258

  12. The impact of phosphate loading activities on near marine environment: the Syrian coast.

    PubMed

    Al-Masri, M S; Mamish, S; Budeir, Y

    2002-01-01

    The impact of loading cargoes of phosphate ore into ships on the near marine environment at the Syrian coast has been evaluated. Results have shown a significant enhancement of 210Po, 210Pb and other natural radionuclides in sediment and surface water inside the port area. The highest 210Po and 210Pb concentrations observed in sediment were found to be 170 and 64 Bq kg(-1) respectively, while 210Pb and 210Po concentrations in surface water ranged from 5 to 20 mBq l(-1) and 0.93 to 3.23 mBq l(-1). In addition, comparable values of 210Po and 210Pb for all marine organisms (algae, crab and fish) suggest that their use as indicators for phosphate pollution is not recommended. However, the effect of loading cargoes on the port marine environment of Tartous was found to be mainly related to wind direction where radioactive air particulate are either being dispersed to land or sea.

  13. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.

    PubMed

    Wang, Junjian; Duan, Zhijian; Nugent, Zoann; Zou, June X; Borowsky, Alexander D; Zhang, Yanhong; Tepper, Clifford G; Li, Jian Jian; Fiehn, Oliver; Xu, Jianzhen; Kung, Hsing-Jien; Murphy, Leigh C; Chen, Hong-Wu

    2016-08-10

    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer.

  14. Effects of some drugs on hepatic glucose 6-phosphate dehydrogenase activity in Lake Van fish (Chalcalburnus tarischii Pallas, 1811).

    PubMed

    Ciftci, Mehmet; Turkoglu, Vedat; Coban, T Abdulkadir

    2007-05-01

    Inhibitory effects of some drugs on hepatic glucose 6-phosphate dehydrogenase from Lake Van fish (chalcalburnus tarischii pallas, 1811) were investigated. For this purpose, initially liver glucose 6-phosphate dehydrogenase was purified 899-fold in a yield of 46.24% by using 2',5'-ADP Sepharose 4B affinity gel. In order to control the purification of enzyme was done SDS polyacrylamide gel electrophoresis. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (+4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were used as drugs. These drugs exhibited inhibitory effects on the enzyme. IC(50) values of vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were 1.88, 0.037, 0.032, 1.178, 2.26, 643.5 and 0.0002 mM, and the K(i) constants 1.18+/-0.148, 0.119+/-0.021, 0.075+/-0.015, 1.15+/-0.21, 7.69+/-0.67, 1007+/-69, and 0.001+/-0.00022 mM, respectively. While vankomycine and nidazole showed competitive inhibition, others displayed noncompetitive inhibition. K(i) constants and IC(50) values for drugs were determined by Lineweaver-Burk graphs and plotting activity percentage versus [I], respectively.

  15. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite.

    PubMed

    Ma, Xiaolong; Zhang, Xin; Guo, Xinli; Kang, Qi; Shen, Dazhong; Zou, Guizheng

    2016-07-01

    Sensitive and selective determining bio-related molecule and enzyme play an important role in designing novel procedure for biological sensing and clinical diagnosis. Herein, we found that dual-stabilizers-capped CdSe quantum dots (QDs) in composite film of multi-walled carbon nanotubes (CNTs) and Nafion, displaying eye-visible monochromatic electrochemiluminescence (ECL) with fwhm of 37nm, which offers promising ECL signal for detecting ascorbic acid (AA) as well as the activity of alkaline phosphatase (ALP) in biological samples. It was also shown that the dual-stabilizers-capped CdSe QDs can preserve their highly passivated surface states with prolonged lifetime of excited states in Nafion mixtures, and facilitate electron-transfer ability of Nafion film along with CNTs. Compared with the QDs/GCE, the ECL intensity is enhanced 1.8 times and triggering potential shifted to lower energy by 0.12V on the CdSe-CNTs-Nafion/GCE. The ECL quenching degree increases with increasing concentration of AA in the range of 0.01-30nM with a limit of detection (LOD) of 5pM. The activity of ALP was determined indirectly according to the concentration of AA, generated in the hydrolysis reaction of l-ascorbic acid 2-phosphate sesquimagnesium (AA-P) in the presence of ALP as a catalyst, with an LOD of 1μU/L. The proposed strategy is favorable for developing simple ECL sensor or device with high sensitivity, spectral resolution and less electrochemical interference. PMID:27154663

  16. TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways

    PubMed Central

    Almadén, Yolanda; Martínez-Moreno, Julio M.; Montes de Oca, Addy; Rodriguez-Ortiz, María Encarnación; Diaz-Tocados, Juan M.; Canalejo, Antonio; Florio, Mónica; López, Ignacio; Richards, William G.; Rodriguez, Mariano; Aguilera-Tejero, Escolástico; Muñoz-Castañeda, Juan R.

