Science.gov

Sample records for alkaline pretreated sludge

  1. Improved methane production from waste activated sludge with low organic content by alkaline pretreatment at pH 10.

    PubMed

    Feng, L Y; Yang, L Q; Zhang, L X; Chen, H L; Chen, J

    2013-01-01

    Sludge with low organic content always results in an unsatisfactory performance, even failure of anaerobic digestion. The alkaline pretreatment effect on anaerobic digestion of sludge with low organic content has seldom been studied although it gives many benefits for sludge with high organic content. In this study the influence of alkaline pretreatment (pH 10, an effective alkaline pH) on the solubilization and methane production from waste activated sludge (WAS) with low organic content was investigated. Results from biochemical methane potential (BMP) experiments showed that anaerobic biodegradability of WAS was greatly improved by alkaline pretreatment at pH 10. Methane production from the current WAS under conditions of pretreatment time 4 h and digestion time 15 d was 139.6 mL/g VS (volatile solids), much higher than that from the unpretreated WAS with digestion time of 20 d (75.2 mL/g VS). Also, the solubilization of WAS was significantly accelerated by alkaline pretreatment. Mechanism exploration indicated that the general activities of anaerobic microorganisms, specific activities of key enzymes and the amounts of methanogens were enhanced by alkaline pretreatment at pH 10, showing good agreement with methane production.

  2. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production.

  3. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  4. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-03-25

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH)2. The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH)2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO.

  5. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure.

    PubMed

    Kim, Jaai; Yu, Youngseob; Lee, Changsoo

    2013-09-01

    Low-temperature thermo-alkaline pretreatment of waste activated sludge (WAS) was studied, within the region of 0-0.2 M NaOH and 60-90°C, for the effects of NaOH concentration and temperature on sludge degradability in anaerobic digestion (AD). Significant disintegration of sludge solids (up to 75.6%) and an increase in methane production (up to 70.6%) were observed in the pretreatment trials. Two quadratic models were successfully generated by response surface analysis (R(2)>0.9, p<0.05) to approximate how the degree of sludge disintegration (SD) and methane production (MP) respond to changes in the pretreatment conditions. The maximum responses of SD (77.8%) and MP (73.9% increase over the control) were shown at [0.16 M NaOH, 90°C] and [0.10 M NaOH, 73.7°C], respectively. NaOH addition showed a significant influence on the evolution of methanogen community structure during AD, whereas temperature did not. Aceticlastic Methanosaeta and Methanosarcina speceies were likely the major methanogens.

  6. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  7. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  8. Improvement of anaerobic digestion of waste-activated sludge by using H₂O₂ oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments.

    PubMed

    Feki, Emna; Khoufi, Sonia; Loukil, Slim; Sayadi, Sami

    2015-10-01

    Disintegration of municipal waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion process to reduce sludge volume and improve biogas yield. Pretreatment of WAS using thermo-alkaline (TA), H2O2 oxidation, electrolysis and electro-oxidation (EO) processes were investigated and compared in term of COD solubilization and biogas production. For each pretreatment, the influences of different operational variables were studied in detail. At optimum conditions, EO gave the maximum COD solubilization (28 %). The effects of pretreatments under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential assay. Significant increases in biogas yield up to 78 and 40 % were observed respectively in the EO and TA pretreated samples compared to raw sludge. Results clearly revealed that the application of EO is a significant alternative method for the improvement of WAS anaerobic digestion.

  9. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells.

    PubMed

    Oh, Sang-Eun; Yoon, Joung Yee; Gurung, Anup; Kim, Dong-Jin

    2014-08-01

    This study investigated the effects of different sludge pretreatment methods (ultrasonic vs. combined heat/alkali) with varied sources of municipal sewage sludge (primary sludge (PS), secondary excess sludge (ES), anaerobic digestion sludge (ADS)) on electricity generation in microbial fuel cells (MFCs). Introduction of ultrasonically pretreated sludge (PS, ES, ADS) to MFCs generated maximum power densities of 13.59, 9.78 and 12.67mW/m(2) and soluble COD (SCOD) removal efficiencies of 87%, 90% and 57%, respectively. The sludge pretreated by combined heat/alkali (0.04N NaOH at 120°C for 1h) produced maximum power densities of 10.03, 5.21 and 12.53mW/m(2) and SCOD removal efficiencies of 83%, 75% and 74% with PS, ES and ADS samples, respectively. Higher SCOD by sludge pretreatment enhanced performance of the MFCs and the electricity generation was linearly proportional to the SCOD removal, especially for ES.

  10. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  11. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor.

    PubMed

    Zhang, Dong; Chen, Yinguang; Zhao, Yuxiao; Ye, Zhengxiang

    2011-01-15

    In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.

  12. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; Zeng, Guangming

    2015-07-01

    Alkaline condition (especially pH 10) has been demonstrated to be a promising method for short-chain fatty acid (SCFA) production from waste activated sludge anaerobic fermentation, because it can effectively inhibit the activities of methanogens. However, due to the limit of sludge solubilization rate, long fermentation time is required but SCFA yield is still limited. This paper reports a new pretreatment method for alkaline fermentation, i.e., using free nitrous acid (FNA) to pretreat sludge for 2 d, by which the fermentation time is remarkably shortened and meanwhile the SCFA production is significantly enhanced. Experimental results showed the highest SCFA production of 370.1 mg COD/g VSS (volatile suspended solids) was achieved at 1.54 mg FNA/L pretreatment integration with 2 d of pH 10 fermentation, which was 4.7- and 1.5-fold of that in the blank (uncontrolled) and sole pH 10 systems, respectively. The total time of this integration system was only 4 d, whereas the corresponding time was 15 d in the blank and 8 d in the sole pH 10 systems. The mechanism study showed that compared with pH 10, FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. After FNA pretreatment, pH 10 treatment (1 d) caused 38.0% higher substrate solubilization than the sole FNA, which indicated that FNA integration with pH 10 could cause positive synergy on sludge solubilization. It was also observed that this integration method benefited hydrolysis and acidification processes. Therefore, more SCFA was produced, but less fermentation time was required in the integrated system.

  13. Alkaline-mechanical pretreatment process for enhanced anaerobic digestion of thickened waste activated sludge with a novel crushing device: Performance evaluation and economic analysis.

    PubMed

    Cho, Si-Kyung; Ju, Hyun-Jun; Lee, Jeong-Gyu; Kim, Sang-Hyoun

    2014-08-01

    Although various pretreatments have been widely investigated to enhance the anaerobic digestion (AD) of waste activated sludge (WAS), economic feasibility issues have limited real-world applications. The authors examined the performance and economic analysis of an alkaline-mechanical process with a novel mechanical crushing device for thickened WAS pretreatment. The pretreatment at 40gTS/L, pH 13, and 90min reaction time achieved 64% of solubilization efficiency and 8.3 times higher CH4 yield than the control. In addition, a synergistic CH4 yield enhancement was observed when the pretreated and raw WAS were used together as feedstock, and the greatest synergy was observed at a volumetric mixture ratio of 50:50. Economic estimates indicate that up to 22% of WAS treatment costs would be saved by the installation of the suggested process. The experimental results clearly indicate that the alkaline-mechanical process would be highly effective and economically feasible for the AD of thickened WAS.

  14. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment.

    PubMed

    Guo, Junyuan; Ma, Jing

    2015-11-01

    Potentials of alkaline-thermal (ALT) pre-treated sludge as a bioflocculant were studied in sludge dewatering and swine wastewater pretreatment. When incubated with this ALT pre-treated sludge, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 22.5% and 3.4×10(12)m/kg, respectively, which were much better than that obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyaluminum chloride (PAC) were used simultaneously. Charge neutralization and inter-particle bridging were proposed as the reasons for the enhanced performance in the case of the combined use. With swine wastewater, the bioflocculant could remove COD, ammonium and turbidity by 45.2%, 41.8% and 74.6% when incubated with 20mg/L at pH 8.0. This study suggested that the ALT pre-treated sludge has a great potential as an alternative bioflocculant to conventional flocculants in sludge dewatering and swine wastewater pretreatment.

  15. Solids Control in Sludge Pretreatment

    SciTech Connect

    Beahm, E.C., Weber, C.F., Hunt, R.D., Dillow, T.A.

    1997-12-31

    Sludge pretreatment will likely involve washing, followed by caustic or acidic leaching and washing of sludge residues after leaching. The principal goal of pretreatment is to obtain a low-volume high-activity waste stream and a high-volume low-activity waste stream. Also, some waste constituents such as chromium and phosphate can be included in glass formulations only at very low concentrations; therefore, it is desirable to remove them from high-level waste streams. Two aspects of sludge treatment and subsequent separations should be well delineated and predictable: (1) the distribution of chemical species between aqueous solutions and solids and (2) potential problems due to chemical interactions that could result in process difficulties or safety concerns.Before any treatment technology is adopted, it must be demonstrated that the process can be carried out as planned. Three pretreatment methods were considered in the Tri-Party (Washington State Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy) negotiations: (1) sludge washing with corrosion- inhibiting water, (2) Enhanced Sludge Washing, and (3)acidic dissolution with separations processes. Enhanced Sludge Washing is the baseline process. In Enhanced Sludge Washing, sludge is first washed with corrosion-inhibiting water; it is then leached with caustic (sodium hydroxide solution) and washed again with corrosion- inhibiting water. The initial concern is whether a pretreatment technique is effective in separating sludge components. This can be evaluated by bench-scale tests with sludge specimens from underground storage tanks. The results give data on the distribution of important species such as aluminum, phosphate, and radionuclides between wash and leach solutions and solid sludge residues.

  16. Pretreatment of high solid microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1998-01-01

    A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.

  17. Pretreatment of high solid microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1998-07-28

    A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.

  18. Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures.

    PubMed

    Tan, Reasmey; Miyanaga, Kazuhiko; Uy, Davin; Tanji, Yasunori

    2012-08-01

    This study investigated the effect of heat-alkaline treatment (HAT) at pH 11 and 60 °C on volatile fatty acid (VFA) production and protein degradation in excess sludge, soluble and insoluble proteins, and pure cultures. In addition, quantification of bacteria present in the sludge was also examined. Experimental results showed that following acid fermentation under pH 7 and 37 °C, HAT enhanced VFA production in excess sludge, albumin, and Gram-negative bacteria, but not in casein or Gram-positive bacteria. Protein solubility was therefore found not to be the main criteria for VFA production. In the protein analysis, it was shown that the outer membrane protein (OmpC) of Escherichia coli K12 was resistant to chemical and enzymatic hydrolysis. Gram staining revealed that Gram-negative bacteria were predominant in the activated sludge used in this study. In addition, the bacteria present in the activated sludge comprised only 10% of mixed liquor suspended solids (MLSS) by quantitative PCR.

  19. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  20. [Impacts of alkaline thermal treatment on characteristics of sludge from sewage treatment plant].

    PubMed

    Yang, Shi-Dong; Chen, Xia; Liu, Cao; Xiao, Ben-Yi

    2015-02-01

    Alkaline thermal treatment is an important pretreatment method for sewage sludge. In this paper, in order to optimize the alkaline thermal treatment conditions for sludge pretreatment, four pretreatment parameters ( sludge concentration, pH, temperature and treatment time) were investigated through orthogonal experiments to determine their effects on the sludge disintegration, sludge concentration and sludge morphology of sewage sludge. The experimental results showed that the significance of the four factors on sludge characteristics was in the order of pH > temperature > treatment time > sludge concentration. Additionally, the optimal conditions of the four factors for the release of soluble chemical oxygen demand (SCOD) of unit sludge and decrease of sludge concentration were as follows: 36.55 g x L(-1), pH 12.45, 175 degrees C and 60 min. While the optimal conditions for the decrease of particle size and fractal dimension were 36.55 g x L(-1), pH 12.5, 175 degrees C and 45 min.

  1. Pre-treatment of wastewater sludge--biodegradability and rheology study.

    PubMed

    Verma, M; Brar, Satinder K; Riopel, A R; Tyagi, R D; Surampalli, R Y

    2007-03-01

    This study investigates the changes in biodegradability, rheology and metal concentration of wastewater sludge--non-hydrolyzed (raw), sterilized, and hydrolyzed (thermal alkaline pre-treatment) at total solids concentration from 10-50 g l(-1) to ascertain the bioavailability of nutrients for subsequent fermentation. The dissolved solids concentration increased linearly with total solids. Irrespective of the wastewater sludge (raw or, pre-treated), percentage biodegradability in terms of total solids (26.5-44.5%), total COD (25.8-56.5%) and dissolved solids (41.9-66.9%) was maximum around 20 g l(-1) solids concentration. The pseudoplasticity of sludge decreased (consistency index decreased from 895.1 to 5.2 and flow behaviour index increased from 0.28 to 0.88, for all sludge types) with pre-treatment and increased with total solids concentration. The pre-treated sludge, namely, sterilized and hydrolyzed sludge showed higher microbial growth (1-2 log cycles increase in comparison to raw sludge) suggesting their susceptibility to microbial degradation. The C:N ratio decreased with pre-treatment (raw sludge > sterilized > hydrolyzed) during biodegradation. Although the metal concentration increased in incubated hydrolyzed sludge, the final concentration was within the regulatory norms for agriculture application. Thus, pretreatment of sludge resulted in increase in biodegradability making it an excellent proponent for fermented value-added products.

  2. [Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes ].

    PubMed

    Liu, Ji-bao; Ni, Xiao-tang; Wei, Yuan-song; Tong, Juan; Wang, Ya-wei

    2014-09-01

    To improve anaerobic digestion and dewatering of sludge, impacts of sludge pretreated by microwave (MW) and its combined processes on sludge anaerobic digestion and dewatering were investigated. The results showed that microwave and its combined processes could effectively enhance anaerobic sludge digestion. Not only the cumulative methane production in the test of the MW-H2O2-alkaline (0. 2) was increased by 13. 34% compared with the control, but also its methane production rate was much higher than that of the control. Compared with the single MW process, the addition of both H2O2 and alkaline enhanced the solubilization of particle COD( >0. 45 micron) , indicating that synergistically generated soluble organics were faster to biodegrade which resulted in the enhancement of anaerobic digestion. The MW-acid process was effective in improving sludge dewaterability, e. g. , Capillary Suction Time (CST) at only 9. 85 s. The improvement of sludge dewatering was significantly correlated with sludge physical properties such as zeta potential, surface charge density and particle size. Under different sludge pretreatment conditions, the sludge dewatering after anaerobic digestion was similar, though the difference of sludge dewatering to some degrees was observed for pretreated sludge.

  3. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    PubMed

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge.

  4. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    SciTech Connect

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent.

  5. Anaerobic digestion of recalcitrant textile dyeing sludge with alternative pretreatment strategies.

    PubMed

    Xiang, Xinyi; Chen, Xiaoguang; Dai, Ruobin; Luo, Ying; Ma, Puyue; Ni, Shengsheng; Ma, Chengyu

    2016-12-01

    Abundant organic compounds in textile dyeing sludge (TDS) provide possibility for its anaerobic digestion (AD) treatment. However, preliminary test showed little biogas generation in direct AD of the TDS during 20days. In order to improve the AD availability of TDS, alkaline, acid, thermal and thermal alkaline pretreatments were performed. Color and aromatic amines were specifically measured as extra characteristics for the AD of TDS. The rate-limiting steps of AD of TDS were slow hydrolysis rate and inhibited acidogenesis, which were somewhat overcome by pretreatments. Thermal alkaline pretreated TDS performed best enhancement on solubilisation. The biochemical methane potential tests revealed that thermal pretreated TDS showed highest total methane production of 55.9mL/gVSfed compared to the control with little methane generation. However, thermal alkaline pretreated TDS did not perform well in BMP test as expected. Moreover, the hydrophilicity of reactive dyes in TDS could seriously affect dewaterability of TDS.

  6. [Analysis of hydrolytic enzyme activities on sludge aerobic/anoxic digestion after ultrasonic pretreatment].

    PubMed

    Ye, Yun-di; Sun, Shui-yu; Zheng, Li; Liu, Bao-jian; Xu, Yan-bin; Zhan, Xing-xing; Liu, Jing-yong

    2012-08-01

    In order to evaluate the function of sludge aerobic/anoxic digestibility by ultrasonic pretreatment. The SS, VSS and hydrolytic enzyme activities (amylase, glucosidase, protease, phosphatase) were measured before and after ultrasonic pretreatment (28 kHz, 0.15 kW x L(-1), 10 min). The results showed that the performances of aerobic/anoxic were greatly improved after ultrasonic pretreatment, the removal efficiency of VSS went to 44.3%, 7.8% better than of traditional aerobic/anoxic digestion. The variational trend of sludge hydrolytic enzyme activities increased firstly and then fell off during 13d digestion, the maximum of amylase activity and glucosidase activity in ultrasonic sludge, appeared in the 5 d, amylase activity was 0.104 micromol x g(-1) and glucosidase activity was 0.637 (micromol x g(-1). The maximum of intracellular protease activity and extracellular proteases activity in ultrasonic sludge, appeared in the 7 d, intracellular protease activity was 23.68 micromol x g(-1), higher than extracellular proteases activity, and it was playing a leading role in sludge digestion. The acid phosphatase activity of ultrasonic sludge was higher than the control sludge, and the alkaline phosphatase was sensitive to environment. So the alkaline phosphatase activity reduced when the internal properties of sludge was changed.

  7. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    PubMed

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.

  8. An executive review of sludge pretreatment by sonication.

    PubMed

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2015-11-01

    Ultrasonication (US), which creates hydro-mechanical shear forces in cavitation, is an advanced technology in sludge pretreatment. However, there are many factors affecting the efficacy of cavitation and ultrasonication disintegration of sludge as a consequence. The objective of this work is to present an extensive review of evaluation approaches of sludge US pretreatment efficiency. Besides, optimization methodologies of related parameters, the differences of optimum values and the similarities of affecting trends on cavitation and sludge pretreatment efficiency were specifically pointed out, including ambient conditions, ultrasonic properties, and sludge characteristics. The research is a prerequisite for optimization of sludge US pretreatment efficiency in lab-scale and practical application. There is not-yet a comprehensive method to evaluate the efficiency of sludge US pretreatment, but some main parameters commonly used for this purpose are degree of sludge disintegration, proteins, particle size reduction, etc. Regarding US parameters, power input PUS, intensity IUS, and frequency FS seem to have significant effects. However, the magnitude of the effect of PUS and probe size in terms of IUS has not been clearly detailed. Investigating very low FS seems interesting but has not yet been taken into consideration. In addition, static pressure effect has been marginally studied only and investigation on the effect of pH prior to US process has been restricted. Their effects therefore should be varied separately and simultaneously with other related parameters, i.e. process conditions, ultrasonic properties, and sludge characteristics, to optimize sludge US pretreatment process.

  9. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method.

    PubMed

    Doğan, Ilgin; Sanin, F Dilek

    2009-05-01

    Commonly used pretreatment method of alkaline solubilization (using NaOH) and a relatively new technology of microwave (MW) irradiation (160 degrees C) were combined as a pretreatment method of waste activated sludge (WAS) in this study. First alkaline and MW pretreatment methods were examined separately, then their combination for different conditions was investigated in terms of their effect on COD solubilization, turbidity and capillary suction time (CST). For combined pretreatments, soluble COD to total COD ratio (SCOD/TCOD) of WAS increased from 0.005 (control) to 0.18, 0.27, 0.34 and 0.37 for combined methods of MW and pH-10, 11, 12 and 12.5, respectively. Deteriorated dewaterability due to alkaline pretreatment was also improved due to the incorporation of MW irradiation. Further, with small scale batch anaerobic reactors, pH-10, pH-12, MW (alone), MW+pH-10 and MW+pH-12 pretreated WAS samples were anaerobically digested. Highest total gas and methane productions were achieved with MW+pH-12 pretreatment with 16.3% and 18.9% improvements over control reactor, respectively. Finally the performance of MW+pH-12 pretreatment was examined with 2L anaerobic semi-continuous reactors for 92 days and compared to that of the control reactors. These reactors were operated at an SRT of 15 days. After steady state, 43.5% and 55% improvements were obtained in respective daily total gas and methane productions. TS, VS and TCOD reductions were improved by 24.9%, 35.4% and 30.3%, respectively based on a relative calculation with respect to control reactors. This way combined alkaline-microwave treatment proved to be an effective sludge minimization method. Pretreated digested sludge had 22% improved dewaterability than unpretreated digested sludge. Higher SCOD and NH(3)-N concentrations were measured in the pretreated digested sludge supernatant; however, PO(4)-P concentration did not increase much.

  10. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    PubMed

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  11. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment

    PubMed Central

    2013-01-01

    Background Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for renewable energy production. Although the field of sludge pretreatment has progressed significantly over the past decade, critical questions concerning the underlying microbial interactions remain unanswered. In this study, a metagenomic approach was adopted to investigate the microbial composition and gene content contributing to enhanced biogas production from sludge subjected to a novel pretreatment method (maintaining pH at 10 for 8 days) compared to other documented methods (ultrasonic, thermal and thermal-alkaline). Results Our results showed that pretreated sludge attained a maximum methane yield approximately 4-fold higher than that of the blank un-pretreated sludge set-up at day 17. Both the microbial and metabolic consortium shifted extensively towards enhanced biodegradation subsequent to pretreatment, providing insight for the enhanced methane yield. The prevalence of Methanosaeta thermophila and Methanothermobacter thermautotrophicus, together with the functional affiliation of enzymes-encoding genes suggested an acetoclastic and hydrogenotrophic methanogenesis pathway. Additionally, an alternative enzymology in Methanosaeta was observed. Conclusions This study is the first to provide a microbiological understanding of improved biogas production subsequent to a novel waste sludge pretreatment method. The knowledge garnered will assist the design of more efficient pretreatment methods for biogas production in the future. PMID:23506434

  12. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  13. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  14. Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis.

    PubMed

    Yuan, Haiping; Zhu, Nanwen; Song, Fanyong

    2011-02-01

    The potential benefits of electrolysis-conditioned sludge dewaterability treatments with surfactants were investigated in this study. Capillary suction time (CST) and specific resistance of filtration (SRF) were used to evaluate the sludge dewaterability. Extracellular polymeric substance (EPS) content, viscosity and zeta potential were determined in an attempt to explain the observed changes in the conditioning process. The results indicated that SDS (Sodium Dodecyl Sulphate) and Triton X-100 have negative effect on the dewaterability of sludge pretreated both with and without electrolysis. However, with a combination of CTAB (Cetyl Trimethyl Ammonium Bromide) and electrolysis pretreatment presented clear advantages over surfactant conditioning alone for improving sludge dewaterability. The optimal dosage of CTAB to give maximal dewaterability was found to be 2000 mg/L, which generated sludge with optimal EPS concentration (150-300 mg/L), viscosity (55-62 mpa s) and zeta potential (-2.12 to -1.19 mV).

  15. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali.

    PubMed

    Hong, Chen; Xing, Yi; Hua, Xiufu; Si, Yanxiao; Qiao, Geng; Wang, Zhiqiang

    2015-07-01

    The potential benefits of surfactant-conditioned sludge dewatering treatment with acid/alkali pretreatment were investigated in this study. The water content of dewatered sludge (W C) and specific resistance of filtration (SRF) were used to evaluate sludge dewaterability. Extracellular polymeric substance (EPS) content, bound water content, zeta potential, and rheological properties were measured to explain the change of dewaterability observed in the conditioning process. By introducing dodecyl dimethyl benzyl ammonium chloride (DDBAC), the EPS content of the sludge supernatant changed, and bound water content, charge strength, and apparent viscosity decreased simultaneously. Although DDBAC-conditioned sludge in strong alkaline had low bound water content, W C and SRF increased rapidly because of the dramatically increasing of EPS in sludge supernatant. Remarkable decrement was observed in bound water content and W C in DDBAC-conditioned sludge which was in weak acid environment for comparison. The results indicated that 75 mg/g of DDBAC at pH 4.84 was the optimum under which W C and SRF were at their lowest point in sludge, 58.22 % and 0.521 × 10(13) m/kg, respectively.

  16. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds.

    PubMed

    Alkan, U; Topaç, F O; Birden, B; Baskaya, H S

    2007-10-01

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g(-1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  17. Evaluation of high solids alkaline pretreatment of rice straw.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p < 0.001) on delignification under the design conditions, but only alkaline loading had a significant positive effect on enzymatic hydrolysis. Treatment at higher temperature also improved delignification; delignification with water alone ranged from 9.9% to 14.5% for pretreatment at 95 degrees C, but there was little effect observed at 55 degrees C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass.

  18. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    PubMed Central

    2013-01-01

    Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor) and alkali loading based on biomass solids (g alkali/g dry biomass) have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass) governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline pretreatment technology

  19. Sludge pre-treatment with pulsed electric fields.

    PubMed

    Kopplow, O; Barjenbruch, M; Heinz, V

    2004-01-01

    The anaerobic stabilization process depends - among other things - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogeniser, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55 degrees C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds.

  20. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  1. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  2. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  3. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    SciTech Connect

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; Schell, Daniel J.

    2015-12-18

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinone (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.

  4. Pilot-Scale Batch Alkaline Pretreatment of Corn Stover

    DOE PAGES

    Kuhn, Erik M.; O’Brien, Marykate H.; Ciesielski, Peter N.; ...

    2015-12-18

    The goal of biomass pretreatment is to increase the enzymatic digestibility of the plant cell wall polysaccharides to produce sugars for upgrading to biofuels. Alkaline pretreatment has the ability to solubilize much of the lignin in biomass while the carbohydrates remain insoluble. With an increased research focus to produce high-value products from lignin, a low molecular weight, lignin-rich stream in a biorefinery is desirable. Here, this work reports on batch alkaline pretreatment of corn stover conducted using a three-factor, two-level central composite experimental design in a pilot-scale reactor to determine the relationship between sodium hydroxide (NaOH) loading, temperature, and anthraquinonemore » (AQ) charge on solids solubilization, component yields, and enzymatic digestibility of the residual solids. Operating conditions were 100 to 140 °C, 40 to 70 mg NaOH/g dry corn stover, and 0.05% to 0.2% (w/w) AQ loading. An enzymatic hydrolysis screening study was performed at 2% cellulose loading. Empirical modeling results showed that NaOH loading and temperature are both significant factors, solubilizing 15% to 35% of the solids and up to 54% of the lignin. Enzymatic hydrolysis of the residual solids produced good monomeric glucose (>90%) and xylose (>70%) yields at the more severe pretreatment conditions. We also found that the AQ charge was not a significant factor at the conditions studied, so efforts to reduce xylan and increase lignin solubilization using this compound were not successful. Lastly, while good lignin solubilization was achieved, effectively recovering this stream remains a challenge, and demonstrating performance in continuous reactors is still needed.« less

  5. Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs

    PubMed Central

    Zhou, Jun; Xu, Weizhong; Wong, Jonathan W. C.; Yong, Xiaoyu; Yan, Binghua; Zhang, Xueying; Jia, Honghua

    2015-01-01

    Effects of different pretreatment methods on sludge dewaterability and polycyclic aromatic hydrocarbons (PAHs) degradation during petrochemical sludge anaerobic digestion were studied. Results showed that the total biogas production volume in the thermal pretreatment system was 4 and 5 times higher than that in the ultrasound pretreatment and in the control system, and the corresponding volatile solid removal efficiencies reached 28%, 15%, and 8%. Phenanthrene, paranaphthalene, fluoranthene, benzofluoranthene, and benzopyrene removal rates reached 43.3%, 55.5%, 30.6%, 42.9%, and 41.7%, respectively, in the thermal pretreatment system, which were much higher than those in the ultrasound pretreatment and in the control system. Moreover, capillary suction time (CST) of sludge increased after pretreatment, and then reduced after 20 days of anaerobic digestion, indicating that sludge dewaterability was greatly improved after anaerobic digestion. The decrease of protein and polysaccharide in the sludge could improve sludge dewaterability during petrochemical sludge anaerobic digestion. This study suggested that thermal pretreatment might be a promising enhancement method for petrochemical sludge solubilization, thus contributing to degradation of the PAHs, biogas production, and improvement of dewaterability during petrochemical sludge anaerobic digestion. PMID:26327510

  6. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-06-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment and disposal of sewage sludges. Citations discuss sludge digestion, dewatering, disinfection, stabilization, chlorination, and desulfurization. Topics include pretreatment programs, land disposal, incineration, and waste utilization. Environmental monitoring and protection, federal regulations, and legal aspects are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance.

    PubMed

    Hong, Seung M; Park, Jae K; Teeradej, N; Lee, Y O; Cho, Y K; Park, C H

    2006-01-01

    A new way of generating Class A sludge using microwaves was evaluated through a series of laboratory-scale experiments. Microwaves provide rapid and uniform heating throughout the material. Other benefits of microwave treatment include instant and accurate control and selective and concentrated heating on materials, such as sludge, that have a high dielectric loss factor. Sludge was irradiated with 2450-MHz microwaves, and fecal coliforms were counted. Fecal coliforms were not detected at 65 degrees C for primary sludge and anaerobic digester sludge and at 85 degrees C for waste activated sludge when sludge was irradiated with 2450-MHz microwaves. During the bench-scale anaerobic digester operation, the highest average log reduction of fecal coliforms was achieved by the anaerobic digester fed with microwave-pretreated sludge (> or = 2.66 log removal). The anaerobic digester fed with microwave-irradiated sludge was more efficient in inactivation of fecal coliforms than the other two digesters fed with raw sludge and externally heated sludge, respectively. It took more than three hydraulic retention times for a bench-scale mesophilic anaerobic digester to meet Class A sludge requirements after feeding microwave-irradiated sludge. Class A sludge can be produced consistently with a continuously fed mesophilic anaerobic digester if sludge is pretreated with microwaves to reach 65 degrees C.

  8. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  9. Alkaline pretreatment for chlorine removal from high-chlorine rhodochrosite

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-ran; Liu, Zuo-hua; Li, Wen-sheng; Cheng, Ya-ya; Du, Jun; Tao, Chang-yuan

    2016-11-01

    Chloride in manganese ore adversely affects mineral extraction. The mechanisms and the factors that influence an alkali pretreatment to removal chlorine from manganese ore were explored to eliminate hazards posed by chlorine during the electrolysis of manganese. The results showed that sodium carbonate, when used as an alkaline additive, promoted the dissolution of insoluble chloride, enhanced the migration of chloride ions, and effectively stabilized Mn2+. The optimal conditions were a sodium carbonate concentration of 0.45 mol·L-1, a liquid-solid ratio of 5:1 mL·g-1, a reaction time of 1 h, and a temperature of 25°C. The chlorine removal efficiency was greater than 95%, and the ore grade (Mn) was increased by 2.7%.

  10. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production.

    PubMed

    Rughoonundun, Hema; Granda, Cesar; Mohee, Romeela; Holtzapple, Mark T

    2010-01-01

    This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 degrees C for 10-240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 degrees C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.

  11. Washing and alkaline leaching of Hanford tank sludges: A status report

    SciTech Connect

    Lumetta, G.J.; Rapko, B.M.