    2014-01-01

    Background Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not of high phosphate. Results Our results showed that TGF-β induced nuclear translocation of Smad3 as well as the expression of vascular smooth muscle markers, such as smooth muscle alpha actin, SM22α, myocardin, and smooth muscle-myosin heavy chain. The addition of high phosphate to MSC promoted nuclear translocation of Smad1/5/8 and the activation of canonical Wnt/β-catenin in addition to an increase in BMP-2 expression, calcium deposition and alkaline phosphatase activity. The administration of TGF-β to MSC treated with high phosphate abolished all these effects by inhibiting canonical Wnt, BMP and TGF-β pathways. A similar outcome was observed in high phosphate-treated cells after the inhibition of canonical Wnt signaling with Dkk-1. Conversely, addition of both Wnt/β-catenin activators CHIR98014 and lithium chloride enhanced the effect of high phosphate on BMP-2, calcium deposition and alkaline phosphatase activity. Conclusions Full VSMC differentiation induced by TGF-β may not be achieved when extracellular phosphate levels are high. Moreover, TGF-β prevents high phosphate-induced osteogenesis by decreasing the nuclear translocation of Smad 1/5/8 and avoiding the activation of Wnt/β-catenin pathway. PMID:24586576

  17. The performance of Inconel 693 electrodes for processing an iron phosphate glass melt containing 26 wt.% of a simulated low activity waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Newkirk, Joseph W.; Kim, Cheol-Woon; Brow, Richard K.; Schlesinger, Mark E.; Ray, Chandra S.; Day, Delbert E.

    2014-01-01

    Iron phosphate glass is a candidate fixation medium for storing radioactive waste. The Department of Energy supported a program to assess the viability of using Fe-phosphate glass for vitrifying low activity waste in a Joule Heated Melter (JHM). In this study, Inconel 693 electrodes were tested in a research-scale joule-heated melter (RSM) at Pacific Northwest National Laboratory. After a 10-day test at 1030 °C that yielded 124 kg of glass, the electrodes exhibited a dimensional loss rate of ∼1.6 mm/year, which is comparable to that of Inconel 690 electrodes used in a JHM for processing borosilicate melts. Microstructural changes occurred within the outermost 700 μm of the electrodes and are consistent with an earlier study of Inconel coupons in Fe-phosphate melts. The results indicate that Inconel 693 should have an acceptable corrosion resistance as the electrode for JHM processing of iron phosphate melts.

  18. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    SciTech Connect

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  19. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    SciTech Connect

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  20. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  1. Mice Lacking Mannose 6-Phosphate Uncovering Enzyme Activity Have a Milder Phenotype than Mice Deficient for N-Acetylglucosamine-1-Phosphotransferase Activity

    PubMed Central

    Boonen, Marielle; Vogel, Peter; Platt, Kenneth A.; Dahms, Nancy

    2009-01-01

    The mannose 6-phosphate (Man-6-P) lysosomal targeting signal on acid hydrolases is synthesized by the sequential action of uridine 5′-diphosphate-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (“uncovering enzyme” or UCE). Mutations in the two genes that encode GlcNAc-1-phosphotransferase give rise to lysosomal storage diseases (mucolipidosis type II and III), whereas no pathological conditions have been associated with the loss of UCE activity. To analyze the consequences of UCE deficiency, the UCE gene was inactivated via insertional mutagenesis in mice. The UCE −/− mice were viable, grew normally and lacked detectable histologic abnormalities. However, the plasma levels of six acid hydrolases were elevated 1.6- to 5.4-fold over wild-type levels. These values underestimate the degree of hydrolase hypersecretion as these enzymes were rapidly cleared from the plasma by the mannose receptor. The secreted hydrolases contained GlcNAc-P-Man diesters, exhibited a decreased affinity for the cation-independent mannose 6-phosphate receptor and failed to bind to the cation-dependent mannose 6-phosphate receptor. These data demonstrate that UCE accounts for all the uncovering activity in the Golgi. We propose that in the absence of UCE, the weak binding of the acid hydrolases to the cation-independent mannose 6-phosphate receptor allows sufficient sorting to lysosomes to prevent the tissue abnormalities seen with GlcNAc-1-phosphotranferase deficiency. PMID:19710420

  2. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal.