    1994-09-01

    Because of the assumed high cost of high-level waste (HLW) immobilization and disposal, pretreatment methods are being developed to minimize the volume of HLW requiring vitrification. Pacific Northwest Laboratory (PNL) is investigating several options for pretreating the radioactive wastes stored in underground tanks at the Hanford Site. The pretreatment methods under study for the tank sludges include: (1) simply washing the sludges with dilute NaOH, (2) performing caustic leaching (as well as washing) to remove certain wash components, and (3) dissolving the sludges in acid and extracting key radionuclides from the dissolved sludge solutions. The data collected in this effort will be used to support the March 1998 decision on the extent of pretreatment to be performed on the Hanford tank sludges. This document describes sludge washing and caustic leaching tests conducted in FY 1994. These tests were performed using sludges from single-shell tanks (SST) B-201 and U-110. A summary is given of all the sludge washing and caustic leaching studies conducted at PNL in the last few years.

  12. Beneficial reuse of precast concrete industry sludge to produce alkaline stabilized biosolids.

    PubMed

    Gowda, C; Seth, R; Biswas, N

    2008-01-01

    The precast concrete industry generates waste called concrete sludge during routine mixer tank washing. It is highly alkaline and hazardous, and typically disposed of by landfilling. This study examined the stabilization of municipal sewage sludge using concrete sludge as an alkaline agent. Sewage sludge was amended with 10 to 40% of concrete sludge by wet weight, and 10 and 20% of lime by dry weight of the sludge mix. Mixes containing 30 and 40% of concrete sludge with 20% lime fulfilled the primary requirements of Category 1 and 2 (Canada) biosolids of maintaining a pH of 12 for at least 72 hours. The heavy metals were below Category 1 regulatory limits. The 40% concrete sludge mix was incubated at 52 degrees C for 12 of the 72 hours to achieve the Category 1 and 2 regulations of less than 1000 fecal coliform/g solids. The nutrient content of the biosolids was 8.2, 10 and 0.6 g/kg of nitrogen, phosphorus and potassium respectively. It can be used as a top soil or augmented with potassium for use as fertilizer. The study demonstrates that concrete sludge waste can be beneficially reused to produce biosolids, providing a long-term sustainable waste management solution for the concrete industry.

  13. Effect of low temperature microwave pretreatment on characteristics and mesophilic digestion of primary sludge.

    PubMed

    Zheng, Jian; Kennedy, Kevin J; Eskicioglu, Cigdem

    2009-04-01

    The main obstacles existing in the biodegradation of primary sludge are particle de-amalgamation and the degradation-resisting structure of large-size particulate. Microwave irradiation solubilizes primary sludge by interaction of the electromagnetic field with polar particles in the sludge, which leads to a temperature increase in the irradiated sample. The influence of microwave irradiation on the characteristics and biochemical methane potential of microwave-pretreated primary sludge was studied in terms of microwave intensity (40 and 80% of total microwave power), sludge solid concentration (1 to 4% total solids, w/v) and pretreatment temperature achieved (35 to 90 degrees C). Microwave irradiation was found to increase the concentration of soluble chemical oxygen demand in the sludge. The ratio of soluble to total chemical oxygen demand increased from 2.5 to between 6 and 7% for primary sludge with 4% total solids concentration at a pretreatment temperature of 90 degrees C. In biochemical methane potential tests, biogas production rate increased with both pretreatment temperature and sludge total solids concentrations. For primary sludge with 4% total solids concentration pretreated to 90 degrees C, biogas production rate increased by 37% or resulted in a 28% reduction in required digestion time to achieve 85% of the ultimate biogas production. A first-order reaction model showed a constant increase in the biogas production rate coefficient with the increase in microwave pretreatment temperature. Microwave intensity in the range of pretreatment temperatures studied (35 to 90 degrees C) presented no obvious impact on primary sludge solubilization or anaerobic digestion in terms of ultimate biodegradation efficiency.

  14. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  15. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.

    PubMed

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng

    2017-01-01

    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (<8wt%) caused increased cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials.

  16. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment.

    PubMed

    Yoshida, Hiroyuki; Tokumoto, Hayato; Ishii, Kyoko; Ishii, Ryo

    2009-06-01

    A novel biomass-energy process for the production of methane from sewage sludge using a subcritical water (sub-CW) hydrolysis reaction as pretreatment is proposed. The main substances of sewage sludge hydrolyzed by sub-CW at 513 K for 10 min were acetic acid, formic acid, pyroglutamic acid, alanine, and glycine. Fermentation experiments were conducted in an anaerobic-sludge reactor for two different samples: real sewage sludge and a model solution containing components typically produced by the sub-CW pretreatment of sewage sludge. In the experiment for the sub-CW pretreatment of sewage sludge, methane generation was twice that for non-pretreatment after 3 days of incubation. In the model experiment, the methane conversion was about 40% with the application of mixture of organic acids and amino acids after 5 days of incubation. Furthermore, the methane conversion was about 60% for 2 days when only organic acids, such as acetic acid and formic acid, were applied. Because acetic acid is the key intermediate and main precursor of the methanogenesis step, fermentation experiments were conducted in an anaerobic-sludge reactor with high concentrations of acetic acid (0.01-0.1M). Nearly 100% of acetic acid was converted to methane and carbon dioxide in 1-3 days.

  17. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  18. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  19. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments.

    PubMed

    Yang, Xue; Liu, Xiang; Chen, Si; Liu, Guangmin; Wu, Shuyan; Wan, Chunli

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18-3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.

  20. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments

    PubMed Central

    Yang, Xue; Liu, Xiang; Chen, Si; Wu, Shuyan

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences. PMID:28096735

  1. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification.

    PubMed

    Ma, Bin; Peng, Yongzhen; Wei, Yan; Li, Baikun; Bao, Peng; Wang, Yayi

    2015-03-01

    Using internal carbon source contained in waste activated sludge (WAS) is beneficial for nitrogen removal from wastewater with low carbon/nitrogen ratio, but it is usually limited by sludge disintegration. This study presented a novel strategy based on free nitrous acid (FNA) pretreatment to intensify the release of organic matters from WAS for enhanced denitrification. During FNA pretreatment, soluble chemical oxygen demand (SCOD) production kept increasing when FNA increased from 0 to 2.04 mg HNO2-N/L. Compared with untreated WAS, the internal carbon source production increased by 50% in a simultaneous fermentation and denitrification reactor fed with WAS pretreated by FNA for 24 h at 2.04 mg HNO2-N/L. This also increased denitrification efficiency by 76% and sludge reduction by 87.5%. More importantly, greenhouse gas nitrous oxide production in denitrification was alleviated since more electrons could be provided by FNA pretreated WAS.

  2. Alkaline fermentation of waste sludge causes a significant reduction of antibiotic resistance genes in anaerobic reactors.

    PubMed

    Huang, Haining; Zheng, Xiong; Chen, Yinguang; Liu, Hui; Wan, Rui; Su, Yinglong

    2017-02-15

    Alkaline fermentation has been reported to be an effective method to recover valuable products from waste sludge. However, to date, the potential effect of alkaline pH on the fate of antibiotic resistance genes (ARGs) during anaerobic fermentation of sludge has never been documented. In this study, the target ARGs in sludge was observed to be removed effectively and stably when sludge was anaerobically fermented at pH10. Compared with the control (without pH adjustment), the abundances of target ARGs at pH10 were reduced by 0.87 (sulI), 1.36 (sulII), 0.42 (tet(O)), 1.11 (tet(Q)), 0.79 (tet(C)) and 1.04 (tet(X)) log units. Further investigations revealed that alkaline fermentation shifted the community structures of potential ARGs hosts. Moreover, alkaline fermentation remarkably decreased the quantities and the ARGs-possessing ability of genetic vectors (plasmid DNA, extracellular DNA and phage DNA), which might limit the transfer of ARGs via conjugation, transformation and transduction. These results suggest that the shifted compositions of gene hosts and restricted gene transfer potential might be the critical reasons for the attenuation of ARGs at pH10.

  3. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  4. Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion.

    PubMed

    Appels, Lise; Houtmeyers, Sofie; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2013-01-01

    Anaerobic digestion is widely applied for the recovery of energy from waste activated sludge. Pre-treatment methods are of high interest to increase the biodegradability of the sludge and to enhance the digestion efficiency. This paper studies the application of a microwave pre-treatment. An experimental set-up of two pilot scale semi-continuous digesters was used. During a long term experiment, one of the reactors was fed with untreated sludge, while microwave pre-treated sludge (336 kJ/kg sludge) was introduced in the second one. A solid retention time of 20 days was kept during the experiments. (Organic) dry solids, carbohydrates, proteins and volatile fatty acids were monitored during digestion. It was seen that the microwave pre-treatment resulted in an effective solubilization of the organic matter in the sludge. The changes to the sludge composition resulted in an increase in biogas production by 50%, while the methane concentration in both reactors remained stable.

  5. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  6. A novel method of sludge pretreatment using the combination of alkalis.

    PubMed

    Banu, J Rajesh; Khac, Uan Do; Kumar, S Adish; Ick-Tae, Yeom; Kaliappan, S

    2012-03-01

    The present study aims to utilise the advantage of higher sludge solubilisation potential of sodium hydroxide (NaOH) and sludge management properties of lime to achieve sludge pretreatment and its subsequent management. The optimum dosage and time required for sludge pretreatment using NaOH was found to be 1.6 g l(-1) and 3 hr, respectively. At the optimized condition, lime was added at varying concentration (0.3 to 1.6 g l(-1)) to study its effect on capillary suction time, soluble chemical oxygen demand (SCOD) release and total phosphorous (TP) removal. A lime dosage of 0.7g l(-1) was found to be beneficial for soluble chemical oxygen demand (COD) release. When compared to control, the combination of alkalis (NaOH and lime) reduced the TP and capillary suction time (CST) in the supernatant of the sludge. The TP removal was from 100 to 40 mg l(-1) and CST reduction was from 1360 to 350 sec, respectively. The combined alkali pretreatment not only prevent the subsequent TP increase in the effluent, but also decreased the time to filter the sludge, thus makes the digested sludge easier to manage.

  7. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W.

  8. Steam-explosion pretreatment for enhancing anaerobic digestion of municipal wastewater sludge.

    PubMed

    Dereix, Marcela; Parker, Wayne; Kennedy, Kevin

    2006-05-01

    This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.

  9. Acetone-butanol-ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment.

    PubMed

    Zhang, Yuedong; Hou, Tongang; Li, Bin; Liu, Chao; Mu, Xindong; Wang, Haisong

    2014-05-01

    In this study, the alkaline twin-screw extrusion pretreated corn stover was subjected to enzymatic hydrolysis after washing. The impact of solid loading and enzyme dose on enzymatic hydrolysis was investigated. It was found that 68.2 g/L of total fermentable sugar could be obtained after enzymatic hydrolysis with the solid loading of 10 %, while the highest sugar recovery of 91.07 % was achieved when the solid loading was 2 % with the cellulase dose of 24 FPU/g substrate. Subsequently, the hydrolyzate was fermented by Clostridium acetobutylicum ATCC 824. The acetone-butanol-ethanol (ABE) production of the hydrolyzate was compared with the glucose, xylose and simulated hydrolyzate medium which have the same reducing sugar concentration. It was shown that 7.1 g/L butanol and 11.2 g/L ABE could be produced after 72 h fermentation for the hydrolyzate obtained from enzymatic hydrolysis with 6 % solid loading. This is comparable to the glucose and simulated hydrozate medium, and the overall ABE yield could reach 0.112 g/g raw corn stover.

  10. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation.

  11. Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process.

    PubMed

    Rani, R Uma; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2012-01-01

    An investigation into the influence of low temperature thermo-chemical pretreatment on sludge reduction in a semi-continuous anaerobic reactor was performed. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (60 °C with pH 12), COD solubilization, suspended solids, reduction and biogas production was 23%, 22% and 51% higher than the control, respectively. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 days was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 80.5%, 117% and 90.4% of TS, SS and VS reduction respectively, with an improvement of 103% in biogas production. Thus, low temperature thermo-chemical can play an important role in reducing sludge production.

  12. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  13. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  14. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge.

    PubMed

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel

    2015-01-01

    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively.

  15. Application of alkaline treatment for sludge decrement and humic acid recovery.

    PubMed

    Li, Huan; Jin, Yiying; Nie, Yongfeng

    2009-12-01

    A new method was introduced to reduce waste activated sludge and extract humic acid for liquid fertilizer. Sludge was disintegrated with NaOH (0.4 g/g dry solid, 8 h) and then centrifuged to obtain the supernatant. The residual sludge was then dewatered, while the supernatant was used to extract humic acid with an ultrafiltration membrane. The results showed that the alkaline treatment dissolved more than half of the sludge organic matter, which was composed of 24% humic acid by mass. After the supernatant was concentrated 20 times using a membrane with a molecular weight cutoff of 1000, the retentate contained 94.5% of the dissolved organics and could be used to produce humic acid fertilizer. Additionally, only 26% of the NaOH was consumed and the residual NaOH in the permeate flux could be reused. Due to the removal of water and organics, the dewatered sludge could be reduced by 60% when compared to samples that did not receive the alkaline treatment.

  16. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min.

  17. Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production.

    PubMed

    Nkemka, Valentine Nkongndem; Li, Yongqiang; Hao, Xiying

    2016-01-01

    Giant miscanthus (Miscanthus × giganteus) and Chinese fountaingrass (Pennisetum alopecuroides (L.) Spreng), cultivated for landscaping and soil conservation, are potential energy crops. The study investigated the effect of combined thermal and alkaline pretreatments on biogas production of these energy crops. The pretreatment included two types of alkali (6% CaO and 6% NaOH) at 22, 70 and 100 °C. The alkaline pretreatment resulted in a greater breakdown of the hemicellulose fraction, with CaO more effective than NaOH. Pretreatment of giant miscanthus with 6% CaO at 100 °C for 24 h produced a CH4 yield (313 mL g(-1) volatile solids (VS)) that was 1.7 times that of the untreated sample (186 mL g(-1) VS). However, pretreatment of Chinese fountaingrass with 6% CaO or 6% NaOH at 70 °C for 24 h resulted in similar CH4 yields (328 and 302 mL g(-1) VS for CaO and NaOH pretreatments) as the untreated sample (311 mL g(-1) VS). Chinese fountaingrass was more easily digestible but had a low overall CH4 yield per hectare (1,831 m(3) ha(-1) y(-1)) compared to giant miscanthus (6,868 m(3) ha(-1) y(-1)). This study demonstrates the potential of thermal/alkaline pretreatment and the use of giant miscanthus and Chinese fountaingrass for biogas production.

  18. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis.

    PubMed

    Yuan, Tong-Qi; Wang, Wei; Xu, Feng; Sun, Run-Cang

    2013-09-01

    An environmentally friendly pretreatment process was developed to fractionate hemicelluloses and lignin from poplar wood by ionic liquid (IL) pretreatment coupled with mild alkaline extraction. Hemicellulosic and lignin fractions were obtained in high yields, amounting to 59.3% and 74.4%, respectively, which can served as raw materials for production of value-added products. The yield of glucose for the integrated pretreated poplar wood was 99.2%, while it was just 19.2% for the untreated material. The synergistic benefits of the removal of lignin and hemicelluloses, the increase of the cellulose surface area, and the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase resulted in the high glucose yield for the integrated pretreated substrate. Therefore, the IL based biorefining strategy proposed can integrate biofuels production into a biorefinery scheme in which the major components of poplar wood can be converted into value-added products.

  19. A review of thermal sludge pre-treatment processes to improve dewaterability.

    PubMed

    Neyens, E; Baeyens, J

    2003-03-17

    As a result of the wide application and utilization of the waste activated sludge process, excess sludge presents a serious disposal problem. Many efforts have been devoted to reduce the excess sludge by treatments such as digestion and dewatering. It has been known for many years that a thermal pre-treatment gives an improvement in the dewaterability of sludges. This paper provides a literature review concerning the optimum treatment conditions to obtain enhanced dewaterability and digestibility of sludge. The main commercial hydrolysis processes (Cambi, Porteous and Zimpro) are discussed. The literature findings concerning the optimum treatment conditions of thermal or thermochemical pre-treatments are reviewed. The second part of this paper deals with the fundamentals of improving sludge dewatering. The influence of extracellular polymer (ECP) on settling and dewatering characteristics is discussed, together with the importance of cations and ECP-hydrophobicity in the flocculation and dewatering process. Finally, the effect on exocellular polymer, dewaterability, settleability and colloidal stability of activated sludge by treatment with sulfuric acid was studied.

  20. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Adish Kumar, S; Kaliappan, S; Yeom, Icktae; Rajesh Banu, J

    2013-05-01

    Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  1. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 250 citations and includes a subject term index and title list.)

  2. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    PubMed

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10(-3) 1/h for the non-treated material over 2.3 × 10(-3) 1/h for the alkaline-soaked material to 26.9 × 10(-3) 1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  3. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  4. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.

    PubMed

    van der Pol, Edwin; Bakker, Rob; van Zeeland, Alniek; Sanchez Garcia, David; Punt, Arjen; Eggink, Gerrit

    2015-04-01

    Sugarcane bagasse is an interesting feedstock for the biobased economy since a large fraction is polymerized sugars. Autohydrolysis, alkaline and acid pretreatment conditions combined with enzyme hydrolysis were used on lignocellulose rich bagasse to acquire monomeric. By-products found after pretreatment included acetic, glycolic and coumaric acid in concentrations up to 40, 21 and 2.5 g/kg dry weight bagasse respectively. Alkaline pretreated material contained up to 45 g/kg bagasse DW of sodium. Acid and autohydrolysis pretreatment results in a furan formation of 14 g/kg and 25 g/kg DW bagasse respectively. Enzyme monomerization efficiencies of pretreated solid material after 72 h were 81% for acid pretreatment, 77% for autohydrolysis and 57% for alkaline pretreatment. Solid material was washed with superheated water to decrease the amount of by-products. Washing decreased organic acid, phenol and furan concentrations in solid material by at least 60%, without a major sugar loss.

  5. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  6. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge

    SciTech Connect

    Uma Rani, R.; Adish Kumar, S.; Kaliappan, S.; Yeom, IckTae; Rajesh Banu, J.

    2013-05-15

    Highlights: ► Microwave pretreatment of dairy WAS was studied. ► MW pretreatment at 70% intensity for 12 min, COD solubilization was 18.6%. ► Biogas production and SS reduction was 35% and 14% higher than control. ► In digester at 15 days SRT with medium OLR, SS and VS reduction was 67% and 64%. ► Biogas and methane production was 57% and 49% higher than control, in digesters. - Abstract: Microwave (MW) irradiation is one of the new and possible methods used for pretreating the sludge. Following its use in different fields, this MW irradiation method has proved to be more appropriate in the field of environmental research. In this paper, we focused on the effects of MW irradiation at different intensities on solubilization, biodegradation and anaerobic digestion of sludge from the dairy sludge. The changes in the soluble fractions of the organic matter, the biogas yield, the methane content in the biogas were used as control parameters for evaluating the efficiency of the MW pretreatment. Additionally, the energetic efficiency was also examined. In terms of an energetic aspect, the most economical pretreatment of sludge was at 70% intensity for 12 min irradiation time. At this, COD solubilization, SS reduction and biogas production were found to be 18.6%, 14% and 35% higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein and carbohydrate hydrolysis was also performed successfully by this microwave pretreatment even at low irradiation energy input. Also, experiments were carried out in semi continuous anaerobic digesters, with 3.5 L working volume. Combining microwave pretreatment with anaerobic digestion led to 67%, 64% and 57% of SS reduction, VS reduction and biogas production higher than the control, respectively.

  7. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion.

    PubMed

    Şahinkaya, Serkan; Sevimli, Mehmet Faik

    2013-01-01

    Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.

  8. Cobalt-60 gamma-ray irradiation pretreatment and sludge protein for enhancing enzymatic saccharification of hybrid poplar sawdust.

    PubMed

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-12-01

    In order to improve the enzymatic saccharification of hybrid poplar sawdust, gamma irradiation pretreatment and enzymatic hydrolysis in the presence of sludge protein were investigated. The cellulose crystallinity index were significantly decreased after irradiation pretreatment, and adding sludge protein improved enzyme activity and increased the reducing sugar yield. The conditions of irradiation pretreatment and enzymatic hydrolysis in the presence of sludge protein were systematically examined. The maximum reducing sugar yield was 519mg/g under an irradiation dose of 300kGy, a sludge protein dosage of 2mg/mL, an enzymatic hydrolysis temperature of 45°C, an enzymatic hydrolysis time of 84h, and a 90FPU/g enzyme loading. This work indicated that the combined method of gamma irradiation pretreatment and enzymatic hydrolysis in the presence of sludge protein was a promising potential for the saccharification of hybrid poplar sawdust.

  9. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  10. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.

    PubMed

    Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

    2013-01-01

    Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium.

  11. Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin Yunqin; Wang Dehan; Wang Lishang

    2010-09-01

    High efficient resource recovery from pulp and paper sludge (PPS) has been the focus of attention. The objective of this research was to develop a bio-pretreatment process prior to anaerobic digestion of PPS to improve the methane productivity. Active and inactive mushroom compost extracts (MCE) were used for pretreating PPS, followed by anaerobic digestion with monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1-L capacity with 700 ml useful capacity. Optimal amount of active MCE for organics' solubilization in the step of pretreatment was 250 A.U./gVS( sludge). Under this condition, the PPS floc structure was well disrupted, resulting in void rate and fibre size diminishment after pretreatment. In addition, SCOD and VS removal were found to be 56% and 43.6%, respectively, after anaerobic digestion, being the peak value of VFA concentration determined as 1198 mg acetic acid L(-1). The anaerobic digestion efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment conditions was 0.23 m(3) CH4/kgVS(add), being 134.2% of the control. The results indicated that MCE bio-pretreatment could be a cost-effective and environmentally sound method for producing methane from PPS.

  12. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin, Yunqin; Wang, Dehan; Wu, Shaoquan; Wang, Chunmin

    2009-10-15

    The objective of this research was to develop an alkali pretreatment process prior to anaerobic digestion (AD) of pulp and paper sludge (PPS) to improve the methane productivity. Different concentrations of sodium hydroxide solution were used to pretreat PPS, and then followed by AD of PPS and monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1L capacity with 700 mL worked. Optimal amount of sodium hydroxide for organics solubilization in the step of pretreatment was 8 g NaOH/100g TS(sludge). Under this condition, the PPS flocs structure was well disrupted resulting in the void rate and fiber size decreased after pretreatment, and SCOD increased up to 83% as well as the peak value of VFA concentration attained 1040 mg acetic acid/L during AD. The AD efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment condition was 0.32 m(3) CH(4)/kg VS(removal), 183.5% of the control. The results indicated that alkali/NaOH pretreatment could be an effective method for improving methane yield with PPS.

  13. A novel approach for improving the drying behavior of sludge by the appropriate foaming pretreatment.

    PubMed

    Huang, Jing; Yang, Zhao-Hui; Zeng, Guang-Ming; Wang, Hui-Ling; Yan, Jing-Wu; Xu, Hai-Yin; Gou, Cheng-Liu

    2015-01-01

    Foaming pretreatment has long been recognized to promote drying materials with sticky and viscous behaviors. A novel approach, CaO addition followed by appropriate mechanical whipping, was employed for the foaming of dewatered sludge at a moisture content of 80-85%. In the convective drying, the foamed sludge at 0.70 g/mL had the best drying performance at any given temperature, which saved 35-41% drying time for reaching 20% moisture content compared with the non-foamed sludge. Considering the maximum foaming efficiency, the optimal CaO addition was found at 2.0 wt%. For a better understanding of the foaming mechanisms, the foamability of sludge processed with other pretreatment methods, including NaOH addition (0-3.0 wt%) and heating application (60-120 °C), were investigated while continuously whipping. Their recovered supernatant phases were characterized by pH, surface tension, soluble chemical oxygen demand (sCOD), protein concentration, polysaccharide concentration and spectra of excitation-emission matrices (EEM). These comparative studies indicated that the sludge foaming was mainly derived from the decreased surface tension by the surfactants and the promoted foam persistence by the protein derived compounds. Further, a comprehensive analysis of the sludge drying characteristics was performed including the surface moisture evaporation, the effective moisture diffusivity and the micromorphology of dried sludge. The results indicated that the drying advantages of foamed sludge were mainly attributed to the larger evaporation surface in a limited drying area and the more active moisture capillary movement through the liquid films, which resulted in longer constant evaporation rate periods and better effective moisture diffusivity, respectively.

  14. Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks.

    PubMed

    Monlau, Florian; Trably, Eric; Barakat, Abdellatif; Hamelin, Jérôme; Steyer, Jean-Philippe; Carrere, Hélène

    2013-01-01

    Because of their rich composition in carbohydrates, lignocellulosic residues represent an interesting source of biomass to produce biohydrogen by dark fermentation. Nevertheless, pretreatments should be applied to enhance the solubilization of holocelluloses and increase their further conversion into biohydrogen. The aim of this study was to investigate the effect of thermo-alkaline pretreatment alone and combined with enzymatic hydrolysis to enhance biohydrogen production from sunflower stalks. A low increase of hydrogen potentials from 2.3 ± 0.9 to 4.4 ± 2.6 and 20.6 ± 5.6 mL of H2 g(-1) of volatile solids (VS) was observed with raw sunflower stalks and after thermo-alkaline pretreatment at 55 °C, 24 h, and 4% NaOH and 170 °C, 1 h, and 4% NaOH, respectively. Enzymatic pretreatment alone showed an enhancement of the biohydrogen yields to 30.4 mL of H2 g(-1) of initial VS, whereas it led to 49 and 59.5 mL of H2 g(-1) of initial VS when combined with alkaline pretreatment at 55 and 170 °C, respectively. Interestingly, a diauxic effect was observed with sequential consumption of sugars by the mixed cultures during dark fermentation. Glucose was first consumed, and once glucose was completely exhausted, xylose was used by the microorganisms, mainly related to Clostridium species.

  15. Optimization of alkaline pretreatment of coffee pulp for production of bioethanol.

    PubMed

    Menezes, Evandro G T; do Carmo, Juliana R; Alves, José Guilherme L F; Menezes, Aline G T; Guimarães, Isabela C; Queiroz, Fabiana; Pimenta, Carlos J

    2014-01-01

    The use of lignocellulosic raw materials in bioethanol production has been intensively investigated in recent years. However, for efficient conversion to ethanol, many pretreatment steps are required prior to hydrolysis and fermentation. Coffee stands out as the most important agricultural product in Brazil and wastes such as pulp and coffee husk are generated during the wet and dry processing to obtain green grains, respectively. This work focused on the optimization of alkaline pretreatment of coffee pulp with the aim of making its use in the alcoholic fermentation. A central composite rotatable design was used with three independent variables: sodium hydroxide and calcium hydroxide concentrations and alkaline pretreatment time, totaling 17 experiments. After alkaline pretreatment the concentration of cellulose, hemicellulose, and lignin remaining in the material, the subsequent hydrolysis of the cellulose component and its fermentation of substrate were evaluated. The results indicated that pretreatment using 4% (w/v) sodium hydroxide solution, with no calcium hydroxide, and 25 min treatment time gave the best results (69.18% cellulose remaining, 44.15% hemicelluloses remaining, 25.19% lignin remaining, 38.13 g/L of reducing sugars, and 27.02 g/L of glucose) and produced 13.66 g/L of ethanol with a yield of 0.4 g ethanol/g glucose.

  16. Low-heat alkaline pretreatment of biomass for dairy anaerobic codigestion.

    PubMed

    Jin, Guang; Bierma, Tom

    2014-01-01

    In this research, low-heat alkaline pretreatment was evaluated to determine the extent to which urban landscape waste (yard waste), corn stover, and switchgrass could be codigested under conditions typical of US farm-based anaerobic digestion (AD). Waste heat from combined heat and power (CHP) units associated with AD could make such pretreatment economical. Short-term batch digestion studies and 8-week continuous-feed studies were used to screen and evaluate various pretreatment conditions. Results indicate that maple and oak leaves did not digest well, even with pretreatment. Pretreatment did improve digestion of corn leaves and stalks as well as switchgrass. However, these materials also digested reasonably well even without pretreatment. No digester operational problems were observed during continuous-feed studies of intermittently stirred bench top digesters, but optimal levels of alkali, temperature, and pretreatment time may be specific to the feedstock, particle size, and digester loading rate. Results suggest that some common lignocellulosic biomass materials, such as corn stover and switchgrass, could be successfully codigested in many existing farm-based digesters. Interestingly, without pretreatment, switchgrass digestion improved over 20-fold when digested with seed culture from a dairy digester compared to seed culture from a municipal digester, suggesting that culture acclimation could be as important as pretreatment in improving digestion of specific lignocellulosic feedstocks.

  17. Previously unclassified bacteria dominate during thermophilic and mesophilic anaerobic pre-treatment of primary sludge.

    PubMed

    Pervin, Hasina M; Batstone, Damien J; Bond, Philip L

    2013-06-01

    Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge.

  18. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both.

    PubMed

    Petzet, Sebastian; Peplinski, Burkhard; Cornel, Peter

    2012-08-01

    The advantages and drawbacks of existing wet chemical phosphorus (P) recovery technologies, their applicability to different types of sewage sludge ash (SSA) and the role of the decay products of detergent zeolites as a source of reactive Al in SSA are analyzed. Since neither a purely acidic nor a purely alkaline treatment are able to provide satisfactory technical solutions a wet chemical phosphorus (P) recovery process for sewage sludge ashes (SSAs) is investigated in detail that is based on a sequential treatment of SSA with an acid and a base. As a result of an acidic pre-treatment, the P fraction of the raw SSA that was bound as - alkaline-insoluble - calcium phosphate (Ca-P) is converted into aluminum phosphate (Al-P). This newly formed Al-P can be easily dissolved via alkaline treatment and then easily separated from the alkaline leachate via precipitation of Ca-P. The Al-component can be reused as precipitant for P-removal in waste water treatment plants (WWTPs). The investigated process requires fewer chemicals than the direct acidic dissolution of all P-compounds contained in the SSA. This is due to the described rearrangement of the P component from Ca-P to Al-P. That such a rearrangement of P occurs indeed was confirmed through a combination of XRD, ICP and XRF analyses together with mass balance calculations. The present investigation proves that the process works for very different types of SSAs: For Al-rich SSAs that come from WWTPs where Al-salt is used for chemical P-removal the described sequential treatment process works best and yields P-recovery rates as high as 70-77%. But even for SSAs from WWTPs where only iron salt is used for chemical P-removal, a considerable amount of the reactive Al necessary for the described P-rearrangement is supplied by decay products of detergent zeolites, a hidden Al-source present in most SSAs produced in Europe.

  19. Esterification of sludge palm oil as a pretreatment step for biodiesel production.

    PubMed

    Škrbić, Biljana; Predojević, Zlatica; Đurišić-Mladenović, Nataša

    2015-08-01

    Acid esterification of sludge palm oil, having 50 mas.% free fatty acids, i.e., 50 g of dominant free fatty acid per 100 g of oil, was investigated with the objective of determining conditions for the efficient reduction of free fatty acids. The influences of sulphuric acid dosage and molar ratio of methanol to oil were studied, with the final intention to obtain feedstock with a free fatty acids content acceptable for biodiesel production by alkali-transesterification. Esterification was performed using different molar ratios of methanol to oil (3:1, 6:1 and 9:1) and varying the amount of H2SO4 catalyst (0.92 mas.%, 1.84 mas.% and 4.60 mas.%). Under the applied conditions, the sulphuric acid dosage of 4.60 mas.% resulted in the satisfactory decrease of the feedstock's free fatty acids for 6:1 and 9:1 molar ratios of methanol to oil. Thus, taking into account the economic reasoning, it can be concluded that approximately 5 mas.% of H2SO4 with 6:1 molar ratio of methanol to oily feedstock, might be regarded as the dosage necessary for satisfactory pretreatment of the feedstock to be further subjected to the alkaline transesterification. Finally, the effort to consolidate the information on acid esterification available in literature was made, contributing to knowledge on sustainable biodiesel production using the low-grade and low-cost sources.