    PubMed

    Li, Xiang; Chen, Hong; Hu, Lanfang; Yu, Lei; Chen, Yinguang; Gu, Guowei

    2011-03-01

    The use of sludge fermentative short-chain fatty acids (SCFA) as an additional carbon source of biological nutrient removal (BNR) has drawn much attention recently as it can reuse sludge organics, reduce waste activated sludge production, and improve BNR performance. Our previous laboratory study had shown that the SCFA production was significantly enhanced by controlling sludge fermentation at pH 10 with NaOH. This paper focused on a pilot-scale study of alkaline fermentation of waste activated sludge, separation of the fermentation liquid from the alkaline fermentation system, and application of the fermentation liquid to improve municipal biological nitrogen and phosphorus removal. NaOH and Ca(OH)(2) were used respectively to adjust the alkaline fermentation pH, and their effects on sludge fermentation and fermentation liquid separation were compared. The results showed that the use of Ca(OH)(2) had almost the same effect on SCFA production improvement and sludge volatile suspended solids reduction as that of NaOH, but it exhibited better sludge dewatering, lower chemical costs, and higher fermentation liquid recovery efficiency. When the fermentation liquids, adjusted with Ca(OH)(2) and NaOH respectively, were added continuously to an anaerobic-anoxic-aerobic municipal wastewater BNR system, both the nitrogen and phosphorus removals, compared with the control, were improved to the same levels. This was attributed to the increase of not only influent COD but also denitrifying phosphorus removal capability. It seems that the use of Ca(OH)(2) to control sludge fermentation at pH 10 for efficiently producing a carbon source for BNR is feasible.

  3. Electrocatalytic activity and operational stability of electrodeposited Pd-Co films towards ethanol oxidation in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni

    2015-10-01

    Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.

  4. Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement.

    PubMed

    Ko, Chia-Ling; Chen, Jian-Chih; Tien, Yin-Chun; Hung, Chun-Cheng; Wang, Jen-Chyan; Chen, Wen-Cheng

    2015-01-01

    Calcium phosphate cement (CPC) is a widely used bone substitute. However, CPC application is limited by poor bioresorption, which is attributed to apatite, the stable product. This study aims to systematically survey the biological performance of dicalcium phosphate (DCP)-rich CPC. DCP-rich CPC exhibited a twofold, surface-modified DCP anhydrous (DCPA)-to-tetracalcium phosphate (TTCP) molar ratio, whereas conventional CPC (c-CPC) showed a onefold, surface unmodified DCPA-to-TTCP molar ratio. Cell adhesion, morphology, viability, and alkaline phosphatase (ALP) activity in the two CPCs were examined with bone cell progenitor D1 cultured in vitro. Microcomputed tomography and histological observation were conducted after CPC implantation in vivo to analyze the residual implant ratio and new bone formation rate. D1 cells cultured on DCP-rich CPC surfaces exhibited higher cell viability, ALP activity, and ALP quantity than c-CPC. Histological evaluation indicated that DCP-rich CPC showed lesser residual implant and higher new bone formation rate than c-CPC. Therefore, DCP-rich CPC can improve bioresorption. The newly developed DCP-rich CPC exhibited potential therapeutic applications for bone reconstruction.

  5. Preparation, characterization, biological activity, and transport study of polystyrene based calcium-barium phosphate composite membrane.

    PubMed

    Khan, Mohammad Mujahid Ali; Rafiuddin

    2013-10-01

    Calcium-barium phosphate (CBP) composite membrane with 25% polystyrene was prepared by co-precipitation method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Thermogravimetric analysis (TGA) were used to characterize the membrane. The membrane was found to be crystalline in nature with consistent arrangement of particles and no indication of visible cracks. The electrical potentials measured across the composite membrane in contact with univalent electrolytes (KCl, NaCl and LiCl), have been found to increase with decrease in concentrations. Thus the membrane was found to be cation-selective. Transport properties of developed membranes may be utilized for the efficient desalination of saline water and more importantly demineralization process. The antibacterial study of this composite membrane shows good results for killing the disease causing bacteria along with waste water treatment.