  20. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  1. Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters.

    PubMed

    Correia, Jessyca Aline da Costa; Júnior, José Edvan Marques; Gonçalves, Luciana Rocha B; Rocha, Maria Valderez Ponte

    2013-07-01

    The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB.

  2. Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment.

    PubMed

    Phitsuwan, Paripok; Sakka, Kazuo; Ratanakhanokchai, Khanok

    2016-10-01

    Napier grass is a promising energy crop in the tropical region. Feasible alkaline pretreatment technologies, including NaOH, Ca(OH)2, NH3, and alkaline H2O2 (aH2O2), were used to delignify lignocellulose with the aim of improving glucose recovery from Napier grass stem cellulose via enzymatic saccharification. The influences of the pretreatments on structural alterations were examined using SEM, FTIR, XRD, and TGA, and the relationships between these changes and the enzymatic digestibility of cellulose were addressed. The extensive removal of lignin (84%) in NaOH-pretreated fibre agreed well with the high glucan conversion rate (94%) by enzymatic hydrolysis, while the conversion rates for fibre pretreated with Ca(OH)2, NH3, and aH2O2 approached 60%, 51%, and 42%, respectively. The substantial solubilisation of lignin created porosity, allowing increased cellulose accessibility to cellulases in NaOH-pretreated fibre. In contrast, high lignin content, lignin redeposition on the surface, and residual internal lignin and hemicellulose impeded enzymatic performance in Ca(OH)2-, NH3-, and aH2O2-pretreated fibres, respectively.

  3. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit.

  4. Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge.

    PubMed

    Merrylin, J; Kumar, S Adish; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2013-01-01

    High-efficiency resource recovery from municipal solid waste (MSW) has been a focus of attention. The objective of this research is to develop a bio-pretreatment process for application prior to the anaerobic digestion of MSW to improve methane productivity. Bacillus licheniformis was used for pretreating MSW (non-flocculated with 0.07% citric acid), followed by anaerobic digestion. Laboratory-scale experiments were carried out in semi-continuous bioreactors, with a total volume of 5 L and working volume of 3 L. Among the nine organic loading rates (OLRs) investigated, the OLR of 0.84 kg SS m(-3) reactor day(-1) was found to be the most appropriate for economic operation of the reactor. Pretreatment of MSW prior to anaerobic digestion led to 55% and 64% increase of suspended solids (SS) and volatile solids reduction, respectively, with an improvement of 57% in biogas production. The results indicate that the pretreatment of non-flocculated sludge with Bacillus licheniformis which consumes less energy compared to other pretreatment techniques could be a cost-effective and environmentally sound method for producing methane from MSW.

  5. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively.

  6. The effect of alkaline pretreatment methods on cellulose structure and accessibility

    DOE PAGES

    Bali, Garima; Meng, Xianzhi; Deneff, Jacob I.; ...

    2014-11-24

    The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose andmore » exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.« less

  7. The effect of alkaline pretreatment methods on cellulose structure and accessibility

    SciTech Connect

    Bali, Garima; Meng, Xianzhi; Deneff, Jacob I.; Sun, Qining; Ragauskas, Arthur J.

    2014-11-24

    The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose and exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.

  8. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-01-13

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  9. Comparative performance of enzymatic and combined alkaline-enzymatic pretreatments on methane production from ensiled sorghum forage.

    PubMed

    Rollini, Manuela; Sambusiti, Cecilia; Musatti, Alida; Ficara, Elena; Retinò, Isabella; Malpei, Francesca

    2014-12-01

    This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.

  10. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies.

    PubMed

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2013-11-01

    The purpose of this study was to enhance the efficiency of anaerobic co-digestion with sewage sludge using pretreatment technologies and food waste. We studied the effects of various pretreatment methods (thermal, chemical, ultrasonic, and their combination) on hydrogen production and the characteristics of volatile fatty acids (VFAs) using sewage sludge alone and a mixture of sewage sludge and food waste. The pretreatment combination of alkalization and ultrasonication performed best, effecting a high solubilization rate and high hydrogen production (13.8 mL H2/g VSSconsumed). At a food waste:pretreated sewage sludge ratio of 2:1 in the mixture, the peak hydrogen production value was 5.0 L H2/L/d. As the production of hydrogen increased, propionate levels fell but butyrate concentrations rose gradually.

  11. Catalysis with Cu(II) (bpy) improves alkaline hydrogen peroxide pretreatment.

    PubMed

    Li, Zhenglun; Chen, Charles H; Liu, Tongjun; Mathrubootham, Vaidyanathan; Hegg, Eric L; Hodge, David B

    2013-04-01

    Copper(II) 2,2'-bipyridine (Cu(II) (bpy))-catalyzed alkaline hydrogen peroxide (AHP) pretreatment was performed on three biomass feedstocks including alkali pre-extracted switchgrass, silver birch, and a hybrid poplar cultivar. This catalytic approach was found to improve the subsequent enzymatic hydrolysis of plant cell wall polysaccharides to monosaccharides for all biomass types at alkaline pH relative to uncatalyzed pretreatment. The hybrid poplar exhibited the most significant improvement in enzymatic hydrolysis with monomeric sugar release and conversions more than doubling from 30% to 61% glucan conversion, while lignin solubilization was increased from 36.6% to 50.2% and hemicellulose solubilization was increased from 14.9% to 32.7%. It was found that Cu(II) (bpy)-catalyzed AHP pretreatment of cellulose resulted in significantly more depolymerization than uncatalyzed AHP pretreatment (78.4% vs. 49.4% decrease in estimated degree of polymerization) and that carboxyl content the cellulose was significantly increased as well (fivefold increase vs. twofold increase). Together, these results indicate that Cu(II) (bpy)-catalyzed AHP pretreatment represents a promising route to biomass deconstruction for bioenergy applications.

  12. Status and progress in sludge washing: A pivotal pretreatment method

    SciTech Connect

    Barton, W.B.; MacLean, G.T.; Meng, C.D.; Winkler, C.M.

    1995-01-01

    Separation of the bulk soluble chemical salts from the insoluble metal hydroxides and radionuclides is central to the strategy of disposing Hanford tank waste. Sludge washing and caustic leaching have been selected as the primary methods for processing the 230 million L (61,000,000 gal) of Hanford tank waste. These processes are very similar to those selected for processing waste at the West Valley Site in New York and the Savannah River Site in South Carolina. The purpose of sludge washing is to dissolve and remove the soluble salts in the waste. Leaching of the insoluble solids with caustic will be used to dissolve aluminum hydroxide and chromium hydroxide, and convert insoluble bismuth phosphate to soluble phosphate. The waste will be separated into a high-level solids fraction and a liquid fraction that can be disposed of as low-level waste after cesium removal. The washing and leaching operations involve batchwise mixing, settling, and decanting within the existing underground storage tanks.

  13. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk.

    PubMed

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand

    2011-01-01

    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated.

  14. Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment.

    PubMed

    Wang, Yawei; Xiao, Qingcong; Zhong, Hui; Zheng, Xiang; Wei, Yuansong

    2016-01-01

    Microwave (MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge, and help promote the recovery of phosphorus as struvite. In this study, to optimize struvite yield, (1) the characteristics of matter released in MW-hybrid treatments were compared, including MW, MW-acid, MW-alkali, MW-H2O2, and MW-H2O2-alkali. The results showed that selective release of carbon, nitrogen, phosphorus, Ca(2+), and Mg(2+) achieved by sludge pretreatment using MW-hybrid processes. MW-H2O2 is the recommended sludge pretreatment process for phosphorus recovery in the form of struvite. The ratio of Mg(2+):NH4(+)-N:PO4(3-)-P was 1.2:2.9:1 in the supernatant. (2) To clarify the effects of organic matter on struvite recovery, the composition and molecular weight distribution of organic matters were analyzed. Low molecular weight COD was found to facilitate the removal rate of NH4(+)-N and PO4(3)-P via crystallization, and the amorphous struvite crystals (<1kDa) from the filtered solutions had high purity. Therefore, the present study reveals the necessity of taking into consideration the interference effect of high molecular weight organic matters during struvite crystallization from sewage sludge.

  15. Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.

    PubMed

    Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

    2015-01-01

    This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760 mg L(-1) to 10,200 mg L(-1), 110 mg L(-1) to 2,900 mg L(-1) and 60 mg L(-1) to 630 mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65°C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge.

  16. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  17. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology.

    PubMed

    Ávila-Lara, Abimael I; Camberos-Flores, Jesus N; Mendoza-Pérez, Jorge A; Messina-Fernández, Sarah R; Saldaña-Duran, Claudia E; Jimenez-Ruiz, Edgar I; Sánchez-Herrera, Leticia M; Pérez-Pimienta, Jose A

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading.

  18. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    PubMed Central

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  19. Assessment of microbial viability in municipal sludge following ultrasound and microwave pretreatments and resulting impacts on the efficiency of anaerobic sludge digestion.

    PubMed

    Cella, Monica Angela; Akgul, Deniz; Eskicioglu, Cigdem

    2016-03-01

    A range of ultrasonication (US) and microwave irradiation (MW) sludge pretreatments were compared to determine the extent of cellular destruction in micro-organisms within secondary sludge and how this cellular destruction translated to anaerobic digestion (AD). Cellular lysis/inactivation was measured using two microbial viability assays, (1) Syto 16® Green and Sytox® Orange counter-assay to discern the integrity of cellular membranes and (2) a fluorescein diacetate assay to understand relative enzymatic activity. A range of MW intensities (2.17-6.48 kJ/g total solids or TS, coinciding temperatures of 60-160 °C) were selected for comparison via viability assays; a range of corresponding US intensities (2.37-27.71 kJ/g TS, coinciding sonication times of 10-60 min at different amplitudes) were also compared to this MW range. The MW pretreatment of thickened waste activated sludge (tWAS) caused fourfold to fivefold greater cell death than non-pretreated and US-pretreated tWAS. The greatest microbial destruction occurred at MW intensities greater than 2.62 kJ/g TS of sludge, after which increased energy input via MW did not appear to cause greater microbial death. In addition, the optimal MW pretreatment (80 °C, 2.62 kJ/g TS) and corresponding US pretreatment (10 min, 60 % amplitude, 2.37 kJ/g TS) were administered to the tWAS of a mixed sludge and fed to anaerobic digesters over sludge retention times (SRTs) of 20, 14, and 7 days to compare effects of feed pretreatment on AD efficiency. The digester utilizing MW-pretreated tWAS (80 °C, 2.62 kJ/g TS) had the greatest fecal coliform removal (73.4 and 69.8 % reduction, respectively), greatest solids removal (44.2 % TS reduction), and highest overall methane production (248.2 L CH4/kg volatile solids) at 14- and 7-day SRTs. However, despite the fourfold to fivefold increases in cell death upon pretreatment, improvements from the digester fed MW-pretreated sludge were marginal (i.e., increases in efficiency of less

  20. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production.

    PubMed

    Chaudhary, Gaurav; Singh, Lalit Kumar; Ghosh, Sanjoy

    2012-11-01

    Different alkaline pretreatment methods (NaOH, NaOH+10% urea and aqueous ammonia) were optimized for maximum delignification of Saccharum spontaneum at 30°C. Maximum delignification were obtained as 47.8%, 51% and 48% from NaOH (7% NaOH, 48h, and 10% biomass loading), NaOH+urea (7% NaOH+10% urea, 48 h and 10% biomass loading) and 30% ammonia (40 days and 10% biomass loading) respectively. H(2)SO(4) 60% (v/v), 10% biomass loading at 30°C for 4h, were optimized conditions to solubilize the cellulose and hemicellulose from solid residue obtained after different optimized alkaline pretreatments. Slurry thus obtained was diluted to obtain final acid concentration of 10% (v/v) for real hydrolysis of cellulose and hemicellulose at 100°C for 1h. Among all pretreatment methods applied, the best result 0.58 g (85%) reducing sugars/g of initial biomass after acid hydrolysis was obtained from aqueous ammonia pretreated biomass. Scheffersomyces stipitis CBS6054 was used to ferment the hydrolysate; ethanol yield (Y(p/s)) and productivity (r(p)) were found to be 0.35 g/g and 0.22 g/L/h respectively.

  1. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    NASA Astrophysics Data System (ADS)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  2. Techno-economic comparison of centralized versus decentralized biorefineries for two alkaline pretreatment processes.

    PubMed

    Stoklosa, Ryan J; Del Pilar Orjuela, Andrea; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Williams, Daniel L; Dale, Bruce E; Hodge, David B; Balan, Venkatesh

    2017-02-01

    In this work, corn stover subjected to ammonia fiber expansion (AFEX™)(1) pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000tons per day of corn stover employing a centralized biorefinery approach with AHP or a de-centralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased.

  3. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  4. Physical characteristics of alkaline stabilized sewage sludge (N-viro soil) and their effects on soil physical properties

    SciTech Connect

    Logan, T.J.; Harrison, B.J.

    1995-01-01

    The N-Viro process for alkaline stabilization of municipal sewage sludge combines dewatered sludge with one or more alkaline industrial byproducts and destroys pathogens by a combination of high pH, heat, and drying. The final product, N-Viro Soil, is a soil-like material that is being used as an agricultural lime substitute, soil amendment, and soil substitute. Physical characteristics of 28 N-Viro Soils were determined and compared to those of mineral soils. Results are described. 24 refs., 10 tabs.

  5. Effect of hydraulic retention time on pretreatment of blended municipal sludge.

    PubMed

    Koyunluoglu-Aynur, S; Riffat, R; Murthy, S

    2011-01-01

    The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.

  6. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    PubMed

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  7. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  8. Effect of free nitrous acid pre-treatment on primary sludge at low exposure times.

    PubMed

    Zahedi, S; Icaran, P; Yuan, Z; Pijuan, M

    2017-03-01

    The present study was undertaken to investigate the effect of different free nitrous acid (FNA) concentrations at low pre-treatment times (PTs) (1, 2 and 5h) and without pH control with mild agitation on primary sludge (PS) biodegradability and methane production (MP). Increasing PTs resulted in an increase in the solubility of the organic matter (around 25%), but not on cell-mortality (>75% in all the cases with FNA) and neither on methane generation. FNA pre-treatment at low PTs improve MP (around 16% at PT of 1h and 650mg N-NO2(-)/L). However, a similar improvement was found with mild agitation of PS without FNA at 2 and 5h. Taking into account the potential costs associated with the FNA pre-treatment, a mild agitation without FNA would be preferred to enhance MP in PS.

  9. Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan.

    PubMed

    Yu, Hongbo; Du, Wanqing; Zhang, Ji; Ma, Fuying; Zhang, Xiaoyu; Zhong, Weixin

    2010-09-01

    Fungal treatment with Irpex lacteus was used to enhance the delignification and xylan loss during mild alkaline pretreatment and subsequent enzymatic conversion in this research. The 15-day bio-treatment can modify the lignin structure and increase losses of lignin (from 75.67% to 80.00%) and xylan (from 40.68% to 51.37%) during alkaline pretreatment, making the enzymatic conversion more efficient. The high digestibility of glucan can be obtained after the bio-treatment and alkaline pretreatment at near room-temperature (30 degrees C), and the maximum digestibility increased 14% in comparison with that after the sole alkaline pretreatment. The bio-treatment enhanced delignification and glucan digestibility more significantly when the alkaline pretreatment was performed at lower severity. Additionally, Nuclei Growth model with a time-dependent rate constant can describe well the delignification and xylan loss. Results indicated that the bio-treatment increased the rate constant of initial reaction, but accelerated the decline of rate constant during alkaline pretreatment.

  10. [Effects of mild thermal pretreatment on anaerobic digestibility of sludge with low organic content].

    PubMed

    Chen, Han-Long; Yan, Yuan-Yuan; He, Qun-Biao; Dai, Xiao-Hu; Zhou, Qi

    2013-02-01

    The effects of mild pretreatment at temperature of 100 degrees C on the solubilization anP anaerobic digestibility of high solid sludge with low organic content were studied with the variation of heating times. Experimental results show soluble organic concentrations in supernatant increase with the prolonging of thermal pretreatment time rapidly, and slowly after 30 min. The dissolution rates of COD, protein and carbohydrate with 30 min of thermal pretreatment at 100 degrees C were 10.5%, 11.6% and 8.2%, respectively. Mild thermal pretreatment not only enhanced total methane yield, but also advanced the peak time of methane production. The methane production ratio with 30 min of thermal hydrolysis was 136 mL.g-1 (VS) at day 10 of anaerobic digestion, with an 86% increase over the control group. VS reduction ratio after 30 days anaerobic digestion o also increased to 33.3% with 30 min of thermal pretreatment at 100 degrees C compared with 19.1% in control group. In addition, studies on enzymatic activity indicated the activities of four key enzymes (protease, acetokinase, phosphotransacetylase and coenzyme F420) involved in anaerobic digestion were all enhanced by mild thermal pretreatment.

  11. Thermal pretreatment and hydraulic retention time in continuous digesters fed with sewage sludge: assessment using the ADM1.

    PubMed

    Souza, Theo S O; Ferreira, Liliana Catarina; Sapkaite, Ieva; Pérez-Elvira, Sara I; Fdz-Polanco, Fernando

    2013-11-01

    Thermal pretreatment is an interesting technique not only for increasing sludge biodegradability, leading to higher methane productivity, but also for improving degradation rates, allowing full-scale plants to reduce the size of digesters. In this study, the Anaerobic Digestion Model No. 1 (ADM1) was used as a tool to assess the effects of thermal pretreatment and hydraulic retention time (HRT) on the performance of three pilot-scale digesters fed with mixed sludge with/without pretreatment applied to the waste activated sludge fraction. Calibration procedures using batch tests showed an increase of up to five times in the model disintegration coefficient due to the pretreatment, and the validations performed presented good accuracy with the experimental data, with under/overestimation lower than 15% in both average and global accumulated CH4 productions. Therefore, the ADM1 demonstrated its feasibility and usefulness in predicting and assessing the behavior of the digesters under these conditions.

  12. Validation Testing of the Nitric Acid Dissolution Step Within the K Basin Sludge Pretreatment Process

    SciTech Connect

    AJ Schmidt; CH Delegard; KL Silvers; PR Bredt; CD Carlson; EW Hoppe; JC Hayes; DE Rinehart; SR Gano; BM Thornton

    1999-03-24

    The work described in this report involved comprehensive bench-scale testing of nitric acid (HNO{sub 3}) dissolution of actual sludge materials from the Hanford K East (KE) Basin to confirm the baseline chemical pretreatment process. In addition, process monitoring and material balance information was collected to support the development and refinement of process flow diagrams. The testing was performed by Pacific Northwest National Laboratory (PNNL)for the US Department of Energy's Office of Spent Fuel Stabilization (EM-67) and Numatec Hanford Corporation (NHC) to assist in the development of the K Basin Sludge Pretreatment Process. The baseline chemical pretreatment process for K Basin sludge is nitric acid dissolution of all particulate material passing a 1/4-in. screen. The acid-insoluble fraction (residual solids) will be stabilized (possibly by chemical leaching/rinsing and grouting), packaged, and transferred to the Hanford Environmental Restoration Disposal Facility (ERDF). The liquid fraction is to be diluted with depleted uranium for uranium criticality safety and iron nitrate for plutonium criticality safety, and neutralized with sodium hydroxide. The liquid fraction and associated precipitates are to be stored in the Hanford Tank Waste Remediation Systems (TWRS) pending vitrification. It is expected that most of the polychlorinated biphenyls (PCBs), associated with some K Basin sludges, will remain with the residual solids for ultimate disposal to ERDF. Filtration and precipitation during the neutralization step will further remove trace quantities of PCBs within the liquid fraction. The purpose of the work discussed in this report was to examine the dissolution behavior of actual KE Basin sludge materials at baseline flowsheet conditions and validate the.dissolution process step through bench-scale testing. The progress of the dissolution was evaluated by measuring the solution electrical conductivity and concentrations of key species in the dissolver

  13. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction.

  14. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology.

  15. Solubility of ion and trace metals from stabilized sewage sludge by fly ash and alkaline mine tailing.

    PubMed

    Zhang, Hongling; Sun, Lina; Sun, Tieheng

    2008-01-01

    Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4(2-) and Cl- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 microg/L, respectively.

  16. Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass.

    PubMed

    Wang, Xiaofei; Taylor, Steven; Wang, Yifen

    2016-10-01

    Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC-MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150-600 °C) and high-pressure pyrolysis processes.

  17. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge.

    PubMed

    Sivrioğlu, Özge; Yonar, Taner

    2015-04-01

    In this study, the acute toxicities of raw, physicochemical pre-treated, ozonated, and Fenton reagent applied samples of dairy wastewater toward activated sludge microorganisms, evaluated using the International Organization for Standardization's respiration inhibition test (ISO 8192), are presented. Five-day biological oxygen demand (BOD5) was measured to determine the biodegradability of physicochemical treatment, ozonation, Fenton oxidation or no treatment (raw samples) of dairy wastewater. Chemical pretreatment positively affected biodegradability, and the inhibition exhibited by activated sludge was removed to a considerable degree. Ozonation and the Fenton process exhibited good chemical oxygen demand removal (61%) and removal of toxins. Low sludge production was observed for the Fenton process applied to dairy effluents. We did not determine the inhibitory effect of the Fenton-process on the activated sludge mixture. The pollutant-removal efficiencies of the applied processes and their associated operating costs were determined.

  18. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased.

  19. Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology.

    PubMed

    Velmurugan, Rajendran; Muthukumar, Karuppan

    2012-05-01

    Ultrasound-assisted alkaline pretreatment of sugarcane bagasse (SCB) for fermentable sugar production was carried out and the influence of particle size, liquid to solid ratio (LSR), NaOH concentration, temperature and sonication time on delignification and reducing sugar production was ascertained with Placket-Burman design. The best combination of each significant factor was determined by a central composite design (CCD) and optimum pretreatment conditions for maximum reducing sugar yield (96.27%) were particle size of 0.27 mm, LSR of 25 ml/g, NaOH concentration of 2.89% (w/v), temperature of 70.15°C and pretreatment time of 47.42 min. Under these conditions, 92.11% of theoretical reducing sugar yield was observed experimentally. The substantial reduction in pretreatment time and temperature with improved efficiency is the most attractive features of the ultrasound-assisted alkaline pretreatment.

  20. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse.

    PubMed

    Li, Zhixia; Cao, Jiangfei; Huang, Kai; Hong, Yaming; Li, Cunlong; Zhou, Xinxin; Xie, Ning; Lai, Fang; Shen, Fang; Chen, Congjin

    2015-02-01

    Bagasse liquefaction (BL) in water, tetralin, and water/tetralin mixed solvents (WTMS) was investigated, and effects of tetralin content in WTMS, temperature, and alkaline pretreatment of bagasse on liquefaction efficiency were studied. At 300°C, bagasse conversion in WTMS with tetralin content higher than 50 wt% was 86-87 wt%, whereas bagasse conversion in water or tetralin was 67 wt% or 84 wt%, respectively. Because the solid conversion from liquefaction in WTMS with tetralin content higher than 50 wt% was always higher than that in water or tetralin at temperatures between 250 and 300°C, a synergic effect between water and tetralin is suggested. Alkaline pretreatment of bagasse resulted in significantly higher conversion and heavy oil yield from BL in water or WTMS. The effect of deoxygenation by the present liquefaction method is demonstrated by lower oxygen contents (16.01-19.59 wt%) and higher heating values (31.9-34.8 MJ/kg) in the produced oils.

  1. Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements.

    PubMed

    Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-03-18

    The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane.

  2. Progress and perspectives of sludge ozonation as a powerful pretreatment method for minimization of excess sludge production.

    PubMed

    Chu, Libing; Yan, Sangtian; Xing, Xin-Hui; Sun, Xulin; Jurcik, Benjamin

    2009-04-01

    The treatment and disposal of excess sludge represents a bottleneck in wastewater treatment plants (WWTP) worldwide, due to environmental, economic, social and legal factors. The ideal solution to the problem of sludge disposal is to combine sludge reduction with the removal of pollution at the source. This paper presents an overview of the potential of ozonation in sludge reduction. The full-scale application of ozonation in excess sludge reduction is presented. Improvements in the biodegradability of the ozonated sludge were confirmed. The introduction of ozonation into activated sludge did not significantly influence effluent quality but improved the settling properties of the sludge. An operation with a suitable sludge wasting ratio seems to be necessary to prevent accumulation of inorganic and inert particles for long-term operation. Sludge ozonation to reduce excess sludge production may be economical in WWTP which have high sludge disposal costs and operational problems such as sludge foaming and bulking. The recommended ozone dose ranges from 0.03 to 0.05 g O(3)/g TSS, which is appropriate to achieve a balance between sludge reduction efficiency and cost. An effort to design and optimize an economic sludge reduction process is necessary.

  3. Impact of ozone assisted ultrasonication pre-treatment on anaerobic digestibility of sewage sludge.

    PubMed

    Tian, Xinbo; Trzcinski, Antoine Prandota; Lin, Li Leonard; Ng, Wun Jern

    2015-07-01

    Impact of ultrasonication (ULS) and ultrasonication-ozonation (ULS-Ozone) pre-treatment on the anaerobic digestibility of sewage sludge was investigated with semi-continuous anaerobic reactors at solid retention time (SRT) of 10 and 20 days. The control, ULS and ULS-Ozone reactors produced 256, 309 and 348 mL biogas/g CODfed and the volatile solid (VS) removals were 35.6%, 38.3% and 42.1%, respectively at SRT of 10 days. At SRT of 20 days, the biogas yields reached 313, 337 and 393 mL biogas/g CODfed and the VS removal rates were 37.3%, 40.9% and 45.3% in the control, ULS and ULS-Ozone reactors, respectively. ULS-Ozone pre-treatment increased the residual organic amount in the digested sludge. These soluble residual organics were found to contain macromolecules with molecular weights (MW) larger than 500 kDa and smaller polymeric products with MW around 19.4 and 7.7 kDa. These compounds were further characterized to be humic acid-like substances with fluorescent spectroscopy analysis.

  4. The production of glucose from corn stalk using hydrothermal process with pre-treatment ultrasound assisted alkaline

    NASA Astrophysics Data System (ADS)

    Yolanda, Dora; Prasutiyo, Indry; Trisanti, P. N.; Sumarno

    2015-12-01

    The production of glucose from corn stalk by using subcritical hydrothermal technology is studied in this work. Ultrasound-assisted alkaline delignification methods are used as pre-treatment. The corn stalk powder were pretreated with ultrasound-assisted alkaline (NaOH 2% w/w, solid to liquid ratio 1:22 w/v) at room temperature and 30 minutes. After pre-treatment, solid residue and liquid fractions are separated by filtration. Pretreated solids are further submitted to hydrothermal process for glucose production. Hydrothermal process was carried out at 100 Bar and 120°C in various times. The solid product was characterized by SEM and XRD. And liquid product was analysis using DNS method to determine percentage of glucose. From XRD analysis showed that crystallinity of material was lower than delignification product.

  5. Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production.

    PubMed

    Diaz, Ana Belen; Moretti, Marcia Maria de Souza; Bezerra-Bussoli, Carolina; Carreira Nunes, Christiane da Costa; Blandino, Ana; da Silva, Roberto; Gomes, Eleni

    2015-06-01

    A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast®. The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment. Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial β-glucosidase.

  6. Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products.

    PubMed

    Carballa, Marta; Manterola, Garbiñe; Larrea, Luis; Ternes, Thomas; Omil, Francisco; Lema, Juan M

    2007-04-01

    The effect of an oxidative pre-treatment with ozone on the removal of Pharmaceutical and Personal Care Products (PPCPs) during the anaerobic digestion of sewage sludge has been investigated. Besides, the digested sludge characteristics in terms of pathogens content, dewatering properties, heavy metals content and linear alkylbenzene sulfonates (LAS) were determined. During ozonation (20mg O(3)/g TSS), about 8% of volatile solids (VS) and 60% of the chemical oxygen demand (COD) were solubilized. However, no mineralization was observed. The elimination of VS and total COD during anaerobic digestion were not affected by ozone treatment with efficiencies ranging from 60% to 65%. All PPCPs considered were removed during anaerobic treatment of sludge, with efficiencies ranging from 20% to 99%. No significant influence of ozone pre-treatment was observed on PPCPs elimination except for carbamazepine. Pathogens, heavy metals and LAS contents after conventional and pre-ozonation treatment of sewage sludge were below the legal requirements. However, the dewatering properties of sludge were deteriorated when the ozone pre-treatment was applied.

  7. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    PubMed Central

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of

  8. Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge.

    PubMed

    Quiroga, G; Castrillón, L; Fernández-Nava, Y; Marañón, E; Negral, L; Rodríguez-Iglesias, J; Ormaechea, P

    2014-02-01

    This paper presents a study of the effect of applying ultrasound pre-treatment in the production of methane when co-digesting mixtures of cattle manure with food waste and sludge. A series of experiments were carried out under mesophilic and thermophilic conditions in continuously stirred-tank reactors containing 70% cattle manure, 20% food waste and 10% sewage sludge. Ultrasound pre-treatment allows operating at lower HRT, achieving higher volumetric methane yields: 0.85 L CH4/L day at 36°C and 0.82 CH4/L day at 55°C, when cattle manure and sewage sludge were sonicated. With respect to the non-sonicated waste, these values represent increases of up to 31% and 67% for mesophilic and thermophilic digestion, respectively.

  9. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge.

    PubMed

    Appels, Lise; Van Assche, Ado; Willems, Kris; Degrève, Jan; Van Impe, Jan; Dewil, Raf

    2011-03-01

    Anaerobic digestion is generally considered to be an economic and environmentally friendly technology for treating waste activated sludge, but has some limitations, such as the time it takes for the sludge to be digested and also the ineffectiveness of degrading the solids. Various pre-treatment technologies have been suggested to overcome these limitations and to improve the biogas production rate by enhancing the hydrolysis of organic matter. This paper studies the use of peracetic acid for disintegrating sludge as a pre-treatment of anaerobic digestion. It has been proved that this treatment effectively leads to a solubilisation of organic material. A maximum increase in biogas production by 21% is achieved. High dosages of PAA lead to a decrease in biogas production. This is due to the inhibition of the anaerobic micro-organisms by the high VFA-concentrations. The evolution of the various VFAs during digestion is studied and the observed trends support this hypothesis.

  10. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.

  11. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis.

    PubMed

    Wu, Huimin; Li, Meng; Zhang, Lei; Sheng, Chao

    2016-01-01

    Thermal hydrolysis (TH) has been used to improve anaerobic digestion performance as well as the stability of heavy metals in sludge. Because the toxicity of heavy metals is closely related to both the concentration and the chemical speciation, more exhaustive studies on speciation distribution are urgently needed. This research aimed to investigate the effects of TH treatment (especially the time and temperature) on the concentration and stability of heavy metals in sludge, and to define the optimal TH conditions. The TH experiment indicated that the content of the stable form of Cu and Zn reached 83% and 47.4%, respectively, with TH at 210°C and 30 min. Compared with the raw sludge, the proportion of Cu and Zn increased by 11.88% and 7.3%, respectively. Results indicated that the heavy metals were combined with sludge in a more stable form with the pretreatment of TH, which improved the stability of heavy metals.