  6. Ionophore A23187 induces a refractory state in thrombin-activated release of inositol phosphates.

    PubMed Central

    Moscat, G; Moreno, F; Iglesias, S; Garcia-Barreno, P; Municio, A M

    1986-01-01

    The phosphatidylinositol cycle has been proposed to be involved in the regulation of platelet functionality through the control of cytoplasmic Ca2+ levels. However, the requirements of phospholipase C for Ca2+ has not yet been elucidated in intact platelets. The primary purpose of the present study was to investigate the Ca2+ requirements of this enzyme in platelets from miniature swine by taking advantage of the permeabilizing properties of the ionophore A23187. Our results strongly suggest that the treatment of platelets with A23187 induces a refractory state in thrombin-stimulated release of inositol phosphates while 5-hydroxytryptamine (serotonin)-secretory capacity in response to thrombin remained constant. This refractory state seems to be dependent on some cytochalasin-inhibitable cytoskeletal phenomena. PMID:3099773

  7. Silver Phosphate Based Plasmonic Photocatalyst: Highly Active Visible-Light Photocatalytic Property and Photosensitized Degradation of Pollutants

    NASA Astrophysics Data System (ADS)

    Lei, Yongqian; Wang, Guanhua; Guo, Pengran; Song, Huacan

    2012-11-01

    A stable silver phosphate based plasmonic photocatalyst (Ag-Ag3PO4) was successfully fabricated, which can drive catalytic reaction under low-intensity visible light. The synthesized plasmonic photocatalyst shows high performance and stability on the photodegradation of RhB under visible-light irradiation, and represents obviously enhanced photocatalytic activity than the pure Ag3PO4 sample. The photosensitization process was carried out in the photodegradation of 2,4-DCP and RhB mixture, of which the photocatalyst shows the enhancement activity for 2,4-DCP while weaker for RhB. The investigation is likely to open up a new sight for the preparation of high efficient and stable plasmonic photocatalysts which utilizes visible light.

  8. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule.

  9. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA.

    PubMed

    GREENAWALT, J W; ROSSI, C S; LEHNINGER, A L

    1964-10-01

    Rat liver mitochondria allowed to accumulate maximal amounts of Ca(++) and HPO(4) (=) ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca(++) and HPO(4) (=) from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca(++)-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca(++)-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca(++)-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca(++) and phosphate from the mitochondria into the medium.

  10. Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells

    PubMed Central

    Patrikoski, Mimmi; Juntunen, Miia; Kujala, Kasperi; Kääriäinen, Minna; Kuokkanen, Hannu; Sándor, George K; Vapaavuori, Outi; Suuronen, Riitta; Mannerström, Bettina; von Rechenberg, Brigitte; Miettinen, Susanna

    2012-01-01

    The effects of bioactive glass S53P4 or beta-tricalcium phosphate; and bone morphogenetic proteins bone morphogenetic protein-2, bone morphogenetic protein-7, or bone morphogenetic protein-2 + 7 on osteogenic differentiation of human adipose stem cells were compared in control medium, osteogenic medium, and bone morphogenetic protein-supplemented osteogenic medium to assess suitability for bone tissue engineering. Cell amount was evaluated with qDNA measurements; osteogenic differentiation using marker gene expression, alkaline phosphate activity, and angiogenic potential was measured by vascular endothelial growth factor expression. As compared to beta-tricalcium phosphate, cell amount was significantly greater for bioactive glass in control medium after 7 days and in osteogenic medium after 14 days, and alkaline phosphate activity was always significantly greater for bioactive glass in control medium. However, alkaline phosphate activity increased for beta-tricalcium phosphate and decreased for bioactive glass granules in osteogenic medium. For both biomaterials, bone morphogenetic protein supplementation decreased cell amount and osteogenic differentiation of human adipose stem cells, and vascular endothelial growth factor expressions correlated with cell amounts. Effects of culture medium on human adipose stem cells are biomaterial dependent; bioactive glass in control medium enhanced osteogenic differentiation most effectively. PMID:23316275

  11. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge

    PubMed Central

    Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.

    2012-01-01

    SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483

  12. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  13. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  14. Autosomal Factors with Correlated Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Laurie-Ahlberg, C. C.; Williamson, J. H.; Cochrane, B. J.; Wilton, A. N.; Chasalow, F. I.

    1981-01-01

    Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence. PMID:6804300

  15. Deletion of Hexose-6-phosphate Dehydrogenase Activates the Unfolded Protein Response Pathway and Induces Skeletal Myopathy*S⃞

    PubMed Central

    Lavery, Gareth G.; Walker, Elizabeth A.; Turan, Nil; Rogoff, Daniela; Ryder, Jeffery W.; Shelton, John M.; Richardson, James A.; Falciani, Francesco; White, Perrin C.; Stewart, Paul M.; Parker, Keith L.; McMillan, Daniel R.