  12. Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study.

    PubMed

    Zeng, Qian; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Guo, Gang; Chen, Guanghao

    2017-03-06

    In this study the feasibility of treating dyeing wastewater with sulfate reducing granular sludge was explored, focusing on decolorization/degradation of azo dye (Procion Red HE-7B) and the performance of microbial consortia under alkaline conditions (pH=11). Efficiency of HE-7B degradation was influenced strongly by the chemical oxygen demand (COD) concentration which was examined in the range of 500-3000mg/L. COD removal efficiency was reduced at high COD concentration, while specific removal rate was enhanced to 17.5 mg-COD/gVSSh(-1). HE-7B removal was also improved at higher organic strength with more than 90% removal efficiency and a first-rate removal constant of 5.57h(-1) for dye degradation. Three dye-degradation metabolites were identified by HPLC-MS. The granular structure provided enhanced removal performance for HE-7B and COD in comparison to a near-identical floc SRB system and the key functional organisms were identified by high throughput sequencing. This study demonstrates an example of a niche application where SRB granules can be applied for high efficient and cost-effective treatment of a wastewater under adverse environmental conditions.

  13. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge.

    PubMed

    Dhar, Bipro Ranjan; Nakhla, George; Ray, Madhumita B

    2012-03-01

    To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound+thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90°C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90°C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H(2)S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90°C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.

  14. Synergistic Effect of Atmospheric Pressure Plasma Pre-Treatment on Alkaline Etching of Polyethylene Terephthalate Fabrics and Films

    NASA Astrophysics Data System (ADS)

    A. Elabid Amel, E.; Guo, Ying; Shi, Jianjun; Ding, Ke; Zhang, Jing

    2016-04-01

    Dyeing of PET materials by traditional methods presents several problems. Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications, and there has been a rapid development and commercialization of plasma technology over the past decade. In this work, the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate (PET) fabrics and films was investigated. The topographical changes of the PET surface were investigated by atomic force microscopy (AFM) images, which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples. The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry (DSC), the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the Tg and Tm. Using a tensile strength tester YG065H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated. Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate. The color strength of PET fabrics was increased by various plasma pre-treatment times. The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET. It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.

  15. Impact of ozone pre-treatment on the performance of upflow anaerobic sludge blanket treating pre-treated grain distillery wastewater.

    PubMed

    Robertson, L; Britz, T J; Sigge, G O

    2014-01-01

    Two 2 L laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were operated for 277 days. The substrate of the control reactor (Rc) contained grain distillery wastewater (GDWW) that had undergone coagulant pre-treatment, and the substrate of the second UASB reactor consisted of GDWW that had undergone coagulant pre-treatment and ozone pre-treatment (Ro). Both reactors treated pre-treated GDWW successfully at ca. 9 kgCOD m(-3) d(-1). Chemical oxygen demand (COD) reductions of ca. 96% for Rc and 93% for Ro were achieved. Fats, oils and grease (FOG) reductions (%) showed variations throughout the study, and reductions of ca. 88 and 92% were achieved for Rc and Ro, respectively. Rc produced more biogas, and the methane percentage was similar in both reactors. UASB granule washout in Rc suggested possible toxicity of unsaturated fatty acids present in non-ozonated substrate. The feasibility of FOG removal was demonstrated as both reactors successfully treated pre-treated GDWW. Better results were obtained for Ro effluent during post-ozonation. The ozone pre-treatment possibly led to easier degradable wastewater, and better results could potentially be obtained when other post-treatment steps are applied. Ozone pre-treatment did not, however, show an added benefit in the reactor performance results.

  16. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations--Computation of mass-energy balance and greenhouse gas emissions.

    PubMed

    Pilli, Sridhar; More, Tanaji; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y

    2015-07-01

    The effect of thermal pre-treatment on sludge anaerobic digestion (AD) efficiency was studied at different total solids (TS) concentrations (20.0, 30.0 and 40.0 g TS/L) and digestion times (0, 5, 10, 15, 20 and 30 days) for primary, secondary and mixed wastewater sludge. Moreover, sludge pre-treatment, AD and disposal processes were evaluated based on a mass-energy balance and corresponding greenhouse gas (GHG) emissions. Mass balance revealed that the least quantity of digestate was generated by thermal pre-treated secondary sludge at 30.0 g TS/L. The net energy (energy output-energy input) and energy ratio (energy output/energy input) for thermal pre-treated sludge was greater than control in all cases. The reduced GHG emissions of 73.8 × 10(-3) g CO2/g of total dry solids were observed for the thermal pre-treated secondary sludge at 30.0 g TS/L. Thermal pre-treatment of sludge is energetically beneficial and required less retention time compared to control.

  17. Sludge based Bacillus thuringiensis biopesticides: viscosity impacts.

    PubMed

    Brar, S K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2005-08-01

    Viscosity studies were performed on raw, pre-treated (sterilised and thermal alkaline hydrolysed or both types of treatment) and Bacillus thuringiensis (Bt) fermented sludges at different solids concentration (10-40 g/L) for production of biopesticides. Correlations were established among rheological parameter (viscosity), solids (total and dissolved) concentration and entomotoxicity (Tx) of Bt fermented sludges. Exponential and power laws were preferentially followed by hydrolysed fermented compared to raw fermented sludge. Soluble chemical oxygen demand variation corroborated with increase in dissolved solids concentration on pre-treatments, contributing to changes in viscosity. Moreover, Tx was higher for hydrolysed fermented sludge in comparison to raw fermented sludge owing to increased availability of nutrients and lower viscosity that improved oxygen transfer. The shake flask results were reproducible in fermenter. This study will have major impact on selecting fermentation, harvesting and formulation techniques of Bt fermented sludges for biopesticide production.

  18. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment.

    PubMed

    Abelleira-Pereira, Jose M; Pérez-Elvira, Sara I; Sánchez-Oneto, Jezabel; de la Cruz, Roberto; Portela, Juan R; Nebot, Enrique

    2015-03-15

    Studies on the development and evolution of anaerobic digestion (AD) pretreatments are nowadays becoming widespread, due to the outstanding benefits that these processes could entail in the management of sewage sludge. Production of sewage sludge in wastewater treatment plants (WWTPs) is becoming an extremely important environmental issue. The work presented in this paper is a continuation of our previous studies with the aim of understanding and developing the advanced thermal hydrolysis (ATH) process. ATH is a novel AD pretreatment based on a thermal hydrolysis (TH) process plus hydrogen peroxide (H2O2) addition that takes advantage of a peroxidation/direct steam injection synergistic effect. The main goal of the present research was to compare the performance of TH and ATH, conducted at a wide range of operating conditions, as pretreatments of mesophilic AD with an emphasis on methane production enhancement as a key parameter and its connection with the sludge solubilization. Results showed that both TH and ATH patently improved methane production in subsequent mesophilic BMP (biochemical methane potential) tests in comparison with BMP control tests (raw secondary sewage sludge). Besides other interesting results and discussions, a promising result was obtained since ATH, operated at temperature (115 °C), pretreatment time (5 min) and pressure (1 bar) considerably below those typically used in TH (170 °C, 30 min, 8 bar), managed to enhance the methane production in subsequent mesophilic BMP tests [biodegradability factor (fB) = cumulative CH4production/cumulative CH4production (Control) = 1.51 ± 0.01] to quite similar levels than conventional TH pretreatment [fB = 1.52 ± 0.03].

  19. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Yuan, Zhiguo

    2014-10-15

    Methane production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow degradation and poor substrate availability of WAS. Our previous study revealed that WAS pre-treatment using free nitrous acid (FNA, i.e. HNO2) is an economically feasible and environmentally friendly method for promoting methane production. In order to further improve methane production from WAS, this study presents a novel strategy based on combined FNA and heat pre-treatment. WAS from a full-scale plant was treated for 24 h with FNA alone (0.52-1.43 mg N/L at 25 °C), heat alone (35, 55 and 70 °C), and FNA (0.52-1.11 mg N/L) combined with heat (35, 55 and 70 °C). The pre-treated WAS was then used for biochemical methane potential tests. Compared to the control (no FNA or heat pre-treatment of WAS), biochemical methane potential of the pre-treated WAS was increased by 12-16%, 0-6%, 17-26%, respectively; hydrolysis rate was improved by 15-25%, 10-25%, 20-25%, respectively, for the three types of pre-treatment. Heat pre-treatment at 55 and 70 °C, independent of the presence or absence of FNA, achieved approximately 4.5 log inactivation of pathogens (in comparison to ∼1 log inactivation with FNA treatment alone), thus capable of producing Class A biosolids. The combined FNA and heat pre-treatment is an economically and environmentally attractive technology for the pre-treatment of WAS prior to anaerobic digestion, particularly considering that both FNA and heat can be produced as by-products of anaerobic sludge digestion.

  20. Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sewage sludge as a raw material.

    PubMed

    Tyagi, R D; Sikati Foko, V; Barnabe, S; Vidyarthi, A S; Valéro, J R; Surampalli, R Y

    2002-01-01

    The simultaneous production of Bacillus thuringiensis (Bt) based biopesticide and proteases was studied using synthetic medium and wastewater sludge as a raw material. The studies were conducted in shake flask and computer controlled 15-L capacity fermentors. Measuring viable cell and spore counts, entomotoxicity and protease activity monitored the progress of the biopesticide production process. A higher viable cell count and spore count was observed in synthetic Soya medium, however, higher entomotoxicity and protease activity were observed in wastewater sludge medium. Thus, the wastewater sludge is a better raw material than commercial Soya medium for the biopesticides and enzyme production. The maximum entomotoxicity and protease activity observed in the fermentor was 9,332 IU/microL and 4.58 IU/mL, respectively. The proteases produced by Bt were also characterised. Two types of proteases were detected; neutral proteases with pH optimum 7.0 and alkaline proteases with pH optimum 10-11. Further, two types of alkaline proteases were detected; one having a pH and temperature optimum at 10 and 50 degrees C while the other at 11 and 70 degrees C. The protease thermal stability was found to increase in the presence of CaCl2, indicating the proteases were metalloproteases.

  1. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  2. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.

    PubMed

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F

    2013-01-01

    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample.

  3. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  4. Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment.

    PubMed

    Wang, Feng; Hidaka, Taira; Tsumori, Jun

    2014-10-01

    Anaerobic co-digestion of shredded grass with sewage sludge was investigated under various temperature conditions. The conversion of grass to methane was difficult to achieve under mesophilic conditions, while its methane yield was 0.19 NL/g VS-grass under thermophilic conditions. The mixture ratio of grass to sludge affected the methane yield, and the highest synergistic effect was obtained at a C/N ratio of around 10. In a continuous experiment, hyperthermophilic (80 °C) pretreatment promoted a methane yield of 0.34 NL/g VS-mixture, higher than that under mesophilic and thermophilic conditions (0.20 and 0.30 NL/g VS-mixture, respectively). A batch experiment with hyperthermophilic pretreatment showed that 3 days of treatment was sufficient for subsequent methane production, in which the highest dissolution of particulate COD, carbohydrate and protein was 25.6%, 33.6% and 25.0%, respectively.

  5. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    PubMed

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB).

  6. [Performance of Electricity Generation and Feasibility of Discontinuous Power Supply of MFC by Using Pretreated Excess Sludge as Fuel].

    PubMed

    Zhao, Yan-hui; Zhao, Yang-guo; Guo, Liang

    2016-03-15

    The feasibility of treating pretreated excess sludge and capacity of supplying continuous power of microbial fuel cells (MFCs) were investigated. Two-chamber microbial fuel cells were started up and operated by using thermal pretreated excess sludge as the substrate. Potential fluctuations were achieved by changing the cathode electron acceptor. During the changes of electron acceptor, the operational stability of MFCs was assessed. The results indicated that the MFCs started successfully with oxygen as the cathode electron acceptor and reached 0.24 V after 148 hours. When the cathode electron acceptor was replaced by potassium ferricyanide, MFCs could obtain the maximum output voltage and maximum power density of 0.66 V and 4.21 W · m⁻³, respectively. When the cathode electron acceptor was changed from oxygen to potassium ferricyanide or the MFCs were closed circuit, the output power of MFCs recovered rapidly. In addition, changes of electron acceptor showed no effect on the removal of COD and ammonia nitrogen. Their removal efficiencies approached to 70% and 80%, respectively. This study concluded that MFC could treat the pretreated excess sludge and produce electricity simultaneously with a high power density. The MFC could also achieve discontinuous electricity supply during operation.

  7. Optimization of Fenton oxidation pre-treatment for B. thuringiensis - based production of value added products from wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-08-01

    Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H(2)O(2)/g SS, 150 [H(2)O(2)](0)/[Fe(2+)](0), 25 g/L TS, at 25 degrees C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 x 10(9)CFU ml(-1) and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 x 10(8)CFU ml(-1) with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.

  8. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  9. Arsenic in an Alkaline AMD Treatment Sludge: Characterization and Stability Under Prolonged Anoxic Conditions

    SciTech Connect

    Beauchemin, S.; Fiset, J; Poirier, G; Ablett, J

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg{sup -1}. In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N{sub 2}, 100%N{sub 2} + glucose, 95%N{sub 2}:5%H{sub 2}). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 {micro}g L{sup -1}. Dissolved Mn concentration in the N{sub 2} + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N{sub 2} + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants

  10. Pre-treatment serum lactate dehydrogenase and alkaline phosphatase as predictors of metastases in extremity osteosarcoma

    PubMed Central

    Marais, Leonard C.; Bertie, Julia; Rodseth, Reitze; Sartorius, Benn; Ferreira, Nando

    2015-01-01

    Background The prognosis of patients with metastatic osteosarcoma remains poor. However, the chance of survival can be improved by surgical resection of all metastases. In this study we investigate the value of serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in predicting the presence of metastatic disease at time of diagnosis. Methods Sixty-one patients with histologically confirmed conventional osteosarcoma of the extremity were included in the study. Only 19.7% of cases presented without evidence of systemic spread of the disease. Pre-treatment serum ALP and LDH were analysed in patients with and without skeletal or pulmonary metastases. Results Serum LDH and ALP levels were not significantly different in patients with or without pulmonary metastases (p=0.88 and p=0.47, respectively). The serum LDH and ALP levels did however differ significantly in patients with or without skeletal metastases (p<0.001 and p=0.02, respectively). The optimal breakpoint for serum LDH as a marker of skeletal metastases was 849 IU/L (AUC 0.839; Sensitivity=0.88; Specificity=0.73). LDH >454 IU/L equated to 100% sensitivity for detected bone metastases (positive diagnostic likelihood ratio (DLR)=1.32). With a cut-off of 76 IU/L a sensitivity of 100% was reached for serum ALP predicting the presence of skeletal metastases (positive DLR=1.1). In a multivariate analysis both LDH ≥850 IU/L (odds ratio [OR]=9; 95% confidence interval (CI) 1.8–44.3) and ALP ≥280 IU/L (OR=10.3; 95% CI 2.1–50.5) were predictive of skeletal metastases. LDH however lost its significance in a multivariate model which included pre-treatment tumour volume. Conclusion In cases of osteosarcoma with LDH >850 IU/L and/or ALP >280 IU/L it may be prudent to consider more sensitive staging investigations for detection of skeletal metastases. Further research is required to determine the value and the most sensitive cut-off points of serum ALP and LDH in the prediction of skeletal metastases. PMID

  11. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  12. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin.

    PubMed

    Liu, Dasong; Wei, Guanmian; Li, Tiancheng; Hu, Jinhua; Lu, Naiyan; Regenstein, Joe M; Zhou, Peng

    2015-04-01

    This study investigated the effects of alkaline pretreatments and acid extraction conditions on the production of acid-soluble collagen (ASC) from grass carp skin. For alkaline pretreatment, 0.05 and 0.1M NaOH removed non-collagenous proteins without significant loss of ASC at 4, 10, 15 and 20 °C; while 0.2 and 0.5M NaOH caused significant loss of ASC, and 0.5M NaOH caused structural modification of ASC at 15 and 20 °C. For acid extraction at 4, 10, 15 and 20 °C, ASC was partly extracted by 0.1 and 0.2M acetic acid, while 0.5 and 1.0M acetic acid resulted in almost complete extraction. The processing conditions involving 0.05-0.1M NaOH for pretreatment, 0.5M acetic acid for extraction and 4-20 °C for both pretreatment and extraction, produced ASC with the structural integrity being well maintained and hence were recommended to prepare ASC from grass carp skin in practical application.

  13. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H/sub 2/O/sub 2/

    SciTech Connect

    Gould, J.M.; Freer, S.N.

    1984-06-01

    Pretreatment should be economic and should not utilize toxic reagents. In this study locally obtained residues were used - wheat straw, cornstalks, corn husks and kenaf -as substrates. The high efficiency of glucose production from alkaline H/sub 2/O/sub 2/ pretreated lignocellulosic residues made these materials excellent substrates for ethanol production by Saccharomyces cerevisiae in combined saccharification/fermentation experiments. Results showed that overall efficiency of ethanol formation was 90% for pretreated corn cobs, stalks and husks compared to 50% for untreated materials. Yields from kenaf and oak were also enhanced although below the theoretical maximum. The lignin containing supernatant does not appear to be inhibitory to Saccharomyces cerevisiae growth or ethanol production. The improvement in conversion efficiency is apparently the result of the removal of about one half of the lignin along with an apparent reduction in the degree of crystallinity within the cellulose structure itself. 16 references.

  14. Sewage sludge pretreatment and disposal. January 1980-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Feb 92

    SciTech Connect

    Not Available

    1992-02-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 181 citations with title list and subject index.)

  15. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    PubMed

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm.

  16. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    PubMed

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment.

  17. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  18. Effect of thermal-alkaline pretreatment on the anaerobic digestion of streptomycin bacterial residues for methane production.

    PubMed

    Zhong, Weizhang; Li, Zaixing; Yang, Jingliang; Liu, Chun; Tian, Baokuo; Wang, Yongjun; Chen, Ping

    2014-01-01

    The anaerobic digestion of streptomycin bacterial residues, solutions with hazardous waste treatments and bioenergy recovery, was tested in laboratory-scale digesters at 35°C at various organic loading rates (OLRs). The methane production and biomass digestion were efficient at OLRs below 2.33 gVS L(-1) d(-1) but were deteriorated as OLR increased because of the increased total ammonia nitrogen (TAN) concentration from cell protein decay. The thermal-alkaline pretreatment with 0.10 NaOH/TS at 70°C for 2 h significantly improved the digestion performance. With the thermal-alkaline pretreatment, the volumetric reactor productivity and specific methane yield of the pretreated streptomycin bacterial residue increased by 22.08-27.08% compared with those of the unpretreated streptomycin bacterial residue at an OLR of 2.33 gVS L(-1) d(-1). The volatile solid removal was 64.09%, with less accumulation of TAN and total volatile fatty acid.

  19. Influence of Continuous Flow Microwave Pre-Treatment on Anaerobic Digestion of Secondary Thickened Sludge for Sustainable Energy Recovery in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Hephzibah, D.; Kumaran, P.; Saifuddin, N. M.

    2016-03-01

    This work elucidates the effects of pre-treatment of secondary thickened sludge (STS) for enhancement of biogas production that has great potential to generate energy for the utilization of the sewage treatment plant (STP) itself. Microwave pre-treatment has been adopted for this study. Experiment works have been designed and conducted to examine the effectiveness of continuous flow microwave pre-treatment on the solubility of STS, digestibility of STS and biogas production at a power level of 80 W for 5, 10 and 15 minutes. A few characteristics of the sewage sludge were monitored daily to identify the effect of pre-treatment on the sludge. The soluble chemical oxygen demand (SCOD)/total chemical oxygen demand (TCOD) ratio increased by 0.1, 1.0 and 1.8%, while the volatile fatty acids (VFA) concentration of the pre-treated sludge improved by 4.4, 5.1, 5.9% at the irradiation time of 5, 10 and 15 minutes, respectively at a microwave power level of 80 W. Besides that, the digestate also indicates that the pre-treated sludge undergoes efficient VS removal and TCOD removal after anaerobic digestion compared to the untreated sludge. Moreover, the biogas quantity increased by an average of 19.2, 24.1 and 32.2% in 5, 10 and 15 minutes irradiation time respectively compared to the untreated sludge. The additional quantity of biogas generated has shown a great potential for sustainable energy generation that can be utilized internally by the STP.

  20. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential.

    PubMed

    Ruiz-Hernando, M; Martín-Díaz, J; Labanda, J; Mata-Alvarez, J; Llorens, J; Lucena, F; Astals, S

    2014-09-15

    Waste activated sludge is slower to biodegrade under anaerobic conditions than is primary sludge due to the glycan strands present in microbial cell walls. The use of pre-treatments may help to disrupt cell membranes and improve waste activated sludge biodegradability. In the present study, the effect of ultrasound, low-temperature thermal and alkali pre-treatments on the rheology, hygienization and biodegradability of waste activated sludge was evaluated. The optimum condition of each pre-treatment was selected based on rheological criteria (reduction of steady state viscosity) and hygienization levels (reduction of Escherichia coli, somatic coliphages and spores of sulfite-reducing clostridia). The three pre-treatments were able to reduce the viscosity of the sludge, and this reduction was greater with increasing treatment intensity. However, only the alkali and thermal conditioning allowed the hygienization of the sludge, whereas the ultrasonication did not exhibit any notorious effect on microbial indicators populations. The selected optimum conditions were as follows: 27,000 kJ/kg TS for the ultrasound, 80 °C during 15 min for the thermal and 157 g NaOH/kg TS for the alkali. Afterward, the specific methane production was evaluated through biomethane potential tests at the specified optimum conditions. The alkali pre-treatment exhibited the greatest methane production increase (34%) followed by the ultrasonication (13%), whereas the thermal pre-treatment presented a methane potential similar to the untreated sludge. Finally, an assessment of the different treatment scenarios was conducted considering the results together with an energy balance, which revealed that the ultrasound and alkali treatments entailed higher costs.

  1. Occurrence of antibiotic resistance genes and mobile genetic elements in enterococci and genomic DNA during anaerobic digestion of pharmaceutical waste sludge with different pretreatments.

    PubMed

    Tong, Juan; Lu, XueTing; Zhang, JunYa; Sui, Qianwen; Wang, Rui; Chen, Meixue; Wei, Yuansong

    2017-03-22

    Pharmaceutical waste sludge harbors large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), and it is necessary to study the reduction of ARGs and MGEs during sludge treatment. Therefore, the antibiotic resistance phenotypes and genotypes of enterococci, and the ARGs and MGEs in genomic DNA were investigated during anaerobic digestion (AD) with microwave (MW), thermal hydrolysis (TH) and ozone pretreatment. Results showed that sludge pretreatment increased the occurrence of the resistance phenotypes and genotypes of enterococci. During AD, the resistance of enterococci to macrolides decreased, except for in the MW-pretreated sludge. Horizontal gene transfer and co-occurrence of ermB and tetM in enterococci resulted in increased tetracycline resistance of enterococci throughout the sludge treatment. MGEs such as intI1, ISCR1 and Tn916/1545 had a significant effect on the distribution of ARGs. AD with pretreatment, especially TH pretreatment, resulted in greater ARGs and MGEs reduction and improved methane production.

  2. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000.

  3. Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust.

    PubMed

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Wang, Siqi; Fan, Shiyang; Zhou, Shuqiong

    2016-12-01

    Catalpa sawdust, a promising biofuel production biomass, was pretreated by microwave-water, -NaOH, and -Ca(OH)2 to enhance enzymatic digestibility. After 48h enzymatic hydrolysis, microwave-Ca(OH)2 pretreated sample showed the highest reducing sugar yield. The content of hemicellulose and lignin in catalpa sawdust decreased after microwave-alkali pretreatment. SEM observation showed that the catalpa sawdust surface with microwave-Ca(OH)2 pretreatment suffered the most serious erosion. Crystallinity index of catalpa sawdust increased after all three kinds of pretreatment. The optimum conditions of microwave-Ca(OH)2 pretreatment were particle size of 40mesh, Ca(OH)2 dosage of 2.25% (w/v), microwave power of 400W, pretreatment time of 6min, enzyme loading of 175FPU/g, and hydrolysis time of 96h, and the reducing sugar yield of microwave-Ca(OH)2 pretreated catalpa sawdust reached 402.73mg/g, which increased by 682.15% compared with that of raw catalpa sawdust. The catalpa sawdust with microwave-Ca(OH)2 pretreatment is promising for biofuel production with great potential.

  4. Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N.

    PubMed

    Fernández-Luqueño, F; Marsch, R; Espinosa-Victoria, D; Thalasso, F; Hidalgo Lara, M E; Munive, A; Luna-Guido, M L; Dendooven, L

    2008-08-25

    Contamination of soil with hydrocarbons occurs frequently and organic material, such as sludge, is often applied to accelerate their dissipation. Little is known, however, how sludge characteristics affect removal of polycyclic aromatic hydrocarbons (PAHs) from alkaline-saline soil. Soil of the former lake Texcoco with pH 9 and electrolytic conductivity 7 dS m(-1) was contaminated with phenanthrene and anthracene and amended with sludge, sterilized sludge, sludge adjusted to maintain pH in contaminated soil or glucose plus an inorganic N and P source while emission of CO2 and concentrations of NH4+, NO3-, NO2-, extractable P, phenanthrene and anthracene were monitored in an aerobic incubation experiment of 112 days. An agricultural soil from Acolman treated in the same way served as control. Contaminating the Texcoco soil increased emission of CO2 significantly, but not in the Acolman soil. After 112 days, the largest concentration of anthracene and phenanthrene was found in the Acolman soil added with glucose and the lowest in the sludge-amended soil. The largest concentration of anthracene in the Texcoco soil was found in soil added with sterile sludge and the lowest in the sludge-amended soil. The largest concentration of phenanthrene in the Texcoco soil was found in the glucose-amended soil and the lowest in the sludge-amended soil. It was found that addition of sludge removed more phenanthrene, but not anthracene from soil compared to the unamended contaminated soil, glucose inhibited dissipation of PAHs while microorganisms in the sludge contributed to their removal, and adjustment of soil pH had no effect. Organic material can be used to accelerate removal of hydrocarbons from soil, but the effect is controlled by soil type, contaminant and organic material characteristics.

  5. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area.

  6. Comparing the influence of low power ultrasonic and microwave pre-treatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge.

    PubMed

    Houtmeyers, Sofie; Degrève, Jan; Willems, Kris; Dewil, Raf; Appels, Lise

    2014-11-01

    Anaerobic digestion is a well-known technique for the recovery of energy from waste sludge. Pre-treatment methods are useful tools to improve the biodegradability of the sludge and to enhance the digestion efficiency. In this study, an ultrasound (US) and a microwave (MW) pre-treatment were compared in a long-term digestion experiment, using 3 small pilot scale semi-continuous digesters (SRT=20 days). A specific energy of 96 kJ/kg sludge was applied, hence enabling to compare the effectiveness of both pre-treatment methods towards sludge solubilisation and biogas production enhancement. Total and volatile solids (TS and VS), COD, carbohydrates and proteins were monitored throughout the digestion experiment. It was seen that US was most effective in COD solubilisation. The average biogas increment was 20% for the microwave pre-treatment and 27% for the ultrasonic pre-treatment. However, this additional biogas production did not outweigh the energy consumed by the pre-treatment, leading to a negative energy balance.

  7. Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification.

    PubMed

    Rocha, George J M; Martín, Carlos; da Silva, Vinícius F N; Gómez, Edgardo O; Gonçalves, Adilson R

    2012-05-01

    Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup.

  8. An alkaline oxidation method for determination of total arsenic and selenium in sewage sludges

    SciTech Connect

    Zhu, Baojin; Tabatabai, M.A.

    1995-07-01

    A simple and precise method was developed for determination of total As and Se in sewage sludges by using hydride-generation atomic absorption spectrometry (HGAAS). It involves boiling a 50-mg sample with sodium hypobromite (NaOBr) solution to dryness in a sand bath (260-280{degrees}C), extraction of the As and Se in the digest with 1.25 M H{sub 2}SO{sub 4}, and determination of these elements by HGAAS after reducing As(V) and Se(VI) to As(III) and Se(IV), respectively. The proposed method gives quantitative recovery of As and Se in standard reference materials (96-103%) and of these elements added to sewage sludges (95-100%). The average results of AS (9.8 mg/kg) and Se (7.5 mg/kg) in 12 sewage sludges determined by the proposed digestion method agreed closely with those obtained by the acid digestion methods recommended by USGS and USEPA. Tests with 13 metals indicated that, at the concentrations expected in sewage sludges, none of the metals interfered with determination of As and Se by the proposed method. A single operator can complete analysis of one of the elements in 40 samples in a normal working day, or both elements in 1.5 d.

  9. Pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of FY 1991 studies

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the US Department of Energy`s Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO{sub 3} at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

  10. Pretreatment of neutralized cladding removal waste (NCRW) sludge - results of FY 1991 studies

    SciTech Connect

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the U.S. Department of Energy's Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO[sub 3] at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

  11. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.

    PubMed

    Wu, Liang; Zhang, Cheng; Hu, Hui; Liu, Jianyong; Duan, Tengfei; Luo, Jinghuan; Qian, Guangren

    2017-03-06

    Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF.

  12. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.

    PubMed

    Morgan-Sagastume, F; Pratt, S; Karlsson, A; Cirne, D; Lant, P; Werker, A

    2011-02-01

    This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.

  13. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Bi, Jinhua; Mehryar, Esmaeil; Talha, Zahir Ahmed Ali; Huang, Hongying

    2016-01-01

    In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (P<0.05) to enhance lignocellulosic digestibility and methane production. The results indicated that the methane yield by H2O2-1, H2O2-2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H2O2-2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to 45% and 42% respectively. Process biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover.

  14. Hydrodynamic cavitation as a novel approach for pretreatment of oily wastewater for anaerobic co-digestion with waste activated sludge.

    PubMed

    Habashi, Nima; Mehrdadi, Nasser; Mennerich, Artur; Alighardashi, Abolghasem; Torabian, Ali

    2016-07-01

    Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment.

  15. Measuring the activities of higher organisms in activated sludge by means of mechanical shearing pretreatment and oxygen uptake rate.

    PubMed

    Hao, Xiaodi; Wang, Qilin; Cao, Yali; van Loosdrecht, Mark C M

    2010-07-01

    A pretreatment method was developed to assess the activities of higher organisms. The method is based on mechanical shearing to damage the large cells of the protozoan and metazoan community in activated sludge. The procedure was confirmed through experimentation to be effective in determining the activities of higher organisms by comparing oxygen uptake rates (OURs) before and after the higher organisms were eradicated. Shearing led to disintegration of flocs, which could be effectively reconstituted by centrifugation. The reconstitution of the sludge flocs was essential since otherwise the activity of the floc mass would be too high due to lack of diffusion limitation. Mechanical shearing had no influence on the morphology, quantity and specific activity of yeasts, and it was inferred that bacteria smaller than yeasts in size would also not be influenced by the applied shearing procedure. Moreover, the effect of filamentous organisms on the measured activities of higher organisms was experimentally demonstrated and analyzed, and determined to be so weak that it could be ignored. Based on these tests, five typical activated sludge processes were selected to measure the contribution of higher organisms to the original OUR. The measured activities of higher organisms ranged from 9.4 to 25.0% of the original OURs.

  16. Microwave and ultrasound pre-treatments influence microbial community structure and digester performance in anaerobic digestion of waste activated sludge.