    2008-01-01

    Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11β-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function. PMID:18222920

  16. Time and Demand are Two Critical Dimensions of Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate Pathway.

    PubMed

    Nagy, Csörsz; Haschemi, Arvand

    2015-01-01

    A process is a function of time; in immunometabolism, this is reflected by the stepwise adaptation of metabolism to sustain the bio-energetic demand of an immune-response in its various states and shades. This perspective article starts by presenting an early attempt to investigate the physiology of inflammation, in order to illustrate one of the basic concepts of immunometabolism, wherein an adapted metabolism of infiltrating immune cells affects tissue function and inflammation. We then focus on the process of macrophage activation and aim to delineate the factor time within the current molecular context of metabolic-rewiring important for adapting primary carbohydrate metabolism. In the last section, we will provide information on how the pentose phosphate pathway may be of importance to provide both nucleotide precursors and redox-equivalents, and speculate how carbon-scrambling events in the non-oxidative pentose phosphate pathway might be regulated within cells by demand. We conclude that the adapted metabolism of inflammation is specific in respect to the effector-function and appears as a well-orchestrated event, dynamic by nature, and based on a functional interplay of signaling- and metabolic-pathways.

  17. Protective action of creatinol O-phosphate against serum CPK activity enhanced by isoprenaline in the rat.

    PubMed

    Marzo, A; Ghirardi, P

    1979-01-01

    Isoprenaline (ISP) in the rat (500 mg/kg s.c.) was shown to be able to enhance the creatin phosphokinase activity (CPK) in serum from 135 U/l in the control animals to about 600 U/l in 5 h, i.e. at the peak. When the rats were pretreated with N-methyl-N-(beta-hydroxyethyl)guanidine O-phosphate (creatinol O-phosphate, COP), the CPK enhancement was reduced to an extent related to the doses of COP (250, 500 and 1000 mg/kg i.p.). COP protection was about 16% with the lower dose but increased to 50% with the highest dose according to linear regression (COP doses versus CPK levels, p less than 0.01). The protective action against serum CPK enhancement evoked by ISP is common to other classes of drugs, such as beta-blocking agents, calcium antagonists and corticosteroids. In the case of COP and calcium antagonists a common mechanism, which has the effect or reducing myocardial calcium overload due to ISP, may be assumed on the basis of other previous investigations on the ion balance across the heart cell membrane and on the uptake and subcellular distribution of COP in the isolated perfused rat heart.

  18. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China.

    PubMed

    Ding, Yanqing; Qin, Boqiang; Xu, Hai; Wang, Xiaodong

    2016-08-01

    Sediments play important roles, as nutrient reservoir, especially in shallow lake ecosystem. The water column of large shallow lakes is often stable but also disturbed by turbulence causing resuspension of sediments. While considerable research has been carried out to investigate the influence of sediment resuspension on nutrient release, fewer studies have been done to understand the contribution of alkaline phosphatase activity (APA) in water as a response to the two conditions (turbulence and stability). Also, effects of the two lake conditions on photosynthetic efficiency of phytoplankton are still poorly understood. This study will evaluate the effect of these two conditions on photosynthetic efficiency and APA. Sediments used in the indoor experiments were collected from Zhushan Bay in Lake Taihu. Turbulence was generated by rotors to simulate the strong wind-induced disturbance in Lake Taihu. Results of the experiments showed that TN and TP in the stable and episodically turbulent conditions were not significantly different, with TN ranging from 1.34 to 1.90 mg/L and TP from 0.08 to 0.18 mg/L. Whereas, the soluble reactive phosphorus in the episodically turbulent condition was significantly higher than in the stable condition. Episodic turbulence could enhance P cycling by resuspending sediment-associated P, which alleviated algal P limitation. In stable conditions, P deficiency induced the production of high APA, which enhanced the availability of P. Although episodic turbulence could also cause increased algal biomass, photosynthetic efficiency of the algae was also affected not only by the nutrients but also by many other factors, especially light availability. Our results suggest that episodic turbulence is an important driver of biogeochemical cycling in large shallow hypertrophic lake ecosystem.

  19. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China.