    PubMed

    Westerholm, Maria; Crauwels, Sam; Van Geel, Maarten; Dewil, Raf; Lievens, Bart; Appels, Lise

    2016-06-01

    Comparative analyses of bacterial and archaeal community structures and dynamics in three biogas digesters during start-up and subsequent operation using microwaved, ultrasonicated or untreated waste activated sludge were performed based on 454 pyrosequencing datasets of part of 16S ribosomal RNA sequences and quantitative PCR. The pre-treatment increased the solubility, and thus the availability of the substrate for microbial degradation and significantly affected the succession of the anaerobic community structure over the course of the digestion. Bacteroidetes, Proteobacteria and Firmicutes were the dominant phyla in all digesters throughout operation. Proteobacteria decreased in relative abundance from 23-26 % to 11-13 % in association with enhanced substrate availability. Negative correlations between relative abundance of Alpha-, Beta- and Gammaproteobacteria and the substrate availability and/or biogas production were disclosed in statistical analyses. Clostridiales was the dominant order in Firmicutes, and Clostridiales, Clostridia and Firmicutes relative abundance and richness were shown to positively correlate with substrate availability and biogas generation. Methanogenic communities had a fairly restricted structure, highly dominated by Methanosaeta and Methanobrevibacter phylotypes. A gradual decline in Methanobrevibacter and increased representation of Methanosaeta concilii over time were particularly apparent in the digester receiving untreated waste activated sludge, whereas more diversified archaeal communities were maintained in the pre-treatment digesters. The quantitative PCR analyses revealed a methanogenic community distribution that coincided with the 454 pyrosequencing data.

  17. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge.

    PubMed

    Ennouri, Hajer; Miladi, Baligh; Diaz, Soraya Zahedi; Güelfo, Luis Alberto Fernández; Solera, Rosario; Hamdi, Moktar; Bouallagui, Hassib

    2016-08-01

    The effect of thermal pre-treatment on the microbial populations balance and biogas production was studied during anaerobic digestion of waste activated sludge (WAS) coming from urban (US: urban sludge) and industrial (IS: industrial sludge) wastewater treatment plants (WWTP). The highest biogas yields of 0.42l/gvolatile solid (VS) removed and 0.37l/gVS removed were obtained with urban and industrial sludge pre-treated at 120°C, respectively. Fluorescent in situ hybridization (FISH) was used to quantify the major Bacteria and Archaea groups. Compared to control trails without pretreatment, Archaea content increased from 34% to 86% and from 46% to 83% for pretreated IS and US, respectively. In fact, the thermal pre-treatment of WAS enhanced the growth of hydrogen-using methanogens (HUMs), which consume rapidly the H2 generated to allow the acetogenesis. Therefore, the stable and better performance of digesters was observed involving the balance and syntrophic associations between the different microbial populations.

  18. Green coconut mesocarp pretreated by an alkaline process as raw material for bioethanol production.

    PubMed

    Soares, Jimmy; Demeke, Mekonnen M; Foulquié-Moreno, Maria R; Van de Velde, Miet; Verplaetse, Alex; Fernandes, Antonio Alberto Ribeiro; Thevelein, Johan M; Fernandes, Patricia Machado Bueno

    2016-09-01

    Cocos nucifera L., coconut, is a palm of high importance in the food industry, but a considerable part of the biomass is inedible. In this study, the pretreatment and saccharification parameters NaOH solution, pretreatment duration and enzyme load were evaluated for the production of hydrolysates from green coconut mesocarp using 18% (w/v) total solids (TS). Hydrolysates were not detoxified in order to preserve sugars solubilized during the pretreatment. Reduction of enzyme load from 15 to 7.5 filter paper cellulase unit (FPU)/g of biomass has little effect on the final ethanol titer. With optimized pretreatment and saccharification, hydrolysates with more than 7% (w/v) sugars were produced in 48h. Fermentation of the hydrolysate using industrial Saccharomyces cerevisiae strains produced 3.73% (v/v) ethanol. Our results showed a simple pretreatment condition with a high-solid load of biomass followed by saccharification and fermentation of undetoxified coconut mesocarp hydrolysates to produce ethanol with high titer.

  19. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production

    PubMed Central

    Mehryar, Esmaeil; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS−1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS−1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition. PMID:27738635

  20. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production.

    PubMed

    Talha, Zahir; Ding, Weimin; Mehryar, Esmaeil; Hassan, Muhammad; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS(-1), digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS(-1)) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  1. Optimization of the Alkaline Pretreatment of Rice Straw for Enhanced Methane Yield

    PubMed Central

    Song, Zilin; Yang, Gaihe; Han, Xinhui; Feng, Yongzhong; Ren, Guangxin

    2013-01-01

    The lime pretreatment process for rice straw was optimized to enhance the biodegradation performance and increase biogas yield. The optimization was implemented using response surface methodology (RSM) and Box-Behnken experimental design. The effects of biodegradation, as well as the interactive effects of Ca(OH)2 concentration, pretreatment time, and inoculum amount on biogas improvement, were investigated. Rice straw compounds, such as lignin, cellulose, and hemicellulose, were significantly degraded with increasing Ca(OH)2 concentration. The optimal conditions for the use of pretreated rice straw in anaerobic digestion were 9.81% Ca(OH)2 (w/w TS), 5.89 d treatment time, and 45.12% inoculum content, which resulted in a methane yield of 225.3 mL/g VS. A determination coefficient (R2) of 96% was obtained, indicating that the model used to predict the anabolic digestion process shows a favorable fit with the experimental parameters. PMID:23509824

  2. Effects of ultrasound pretreatment on the characteristic evolutions of drinking water treatment sludge and its impact on coagulation property of sludge recycling process.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing

    2015-11-01

    Large amounts of drinking water treatment sludge (DWTS) are produced during the flocculation or flotation process. The recycling of DWTS is important for reducing and reclaiming the waste residues from drinking water treatment. To improve the coagulation step of the DWTS recycling process, power ultrasound was used as a pretreatment to disintegrate the DWTS and degrade or inactivate the constituents that are difficult to remove by coagulation. The effects of ultrasound pretreatment on the characteristics of DWTS, including the extent of disintegration, variation in DWTS floc characteristics, and DWTS dewaterability, were investigated. The capacity of the recycling process to remove particulates and organic matter from low-turbidity surface water compared to a control treatment process without DWTS was subsequently evaluated. The coagulation mechanism was further investigated by analyzing the formation, breakage, and re-growth of re-coagulated flocs. Our results indicated that under the low energy density applied (0.03-0.033 W/mL) for less than 15 min at a frequency of 160 kHz, the level of organic solubilization was less elevated, which was evidenced by the lower release of proteins and polysaccharides and lower fluorescence intensities of humic- and protein-like substances. The applied ultrasound conditions had an adverse effect on the dewaterability of the DWTS. Ultrasound pretreatment had no significant impact on the pH or surface charge of the DWTS flocs, whereas particle size decreased slightly and the specific surface area was moderately increased. The pollution removal capacity decreased somewhat for the recycled sonicated DWTS treatment, which was primarily ascribed to organic solubilization rather than variability in the floc characteristics of sonicated DWTS. The main coagulation mechanism was floc sweeping and physical adsorption. The breakage process of the flocs formed by the recycling process displayed distinct irreversibility, and the flocs were

  3. Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass

    PubMed Central

    Liu, Tongjun; Parreiras, Lucas S.; Williams, Daniel L.; Wohlbach, Dana J.; Bice, Benjamin D.; Ong, Irene M.; Breuer, Rebecca J.; Qin, Li; Busalacchi, Donald; Deshpande, Shweta; Daum, Chris; Gasch, Audrey P.

    2014-01-01

    The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production. PMID:24212571

  4. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.

    PubMed

    Sato, Trey K; Liu, Tongjun; Parreiras, Lucas S; Williams, Daniel L; Wohlbach, Dana J; Bice, Benjamin D; Ong, Irene M; Breuer, Rebecca J; Qin, Li; Busalacchi, Donald; Deshpande, Shweta; Daum, Chris; Gasch, Audrey P; Hodge, David B

    2014-01-01

    The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na(+), acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.

  5. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  6. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE PAGES

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; ...

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  7. Characteristics and Gel Properties of Gelatin from Goat Skin as Influenced by Alkaline-pretreatment Conditions

    PubMed Central

    Mad-Ali, Sulaiman; Benjakul, Soottawat; Prodpran, Thummanoon; Maqsood, Sajid

    2016-01-01

    Characteristics and properties of gelatin from goat skin pretreated with NaOH solutions (0.50 and 0.75 M) for various times (1 to 4 days) were investigated. All gelatins contained α-chains as the predominant component, followed by β-chain. Gelling and melting temperatures of those gelatins were 23.02°C to 24.16°C and 33.07°C to 34.51°C, respectively. Gel strength of gelatins increased as NaOH concentration and pretreatment time increased (p<0.05). Pretreatment for a longer time yielded gelatin with a decrease in L*-value but an increase in b*-value. Pretreatment of goat skin using 0.75 M NaOH for 2 days rendered the highest yield (15.95%, wet weight basis) as well as high gel strength (222.42 g), which was higher than bovine gelatin (199.15 g). Gelatin obtained had the imino acid content of 226 residues/1,000 residues and the gelatin gel had a fine and ordered structure. Therefore, goat skin gelatin could be used as a potential replacer of commercial gelatin. PMID:26954127

  8. Changes in sludge accumulation of anaerobic swine lagoons receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the changes in sludge depth and volume of anaerobic swine lagoon in North Carolina after six years of applying treatment to the liquid flushed manure prior to entering the lagoon. The farm had seven swine barns with a permitted capacity of 5,145 head feeder to finish (735 head/b...

  9. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion.

    PubMed

    Park, Seyong; Kim, Moonil

    2015-01-01

    In this study, the anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with a high concentration of ammonia was carried out through combining with an ammonia stripping and an electrolyzed water system (EWS). The EWS produced acidic water (pH 2-3) at the anode and alkaline water (pH 11-12) at the cathode with an electro-diaphragm between the electrodes that could be applied to ammonia stripping. The ammonia stripping efficiency was strongly dependent on the pH and aeration rate, and the ammonium ion removal rate followed pseudo-first-order kinetics. From the BMP test, the methane yield of THWS after ammonia stripping using the EWS was 2.8 times higher than that of the control process (raw THWS without ammonia stripping). Furthermore, both methane yield and ammonium removal efficiency were higher in this study than in previous studies. Since ammonia stripping with the EWS does not require any chemicals for pH control, no precipitated sludge is produced and anaerobic microorganisms are not inhibited by cations. Therefore, ammonia stripping using the EWS could be an effective method for digestion of wastewater with a high concentration of ammonium nitrogen.

  10. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  11. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis at different pretreated temperatures.

    PubMed

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Jin, Chunji

    2016-12-01

    Heat pretreatment process can promote sludge hydrolysis and enhance the degradability of waste sludge. The effect of heat pretreatment at different temperatures on the changes of soluble chemical oxygen demand (SCOD), carbohydrates, and proteins and the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were systematically investigated. Heat pretreatment was conducted at 65, 80, 100, and 121 °C for 30 min. The SCOD in DOM increased with pretreated temperatures. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy was utilized to evaluate the biodegradable and non-biodegradable components in EPS and DOM. Moreover, the humification index (HIX) and the fluorescence index (FI) were used to evaluate the humification and DOM source. At 80 °C, the percent fluorescence response (P i,n ) of easily biodegradable soluble microbial by-product substance was higher than others; meanwhile, little non-biodegradable humic acid-like substance was accumulated. In order to enhance sludge biodegradability, 80 °C was chosen as the optimal temperature for heat pretreatment.

  12. Alkaline pretreatment improves saccharification and ethanol yield from waste money bills.

    PubMed

    Sheikh, Md Mominul Islam; Kim, Chul-Hwan; Park, Hyeon-Jin; Kim, Sung-Ho; Kim, Gyeong-Chul; Lee, Ji-Young; Sim, Sung-Woong; Kim, Jae Won

    2013-01-01

    Waste money bills (WMB) is a by-product of the money making process that consists of rich-cellulosic material for many biotechnological applications. This waste money bills is unusable and usually exhausted. Saccharification was improved using various concentrations of sodium hydroxide, NaOH (0.0, 0.5, 1.0, 2.0, 2.5, and 3.0% v/v) and various reaction times (20, 30, and 40 min) during pretreatment at 121 °C. Prior to ethanol fermentation, the highest glucose yield (62.2 mg/mL) was found by pretreatment consisting of 30 min at 2.0% NaOH, and it increased 33.8% as compared to an untreated sample. The highest amount of ethanol was obtained (26.1 mg/mL) during fermentation, and this was increased 95.3 and 22.5% as compared to aerobic and anaerobic conditions respectively during pretreatment with 2.0% NaOH for 30 min. Under anaerobic conditions, ethanol fermentation was enhanced by adding 0.4 mmol benzoic acid. Production of ethanol from waste money bills would cut waste management costs and make profitable.

  13. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    PubMed Central

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-01-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4′, β-β′, β-5′ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature. PMID:27982101

  14. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4‧, β-β‧, β-5‧ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  15. Effects of dilution ratio and Fe° dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment.

    PubMed

    Yu, Li; Jiang, Wentian; Yu, Yang; Sun, Chenglin

    2014-01-01

    Biohydrogen fermentation of dewatered sludge (DS) with sewage at ratios from 4:1 to 1:20 was investigated. Hydrothermal pretreatment of the sludge solution was performed to accelerate the organic release from the solid phase. The maximum hydrogen yield of 26.3 ± 0.5 mL H₂/g volatile solid (VS) was obtained at a 1:10 ratio. Although addition of zero valent iron (ZVI) to anaerobic system was not new, the study of dosing it to enhance the biohydrogen yield might be the first attempt. While Fe° plate slightly affected the hydrogen yield, Fe° powder improved the amount of hydrogen by 16% and shortened the lag time by 36%. The state of bacteria in the reactor added with ZVI powder was changed and the key enzyme activity was improved as well. Correspondingly, the mechanism of ZVI in accelerating the biofermentation process was also proposed. Our research provides a solution for the centralized treatment of DS in a city.

  16. Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste activated sludge.

    PubMed

    Elliott, Allan; Mahmood, Talat

    2012-06-01

    The conventional anaerobic digestion process, requiring long solids retention times (SRTs) to digest solids, is currently viewed as impractical for the pulp and paper industry because of high capital costs associated with the construction of new digesters. Recent developments in sludge solubilization technology could be promising in reducing digester size, which also allows for the potential use of decommissioned tanks, both of which can reduce the capital cost. Three pretreatment technologies for use with anaerobic digestion were tested on laboratory-scale to investigate their feasibility. The SRTs in all three digesters systematically decreased from 20 to 3 days. The reference digester was fed waste activated sludge (WAS) to serve as the control at the same SRTs. The other digesters were fed WAS that had been preconditioned using mechanical shearing, sonication, or high-pressure homogenization technology. Anaerobic digestion with high-pressure homogenization produced as much methane at 3-day mean SRT as that from the reference digester operated at 20-day SRT. Therefore, a new digester can theoretically be 85% smaller than a conventional digester. An added benefit of WAS to methane conversion is the recovery of nutrients nitrogen and phosphorus.

  17. Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment.

    PubMed

    Kavitha, S; Rajesh Banu, J; Subitha, G; Ushani, U; Yeom, Ick Tae

    2016-11-01

    The objective of this study was to determine the impact of solubilization during thermo-chemo-sonic pretreatment of waste activated sludge (WAS) on anaerobic biodegradability and cost for biogas production. The results revealed that it was possible to achieve 40-50% of solubilization of WAS when ultrasonic energy input was doubled (11,520-27,000kJ/kgTS). The cost to achieve 30-35% of solubilization of WAS was calculated to be 0.22-0.24USD/L, which was relatively lower than the cost of 0.53-0.8USD/L when 40-50% of solubilisation of WAS was achieved. There was no significant difference in biodegradability (0.60-0.64gCOD/gCOD) for samples with solubilization efficiency of 35-50%. Comparing energetic balance and economic assessment of samples with different solubilization percentages, the results showed that samples with 30-35% of solubilization had lower net cost (7.98-2.33USD/Ton of sludge) and negative energy balance compared to samples with other percentages of solubilization.

  18. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    PubMed

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  19. Recovery of Bacillus licheniformis Alkaline Protease from Supernatant of Fermented Wastewater Sludge Using Ultrafiltration and Its Characterization

    PubMed Central

    Bezawada, Jyothi; Yan, S.; John, Rojan P.; Tyagi, R. D.; Surampalli, R. Y.

    2011-01-01

    Investigation on recovery of alkaline protease from B. licheniformis ATCC 21424 fermented wastewater sludge was carried out by centrifugation and ultrafiltration. Optimization of ultrafiltration parameters (transmembrane pressure (TMP) and feed flux) was carried out with 10 kDa membrane. TMP of 90 kPa and feed flux of 714 L/h/m2 gave highest recovery (83%) of the enzyme from the centrifuged supernatant. The recovered enzyme had given maximum activity at temperature of 60°C and at pH 10. It was stable between pH 8 to 10 and retained 97% activity at 60°C after 180 min of incubation. Enzyme activity was significantly augmented by metal ions like Ca2+ and Mn2+. Protease inhibitors like phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFPs) completely inhibited the enzyme activity. The partially purified protease showed excellent stability and compatibility with various commercial detergents. The detergent (Sunlight) removed the blood stains effectively along with the enzyme as additive. PMID:21876816

  20. Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics.

    PubMed

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-10-02

    Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. β-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.

  1. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass.

    PubMed

    Sills, Deborah L; Gossett, James M

    2011-01-01

    The objective of this research was to measure the effects of different cellulase and hemicellulase mixtures on fermentable sugar production from two different perennial biomasses--switchgrass and a low-impact, high-diversity prairie biomass mixture (LIHD). Each was subjected to NaOH pretreatment, followed by hydrolysis with a commercial cellulase and β-glucosidase mixture [CB] supplemented with either of two hemicellulases. For both biomasses, there was little gain in sugar yield when using CB alone beyond 20-25 mg/g TS; further gain in yield was possible only through hemicellulase supplementation. An equation that modeled CB and hemicellulase effects as occurring independently fit the data reasonably well, except at the lowest of cellulase loadings with hemicellulase, where synergistic interactions were evident. Examination of the marginal effectiveness of enzyme loadings (incremental grams sugar per incremental mg enzyme) over a broad range of loadings suggests that there is no need to customize enzymatic hydrolysis for NaOH-pretreated switchgrass and LIHD.

  2. [Factors of effecting hydrogen production from anaerobic fermentation of excess sewage sludge].

    PubMed

    Cai, Mu-lin; Liu, Jun-xin

    2005-03-01

    Large amounts of sewage sludge is produced from the treatment of wastewater by biological processes, which is usually treated by anaerobic digestion to produce methane gas. Acetogenesis and hydrogen are an intermediate phase during the anaerobic digestion. Batch tests of fermentative hydrogen production under different initial pH (3.0 - 12.5) were compared using the raw sludge and alkaline pretreated sludge. The influences of the characteristics and concentration of sludge were also examined thereafter. Results show that the optimal initial pH for biohydrogen production from sewage sludge was around 11.0. Under this optimal condition, the biohydrogen yield of raw sludge was 8.1 mL/g, and it would reach to 16.9 mL/g when the sludge was pretreated by alkali. Furthermore, there is no methane generation during the biohydrogen fermentation of the alkaline pretreatment sludge in 4 days and the hydrogen consumption is also slowed down. In addition, a low VSS/SS rate will reduce the hydrogen yield, while the concentrations of sludge have no obvious compact on it.

  3. Maximising biogas in anaerobic digestion by using engine waste heat for thermal hydrolysis pre-treatment of sludge.

    PubMed

    Pickworth, B; Adams, J; Panter, K; Solheim, O E

    2006-01-01

    Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours.

  4. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation.

  5. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    PubMed

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  6. Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment.

    PubMed

    Raj, S Esakki; Banu, J Rajesh; Kaliappan, S; Yeom, Ick-Tae; Kumar, S Adish

    2013-07-01

    Introduction of sludge reduction practices in enhanced biological phosphate removal (EBPR) often leads to a decrease in phosphorous (P) removal efficiency. In this study, an attempt has been made to develop sustainable P removal in an anaerobic/anoxic/oxic (AAO) system integrated with sludge reduction by incorporating side-stream P recovery. Two AAO reactors, one acting as a control (CAAO) and the other as an experimental system (EAAO), were used in our experiment. The average P solubilisation efficiency and its recovery from thermally pre-treated sludge were found to be 28% and 99%, respectively. The P recovery process prevented the biomass in the EAAO system from reaching its threshold level and resulted in sustainable P removal throughout the study period. Thermochemical pre-treatment, at a rate of 1.5% Q in the EAAO reactor, was responsible for a 28% reduction in the amount of sludge produced. The yield observed (Y obs) values for the system with and without pre-treatment were found to be 0.28 and 0.22 kg MLSS/kg COD, respectively. An initial 50 days of reactor operation was utilised to stabilise the systems (Phase 1). The total nitrogen removal during Phase 2 (51-225 days) was slightly higher than that in Phase 1 (76-80% and 68-75%, respectively). The MLSS/MLVSS ratios of both systems were identical and were between 78% and 83% for both the CAAO and EAAO. The effluent COD concentration was not significantly affected by the proposed method of treatment. From the results of the present study, it is concluded that the proposed mode of treatment was capable of both sustainable removal of P and control of excess sludge production.

  7. Evaluation of alkaline pretreatment temperature on a multi-product basis for the co-production of glucose and hemicellulose based films from lignocellulosic biomass.

    PubMed

    Bahcegul, Erinc; Toraman, Hilal Ezgi; Ozkan, Necati; Bakir, Ufuk

    2012-01-01

    Cotton stalks were subjected to alkaline pretreatment for the co-production of glucose and hemicellulose based films with a multi-product approach. Three pretreatment temperatures (25, 60 and 90 °C) were evaluated for their effects both on the glucose yield and on the properties of hemicellulose based films. Compared to untreated cotton stalks, the glucose yields were enhanced 3.9, 4.1 and 4.2 times for pretreatments conducted at 25, 60 and 90 °C, respectively. The pretreatment temperature of 90 °C was detrimental in terms of film formation. Tensile energy to break values of the films obtained after pretreatments conducted at 25, 60 and 90 °C were 1.1, 0.8, and 0.4 MJ/m3, respectively. The hemicellulosic part of the process, which considers the production of hemicellulose based films, should govern the pretreatment temperature since it was more responsive to the changes in the pretreatment temperature compared to the cellulosic part that accounts for glucose production.

  8. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    PubMed

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  9. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment.

    PubMed

    Zhang, Junya; Lv, Chen; Tong, Juan; Liu, Jianwei; Liu, Jibao; Yu, Dawei; Wang, Yawei; Chen, Meixue; Wei, Yuansong

    2016-01-01

    The effects of microwave pretreatment (MW) on co-digestion of food waste (FW) and sewage sludge (SS) have never been investigated. In this study, a series of mesophilic biochemical methane potential (BMP) tests were conducted to determine the optimized ratio of FW and SS based on MW, and the evolution of bacterial and archaeal community was investigated through high-throughput sequencing method. Results showed that the optimized ratio was 3:2 for co-digestion of FW and SS based on MW, and the methane production was 316.24 and 338.44mLCH4/gVSadded for MW-FW and MW-SS, respectively. The MW-SS was superior for methane production compared to MW-FW, in which accumulation of propionic acid led to the inhibition of methanogenesis. Proteiniborus and Parabacteroides were responsible for proteins and polysaccharides degradation for all, respectively, while Bacteroides only dominated in co-digestion. Methanosphaera dominated in MW-FW at the active methane production phase, while it was Methanosarcina in MW-SS and mono-SS.

  10. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang

    2011-03-15

    This paper reported an efficient method to significantly reduce nitrous oxide (N(2)O) and nitric oxide (NO) generation in anaerobic-aerobic (low dissolved oxygen) processes. It was found that by the use of waste-activated sludge alkaline fermentation liquid as the synthetic wastewater-carbon source, compared with the commonly used carbon source in the literature (e.g., acetic acid), the generation of N(2)O and NO was reduced by 68.7% and 50.0%, respectively, but the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) were improved. Both N(2)O and NO were produced in the low dissolved oxygen (DO) stage, and the use of sludge fermentation liquid greatly reduced their generation from the denitrification. The presences of Cu(2+) and propionic acid in fermentation liquid were observed to play an important role in the reduction of N(2)O and NO generation. The analysis of the activities of denitrifying enzymes suggested that sludge fermentation liquid caused the significant decrease of both nitrite reductase activity to NO reductase activity ratio and NO reductase activity to N(2)O reductase activity ratio, which resulted in the lower generation of NO and N(2)O. Fluorescence in situ hybridization analysis indicated that the number of glycogen accumulating bacteria, which was reported to be relevant to nitrous oxide generation, in sludge fermentation liquid reactor was much lower than that in acetic acid reactor. The quantitative detection of the nosZ gene, encoding nitrous oxide reductase, showed that the use of fermentation liquid increased the number of bacteria capable of reducing N(2)O to N(2). The feasibility of using sludge fermentation liquid to reduce NO and N(2)O generation in an anaerobic-low DO process was finally confirmed for a municipal wastewater.

  11. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  12. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)₂ adjustment.

    PubMed

    Li, XiaoLing; Peng, YongZhen; Ren, NanQi; Li, BaiKun; Chai, TongZhi; Zhang, Liang

    2014-09-15

    The effects of temperatures (15-55 °C) on the alkaline fermentation of sewage sludge were investigated in semi-continuous stirred tank reactors (semi - CSTR) at the pH of 10. The highest soluble chemical oxygen demand (SCOD) yield was obtained at 55 °C (764.2 mg/(gVS L d)), while the highest short chain fatty acids (SCFAs) yield was observed at 35 °C (319.8 mg/(gVS L d)), 1.5 times higher than SCFAs yield at 55 °C (209.5 mg/(gVS L d)). The proportion of the intercellular organic substances being transferred to the slime layer of sludge flocs increased from 29% at 15 °C to 54% at 55 °C. But only a small part of soluble organic substances in the slime layers was converted to SCFAs at 55 °C. The dewaterability of sludge was better at 35 °C than that at 55 °C. Microbiological community analysis showed the acid-producing microorganisms at the medium temperatures (25 °C and 35 °C) were more diverse and abundant than those at the low (15 °C) and high temperatures (55 °C). Clodtridium and Bacillus in Firmicutes and Gamma proteobacterium in Proteobacteria were the dominant functional bacterial species for high SCFA accumulation.

  13. Pretreatment Alkaline Phosphatase and Epstein-Barr Virus DNA Predict Poor Prognosis and Response to Salvage Radiotherapy in Patients with Nasopharyngeal Carcinoma and Metachronous Bone-Only Metastasis

    PubMed Central

    He, ShaSha; Wang, Yan; Peng, Hao; Yang, Lin; Chen, HaiYang; Liang, ShaoBo; Lu, LiXia; Chen, Yong

    2017-01-01

    Background: The bones are the most common site of distant metastasis in nasopharyngeal carcinoma (NPC). Few prognostic markers are available to guide treatment and sub-classify patients with bone metastasis. We aimed to identify the prognostic value of pretreatment serum alkaline phosphatase (ALP) and plasma Epstein-Barr virus DNA (EBV DNA) in patients with bone-only metastasis. Methods: A total of 272 patients who developed bone-only metastases after therapy were retrospectively analyzed. Patients were categorized according to pretreatment serum ALP (< or ≥ 110 U/L) and pretreatment plasma EBV DNA (< or ≥ 6,750 copies ml-1). Univariate and multivariate analyses of clinical variables were performed using Cox proportional hazards regression models. Overall survival (OS) was analyzed using the Kaplan-Meier method and compared using the log-rank test. Results: Median OS for the cohort was 34.06 months (range, 2.53-143.87 months). Multivariate Cox proportional hazard analysis verified pretreatment serum ALP and pretreatment plasma EBV DNA were independent prognostic factors for OS. In stratified survival analysis of patients with elevated pretreatment serum ALP and/or plasma EBV DNA, delivery of radiotherapy (RT) to bone metastases provided a significant OS benefit compared to other therapeutic methods (P < 0.05). Conclusions: This study demonstrates two important points: firstly, pretreatment serum ALP and plasma EBV DNA have prognostic value at the first diagnosis of bone-only metastasis in NPC. Secondly, radiotherapy of bone metastasis improves the prognosis of patients with elevated pretreatment serum ALP and plasma EBV DNA. PMID:28261343

  14. An assessment of the feasibility of employing biochemical acidogenic potential tests for characterizing anaerobic biodegradability of raw and pretreated waste activated sludge.

    PubMed

    Kianmehr, Peiman; Parker, Wayne; Seto, Peter

    2012-04-01

    The potential to use the results of biochemical acid potential (BAP) tests to predict the ultimate digestibility of raw and pretreated waste activated sludge (WAS) was investigated. The ultimate methane production from biochemical methane potential (BMP) tests on raw and pretreated samples which spanned a range of biodegradability proved linearly related to the volatile fatty acid (VFA) and soluble chemical oxygen demand (COD) production in corresponding BAP tests. In addition, a linear relationship between NH4-N production in the BMP and BAP tests was observed. Despite the linear nature of the relationships, the ratio of the production of methane in the BMP tests to the production of VFAs in the BAP tests varied with the biodegradability of the sludge samples. Waste Activated Sludge samples with low digestibility had ultimate yields of CH4 that were greater than the VFA yields in BAP tests, whereas sludge samples with high digestibility had lower yields of CH4 than the corresponding VFA yields. This trend contrasted with the NH4 results, in which the yields in the BAP tests were consistently less than those observed in the BMP tests. It was hypothesized that the varying relationship between CH4 and VFA yields was because of the inhibition of anaerobic oxidation of long-chain fatty acids (LCFAs) in the BAP tests. Long-chain fatty acids would be converted to CH4 in BMP tests but produced as digestion intermediates in the BAP tests and were not measured as part of the VFA yield. Hydrogen and acetate were identified as the two most likely intermediates that would accumulate in the BAP tests (which would cause inhibition). A stoichiometric model to facilitate the development of an improved understanding of the biodegradation processes in the BAP and BMP tests was assembled. When the model was applied to the BAP tests the anaerobic oxidation of LCFAs and propionate and methanogenesis were excluded from the model. The model was employed to estimate the extent of

  15. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    PubMed

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS.

  16. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.

  17. Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process.

    PubMed

    Wang, Yawei; Wei, Yuansong; Liu, Junxin

    2009-09-30

    Considering characteristics of breaking down H(2)O(2) into water and molecular oxygen by catalase in waste activated sludge (WAS), the effect of H(2)O(2) dosing strategy on sludge pretreatment by the advanced oxidation process (AOP) of microwave-H(2)O(2) was investigated by batch experiments for optimizing H(2)O(2) dosage. Results showed that the catalase in sludge was active at the low temperature range between 15 degrees C and 45 degrees C, and gradually lost activity from 60 degrees C to 80 degrees C. Therefore, the H(2)O(2) was dosed at 80 degrees C, to which the waste activated sludge was first heated by the microwave (MW), and then the sludge dosed with H(2)O(2) was continuously heated till 100 degrees C by the microwave. Results at different H(2)O(2) dosages showed that the higher the H(2)O(2) dosing ratio was, the more the SCOD and total organic carbon (TOC) were released into the supernatant, and the optimum range of H(2)O(2)/TCOD ratio should be between 0.1 and 1.0. The percentages of consumed H(2)O(2) in the AOP of microwave and H(2)O(2) treating the WAS were 25.38%, 22.53%, 14.82%, 13.61% and 19.63% at different H(2)O(2)/TCOD dosing ratios of 0.1, 0.5, 1, 2, 4, respectively. Along with the increasing H(2)O(2)/TCOD ratio, the contents of TCOD on particles, soluble substances and mineralization increased and the TCOD distribution on solids decreased.