    PubMed

    Ding, Yanqing; Qin, Boqiang; Xu, Hai; Wang, Xiaodong

    2016-08-01

    Sediments play important roles, as nutrient reservoir, especially in shallow lake ecosystem. The water column of large shallow lakes is often stable but also disturbed by turbulence causing resuspension of sediments. While considerable research has been carried out to investigate the influence of sediment resuspension on nutrient release, fewer studies have been done to understand the contribution of alkaline phosphatase activity (APA) in water as a response to the two conditions (turbulence and stability). Also, effects of the two lake conditions on photosynthetic efficiency of phytoplankton are still poorly understood. This study will evaluate the effect of these two conditions on photosynthetic efficiency and APA. Sediments used in the indoor experiments were collected from Zhushan Bay in Lake Taihu. Turbulence was generated by rotors to simulate the strong wind-induced disturbance in Lake Taihu. Results of the experiments showed that TN and TP in the stable and episodically turbulent conditions were not significantly different, with TN ranging from 1.34 to 1.90 mg/L and TP from 0.08 to 0.18 mg/L. Whereas, the soluble reactive phosphorus in the episodically turbulent condition was significantly higher than in the stable condition. Episodic turbulence could enhance P cycling by resuspending sediment-associated P, which alleviated algal P limitation. In stable conditions, P deficiency induced the production of high APA, which enhanced the availability of P. Although episodic turbulence could also cause increased algal biomass, photosynthetic efficiency of the algae was also affected not only by the nutrients but also by many other factors, especially light availability. Our results suggest that episodic turbulence is an important driver of biogeochemical cycling in large shallow hypertrophic lake ecosystem. PMID:27151245

  20. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-01

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams. PMID:22571620

  1. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-01

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  2. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  3. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  4. Flaxseed Protects Against Diabetes-Induced Glucotoxicity by Modulating Pentose Phosphate Pathway and Glutathione-Dependent Enzyme Activities in Rats.

    PubMed

    Gök, Müslüm; Ulusu, Nuray N; Tarhan, Nilay; Tufan, Can; Ozansoy, Gülgün; Arı, Nuray; Karasu, Çimen

    2016-01-01

    This study investigated the effects of flaxseed (Linum usitatissimum L.) intake on general metabolism, pentose phosphate pathway (PPP) and glutathione-dependent enzymes in diabetic rats. Diabetes was induced by streptozotocin injection (40 mg/kg, i.p.) and the enzyme activities were determined spectrophotometrically. Diabetic and control rats were divided in two subgroups, one untreated, and one treated with flaxseed (0.714 g/kg body weight/day; orally) for 12 weeks. Flaxseed ameliorated decreased body weight (p < .05) and increased blood glucose (p < .001), triglyceride (p < .001), ALT (p < .001) and AST (p < .001) in diabetic rats. Diabetes resulted in increased glucose-6-phosphate dehydrogenase (G6PD) (p < .05) and decreased glutathione-S-transferase (GST) (p < .01), but unchanged 6-phosphogluconate dehydrogenase (6PGD) and glutathione reductase (GR) in the brain of rats. These alterations were partially improved by flaxseed in comparison to diabetic untreated group (p < .05). G6PD, 6PGD, GR were elevated (p < .001), while GST unchanged in the lung of diabetic untreated group compared to control. Flaxseed partially prevented the increase in 6PGD (p < .05) and GR (p < .01), but unaffected G6PD in the lung of diabetic rats. G6PD (p < .001), 6PGD (p < .05), GR (p < .001) were augmented, while GST showed a significant (p < .001) depletion in the pancreas of diabetic untreated rats compared to control. Diabetic alterations observed in pancreatic enzyme activities were significantly prevented by flaxseed. Furthermore, a remarkable decrease in 6PGD (p < .001) and an increase in G6PD (threefold of control) were found in the lens of diabetic untreated group that were completely prevented by flaxseed (p < .001). Flaxseed has beneficial effects against diabetes-induced glucotoxicity by modulating G6PD, 6PGD, GR and GST activities in tissues.

  5. Flaxseed Protects Against Diabetes-Induced Glucotoxicity by Modulating Pentose Phosphate Pathway and Glutathione-Dependent Enzyme Activities in Rats.

    PubMed

    Gök, Müslüm; Ulusu, Nuray N; Tarhan, Nilay; Tufan, Can; Ozansoy, Gülgün; Arı, Nuray; Karasu, Çimen