  18. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment.

  19. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  20. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    SciTech Connect

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment

  1. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  2. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario.

  3. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    PubMed

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-03-24

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment.

  4. Incorporation of flavonoid derivatives or pentagalloyl glucose into lignin enhances cell wall saccharification following mild alkaline or acidic pretreatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial substitution of normal monolignols with phenolic precursors from other metabolic pathways may improve the susceptibility of lignified biomass to chemical pretreatment and enzymatic saccharification for biofuel production. Flavonoids and gallate esters readily undergo oxidative coupling react...

  5. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    PubMed

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem.

  6. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  7. Optimization of H2O2 dosage in microwave-H2O2 process for sludge pretreatment with uniform design method.

    PubMed

    Xiao, Qingcong; Yan, Hong; Wei, Yuansong; Wang, Yawei; Zeng, Fangang; Zheng, Xiang

    2012-01-01

    A microwave-H2O2 process for sludge pretreatment exhibited high efficiencies of releasing organics, nitrogen, and phosphorus, but large quantities of H2O2 residues were detected. A uniform design method was thus employed in this study to further optimize H2O2 dosage by investigating effects of pH and H2O2 dosage on the amount of H2O2 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H2O2 dosage as the independent variables, and H2O2 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H2O2 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80 degrees C and H2O2 was dosed at a H2O2:mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100 degrees C by microwave irradiation. Compared to the microwave-H2O2 process without optimization, the H2O2 dosage and the utilization rate of H2O2 in the optimized microwave-H2O2 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H2O2:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H2O2 process without optimization at H2O2:MLSS ratio of 0.5.

  8. Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment.

    PubMed

    Yang, Shan-Shan; Guo, Wan-Qian; Chen, Yi-Di; Wu, Qing-Lian; Luo, Hai-Chao; Peng, Si-Mai; Zheng, He-Shan; Feng, Xiao-Chi; Zhou, Xu; Ren, Nan-Qi

    2015-02-01

    An ozone/ultrasound lysis-cryptic growth technology combining a continuous flow anaerobic-anoxic-microaerobic-aerobic (AAMA+O3/US) system was investigated. Techno-economic evaluation and sludge lyses return ratio (r) optimization of this AAMA+O3/US system were systematically and comprehensively discussed. Economic assessment demonstrated that this AAMA+O3/US system with r of 30% (AAMA+O3/US2# system) was more economically feasible that can give a 14.04% saving of costs. In addition to economic benefits, a 55.08% reduction in sludge production, and respective 21.17% and 5.45% increases in TN and TP removal efficiencies were observed in this AAMA+O3/US2# system. Considering the process performances and economic benefits, r of 30% in AAMA+O3/US2# system was recommended. Excitation-emission matrix and Fourier transform infrared spectra analyses also proved that less refractory soluble microbial products were generated from AAMA+O3/US2# system. Improvement in 2,3,5-triphenyltetrazolium chloride electron transport system (TTC-ETS) activity in AAMA+O3/US2# further indicated that a lower sludge lyses return ratio stimulated the microbial activity.

  9. Combined pretreatment using alkaline hydrothermal and ball milling to enhance enzymatic hydrolysis of oil palm mesocarp fiber.

    PubMed

    Zakaria, Mohd Rafein; Hirata, Satoshi; Hassan, Mohd Ali

    2014-10-01

    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported.

  10. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge.

    PubMed

    Sun, Jian; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian; Wang, Guangce

    2016-11-01

    The effects of heat pretreatment on waste sludge hydrolysis were investigated in this study. Heat pretreatment was conducted at 65°C, 80°C, 100°C and 121°C for 5min, 10min, 15min, 20min, 25min and 30min. Not only analyzed the changes of SCOD (Soluble chemical oxygen demand), carbohydrate and protein, but also evaluated the structural and functional properties of organics in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) by using three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy with fluorescence regional integration (FRI) analysis. The SCOD in DOM increased with pretreated temperatures. The optimal heat hydrolysis temperature and time were selected by further studying the biodegradable and non-biodegradable components. After treated at 80°C for 25min, the fluorescence intensity and percent fluorescence response (Pi,n) of easily biodegradable soluble microbial by-product substance were higher than others, and little non-biodegradable fulvic acid-like substance was accumulated.

  11. Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes.

    PubMed

    Segura, Y; Puyol, D; Ballesteros, L; Martínez, F; Melero, J A

    2016-12-01

    The effect of different oxidation processes at mild conditions including the coupled-Fenton (sono-Fenton, photo-Fenton, and sono-photo-Fenton) and their blank systems (ultrasound, ultraviolet, zero valent iron, and Fenton) on anaerobic digestion of the sludge for biogas production was investigated. Ultrasounds led to the highest organic matter solubilization (3.8 up to 5.2 g chemical oxygen demand (COD)/L, for the raw and treated sludge, respectively), while for the rest, organic matter transformation was observed resulting in an almost soluble COD net balance. Results indicated that for the most oxidative processes, the released organic matter was probably mineralized by the hydroxyl radicals produced during the treatments. It is interesting to remark that even if the biochemical methane potential was barely enhanced by the different methods applied, all the methods demonstrated to enhance the overall kinetics of the biomethanation processes, increasing the rapidly biodegradable fraction of the sludge.

  12. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    PubMed

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment.

  13. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    PubMed

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.

  14. Effect of thermal pre-treatment on co-digestion of duckweed (Lemna gibba) and waste activated sludge on biogas production.

    PubMed

    Gaur, Rubia Zahid; Khan, Abid Ali; Suthar, Surindra

    2017-05-01

    The duckweeds (DW) are considered as a major problem in tropical aquatic system as they grow very fast and produce enormous rich-biomass, which can be harvested for renewable energy operations. But complex lignocellulosic compounds limit their utility in process like anaerobic digestion. This batch study aimed to analyse characteristics (proximate, ultimate and physico-chemical) and possible utility of DW for anaerobic co-digestion with waste activated sludge (WAS) under mesophilic conditions for 35 d. Two sets of experiment were tested: substrate with and without thermal pre-treatment. Five combinations of DW: WAS (70:20, 60:20, 50:20, 40:20 and 30:20%) were established and biomethanation along with changes in pH, volatile solids (VS), volatile fatty acids (VFAs), and soluble chemical oxygen demand (sCOD) of digestate were recorded. The total CH4 yield (mL CH4 g(-1) VS) ranged between 60 and 468 for pre-treated, and 9 and 76 for non-pre-treated. The maximum CH4 yield was 468 mL CH4g(-1) VS in DW: WAS (50:20). Thermally treated setups, showed about 13-, 24.1-, 21.1-, 1.4-, and 2.3-fold higher CH4 than non-treated setups. The treated mixtures showed high reduction of SCOD (>41-96) and VS (>59-98%) in co-digesters. The high degree of Gompertz curve fitting (R(2) > 0.99) has suggested pre-treatment of substrate for optimal outputs of co-digester. Based on results obtained, it is suggested that DW (50-60% in digester) can be used as renewable energy resource for biomethanation process after thermal pre-treatment.

  15. Mechanism and Parameter Optimization of Fenton’s Reagent Integrated with Surfactant Pretreatment to Improve Sludge Dewaterability

    PubMed Central

    Hong, Chen; Yang, Qiang; Feng, Lihui; Jia, Mengmeng; Li, Yifei

    2017-01-01

    Sludge dewatering can effectively reduce the volume and mass of sludge for subsequent treatment and disposal. The work validated the potential of Fenton’s reagent combined with dodecyl dimethyl benzyl ammonium chloride (DDBAC) in improving sludge dewaterability and proposed the mechanism of joint conditioning. The composite conditioner dosage was optimized using response surface methodology. Results indicated the good conditioning capability of the composite conditioners. The optimum dosages for H2O2, Fe2+, and DDBAC were 44.6, 39.6, and 71.0 mg/g, respectively, at which a sludge cake water content of 59.67% could be achieved. Moreover, a second-order polynomial equation was developed to describe the behavior of joint conditioning. Analysis of the reaction mechanism showed that Fenton oxidation effectively decomposed extracellular polymeric substance (EPS), including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), into dissolved organics, such as proteins and polysaccharides. The process facilitated the conversion of the bound water into free water. Furthermore, DDBAC further released the bound water through solubilization of TB-EPS and LB-EPS after the Fenton reaction. The bound water content of the sludge conditioned with Fenton’s reagent decreased from 3.15 to 1.36 g/g and further decreased to 1.08 g/g with the addition of DDBAC. High-performance liquid chromatography analysis verified that the composite conditioning could oxidize and hydrolyze EPS into low-molecular-mass organics (e.g., formic and acetic acid), thereby facilitating the release of bound water. PMID:28081203

  16. Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation.

    PubMed

    Yang, Haiyan; Wang, Kun; Wang, Wei; Sun, Run-Cang

    2013-02-01

    Successive treatments with fungus and alkali were proposed to reduce the recalcitrance and improved the enzymatic digestibility of triploid poplar. Biopretreatment with Trametes velutina D10149 for 0, 4, 8, 12 and 16weeks gradually degraded hemicelluloses and lignin, and improved the digestibility of cellulose from 4.0% to 19.5% with the increasing dry mass loss of lignocelluloses from 15.5% to 53.4%. Combining with alkaline fractionation, biopretreatment for 4weeks significantly enhanced the availability of cellulose and achieved a maximum glucose yield (38.8% of the original cellulose) with a dry mass loss of 24.4%. The BET surface area of lignocelluloses increased from 1.7 to 10.6m(2)/g after combination of 8weeks biopretreatment and alkaline fractionation. Moreover, alkaline fractionation removed amorphous and low molecular components, which incurred a higher crystalline index and narrower molecular weight distribution of residual carbohydrates in synergistically treated samples as compared to biopretreated samples.

  17. Improved anaerobic digestion of a thermally pretreated mixture of physicochemical sludge; broiler excreta and sugar cane wastes (SCW): Effect on organic matter solubilization, biodegradability and bioenergy production.

    PubMed

    Nava-Valente, Noemí; Alvarado-Lassman, Alejandro; Nativitas-Sandoval, Liliana S; Mendez-Contreras, Juan M

    2016-01-01

    Thermal pretreatment effect of a mixture of organic wastes (physicochemical sludge, excreta of broiler chickens and sugarcane wastes (SCW)) in the solubilization and biodegradability organic matter as well as bioenergy production by anaerobic digestion was evaluated. Two different mixtures of physicochemical sludge, excreta of broiler chickens and SCW (70%, 15%, 15% and 60%, 20%, 20% of VS, respectively) were treated at different temperatures (80 °C, 85 °C and 90 °C) and contact time (30, 60 and 90 min). Results indicate that, organic matter solubilization degree increased from 1.14 to 6.56%; subsequently, in the anaerobic digestion process, an increase of 50% in the volatile solids removal and 10% in biogas production was observed, while, retention time decreased from 23 up to 9 days. The results obtained were similar to pilot-scale. In both experimental scales it showed that the synergy produced by the simultaneous anaerobic digestion of different substrates could increase bioenergy production up to 1.3 L bio g(-1) VS removed and 0.82 L CH4 g(-1) VS removed. The treatment conditions presented in this study allow for large residue quantities to be treated and large bioenergy quantities to be produced (10% higher than during conventional treatment) without increasing the anaerobic digester volume.

  18. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    PubMed

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively.

  19. Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment.

    PubMed

    Abedinia, Ahmadreza; Ariffin, Fazilah; Huda, Nurul; Nafchi, Abdorreza Mohammadi

    2017-05-01

    The effects of different pretreatments on yield and composition of extraction, physicochemical, and rheological properties of duck feet gelatin (DFG) were investigated. Gelatins were extracted from the whole feet of Pekin duck with an average yield of 4.09%, 3.65%, and 5.75% for acidic (Ac-DFG), alkaline (Al-DFG), and enzymatic (En-DFG) pretreatment on a wet weight basis, respectively. Proteins at 81.38%, 79.41%, 82.55%, and 87.38% were the major composition for Ac-DFG, Al-DFG, En-DFG, and bovine, respectively. Amino acid analysis showed glycine as the predominant amino acid in Ac-DFG, followed by hydroxyproline, proline, and alanine for Ac-DFG, Al-DFG, and En-DFG, respectively. Rheological analysis indicated that the maximum elastic modulus (9972.25Pa) and loss modulus (4956.28Pa) for Ac-DFG gelatin were significantly higher than those of other gelatins. Extracted gelatins contained α1 and α2 chains as the predominant components, and enzymatic gelatin had low molecular weight peptides. Fourier transform infrared spectroscopy showed that the peak of the gelatins was mainly positioned in the amide band region (amides I, II, and III). A considerable loss of molecular-order triple helical structure was also observed after pepsin treatment. In summary, duck feet gelatin has potential to replace as mammalian gelatin in food and pharmaceutical industry.

  20. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation.

  1. Responses of a non N-limited forest plantation to the application of alkaline-stabilized dewatered dairy factory sludge.

    PubMed

    Omil, Beatriz; Mosquera-Losada, Rosa; Merino, Agustín

    2007-01-01

    Amendment of forest soils with dewatered dairy factory sludge (DDFS), characterized by low heavy metal contents and high amounts of degradable C, can prevent the depletion of soil nutrients that results from intensive harvesting in forest plantations. However, this practice involves environmental risks when N supplies exceed the demand of plants or when the strong acidity of the soil favors the mobility of trace metals. These aspects were assessed in a young radiata pine plantation growing in a sandy, acidic, and organic N-rich soil for the 7 yr after application of a DDFS. The supply of limiting nutrients (mainly P, Mg, and Ca) provided by application of the DDFS, along with control of the ground vegetation, improved the nutritional status of the stand and led to increases in timber volume of more than 60 to 100%. Increases in soil inorganic N were observed during the first months after amendment. Data from soil incubation experiments revealed that some of the additional N was immobilized and, to a lesser extent, denitrified due to the readily available organic C content of the DDFS. Leaching and increased plant uptake of N were prevented by a combination of the latter processes and the low rate of nitrification. The strong acidity of the soil enhanced the availability of Mn and Zn to plants, although the maximum concentrations did not reach levels harmful to organisms. We conclude that although application of DDFS has positive effects on tree nutrition and growth and the environmental risks are low, repeated application may favor mobility of N and availability of heavy metals.

  2. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density.

  3. Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases

    PubMed Central

    2014-01-01

    Background Efficient conversion of lignocellulosic biomass to fermentable sugars requires the synergistic action of multiple enzymes; consequently enzyme mixtures must be properly formulated for effective hydrolysis. The nature of an optimal enzyme blends depends on the type of pretreatment employed as well the characteristics of the substrate. In this study, statistical experimental design was used to develop mixtures of recombinant glycosyl hydrolases from thermophilic and anaerobic fungi that enhanced the digestion of alkaline peroxide treated alfalfa hay and barley straw by mixed rumen enzymes as well as commercial cellulases (Accelerase 1500, A1500; Accelerase XC, AXC). Results Combinations of feruloyl and acetyl xylan esterases (FAE1a; AXE16A_ASPNG), endoglucanase GH7 (EGL7A_THITE) and polygalacturonase (PGA28A_ASPNG) with rumen enzymes improved straw digestion. Inclusion of pectinase (PGA28A_ASPNG), endoxylanase (XYN11A_THITE), feruloyl esterase (FAE1a) and β-glucosidase (E-BGLUC) with A1500 or endoglucanase GH7 (EGL7A_THITE) and β-xylosidase (E-BXSRB) with AXC increased glucose release from alfalfa hay. Glucose yield from straw was improved when FAE1a and endoglucanase GH7 (EGL7A_THITE) were added to A1500, while FAE1a and AXE16A_ASPNG enhanced the activity of AXC on straw. Xylose release from alfalfa hay was augmented by supplementing A1500 with E-BGLUC, or AXC with EGL7A_THITE and XYN11A_THITE. Adding arabinofuranosidase (ABF54B_ASPNG) and esterases (AXE16A_ASPNG; AXE16B_ASPNG) to A1500, or FAE1a and AXE16A_ASPNG to AXC enhanced xylose release from barley straw, a response confirmed in a scaled up assay. Conclusion The efficacy of commercial enzyme mixtures as well as mixed enzymes from the rumen was improved through formulation with synergetic recombinant enzymes. This approach reliably identified supplemental enzymes that enhanced sugar release from alkaline pretreated alfalfa hay and barley straw. PMID:24766728

  4. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  5. Pre-treatment serum alkaline phosphatase and lactate dehydrogenase as prognostic factors in triple negative breast cancer

    PubMed Central

    Chen, Bo; Dai, Danian; Tang, Hailin; Chen, Xi; Ai, Xiaohong; Huang, Xiaojia; Wei, Weidong; Xie, Xiaoming

    2016-01-01

    Background: Serum parameters as prognostic parameters are studied widely. We aim to examine the prognostic significance of the serum alkaline phosphatase (ALP) level and lactate dehydrogenase (LDH) level in triple negative breast cancer (TNBC). Methods: Total of 253 TNBC patients from Sun Yat-sen University Cancer Center who underwent treatment between January 2004 and December 2009 was conducted in this retrospective study. Before treatment serum ALP and LDH levels were routinely measured. We use the receiver operating characteristic (ROC) curve analysis to estimate the cutoff value of serum ALP and LDH levels. The Kaplan-Meier method and multivariable Cox regression analysis were used for Disease free survival (DFS) and overall survival (OS) assessed. Results: The ROC curves determined that the optimum cutoff point for ALP and LDH were 66.5u/L and 160.5u/L, respectively. The elevated ALP and LDH were both significantly associated with decreased DFS and OS (both P < 0.001). In addition, the entire cohort was stratified into three subgroups basis of ALP levels and LDH levels. TNBC Patients who with ALP >66.5 u/L and LDH >160.5u/L had the worst DFS and OS (both P < 0.001). In TNBC patients, univariate and multivariate Cox regression analyses conformed ALP and LDH were independent unfavorable prognostic factors for DFS and OS. Conclusions: The serum levels of ALP and LDH before treatment are independent prognostic parameters and may serve as complement to help predict survival in TNBC. PMID:27994669

  6. Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw.

    PubMed

    Yang, Peizhou; Zhang, Haifeng; Cao, Lili; Zheng, Zhi; Jiang, Shaotong

    2016-12-01

    Aspergillus niger is an important microorganism that has been used for decades to produce extracellular enzymes. In this study, a novel Aspergillus niger strain integrated with a eukaryotic expression vector harboring the gpd-Shi promoter of shiitake mushrooms and cellulase gene of Ampullaria gigas Spix was engineered to improve cellulase production for the achievement of highly efficient saccharification of agricultural residues. In one strain, designated ACShi27, which exhibited the highest total cellulase expression, total cellulase, endoglucanase, exoglucanase, and xylanase expression levels were 1.73, 16.23, 17.73, and 150.83 U ml(-1), respectively; these values were 14.5, 22.3, 24.6, and 17.3% higher than those of the wild-type Aspergillus niger M85 using wheat bran as an induction substrate. Production of cellulases and xylanase by solid-state fermentation followed by in situ saccharification of ACShi27 was investigated with alkaline-pretreated rice straw as a substrate. After 2 days of enzyme induction at 30 °C, followed by 48 h of saccharification at 50 °C, the conversion rate of carbon polymers into reducing sugar reached 293.2 mg g(-1), which was 1.23-fold higher than that of the wild-type strain. The expression of sestc in Aspergillus niger can improve the total cellulase and xylanase activity and synergism, thereby enhancing the lignocellulose in situ saccharification.

  7. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    PubMed

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  8. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.

    PubMed

    Dong, Bin; Gao, Peng; Zhang, Dong; Chen, Yinguang; Dai, Lingling; Dai, Xiaohu

    2016-05-01

    As an important intermediate product, short-chain fatty acids (SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane, most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60min can achieve the maximal hydrolyzation. Further, effects of different initial pHs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial pH9.0 with fermentation time of 6d, the production of which was 348.63mg COD/gVSS (6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally, the effect of this low energy consumption pretreatment on methane generation was investigated.

  9. Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification.

    PubMed

    Machnicka, Alicja; Grübel, Klaudiusz

    2016-12-01

    One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.

  10. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability.

  11. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.

    PubMed

    Chen, Yinguang; Liu, Kun; Su, Yinglong; Zheng, Xiong; Wang, Qin

    2013-07-01

    This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis.

  12. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  13. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost.

    PubMed

    Carballa, Marta; Duran, Cecilia; Hospido, Almudena

    2011-12-15

    Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage.

  14. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2015-01-01

    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion.

  15. Alkaline Leaching of Key, Non-Radioactive Components from Simulants and Hanford Tank Sludge 241-S-110: Results of FY01 Studies

    SciTech Connect

    Rapko, Brian M.; Vienna, John D.; Sinkov, Serguei I.; Kim, Jinseong; Cisar, Alan J.

    2002-09-10

    This study addressed three aspects in selected alkaline leaching: first, the use of oxidants persulfate, permanganate, and ferrate as selective chromium-leaching agents from washed Hanford Tank S-110 solids under varying conditions of hydroxide concentration, temperature, and time was investigated. Second, the selective dissolution of solids containing mercury(II) oxide under alkaline conditions was examined. Various compounds were studied for their effectiveness in dissolving mercury under varying conditions of time, temperature, and hydroxide concentration in the leachate. Three compounds were studied: cysteine, iodide, and diethyldithiophosphoric acid (DEDTPA). Finally, the possibility of whether an oxidant bound to an anion-exchange resin can be used to effectively oxidize chromium(III) in alkaline solutions was addressed. The experimental results remain ambiguous to date; further work is required to reach any definitive conclusions as to the effectiveness of this approach.

  16. Alkali-solubilized organic matter from sludge and its degradability in the anaerobic process.

    PubMed

    Li, Dongzhe; Zhou, Yan; Tan, Youming; Pathak, Santosh; Majid, Maszenan Bin Abdul; Ng, Wun Jern

    2016-01-01

    This study investigates alkali-solubilized dissolved organic matter (DOM) and its fate in the anaerobic treatment process. DOM was fractionated into high molecular weight (HMW) protein-like substances (PL), HMW saccharide-like substances (SL), low molecular weight (LMW) PL, LMW SL, and humic acid-like substances (HAL). The results indicate alkali-solubilized DOM is primarily composed of LMW PL, HMW SL, and HAL. Alkaline pretreatment improved the overall anaerobic degradability of DOM in sludge (removal efficiency of total DOM increased by 28.4%). However, certain DOM fractions (mainly HMW PL and HAL) exhibited low degradability during anaerobic treatment, primarily caused by the low degradability of aromatic groups (such as aromatic amine groups from tryptophan-like PL). Alkaline pretreatment also resulted in an increase of residual DOM, which is mainly composed of HAL (52.9%) and HMW SL (49.9%).

  17. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater.

  18. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  19. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  20. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown.

    PubMed

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-13

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  1. A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production.

    PubMed

    Zhang, Dong; Li, Xiaoshuai; Jia, Shuting; Dai, Lingling; Zhao, Jianfu; Chen, Yinguang; Dai, Xiaohu

    2015-01-01

    This paper presents a review of methods that improve the production of volatile fatty acids (VFA) from excess sludge during the anaerobic digestion process. These methods are mainly divided into two approaches. The first approach is located in the pre-treatment methods, which change the properties of the substrates, such as thermal pre-treatment, alkaline pre-treatment, microwave pre-treatment and ultrasonic pre-treatment. The other approach is found in the fermentation process control methods, which influence the environment of anaerobic digestion for the production of VFA, such as pH, temperature, mixing, additives and solids retention time control. In the text recent research studies of each method are listed and analyzed in detail. Comparably, microwave and ultrasonic pre-treatment methods are considered emerging and promising technologies due to their efficiency and environmentally friendly characteristics. However, the microwave pre-treatment has high electricity demand, which might make the process economically unfeasible. In order to calculate optimal operation, further studies still need to be done.

  2. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    PubMed

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  3. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.

    PubMed

    Bose, Sutapa; Bhattacharyya, A K

    2008-01-01

    The concentrations of different forms of Zn, Cu, Mn, Ni, Cd, Cr, Pb and Fe metals were determined for the roadside sludge collected from pickling-rolling and electroplating industrial area. In sludge the relative abundance of total heavy metals were Fe>Mn>Cr>Ni>Cu>Pb>Zn>Cd and DTPA-extractable metals were in the order--Fe>Ni>Mn>Cr>Cu>Zn>Pb>Cd. Pot-culture experiment was conducted in soils amended with sludge (0%, 10%, 20%, 30%), pretreated with lime (0%, 0.5% and 1%). The soils were alkaline in nature (pH>8.3) with organic carbon contents were 0.34% and 0.72%. The most abundant total and bio-available metal was Fe. Two wheat seedlings were grown in each pot containing 3kg sludge-amended or control soil and the experiment was conducted till harvesting. Application of sludge increased both total and bio-available forms of metals in the soils, while lime application decreased the bioavailability of heavy metals in sludge-amended soils. The content of organic carbon showed positive correlation with all metals except Zn, Cr and Pb. CEC also showed a strong positive correlation (R2>0.7) with Fe, Mn, Cu, Ni and Cd. Though wheat plants are not accumulators, the translocation efficiency was appreciably high. The translocation factor from shoot to grain was found smaller than that of root to shoot of wheat plants. This makes an implication that the heavy metal accumulation was proportionally lesser in grain than in shoot. In, 10% sludge with 0.5% lime-amended soils; each of these toxic heavy metals was found to be within permissible range (USEPA). Hence, on the basis of present study, the best possible treatment may be recommended.

  4. The characteristics of organic sludge/sawdust derived fuel.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing

    2011-05-01

    A fundamental study of the characteristics of a sludge refuse-derived fuel (RDF) and the combustion behaviors were done. The test data demonstrate good results for the development of energy recovery technology of organic sludge or waste. The ash deposit formation propensity has been based on pretreatment, temperature and the ratio of organic sludge to sawdust. The usage of organic sludge and waste as an alternative fuel is cost effective and has environmental benefits.

  5. Production of high optical purity l-lactic acid from waste activated sludge by supplementing carbohydrate: effect of temperature and pretreatment time.

    PubMed

    Jian, Qiwei; Li, Xiang; Chen, Yinguang; Liu, Yanan; Pan, Yin

    2016-10-01

    It has been widely accepted that the most environmentally beneficial way to treat waste activated sludge (WAS), the byproduct of municipal wastewater treatment plant, is to recover the valuable organic acid. However, the bio-conversion of lactic acid, one of the high added-value chemical, is seldom reported from WAS fermentation. In this paper, l-lactic acid was observed dominant in the WAS fermentation liquid with carbohydrate addition at ambient temperature. Furthermore, the effect of temperature on l-lactic acid and d-lactic acid production was fully discussed: two isomers were rapidly produced and consumed up in one day at mesophilic condition; and almost optically pure l-lactic acid was generated at thermophilic condition, yet time-consuming with yield of l-lactic acid enhancing by 52.9% compared to that at ambient temperature. The study mechanism showed that mesophilic condition was optimal for both production and consumption of l-lactic acid and d-lactic acid, while consumption of l-lactic acid and production of d-lactic acid were severely inhibited at thermophilic condition. Therefore, by maintaining thermophilic for 4 h in advance and subsequently fermenting mesophilic for 34 h, the concentration of l-lactic acid with optical activity of 98.3% was improved to 16.6 ± 0.5 g COD/L at a high specific efficiency of 0.6097/d.

  6. Pretreatment of high-level radioactive waste at the West Valley Demonstration Project

    SciTech Connect

    Valenti, P.J.; Gessner, R.F.; Yeazel, J.A.

    1993-12-31

    The West Valley Demonstration Project (WVDP) is an environmental remediation effort focused on demonstrating technologies to solidify high-level radioactive waste (HLW). The HLW remains from reprocessing activities conducted between 1966 and 1972 at the Western New York Nuclear Services Center (WNYNSC) in West Valley, New York, where spent nuclear fuel was reprocessed using essentially the Plutonium Uranium Extraction (PUREX) process. The waste (approximately 2,518 m{sup 3}) is stored in an underground carbon steel tank and consists of an alkaline supernate (90%) and precipitated sludge (10%). To prepare for HLW solidification, the WVDP is actively pretreating the waste by removing liquid HLW from the underground tank, extracting radioactive cesium from the liquid by an ion-exchange process, and stabilizing the resulting low-level liquid waste (LLW) in cement. Sludge at the tank bottom is washed to remove undesirable sodium salts, and the resulting liquid is again treated by ion-exchange before stabilizing the LLW waste in cement. This paper describes the pretreatment processes used for both the liquid and sludge phases of the HLW tank and the cementation of the resulting LLW.

  7. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    PubMed

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered

  8. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  9. Enhanced sludge washing evaluation plan

    SciTech Connect

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.

  10. Evaluation of pre-treatment processes for increasing biodegradability of agro-food wastes.

    PubMed

    Hidalgo, D; Sastre, E; Gómez, M; Nieto, P

    2012-01-01

    Anaerobic digestion (AD) technology can be employed for treating sewage sludge, livestock waste or food waste. Generally, the hydrolysis stage is the rate-limiting step of the AD processes for solid waste degradation. Therefore, physical, chemical and biological pre-treatment methods or their combination are required, in order to reduce the rate of such a limiting step. In this study, four methods (mechanical shredding, acid hydrolysis, alkaline hydrolysis and sonication) were tested to improve methane production and anaerobic biodegradability of different agro-food wastes and their mixtures. The kinetics of anaerobic degradation and methane production ofpre-treated individual wastes and selected mixtures were investigated with batch tests. Sonication at lower frequencies (37 kHz) proved to give the best results with methane productivity enhancements of over 100% in the case of pig manure and in the range of 10-47% for the other wastes assayed. Furthermore, the ultimate methane production was proportional, in all the cases, to the specific energy input applied (Es). Sonication can, thus, enhance waste digestion and the rate and quantity of biogas generated. The behaviour of the other pre-treatments under the conditions assayed is not significant. Only a slight enhancement of biogas production (around 10%) was detected for whey and waste activated sludge (WAS) after mechanical shredding. The lack of effectiveness of chemical pre-treatments (acid and alkaline hydrolysis) can be justified by the inhibition of the methanogenic process due to the presence of high concentrations of sodium (up to 8 g l(-1) in some tests). Only in the case of WAS did the acid hydrolysis considerably increase the biodegradability of the sample (79%), because in this case no inhibition by sodium took place. Some hints of a synergistic effect have been observed when co-digestion of the mixtures was performed.

  11. Documentation of a decision framework to support enhanced sludge washing

    SciTech Connect

    Brothers, A.J.

    1995-12-31

    This document describes a proposed decision model that, if developed to its fullest, can provide a wide range of analysis options and insights to pretreatment/sludge washing alternatives. A recent decision has been made to terminate this work

  12. Augmentation of protein-derived acetic acid production by heat-alkaline-induced changes in protein structure and conformation.

    PubMed

    Wang, Xu; Li, Yanbo; Liu, Junxin; Ren, Nan-Qi; Qu, Jiuhui

    2016-01-01

    Waste-derived acetic acid (HAc) is an attractive feedstock for microbe-mediated biofuel production. However, fermentative conversion of HAc from waste-activated sludge (WAS) has low yield because of the high concentration of proteins not readily utilizable by microorganisms without prior hydrolysis. We investigated a combined technology for HAc augmentation during sludge protein fermentation. The maximal HAc yield increased over two-fold, reaching 0.502 ± 0.021 g/g protein (0.36 ± 0.01 g COD/g COD, ∼52% of the total volatile fatty acids) when synthetic sludge protein was heated at 120 °C for 30 min, treated at pH 12 for 24 h, and fermented at pH 9 for 72 h. Comprehensive analysis illustrated that the heat-alkaline pretreatment significantly induced protein fragmentation, simultaneously increasing the efficiency of protein biohydrolysis (from 35.5% to 85.9%) by inducing conformational changes indicative of protein unfolding. Consequently, the native α-helix content was decreased from 67.3% to 32.5% by conversion to an unordered shape, whose content increased from 27.5% to 45.5%; disulfide bonds were cleaved, whereas the main S-S stretching pattern was altered from gauche-gauche-gauche to gauche-gauche-trans, consequently causing increased protein susceptibility to proteolytic hydrolysis (76.3% vs. 47.0%). Economic analysis indicated that anaerobic fermentation with appropriate heat-alkaline pretreatment is a cost-effective approach for waste conversion to energy sources such as HAc.

  13. Improvement of anaerobic digestion of sludge.

    PubMed

    Dohányos, M; Zábranská, J; Kutil, J; Jenícek, P

    2004-01-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of the process conditions, pretreatment of input sludge and increase of process temperature is frequently used. The thermophilic process brings a higher solids reduction and biogas production, a high resistance to foaming, no problems with odour, better pathogens destruction and an improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in a lysate centrifuge was proved to cause increase of biogas production in full-scale conditions. The rapid thermal conditioning of digested sludge is an acceptable method of particulate matter disintegration and solubilization.

  14. Use of wastewater sludge as a raw material for production of L-lactic acid

    SciTech Connect

    Nakasaki, Kiyohiko; Akakura, Naoki; Adachi, Tomohiko; Akiyama, Tetsuo

    1999-01-01

    This study utilizes wastewater sludges to produce L-lactic acid, a precursor of biodegradable plastic. The high concentrations of cellulose contained in the sludge, derived from a paper manufacturing facility, have been found to be convertible to L-lactic acid at a rate as high as 6.91 g/L. To achieve such a high conversion rate, the sludge must be pretreated with cellulase. This pretreatment includes inoculation of the sludge with lactic acid bacteria, strain LA1, after the sludge has been subjected to enzymatic hydrolysis.

  15. Sludge sampler

    DOEpatents

    Ward, R.C.

    1981-06-25

    The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

  16. Sludge sampler

    DOEpatents

    Ward, Ralph C.

    1983-01-01

    The disclosure relates to a sludge sampler comprising an elongated generally cylindrical housing containing a baffle containing an aperture. Connected to the aperture is a flexible tubing having a valve for maintaining and releasing pressure in the lower end of the housing and exiting the upper end of the housing. The lower end of the housing contains a ball check valve maintained in closed position by pressure. When the lower end of the device contacts the sludge bed, the pressure valve is opened, enabling sludge to enter the lower end of the housing. After the sample is collected the valve is closed. An upsetting pin opens the valve to empty a sludge sample after the sample is removed from the fluid.

  17. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  18. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    PubMed

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate.

  19. Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review.

    PubMed

    Joo, Sung Hee; Dello Monaco, Francesca; Antmann, Eric; Chorath, Philip

    2015-08-01

    Sludge generation during wastewater treatment is inevitable even with proper management and treatment. Yet proper handling and disposal of sludge are still challenging in terms of treatment cost, presence of recalcitrant contaminants of concern, sanitary issues, and public acceptance. Conventional disposal methods (i.e. landfilling, incineration) have created concerns in terms of legislative restrictions and community perception, incentivizing consideration of substitute sludge management options. Furthermore, with proper treatment, biosolids from sludge, rich in organic materials and nutrients, could be utilizable as fertilizer. Despite the challenges of dealing with sludge, no review has dealt with integrated source reduction and reuse as the best sustainable management practices for sludge treatment. In this review, we present two main approaches as potentially sustainable controls: (i) pretreatment for minimizing extensive sludge treatment, and (ii) recycling and reuse of residual sludge. Drawing on these approaches, we also suggest strategies for efficient pretreatment mechanisms and residual reuse, presenting ideas for prospective future research.

  20. Lignocellulosic biomass pretreatment using AFEX.

    PubMed

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  1. Lignocellulosic Biomass Pretreatment Using AFEX

    NASA Astrophysics Data System (ADS)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  2. Separation technologies for sludge dewatering.

    PubMed

    Wakeman, Richard J

    2007-06-18

    Particles in sludge feeds interact strongly one with another to prevent settling and offer a significant resistance to filtration and compression. This leads to the need for dewatering forces to be compressive ones applied directly to the networked solid phase; sometimes shear forces can be an assist dewatering. Designs of filtration equipment most suitable for sludge dewatering have evolved to meet the intrinsic characteristics of sludges, the most important of which are their compressibility and fine particle sizes, which lead to cakes with extraordinarily high solids contents close to the filter medium. Hence, the membrane plate press, the belt filter and the decanter centrifuge have become most widely accepted machines for sludge dewatering. Filter presses tend to yield a drier solids discharge, but the level of dryness depends on the sludge properties. The same feed properties dictate the need for chemical pre-treatment to ensure the highest rates of dewatering and best clarity of filtrate, and correct choice of filter cloth is also crucial in these respects.

  3. Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies

    SciTech Connect

    Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

    1994-03-01

    This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

  4. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge.

    PubMed

    Chairattanamanokorn, Prapaipid; Tapananont, Supachok; Detjaroen, Siriporn; Sangkhatim, Juthatip; Anurakpongsatorn, Patana; Sirirote, Pramote

    2012-01-01

    Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H(2)) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H(2) production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H(2) production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/g(TVS)). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H(2) production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H(2) production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/g(TVS).

  5. Predicting bioavailability of metals from sludge-amended soils.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2014-12-01

    We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.

  6. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion.

    PubMed

    Braguglia, C M; Gianico, A; Mininni, G

    2012-03-01

    This paper deals with the comparison of ultrasound (mechanical) and ozone (chemical) pre-treatment on the performances of excess sludge semi-continuous digestion. Sludge solubilisation has been investigated by varying specific energy input. For each pre-treatment, long anaerobic digestion tests were carried out by two parallel digesters: one reactor, as control unit, was fed with untreated waste activated sludge, and the other one was fed with disintegrated sludge. To evaluate and compare the efficacy of both pre-treatments, the specific energy was maintained approximately the same. The digestion tests were carried out to investigate the feasibility of anaerobic digestion performance (total biogas production, volatile solids removal, sludge dewaterability) and to assess the heat balance. Results obtained from the digestion of sonicated sludge at 4% disintegration degree (≈ 2500 kJ/kg TS) showed that the ultrasound pre-treatment may be effective both in increasing VS destruction (+19%) and cumulative biogas production (+26%). On the contrary, the digestion test with ozonized sludge (ozone dose of 0.05 g O(3)/g TS corresponding to ≈ 2000 kJ/kg TS) did not indicate a significant improvement on the digestion performances. By doubling the ozone dose an improvement in the organics removal and cumulative biogas production was observed. Relevant differences in terms of colloidal charge and filterability were discussed.

  7. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  8. Lime Pretreatment

    NASA Astrophysics Data System (ADS)

    Sierra, Rocio; Granda, Cesar Benigno; Holtzapple, Mark T.

    Lime pretreatment has proven to be a useful method for selectively reducing the lignin content of lignocellulosic biomass without significant loss in carbohydrates, thus realizing an important increase in biodigestibility. In lime pretreatment, the biomass is pretreated with calcium hydroxide and water under different conditions of temperature and pressure. It can be accomplished in one of three fashions: (1) short-term pretreatment that lasts up to 6 h, requires temperatures of 100-160°C, and can be applied with or without oxygen (pressure ~200 psig); (2) long-term pretreatment taking up to 8 weeks, requiring only 55-65°C, and capable of running with or without air (atmospheric pressure); and (3) simple pretreatment requiring 1 h in boiling water, without air or oxygen. Nonoxidative conditions are effective at low lignin contents (below ~18% lignin), whereas oxidative conditions are required for high lignin contents (above ~18% lignin).

  9. Lime pretreatment.

    PubMed

    Sierra, Rocio; Granda, Cesar Benigno; Holtzapple, Mark T

    2009-01-01

    Lime pretreatment has proven to be a useful method for selectively reducing the lignin content of lignocellulosic biomass without significant loss in carbohydrates, thus realizing an important increase in biodigestibility. In lime pretreatment, the biomass is pretreated with calcium hydroxide and water under different conditions of temperature and pressure. It can be accomplished in one of three fashions: (1) short-term pretreatment that lasts up to 6 h, requires temperatures of 100-160 degrees C, and can be applied with or without oxygen (pressure approximately 200 psig); (2) long-term pretreatment taking up to 8 weeks, requiring only 55-65 degrees C, and capable of running with or without air (atmospheric pressure); and (3) simple pretreatment requiring 1 h in boiling water, without air or oxygen. Nonoxidative conditions are effective at low lignin contents (below approximately 18% lignin), whereas oxidative conditions are required for high lignin contents (above approximately 18% lignin).

  10. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    NASA Astrophysics Data System (ADS)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  11. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    PubMed Central

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-01-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS. PMID:27725704

  12. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH.

    PubMed

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-11

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  13. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  14. Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration.

    PubMed

    Kavitha, S; Rajesh Banu, J; Vinoth Kumar, J; Rajkumar, M

    2016-10-01

    In this study, the influence of disperser induced microwave pretreatment was investigated to analyze the proficiency of floc disruption on subsequent disintegration and biodegradability process. Initially, the flocs in the sludge was disrupted through disperser at a specific energy input of 25.3kJ/kgTS. The upshot of the microwave disintegration presents that the solids reduction and solubilization of floc disrupted (disperser induced microwave pretreated) sludge was found to be 17.33% and 22% relatively greater than that achieved in microwave pretreated (9.3% and 16%) sludge alone. The biodegradability analysis, affords an evaluation of parameter confidence and correlation determination. The eventual biodegradability of microwave pretreated, and floc disrupted sludges were computed to be 0.15(gCOD/gCOD) and 0.28(gCOD/gCOD), respectively. An economic assessment of this study offers a positive net profit of about 104.8USD/ton of sludge in floc disrupted sample.

  15. Lignocellulosic Biomass Pretreatment: A Key to Its Successful Bioconversion to Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native lignocellulosic biomass is very resistant to degradation by enzymes. Prior pretreatment is essential for efficient conversion of lignocellulosic feedstock to ethanol. In this presentation, various pretreatment options such as dilute acid, alkali, alkaline peroxide, wet oxidation, steam expl...

  16. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  17. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    PubMed

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack.

  18. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    SciTech Connect

    Clark Sue B.; Dhanpat Rai; Linfeng Rao

    2005-04-20

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. This inefficient removal would result in production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (e.g., H2o2, persulfate, O2, and ferrate). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction HLW disposal.

  19. [Experimental study on stabilization of sewage sludge by MOC].

    PubMed

    Ma, Jian-Li; Zhao, You-Cai; Niu, Dong-Jie; Chai, Xiao-Li

    2009-03-15

    Magnesium oxychloride cement (MOC) was used for the stability agent in the stabilization experiments of sewage sludge. It is found that MgCl2 in MOC is a kind of water-absorbent, water absorption of MgCl2 can be achieved at 1.55 mL/g (per 100 g sludge). Meanwhile, some water in sludge can be combined with MOC in the hydration reaction and sludge moisture content can be reduced efficaciously. The crystal structure of 3 phase and 5 phase, which occurred in the hydration process, makes the sludge compressive strength as high as 85.14 kg/cm2. The best ratio of MOC/sludge is 3/100, and MgO/MgCl2 is 3/1. Mg-Si-Al gel system is formed with Si2+, Al3+, Cu2+ in the sludge under alkaline condition, and it plays an important role in the stabilization of the heavy metals in sludge. Leaching experiments of sludge show that heavy metal concentrations of Cu, Zn, Cd, Cr, As in lixivium from sludge are lower than leachability standard.

  20. Sludge Generation from Ferrous/Sulfide Chromium Treatment.

    DTIC Science & Technology

    1984-08-01

    sodium bisulfite , sulfur dioxide, and sodium sulfide. While all these chemicals produce a satisfactory effluent, the quantity of sludge produced by the...34Treatment of Toxic Metal Wastewaters by Alkaline Ferrous Sulfate and Sodium Sulfied for Chromium Reduction, Precipitation and Coagulation," Pro... sodium sulfide and ferrous chloride (9:1 ratio) at pH 8.0 rapidly reduced hexavalent chromium and produced approximately one-fourth the sludge (on a

  1. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].

    PubMed

    Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou

    2012-10-01

    Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with

  2. Conditioning of wastewater sludge using freezing and thawing: role of curing.

    PubMed

    Hu, Kai; Jiang, Jun-Qiu; Zhao, Qing-Liang; Lee, Duu-Jong; Wang, Kun; Qiu, Wei

    2011-11-15

    Freeze/thaw (F/T) treatment is an efficient pre-treatment process for biological sludges. When bulk sludge was frozen, tiny unfrozen regimes in the ice matrix were continuously dehydrated by surrounding ice fronts, termed as the "curing stage". This work demonstrated that the F/T treatment could not only enhance sludge dewaterability, but also solubilize organic matters from sludge matrix. Most enhancement of sludge dewaterability was achieved during bulk freezing stage, with the waste activated sludge more readily dewatered than the mixed sludges after treatment. Conversely, the freezing stage released only limited quantities of organic matters to liquid. Conversely, the curing contributed mostly on chemical oxygen demand (COD) solubilization and NH(3)-N release. The crystallization of intra-aggregate moisture was claimed to damage cell membranes so to release intracellular substances to surroundings. The F/T treatment with sufficient curing is advised to effectively condition biological sludge as the feedstock of the following anaerobic digestion process.

  3. Two step esterification-transesterification process of wet greasy sewage sludge for biodiesel production.

    PubMed

    Urrutia, C; Sangaletti-Gerhard, N; Cea, M; Suazo, A; Aliberti, A; Navia, R

    2016-01-01

    Sewage sludge generated in municipal wastewater treatment plants was used as a feedstock for biodiesel production via esterification/transesterification in a two-step process. In the first esterification step, greasy and secondary sludge were tested using acid and enzymatic catalysts. The results indicate that both catalysts performed the esterification of free fatty acids (FFA) simultaneously with the transesterification of triacylglycerols (TAG). Acid catalyst demonstrated better performance in FFA esterification compared to TAG transesterification, while enzymatic catalyst showed the ability to first hydrolyze TAG in FFA, which were esterified to methyl esters. In addition, FAME concentration using greasy sludge were higher (63.9% and 58.7%), compared with those of secondary sludge (11% and 16%), using acid and enzymatic catalysts, respectively. Therefore, only greasy sludge was used in the second step of alkaline transesterification. The alkaline transesterification of the previously esterified greasy sludge reached a maximum FAME concentration of 65.4% when using acid catalyst.

  4. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems.

    PubMed

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO4 (3-) concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L · day(-1).

  5. Enhancement of Anaerobic Digestion to Treat Saline Sludge from Recirculating Aquaculture Systems

    PubMed Central

    Luo, Guo-zhi; Ma, Niannian; Li, Ping; Tan, Hong-xin; Liu, Wenchang

    2015-01-01

    The effectiveness of carbohydrate addition and the use of ultrasonication as a pretreatment for the mesophilic anaerobic digestion of saline aquacultural sludge was assessed. Analyses were conducted using an anaerobic sequencing batch reactor (ASBR), which included stopped gas production attributed to the saline inhibition. After increasing the C : N ratio, gas production was observed, and the total chemical oxygen demand (TCOD) removal efficiency increased from 75% to 80%. The TCOD removal efficiency of the sonication period was approximately 85%, compared to 75% for the untreated waste. Ultrasonication of aquaculture sludge was also found to enhance the gas production rate and the TCOD removal efficiency. The average volatile fatty acid (VFA) to alkalinity ratios ranged from 0.1 to 0.05, confirming the stability of the digesters. Furthermore, soluble chemical oxygen demand (SCOD), VFA, and PO43− concentrations increased in the effluents. There was a 114% greater gas generation during the ultrasonication period, with an average production of 0.08 g COD/L·day−1. PMID:26301258

  6. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  7. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM).

    PubMed

    Zinatizadeh, A A L; Mohamed, A R; Abdullah, A Z; Mashitah, M D; Hasnain Isa, M; Najafpour, G D

    2006-10-01

    In this study, the interactive effects of feed flow rate (QF) and up-flow velocity (V up) on the performance of an up-flow anaerobic sludge fixed film (UASFF) reactor treating palm oil mill effluent (POME) were investigated. Long-term performance of the UASFF reactor was first examined with raw POME at a hydraulic loading rate (HRT) of 3 d and an influent COD concentration of 44300 mg/l. Extreme reactor instability was observed after 25 d. Raw POME was then chemically pretreated and used as feed. Anaerobic digestion of pretreated POME was modeled and analyzed with two operating variables, i.e. feed flow rate and up-flow velocity. Experiments were conducted based on a central composite face-centered design (CCFD) and analyzed using response surface methodology (RSM). The region of exploration for digestion of the pretreated POME was taken as the area enclosed by the feed flow rate (1.01, 7.63 l/d) and up-flow velocity (0.2, 3 m/h) boundaries. Twelve dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, soluble COD (SCOD) removal, effluent pH, effluent total volatile fatty acid (TVFA), effluent bicarbonate alkalinity (BA), effluent total suspended solids (TSS), CH4 percentage in biogas, methane yield (Y M), specific methanogenic activity (SMA), food-to-sludge ratio (F/M), sludge height in the UASB portion and solid retention time (SRT). The optimum conditions for POME treatment were found to be 2.45 l/d and 0.75 m/h for QF and V up, respectively (corresponding to HRT of 1.5 d and recycle ratio of 23.4:1). The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.

  8. Stabilization of Mercury in High pH Tank Sludges

    SciTech Connect

    Spence, R.; Barton, J.

    2003-02-24

    DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

  9. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    PubMed

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics.

  10. Characterization of biocarbon-source recovery and microbial community shifts from waste activated sludge by conditioning with cornstover: Assessment of cellulosic compositions

    PubMed Central

    Wen, Kaili; Zhou, Aijuan; Zhang, Jiaguang; Liu, Zhihong; Wang, Guoying; Liu, Wenzong; Wang, Aijie; Yue, Xiuping

    2017-01-01

    Most studies on the production of volatile fatty acids (VFAs) from waste activated sludge (WAS) digestion have focused on operating conditions, pretreatments and characteristic adjustments. Conditioning by extra carbon sources (ECS), normally added in a solid form, has been reported to be an efficient approach. However, this has caused considerable waste of monomeric sugars in the hydrolysate. In this study, the effects of two added forms (pretreated straw (S) and hydrolyzed liquid (L)) of cornstover (CS) on WAS acidification were investigated. To obtain different cellulosic compositions of CS, low-thermal or autoclaved assisted alkaline (TA or AA) pretreatments were conducted. The results showed that AA-L test achieved the highest VFAs value (653 mg COD/g VSS), followed by AA-S (613 mg COD/g VSS). These values were 12% and 28% higher, respectively, than that obtained in the TA-L and TA-S tests. Meanwhile, higher percentages of acetic acid were observed after AA pretreatment (~62% versus ~53% in TA). The added forms of CS played an important role in structuring the innate microbial community in the WAS, as shown by high-throughput sequencing and canonical correspondence analysis. The findings obtained in this work may provide a scientific basis for the potential implementation of co-digesting WAS with ECS simultaneously obtaining energy and high value-added products. PMID:28211495

  11. Characterization of biocarbon-source recovery and microbial community shifts from waste activated sludge by conditioning with cornstover: Assessment of cellulosic compositions

    NASA Astrophysics Data System (ADS)

    Wen, Kaili; Zhou, Aijuan; Zhang, Jiaguang; Liu, Zhihong; Wang, Guoying; Liu, Wenzong; Wang, Aijie; Yue, Xiuping

    2017-02-01

    Most studies on the production of volatile fatty acids (VFAs) from waste activated sludge (WAS) digestion have focused on operating conditions, pretreatments and characteristic adjustments. Conditioning by extra carbon sources (ECS), normally added in a solid form, has been reported to be an efficient approach. However, this has caused considerable waste of monomeric sugars in the hydrolysate. In this study, the effects of two added forms (pretreated straw (S) and hydrolyzed liquid (L)) of cornstover (CS) on WAS acidification were investigated. To obtain different cellulosic compositions of CS, low-thermal or autoclaved assisted alkaline (TA or AA) pretreatments were conducted. The results showed that AA-L test achieved the highest VFAs value (653 mg COD/g VSS), followed by AA-S (613 mg COD/g VSS). These values were 12% and 28% higher, respectively, than that obtained in the TA-L and TA-S tests. Meanwhile, higher percentages of acetic acid were observed after AA pretreatment (~62% versus ~53% in TA). The added forms of CS played an important role in structuring the innate microbial community in the WAS, as shown by high-throughput sequencing and canonical correspondence analysis. The findings obtained in this work may provide a scientific basis for the potential implementation of co-digesting WAS with ECS simultaneously obtaining energy and high value-added products.

  12. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  13. Geotextile filtration performance for lagoon sludges and liquid animal manures dewatering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintenance and control of liquid levels in anaerobic lagoons and storage ponds require liquid-solid separation as a pretreatment and periodic removal of accumulated sludges. Until local options become available, sludges can be contained, dewatered, and stored using geotextile filtration. We used a ...

  14. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  15. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  16. Development of sludge filterability test to assess the solids removal potential of a sludge bed.

    PubMed

    Mahmoud, Nidal; Zandvoort, Marcel; van Lier, Jules; Zeeman, Grietje

    2006-12-01

    A qualitative sludge characterisation technique called "sludge filterability technique" has been developed. This technique enables the determination of the sludge potential for the physical removal of solids, weighing the effect of different process parameters on solids removal and identifying the mechanisms of solids removal in an upflow anaerobic sludge bed system. In this paper guidelines for conducting the test are given and a "standardised" set-up is presented. The experimental set-up and protocol are simple and the results can be obtained in a period as short as a few hours. A sludge sample is added to an upflow reactor incubated at 4 degrees C, to limit gas production, washed with an anaerobically pre-treated and suspended solids free wastewater to remove solids washed out from the sludge, and then fed with a model substrate, prepared from fish meal with a standard procedure. Several experimental runs were conducted to validate and optimise the technique. The results showed that the technique is reliable, workable and reproducible.

  17. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

    PubMed

    Lu, Lu; Xing, Defeng; Liu, Bingfeng; Ren, Nanqi

    2012-03-15

    Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.

  18. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides.

    PubMed

    Montiel, M D; Tyagi, R D; Valero, J R

    2001-11-01

    Seven wastewater sludges of different origins and types were used as an alternate culture medium for producing Bacillus thuringiensis variety kurstaki HD-1. The sludge samples were used under three different preparations: without pre-treatment, with acid treatment (hydrolysed sludge) and the supernatant obtained after centrifugation of the hydrolysed sludge. The sludge composition varied widely with origin and the type of sludge. Growth and sporulation were evaluated by the total viable cell count and spore count of the preparations. Growth, sporulation and endotoxin production were affected by the sludge origin. Hydrolysed sludge gave the highest viable cell and spore counts while the liquid phase (supernatant) gave the lowest. Non-hydrolysed primary sludge from Valcartier was unable to sustain bacterial growth because of its low pH. Bioassays were conducted against larvae of spruce budworm to evaluate entomotoxic potential of the preparations obtained. In general, sludge hydrolysis increased the entomotoxicity yields. Similar entomotoxicity was observed in Black Lake secondary sludge (4100 IU/microL) as that obtained in the reference soya medium (3800 IU/microL). The use of the sludge supernatant (liquid phase) was not recommended due to the low entomotoxic potential obtained.

  19. [Bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis].

    PubMed

    Chang, Ming; Zhou, Shun-gui; Lu, Na; Ni, Jin-ren

    2006-07-01

    Feasibility of bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis was studied using sewage sludge as a raw material. The fermentation was also compared with conventional medium. Results showed that without any pretreatment, the nutrients contained in sewage sludge were almost sufficient for Bacillus thuringiensis growth, even with a rapid multiplicational rate. Higher viable cells and viable spores values were obtained earlier at 24 h, with 9.48 x 10(8) CFU x mL(-1) and 8.51 x 10(8) CFU x mL(-1) respectively, which was 12 hours earlier and nearly 20 percent higher than conventional medium. SEM of 36 h samples gave a clear phenomenon that the metabolizability in sludge was much faster with spores and crystals spreading around. The crystals in sludge seemed rather bigger and more regular. Also a better crystal protein yield of 2.80 mg x mL(-1) was observed in sludge medium compared to conventional medium at the end of fermentation. Sludge fermentation for Bacillus thuringiensis reduces the producing cost, and gives better fermentation capabilities. It's expected to be a new method for sludge disposal.

  20. Numerical and experimental evaluation of continuous ultrasonic sludge treatment system.

    PubMed

    Zhou, Cuihong; Huang, Xintong; Jin, Yanping; Li, Ge

    2016-09-01

    Ultrasonic disintegration is a very promising sludge pretreatment method that leverages the cavitation effect to produce extreme physical environments characterized by high temperatures and high pressures. This process disintegrates sludge structure features, promotes sludge dewatering, and aides resource recovery. This paper presents a newly designed continuous ultrasonic sludge treatment device. The characteristics of the ultrasonic wave propagated in the activated sludge were simulated, with the results showing that at lower frequencies, the acoustic pressure energy distribution exhibits more local concentrations, whereas at 80kHz, the energy distribution is relatively uniform as a result of the interference of standing waves. Subsequently, activated sludge was ultrasonically treated with different exposure times and frequencies. The sludge's capillary suction time, particle size, and moisture content were measured. The results showed different trends for each of the investigated parameters. The dewatering performance was best when the exposure time was 5-10s. Finally, different substances were added to the ultrasonically treated sludge to analyze the effects of ultrasonic treatment on anaerobic digestion. The gas production rate was higher when glucose was the added substance than it was for yeast. The highest total concentration of produced gas, including both hydrogen and methane, was 34% for an ultrasonic input power of 200W at a 25kHz frequency, an exposure time of 20s, and with 30g of added glucose. The gas production rate was found to be higher at the lower frequency when frequency was the only variable. These experiments demonstrate that ultrasonic treatment can change the structure of sludge particles and the moisture content of the sludge, improving sludge dewatering performance. Furthermore, after ultrasonic treatment can improve gas production.

  1. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.

    PubMed

    Sun, Rui; Zhou, Aijuan; Jia, Jianna; Liang, Qing; Liu, Qian; Xing, Defeng; Ren, Nanqi

    2015-01-01

    Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.

  2. Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse

    SciTech Connect

    McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

    2000-06-01

    Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

  3. Systematic comparison of mechanical and thermal sludge disintegration technologies.

    PubMed

    Wett, B; Phothilangka, P; Eladawy, A

    2010-06-01

    This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis.

  4. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell.

    PubMed

    Chen, Yuejia; Jiang, Junqiu; Zhao, Qingliang

    2014-01-01

    The effect of sludge freezing/thawing on its disintegration and subsequent use as substrate in a microbial fuel cell (MFC) was investigated to enhance organic matter degradation and electricity generation. Experimental results indicated that long freezing time (more than 48 h) was effective in disintegrating the sludge collected from the secondary sedimentation tank of a wastewater treatment plant. Freezing/thawing pretreatment could enhance the degradation of total chemical oxygen demand (COD) and electricity generation in MFC due to the higher concentration of soluble COD and ammonium nitrogen available in the pretreated sludge. The removal efficiency of total COD was increased from 25.3% (raw sludge as substrate) to 66.2% and the maximum power output was increased from 8.9 (raw sludge as substrate) to 10.2 W/m³ in MFC.

  5. Removal of heavy metals from oil sludge using ion exchange textiles.

    PubMed

    Elektorowicz, M; Muslat, Z

    2008-04-01

    Development of a new simple and economic method for heavy-metal removal from oil sludge using ion exchange textiles was the main objective of this research. Three experimental stages were developed for this purpose using the bottom tank oil sludge from the Shell Canada refinery in Montreal, Canada. The first stage consisted of the direct application of ion exchange to oil sludge. The second stage included the pretreatment of oil sludge with organic solvents prior to the application of ion exchange process. The third stage included the pretreatment of oil sludge with an aqueous solution in order to extract heavy metals to the aqueous phase and then apply ion exchange textiles to the aqueous phase. Best results were obtained when acetone was used as an organic solvent leading to a total removal of vanadium while cadmium, zinc, nickel, iron, copper by 99%; 96%; 94%; 92% and 89%, respectively.

  6. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  7. New technology for recyclingmaterials from oily cold rollingmill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang

    2013-12-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.

  8. Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study.

    PubMed

    Green, Scott; Renault, Sylvie

    2008-02-01

    A greenhouse study was undertaken to determine the suitability of adding papermill sludge to neutral/alkaline gold mine tailings to improve the establishment of Festuca rubra, Agropyron trachycaulum and Medicago sativa. Festuca rubra root and shoot biomass and A. Trachycaulum shoot biomass were increased with papermill sludge amendment. The addition of papermill sludge and fertilizer drastically increased the shoot and root biomass of M. sativa (20-30 times) while A. trachycaulum and F. rubra showed a more moderate increase in growth. Photosynthetic pigment content of the leaves was higher in papermill sludge treatments than in the treatments without papermill sludge. The organic carbon content, macro-aggregate content and field capacity of the gold mine tailings were increased while the bulk density was decreased by the addition of papermill sludge. This study suggests that addition of papermill sludge and adequate fertilization can alleviate some of the adverse conditions of neutral/alkaline gold mine tailings.

  9. Separations/pretreatment considerations for Hanford privatization phase 2

    SciTech Connect

    Hunt, R.D.; McGinnis, C.P.; Welch, T.D.

    1998-05-01

    The Tank Focus Area is funded to develop, demonstrate, and deploy technologies that will assist in the treatment and closure of its nuclear waste tanks. Pretreatment technologies developed to support the privatization effort by the Department of Energy are reviewed. Advancements in evaporation, solid-liquid separation, sludge treatment, solids controls, sodium management, and radionuclide removal are considered.

  10. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  11. Characteristics of denitrifying granular sludge grown on nitrite medium in an upflow sludge blanket (USB) reactor.

    PubMed

    Jin, Xibiao; Wang, Feng; Liu, Guohong; Liu, Yongdi

    2012-01-01

    While inoculating pre-acclimatized floccular sludge, nitrite-denitrifying granular sludge was obtained after approximately 40 days of cultivation in a 10 L upflow sludge blanket (USB) reactor. The nitrite removal efficiency was approximately 95% when the nitrite concentration was 50 mg L(-1)at an influent flow rate of 20 L h(-1). The nitrite granular sludge had several notable features including good settleability (110 m h(-1)), high ash content (79%), and high density (1.248 g cm(-3)). The mixed liquor suspended solids (MLSS) of the sludge bed remained at 130.04 g L(-1), at a hydraulic upflow velocity of 2 m h(-1). These interesting characteristics were attributed to a high effluent pH (9.7) caused by the release of alkalinity during the nitrite denitrification process. The surfaces of the granules were dominated by cocci bacteria with a diameter of approximately 3 μm, which could be classified as Nitrosomonas-like species based on our analysis of 16 S rDNA sequences.