    2016-01-01

    This study investigated the effects of flaxseed (Linum usitatissimum L.) intake on general metabolism, pentose phosphate pathway (PPP) and glutathione-dependent enzymes in diabetic rats. Diabetes was induced by streptozotocin injection (40 mg/kg, i.p.) and the enzyme activities were determined spectrophotometrically. Diabetic and control rats were divided in two subgroups, one untreated, and one treated with flaxseed (0.714 g/kg body weight/day; orally) for 12 weeks. Flaxseed ameliorated decreased body weight (p < .05) and increased blood glucose (p < .001), triglyceride (p < .001), ALT (p < .001) and AST (p < .001) in diabetic rats. Diabetes resulted in increased glucose-6-phosphate dehydrogenase (G6PD) (p < .05) and decreased glutathione-S-transferase (GST) (p < .01), but unchanged 6-phosphogluconate dehydrogenase (6PGD) and glutathione reductase (GR) in the brain of rats. These alterations were partially improved by flaxseed in comparison to diabetic untreated group (p < .05). G6PD, 6PGD, GR were elevated (p < .001), while GST unchanged in the lung of diabetic untreated group compared to control. Flaxseed partially prevented the increase in 6PGD (p < .05) and GR (p < .01), but unaffected G6PD in the lung of diabetic rats. G6PD (p < .001), 6PGD (p < .05), GR (p < .001) were augmented, while GST showed a significant (p < .001) depletion in the pancreas of diabetic untreated rats compared to control. Diabetic alterations observed in pancreatic enzyme activities were significantly prevented by flaxseed. Furthermore, a remarkable decrease in 6PGD (p < .001) and an increase in G6PD (threefold of control) were found in the lens of diabetic untreated group that were completely prevented by flaxseed (p < .001). Flaxseed has beneficial effects against diabetes-induced glucotoxicity by modulating G6PD, 6PGD, GR and GST activities in tissues. PMID:26317558

  6. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  7. Calc-alkaline mafic rocks of the Black Dyke Formation: Remnants of the final activity of a submerged Permian volcano

    SciTech Connect

    Blein, O.; Lapierre, H.; Pecher, A. ); Schweickert, R.A. . Dept. of Geological Science)

    1993-04-01

    The Permian Black Dyke Fm., which occurs as large tectonic slices within the Luning allochthon in the Excelsior Mountains, NV, forms an E-W trending anticline at Black Dyke Mountain. The 800-m thick stratigraphic succession consists of volcanic and pyroclastic rocks overlain conformably by volcaniclastic sediments. Along the northern limb of the anticline, the rocks consist of mafic porphyritic lavas, breccias, and graded and ungraded pyroclastic beds. The sedimentary unit consists of thick volcaniclastic turbidites overlain by conglomerates, sandstones, and mudstones. Along the southern limb of the anticline, the sequence is replaced by reworked breccia, tuffs, and sandstones. Mafic plutonic rocks occur as xenoliths in the lavas and breccias, and as coeval plugs intruding the section. Gabbros show cumulate or porphyritic textures and are composed of amph, cpx, and zoned plag. Their Ti/V (14.5--15) and Nb/Y (0.25--0.3) ratios fall in the range commonly found in calc-alkaline rocks. Diorite porphyry shows high Al[sub 2]O[sub 3], ZrO[sub 2], and REE abundances indicating that this rock is more fractionated. Basalts and andesites are plag-cpx-opx phyric. They often include glomeroporphyritic clots of cpx with amph coronas. Some rocks exhibit fluidal textures. Both volcanic and plutonic rocks show homogeneous geochemical features and similar crystallization sequences: Fe-Ti oxides---->plag---->opx + cpx----> brown zoned hbl, suggesting that they are cogenetic. Thus, the lower part of the Black Dyke Fm. likely represents the final products formed in a calc-alkaline magma chamber because pyroclastic rocks prevail over lava flows and abundant early crystal cumulates occur as plugs or as inclusions in the lavas and breccias.

  8. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  9. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon.

    PubMed

    Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng

    2014-03-01

    A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.

  10. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.

  11. Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikiya; Noji, Hiroyuki

    2014-04-01

    F1-ATPase is a rotary motor protein driven by ATP hydrolysis. The rotary motion of F1-ATPase is tightly coupled to catalysis, in which the catalytic sites strictly obey the reaction sequences at the resolution of elementary reaction steps. This fine coordination of the reaction scheme is thought to be important to achieve extremely high chemomechanical coupling efficiency and reversibility, which is the prominent feature of F1-ATPase among molecular motor proteins. In this study, we intentionally change the reaction scheme by using single-molecule manipulation, and we examine the resulting effect on the rotary motion of F1-ATPase. When the sequence of the products released, that is, ADP and inorganic phosphate, is switched, we find that F1 frequently stops rotating for a long time, which corresponds to inactivation of catalysis. This inactive state presents MgADP inhibition, and thus, we find that an improper reaction sequence of F1-ATPase catalysis induces MgADP inhibition.

  12. Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate

    NASA Astrophysics Data System (ADS)

    Supraja, N.; Prasad, T. N. V. K. V.; David, Ernest

    2016-01-01

    Scale formation in PVC pipelines reduces the water flow efficiency and enhances microbial contamination. A bio-based composite material comprising of silver doped calcium phosphate (Cp-Ag) was synthesized using a simple technique (photo catalysis) and herein, we report for the first time on preparation and evaluation of the antimicrobial efficacy of silver doped calcite extracted from the scale in drinking water pipe lines. Five concentrations of silver doped calcite materials viz,5, 10, 15, 20 and 25 ppm were prepared using chemical ammonia mediated synthetic method. The material Cp-Ag was characterized by using the techniques UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscopy, Raman spectroscopy, Thermo gravimetric analysis, X-ray photo electron spectroscopy (XPS), Nuclear magnetic resonance spectrometer and X-ray flouresence microscopy (XRF). Typical rhombohedral structure of the silver doped calcite was observed. XRF and XPS studies confirmed the presence of both calcium and silver in the composite material (Cp-Ag). The silver doped calcite material exhibited enhanced inhibition against Escherichia coli and staphylococcus aureus (Kirby-Bauer discs diffusion assay) which is also dependent on the concentration of the Cp-Ag material.

  13. Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein.

    PubMed

    Watanabe, Rikiya; Noji, Hiroyuki

    2014-04-01

    F1-ATPase is a rotary motor protein driven by ATP hydrolysis. The rotary motion of F1-ATPase is tightly coupled to catalysis, in which the catalytic sites strictly obey the reaction sequences at the resolution of elementary reaction steps. This fine coordination of the reaction scheme is thought to be important to achieve extremely high chemomechanical coupling efficiency and reversibility, which is the prominent feature of F1-ATPase among molecular motor proteins. In this study, we intentionally change the reaction scheme by using single-molecule manipulation, and we examine the resulting effect on the rotary motion of F1-ATPase. When the sequence of the products released, that is, ADP and inorganic phosphate, is switched, we find that F1 frequently stops rotating for a long time, which corresponds to inactivation of catalysis. This inactive state presents MgADP inhibition, and thus, we find that an improper reaction sequence of F1-ATPase catalysis induces MgADP inhibition.

  14. Characterization of the highly active fragment of glyceraldehyde-3-phosphate dehydrogenase gene promoter for recombinant protein expression in Pleurotus ostreatus.

    PubMed

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-03-01

    Developing efficient native promoters is important for improving recombinant protein expression by fungal genetic engineering. The promoter region of glyceraldehyde-3-phosphate dehydrogenase gene in Pleurotus ostreatus (Pogpd) was isolated and optimized by upstream truncation. The activities of these promoters with different lengths were further confirmed by fluorescence, quantitative real-time PCR and Western blot analysis. A truncated Pogpd-P2 fragment (795 bp) drove enhanced green fluorescence protein (egfp) gene expression in P. ostreatus much more efficiently than full-length Pogpd-P1. Further truncating Pogpd-P2 to 603, 403 and 231 bp reduced the eGFP expression significantly. However, the 403-bp fragment between -356 bp and the start codon was the minimal but sufficient promoter element for eGFP expression. Compact native promoters for genetic engineering of P. ostreatus were successfully developed and validated in this study. This will broaden the preexisting repertoire of fungal promoters for biotechnology application. PMID:25743073

  15. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases.

    PubMed

    Violet, Pierre-Christian; Billon-Denis, Emmanuelle; Robin, Philippe

    2012-11-01

    The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.

  16. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  17. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule.

  18. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver.

    PubMed

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru; Yasutake, Akira

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  19. Novel As-doped, As and N-codoped carbon nanotubes as highly active and durable electrocatalysts for O2 reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Li, Meng; Wang, Fang; Wang, Quan-De

    2016-02-01

    To develop more efficient metal-free cathode electrocatalysts for fuel cells, novel arsenic (As)-doped, As and N-codoped carbon nanotubes are synthesized by chemical vapor deposition in this work. The as-prepared As-containing carbon nanotubes exhibit significantly enhanced activity and long-term durability for the oxygen reduction reaction (ORR) in alkaline medium, indicating that the doping of As or codoping As with other heteroatoms into carbon matrix could improve the ORR activity of carbon materials due to the changes in electronic and physical properties of carbon nanotubes evidenced by density functional theory calculations. Moreover, As-containing carbon nanotubes also display much better methanol tolerance, showing a good potential application for future fuel cells.

  20. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319