  12. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms.

    PubMed

    Boruszko, Dariusz

    2017-05-01

    Sewage sludge was taken from a dairy WWTP belonging to Mlekovita Cooperative in Wysokie Mazowieckie. There were excess sludge, flotation sludge and a mixture of excess and flotation sludge from pre-treatment of dairy sewage. The initial content of 16 PAHs in excess sludge before fermentation was approximately 689µg·kg(-1) in dry mass, whereas in post-flotation sludge (which constituted around 30% of raw sludge) it was approximately 95µg·kg(-1) in dry mass. A mixture of excess and flotation sludge had the content of 497,7µg·kg(-1) in dry mass. Through comparison of particular hydrocarbons content in raw sewage sludge to the total PAHs content, it was shown that tricyclic compounds, which constituted 46,3% of the PAHs sum (excess sludge), and tetracyclic compounds, which constituted 60,0% of the PAHs sum (flotation sludge), were the dominating fractions. In the sludge subjected to fermentation in reactors with mixed sludge and surplus activated sludge, the general trend of the course of changes in concentrations of PAHs was similar. Both in the sludge inoculated with EM and in that not inoculated with EM, a significant increase in the total PAHs contents was observed in the first fermentation phase (acidic fermentation) after 7 days of the process. Addition of EM into the sludge did not prevent the PAHs release, and therefore higher concentrations of PAHs sum were recorded during the hydrolysis stage than in sludge before fermentation. A decrease in the sum of PAHs was observed after 2 weeks of fermentation in relation to the quantity observed after 1 week of fermentation (except from post-flotation sludge). In the following weeks, there was further decrease in the concentration of the 16 PAHs sum in all sludge types. However, in sludge without EM inoculation, it was lower than in sludge with EM inoculation. The loss of the majority of tested hydrocarbons was reported in the final phase of fermentation.

  13. Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media.

    PubMed

    Peng, Lanyan; Yang, Chunping; Zeng, Guangming; Wang, Lu; Dai, Chuanhua; Long, Zhiyong; Liu, Hongyu; Zhong, Yuanyuan

    2014-08-01

    A new bioflocculant was produced by culturing Rhodococcus erythropolis in a cheap medium. When culture pH was 7.0, inoculum size was 2 % (v/v), Na2HPO4 concentration was 0.5 g L(-1), and the ratio of sludge/livestock wastewater was 7:1 (v/v), a maximum flocculating rate of 87.6 % could be achieved. Among 13 different kinds of pretreatments for sludge, the optimal one was the thermal-alkaline pretreatment. Different from a bioflocculant produced in a standard medium, this bioflocculant was effective over a wide pH range from 2 to 12 with flocculating rates higher than 98 %. Approximately, 1.6 g L(-1) of crude bioflocculant could be harvested using cold ethanol for extraction. This bioflocculant showed color removal rates up to 80 % when applied to direct and disperse dye solutions, but only 23.0 % for reactive dye solutions. Infrared spectrum showed that the bioflocculant contained functional groups such as -OH, -NH2, and -CONH2. Components in the bioflocculant consisted of 91.2 % of polysaccharides, 7.6 % of proteins, and 1.2 % of DNA. When the bioflocculant and copper sulfate (CuSO4) were used together for decolorization in actual dye wastewater, the optimum decolorization conditions were specified by the response surface methodology as pH 11, bioflocculant dosage of 40 mg/L, and CuSO4 80 mg/L, under which a decolorization rate of 93.9 % could be reached.

  14. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  15. Hazard Analysis for the Pretreatment Engineering Platform (PEP)

    SciTech Connect

    Sullivan, Robin S.; Geeting, John GH; Lawrence, Wesley E.; Young, Jonathan

    2008-07-10

    The Pretreatment Engineering Platform (PEP) is designed to perform a demonstration on an engineering scale to confirm the Hanford Waste Treatment Plant Pretreatment Facility (PTF) leaching and filtration process equipment design and sludge treatment process. The system will use scaled prototypic equipment to demonstrate sludge water wash, caustic leaching, oxidative leaching, and filtration. Unit operations to be tested include pumping, solids washing, chemical reagent addition and blending, heating, cooling, leaching, filtration, and filter cleaning. In addition, the PEP will evaluate potential design changes to the ultrafiltration process system equipment to potentially enhance leaching and filtration performance as well as overall pretreatment throughput. The skid-mounted system will be installed and operated in the Processing Development Laboratory-West at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  16. Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane.

    PubMed

    Rittmann, Bruce E; Lee, Hyung-sool; Zhang, Husen; Alder, Jared; Banaszak, James E; Lopez, Ronald

    2008-01-01

    We tested at full-scale the innovative Focused Pulsed (FP) technology for pre-treating waste sludge in order to improve methane gas production and biosolids reduction in sludge digestion, but without incurring problems of odors, toxicity, and high costs for chemical or energy consumption. FP pre-treatment of a mixture of primary and secondary sludge increased the soluble COD by 160% and DOC 120% over the control. FP pre-treatment of 63% of the input waste sludge increased biogas production by over 40% and reduced biosolids requiring disposal by 30% when compared to the plant baseline. FP pre-treatment also correlated with a shift of the bacterial and archaeal communities. The most significant change was that the acetate-cleaving Methanosaeta became the dominant methanogen. Full FP pre-treatment should increase biogas production and biosolids removal by 60% and 40%, respectively. Full FP pre-treatment should generate energy benefits of at least 2.7 times and as high as 18 times the FP energy input, depending on heat recovery from FP treatment. For a plant treating 76,000 m3/d of wastewater (380 m3-sludge/d), FP treatment should generate an annual economic benefit of approximately $540,000 net of electricity and other operating and maintenance costs. This represents a payback period of three years or less.

  17. Fate of heavy metals and major nutrients in a sludge-soil-plant-leachate system during the sludge phyto-treatment process.

    PubMed

    Xu, Tianfen; Qiu, Jinrong; Wu, Qi-Tang; Guo, Xiaofang; Wei, Zebin; Xie, Fangwen; Wong, Jonathan W C

    2013-01-01

    Land application of sewage sludge usually leads to increased levels of heavy metals in soil, plants and groundwater. Pre-treatment using plants has been proposed to reduce the contents of heavy metals and water in sludge prior to land application. This study quantified the transfer of Zn, Cd, Pb and major nutrients in a sludge-soil-plant-leachate system during the treatment of sewage sludge. To accomplish this, a two year pot experiment was carried out to collect leachate, mono- and co-cropping of Sedum alfredii and feed crops was conducted in sludge with an under-layer soil support. Sludge phyto-treatment increased Zn and Cd concentrations in the under-layer soil, but not Pb. Specifically, 70%, 70% and 80% of the original Zn, Cd and Pb, respectively, remained in the sludge, while about 40%, 70% and 60% of the original N, P and K remained. Only 3% to 5% of Cd and Zn and < 1% of Pb were transferred into the under-layer soils or leachates, while more than 12% of the N and P were transferred. Co-planting S. alfredii and feed crops led to a significant reduction of heavy metals in leachates when compared with sludge without planting. Overall, sludge leachate is more appropriate than whole sludge for recycling in agriculture since it reduces the chance of heavy metal contamination in the agro-ecosystem; therefore, co-cropping phytotreatment of sludge can be coupled with sludge leachate recycling for crop production and re-collection of the sludge residue for landfilling.

  18. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil.

  19. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement.

    PubMed

    Zhang, Dong; Fu, Xiang; Jia, Shuting; Dai, Lingling; Wu, Bing; Dai, Xiaohu

    2016-01-01

    Volatile fatty acids (VFA), the substrate for the bio-methane yield, can be generated from excess sludge or herbaceous plant waste during the anaerobic fermentation process. However, due to the high protein content and the low carbon-to-nitrogen (C/N) ratio of excess sludge, the nutrient utilization of excess sludge to generate VFA and bio-methane usually becomes inefficient and uneconomical. In this study, the laboratory findings showed that both the organic conversion and VFA generation from the mixture of excess sludge and herbaceous plant waste (e.g., the tall fescue was used as model), could be significantly enhanced, especially when the C/N ratio was adjusted to 20/1. In order to get more VFA and bio-methane generation, the effects of different thermal pretreatment strategies on the excess sludge and tall fescue co-fermentation were investigated. The study of thermal pretreatment revealed that the maximal VFA generation (585.2 g COD/kg of total solids (TS)) from the mixture of sludge and tall fescue by thermal pretreatment at 100 °C was almost 9.9 and 4.1 times higher than un-pretreated sole sludge and tall fescue, respectively. Then the mechanism of enhanced VFA generation from the mixture by thermal pretreatment was investigated. It was observed that pretreating the mixture of excess sludge and tall fescue at 100 °C caused the greatest hydrolysis and acidification. The produced VFA was applied to generate the bio-methane, and it was showed that the bio-methane produced from the thermal-pretreated (100 °C) mixture was almost 9.6 and 4.9 times as high as un-pretreated sole sludge and tall fescue, respectively. In addition, the detection of enzyme activities showed that the main enzymes related to cellulose, hemicelluloses, lignin degradation, and acid forming were more active when VFA was produced from the thermal-pretreated (100 °C) mixture than other cases. Class Bacteroidia, class β-Proteobateria, α-Proteobateria, and phylum Firmicutes of the reactor

  20. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste.

  1. Cavitation for improved sludge conversion into biogas

    NASA Astrophysics Data System (ADS)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  2. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  3. Effect of sludge retention on UF membrane fouling: The significance of sludge crystallization and EPS increase.

    PubMed

    Yu, Wenzheng; Graham, Nigel; Yang, Yunjia; Zhou, Zhiqi; Campos, Luiza C

    2015-10-15

    This paper concerns a previously unreported mechanism of membrane ultrafiltration (UF) fouling when a UF process with coagulation pre-treatment is used in drinking water treatment. The significance of settled coagulant solids (sludge) with different age within the membrane tank on UF fouling has been investigated at laboratory-scale, using model micro-polluted surface water. The process of floc crystallization and increasing bacterial EPS with solids (sludge) retention time may be detrimental to UF operation by causing an increased rate of membrane fouling. In this study the performance of two alum pre-treated hollow-fibre UF units, operated in parallel but with different settled sludge retention times (1 and 7 days), was compared. The results showed that over 34 days of operation the extent of reversible and irreversible fouling was much greater for the 7-day solids retention time. This was attributed to the greater extent of bacterial activity and the presence of Al-nanoparticles, arising from sludge crystallization, at the longer retention time. In particular, greater quantities of organic matter, particularly EPS (proteins and polysaccharides), were found in the UF cake layer and pores for the 7-day retention time. The addition of chlorine later in the membrane run substantially reduced the rate of membrane fouling for both sludge retention times, and this corresponded to reduced quantities of organic substances, including EPS, in the cake layer and pores of both membranes. The results suggest that bacterial activity (and EPS production) is more important than the production of Al-nanoparticles from solids crystallization in causing membrane fouling. However, it is likely that both phenomena are interactive and possibly synergistic.

  4. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process.

  5. Effect of water treatment sludge on growth and elemental composition of tomato (Lycopersicon esculentum) shoots

    SciTech Connect

    Elliott, H.A.; Singer, L.M. )

    1988-01-01

    The impact of a water treatment sludge on the fertility of a silt loam soil was assessed by monitoring the yield and elemental composition of tomato (Lycopersicon esculentum) shoots in a greenhouse study. Application of sludge at rates from 2-10% (air dry weight basis) raised the soil pH from 5.3 to 8.0 which enhanced plant growth. A substantial reduction in metal (Cd, Zn, Cu, Ni) uptake was observed with sludge amendments, even at the highest rates. The alkaline nature of this sludge (pH=9.3, calcium carbonate equivalence=53%) suggest its potential use as a liming material for agricultural soils. Overly alkaline conditions should be avoided however, as high application rates combined with ammonia fertilization had an antagonistic effect on plant growth, possibly from P deficiency induced by struvite (MgNH{sub 4}PO{sub 4}) formation.

  6. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    PubMed

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge.

  7. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-05-01

    Renewable H(2) production from a plentiful biomass, waste activated sludge (WAS), can be achieved by fermentation, but the yields are low. The use of a microbial electrolysis cell (MEC) can increase the H(2) production yields to several times that of fermentation. We have proved that the enhancement of H(2) production was due to the ability of MECs to use a wider range of organic matter in WAS than in fermentation. To support this result strongly, we here investigated the microbial community structures of WAS and anode biofilms in WAS-fed MECs. A pyrosequencing analysis based on the bacterial 16S rRNA gene showed that dominant populations in MECs were more diverse than those in WAS (inoculum and substrate) after enrichment, and there was a clear distinction between MECs and WAS in microbial community structure. Diverse acid-producing bacteria and exoelectrogens (predominance of Geobacter) were detected in MECs but they were only rarely found in WAS. It has been reported that these acid-producing bacteria can ferment various sugars and amines with acetate, propionate, and butyrate as their major by-products. This was consistent with our chemical analyses. Detected exoelectrogens are known to use these organic acids (mainly acetate) and certain sugars to directly produce current for H(2) generation at the cathodes in the MECs. Using quantitative real-time PCR, we demonstrated that a consistent feed of alkaline-pretreated WAS containing large amounts of acetate led to a predominance of acetoclastic methanogens, while hydrogenotrophic methanogens were abundant in MECs fed both raw and alkaline-pretreated WAS. Syntrophic interactions between phylogenetically diverse microbial populations in anodophilic biofilms were found to drive the efficient cascade utilization of organic matter in WAS.

  8. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose.

  9. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment

    PubMed Central

    2009-01-01

    Background Pretreatment chemistry is of central importance due to its impacts on cellulosic biomass processing and biofuels conversion. Ammonia fiber expansion (AFEX) and dilute acid are two promising pretreatments using alkaline and acidic pH that have distinctive differences in pretreatment chemistries. Results Comparative evaluation on these two pretreatments reveal that (i) AFEX-pretreated corn stover is significantly more fermentable with respect to cell growth and sugar consumption, (ii) both pretreatments can achieve more than 80% of total sugar yield in the enzymatic hydrolysis of washed pretreated solids, and (iii) while AFEX completely preserves plant carbohydrates, dilute acid pretreatment at 5% solids loading degrades 13% of xylose to byproducts. Conclusion The selection of pretreatment will determine the biomass-processing configuration, requirements for hydrolysate conditioning (if any) and fermentation strategy. Through dilute acid pretreatment, the need for hemicellulase in biomass processing is negligible. AFEX-centered cellulosic technology can alleviate fermentation costs through reducing inoculum size and practically eliminating nutrient costs during bioconversion. However, AFEX requires supplemental xylanases as well as cellulase activity. As for long-term sustainability, AFEX has greater potential to diversify products from a cellulosic biorefinery due to lower levels of inhibitor generation and lignin loss. PMID:19961578

  10. Chemically coupled microwave and ultrasonic pre-hydrolysis of pulp and paper mill waste-activated sludge: effect on sludge solubilisation and anaerobic digestion.

    PubMed

    Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur

    2014-05-01

    The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.

  11. Pretreatment Technology Plan

    SciTech Connect

    Barker, S.A.; Thornhill, C.K.; Holton, L.K. Jr.

    1993-03-01

    This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

  12. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    SciTech Connect

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin

  13. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  14. Status Report on Phase Identification in Hanford Tank Sludges

    SciTech Connect

    Rapko, Brian M.; Lumetta, Gregg J.

    2000-12-18

    The U.S. Department of Energy plans to vitrify Hanford's underground storage tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.

  15. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    sludge) and primary sludge is still in its infancy. Current research is mainly focused on developing efficient pretreatment methods that enable fast hydrolysis of complex organic matter, shorter sludge residence times and as a consequence, smaller sludge digesters. Previous experimental studies indicate that the anaerobic digestibility of non-pretreated biosludge from pulp and paper mills varies widely, with volatile solids (VS) removal rates of 21-55% and specific methane yields ranging between 40 and 200 mL g(-1) VS fed. Pretreatment can increase the digestibility to some extent, however in almost all reported cases, the specific methane yield of pretreated biosludge did not exceed 200 mL g(-1) VS fed. Increases in specific methane yield mostly range between 0 and 90% compared to non-pretreated biosludge, whereas larger improvements were usually achieved with more difficult-to-digest biosludge. Thermal treatment and microwave treatment are two of the more effective methods. The heat required for the elevated temperatures applied in both methods may be provided from surplus heat that is often available at pulp and paper mills. Given the large variability in specific methane yield of non-pretreated biosludge, future research should focus on the links between anaerobic digestibility and sludge properties. Research should also involve mill-derived primary sludge. Although biosludge has been the main target in previous studies, primary sludge often constitutes the bulk of mill-generated sludge, and co-digestion of a mixture between both types of sludge may become practical. The few laboratory studies that have included mill primary sludge indicate that, similar to biosludge, the digestibility can range widely. Long-term studies should be conducted to explore the potential of microbial adaptation to lignocellulosic material which can constitute more than half of the organic matter in pulp and paper mill sludge.

  16. Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge

    SciTech Connect

    Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

    1982-01-01

    A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

  17. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  18. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  19. Variations in physical, chemical and biological properties in relation to sludge dewaterability under Fe (II) - Oxone conditioning.

    PubMed

    Xiao, Keke; Chen, Yun; Jiang, Xie; Yang, Qin; Seow, Wan Yi; Zhu, Wenyu; Zhou, Yan

    2017-02-01

    The mechanism of Fe (II) - oxone conditioning to improve sludge dewaterability was investigated in this study. Five different types of sludge were tested, including raw sludge (Group 1: mixed primary and secondary sludge, waste activated sludge and anaerobic digested sludge) and pretreated sludge with prior solubilisation (Group 2: ultrasonic or thermal pretreated sludge). After Fe (II) - oxone conditioning, the concentrations of dissolved organic carbon, protein and polysaccharide of soluble extracellular polymeric substances (SB EPS) increased for Group 1, but decreased for Group 2. For all types of sludge investigated, the related organic compounds of loosely bound (LB) and tightly bound (TB) EPS decreased with Fe (II) - oxone conditioning, and increased sludge filterability showed strong and positive correlation with the removal of low molecular weight protein and neutrals in LB EPS. Fe (II) - oxone was very effective in disintegrating cell membrane and caused potential cell lysis, as indicated by increased percentage of damaged microbial cells. From this study, the mechanism of Fe (II) - oxone conditioning was proposed and can be divided into two steps: (1) Oxidation step - sulfate radicals degraded organic compounds in LB and TB EPS in sludge and transformed bound water to free water that was trapped in TB and LB EPS; It also damaged cells membrane and may help to release intracellular water content. Sludge flocs were broken into smaller particles; (2) Coagulation step - Fe (III), generated from the oxidation step can act as a coagulant to agglomerate smaller particles into larger ones and reduce the repulsive electrostatic interactions. Combined effects from above two steps can greatly improve sludge filterability.

  20. Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies

    SciTech Connect

    Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

    1997-08-01

    The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

  1. ISSUES AND CONSIDERATIONS ASSOCIATED WITH THE USE OF ALKALINE MATERIALS FOR THE STABILIZATION OF RESIDUALS

    EPA Science Inventory

    The presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at it...

  2. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  3. Review on the fate of emerging contaminants during sludge anaerobic digestion.

    PubMed

    Stasinakis, Athanasios S

    2012-10-01

    Several research papers have been published during the last years investigating the occurrence, fate and effects of emerging contaminants (ECs) on sludge anaerobic digestion (AD). Literature review revealed that research has been mainly focused on specific groups of compounds (linear alkylbenzene sulphonates, nonylphenol ethoxylates, some pharmaceuticals, estrogens, phthalates), while there are fewer or no data for others (personal care products, perfluorinated compounds, brominated flame retardants, organotins, benzotriazoles, benzothiazoles, nanoparticles). AD operational parameters (sludge residence time, temperature), sludge characteristics (type of sludge, adaptation on the compound), physicochemical properties of ECs and co-metabolic phenomena seem to affect compounds' biodegradation. The use of sludge pretreatment methods does not seem to enhance ECs removal; whereas encouraging results have been reported when AD was combined with other treatment methods. Future efforts should be focused on better understanding of biotransformation processes and sorption phenomena occurred in anaerobic digesters, as well as on identification of (bio)transformation products.

  4. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein.

    PubMed

    Yin, Bo; Liu, Hongbo; Wang, Yuanyuan; Bai, Jie; Liu, He; Fu, Bo

    2016-03-01

    The real cause to the low yield of volatile fatty acids (VFAs), from inhibition or low biodegradation, is uncertain in sludge anaerobic fermentation. In this study, poor biodegradability of proteins and fast decrease of the indigenous hydrolase activity in the residual post-fermented sludge were found to be the major reasons. With the addition of trypsin or alkaline protease in residual post-fermented sludge after primary alkaline fermentation, degradation efficiency of refractory protein increased by 33.6% and 34.8%, respectively. Accordingly, the VFAs yields were improved by 69.7% and 106.1%, respectively. Furthermore, the activities of added trypsin and alkaline protease could maintain at 13.52 U/mL and 19.11 U/mL in the alkaline fermentation process. This study demonstrated that exploiting the refractory proteins in residual post-fermented sludge by protease addition seems to be a very promising way for improving VFAs yield of conventional alkaline fermentations with waste activated sludge.

  5. Preparation of activated carbon from wet sludge by electrochemical-NaClO activation.

    PubMed

    Miao, Chen; Ye, Caihong; Zhu, Tianxing; Lou, Ziyang; Yuan, Haiping; Zhu, Nanwen

    2014-01-01

    Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.

  6. Assessing the usefulness of clostridia spores for evaluating sewage sludge hygienization.

    PubMed

    Martín-Díaz, Julia; Ruiz-Hernando, Maria; Astals, Sergi; Lucena, Francisco

    2017-02-01

    The capability of clostridia spores to act as pathogen indicators in sewage sludge treatment was investigated. Sulfite-reducing clostridia and E. coli levels were monitored during waste activated sludge pre-treatments (alkali and ultrasound) and its subsequent mesophilic anaerobic digestion. E. coli was maintained or reduced depending on treatment type and intensity. However, alkali pre-treatment (35.3gNaOH/kgTS) by itself and alkali (157gNaOH/kgTS) and ultrasound (27,000kJ/kgTS) pre-treatments followed by anaerobic digestion provoked reproducible clostridia increases. Specifically, up to 2.7log10 after 35.3gNaOH/kgTS pre-treatment and up to 1.9 and 1.1log10 after digesting the 157gNaOH/kg TS and 27,000kJ/kgTS pre-treated sludge, respectively. Having rejected the hypotheses of sporulation and floc dissipation, the most plausible explanation for these clostridia increases is re-growth. These results question the suitability of clostridia spores as indicators of sludge treatment and other biological treatments where clostridia may have a role.

  7. Sludge treatment studies

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  8. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Savaswat, N.; Khana, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 L/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by closed methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 L/kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  9. Methane recovery from water hyacinth through anaerobic activated sludge process

    SciTech Connect

    Saraswat, N.; Khanna, P.

    1986-02-01

    The concepts of phase separation, anaerobic activated sludge process, and alkali pretreatment have been incorporated in this investigation with the objective of developing rational and cost-effective designs of diphasic anaerobic activated sludge systems, with and without alkali treatment, for methane recovery from water hyacinth (WH). Evaluation of process kinetics and optimization analyses of laboratory data reveal that a diphasic system with alkali treatment could be designed with an alkali pretreatment step (3.6% Na/sub 2/CO/sub 3/ + 2.5% Ca(OH)/sub 2/ (w/w) of WH, 24 h duration) followed by an open acid phase (2.1 days HRT) and closed methane reactor with sludge recycle (5.7 days HRT, 7.7 days MCRT) for gas yield of 50 l/kg WH/d at 35-37/sup 0/C. Likewise, a diphasic system without alkali treatment could be designed with an open acid phase (2 days HRT) followed by close methane reactor with sludge recycle (3.2 days HRT, 6 days MCRT) for gas yield of 32.5 l.kg WH/d at 35-37/sup 0/C. Detailed economic analyses bring forth greater cost-efficacy of the diphasic system without alkali treatment and reveal that the advantage accrued in terms of higher gas yield is overshadowed by the cost of chemicals in the diphasic system with alkali treatment.

  10. DEVELOPMENT OF AN IMPROVED TITANATE-BASED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS UNDER STRONGLY ALKALINE CONDITIONS

    SciTech Connect

    Hobbs, D.; Peters, T.; Taylor-Pashow, K.; Fink, S.

    2010-02-18

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes at SRS include the sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction of {sup 137}Cs. The MST and separated {sup 137}Cs is encapsulated along with the sludge fraction of high-level waste (HLW) into a borosilicate glass waste form for eventual entombment at a federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu; {sup 237}Np; and uranium isotopes, {sup 235}U and {sup 238}U. This paper describes recent results evaluating the performance of an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST.

  11. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    SciTech Connect

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the

  12. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  13. Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production.

    PubMed

    Kavitha, S; Jayashree, C; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh

    2014-12-01

    In this investigation, an effort was made to pretreat surplus waste activated sludge (WAS) inexpensively by a novel combined process involving thermo chemical disperser pretreatment. This pretreatment was found to be efficient at a specific energy (SE) consumption of 3360.94 kJ/kg TS, with the chemical oxygen demand (COD) solubilization of 20%. This was comparatively higher than thermo chemically treated sludge where the solubilization was found to be 15.5% at a specific energy consumption of 10,330 kJ/kg TS respectively. Higher production of volatile fatty acids (VFA) (675 mg/L) in anaerobic fermentation of pretreated WAS indicates better hydrolysis performance. The biogas production potential of sludge pretreated through this combined technique was found to be 0.455 (L/gVS) and comparatively higher than thermo chemically pretreated sludge. Economic investigation provides 90% net energy savings in this combined pretreatment. Therefore, this combined process was considered to be potentially effective and economical in sludge disintegration.

  14. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  15. Pretreatment of coking wastewater using anaerobic sequencing batch reactor (ASBR)*

    PubMed Central

    Li, Bing; Sun, Ying-lan; Li, Yu-ying

    2005-01-01

    A laboratory-scale anaerobic sequencing batch reactor (ASBR) was used to pretreat coking wastewater. Inoculated anaerobic granular biomass was acclimated for 225 d to the coking wastewater, and then the biochemical methane potential (BMP) of the coking wastewater in the acclimated granular biomass was measured. At the same time, some fundamental technological factors, such as the filling time and the reacting time ratio (t f/t r), the mixing intensity and the intermittent mixing mode, that affect anaerobic pretreatment of coking wastewater with ASBR, were evaluated through orthogonal tests. The COD removal efficiency reached 38%~50% in the stable operation period with the organic loading rate of 0.37~0.54 kg COD/(m3·d) at the optimum conditions of t f/t r, the mixing intensity and the intermittent mixing mode. In addition, the biodegradability of coking wastewater distinctly increased after the pretreatment using ASBR. At the end of the experiment, the microorganism forms on the granulated sludge in the ASBR were observed using SEM (scanning electron microscope) and fluoroscope. The results showed that the dominant microorganism on the granular sludge was Methanosaeta instead of Methanosarcina dominated on the inoculated sludge. PMID:16252347

  16. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  17. Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment.

    PubMed

    Paulsrud, Bjarne; Rusten, Bjørn; Aas, Bjørn

    2014-01-01

    The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment.

  18. K Basin sludge polychlorinated biphenyl removal technology assessment

    SciTech Connect

    Ashworth, S.C.

    1998-08-25

    The two Hanford K Basins are water-filled concrete pools that contain over 2,100 metric tons of N Reactor fuel elements stored in aluminum or stainless steel canisters. During the time the fuel has been stored, approximately 50 m3 of heterogeneous solid material have accumulated in the basins. This material, referred to as sludge, is a mixture of fuel corrosion products, metallic bits of spent fuel and zirconium clad iron and metal corrosion products and silica from migrating sands. Some of the sludges also contain PCBs. The congener group of PCBs was identified as Aroclor 1254. The maximum concentration of sludge PCBS was found to be 140 ppm (as settled wet basis). However, the distribution of the PCBs is non-uniform throughout the sludge (i.e., there are regions of high and low concentrations and places where no PCBs are present). Higher concentrations could be present at various locations. Aroclors 1016/1242, 1221, 1248, 1254, and 1260 were identified and quantified in K West (KW) Canister sludge. In some of these samples, the concentration of 1260 was higher than 1254. The sludge requires pre-treatment to meet tank farm waste acceptance criteria, Among the numerous requirements, the sludge should be retreated so that it does not contain regulated levels of Toxic Substances Control Act (TSCA) compounds. Because of their stable chemistry and relative insolubility in water, PCBs are difficult to treat. They also resist degradation from heat and electrical charges. This stability has resulted in environmental persistence which has prompted the development of a variety of new cleanup processes including supercritical processes, advanced oxidation, dehalogenation and others. Hopefully, most of the new processes are discussed herein. Information on new processes are being received and will be evaluated in a future revision.

  19. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  20. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching.

    PubMed

    Wong, Jonathan W C; Zhou, Jun; Kurade, Mayur B; Murugesan, Kumarasamy

    2015-03-01

    Pretreatment of activated sludge with sulfuric acid and bioleaching using Acidithiobacillus ferrooxidans along with addition of Fe(2+) on sludge dewaterability was investigated. The sludge dewatering efficiency in terms of capillary suction time (CST) and specific resistant to filtration (SRF) was increased with a decrease in sludge pH. A pH of 2.67 was found to be optimum for dewatering, at which 81% and 63% reduction of CST and SRF were achieved, respectively. The dewaterability of sludge was enhanced after the addition of Fe(2+) and A. ferrooxidans. Ideal concentration of Fe(2+) was 2 g/L for sludge dewaterability, which showed 96% and 88% reduction in CST and SRF, respectively. In the control sludge, maximum part of the biopolymeric macromolecules was contributing by the tightly bound extracellular polymeric substances (TB-EPS). At optimum Fe(2+) concentration, total EPS was reduced by 73%, enhancing sludge dewaterability. Bioleaching conducted by A. ferrooxidans could solubilized 88% Cu and 99% Zn within 120 h.

  1. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge.

  2. Waste activated sludge hydrolysis and acidification: A comparison between sodium hydroxide and steel slag addition.

    PubMed

    Zhang, Ying; Zhang, Chaojie; Zhang, Xuan; Feng, Leiyu; Li, Yongmei; Zhou, Qi

    2016-10-01

    Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.

  3. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass.

    PubMed

    Teixeira, L C; Linden, J C; Schroeder, H A

    2000-01-01

    Previous work in our laboratories has demonstrated the effectiveness of peracetic acid for improving enzymatic digestibility of lignocellulosic materials. The use of dilute alkali solutions as a pre-pretreatment prior to peracetic acid lignin oxidation increased carbohydrate hydrolysis yields in a synergistic as opposed to additive manner. Deacetylation of xylan is easily achieved using dilute alkali solutions under mild conditions. In this article, we evaluate the effectiveness of peracetic acid combined with an alkaline pre-pretreatment through simultaneous saccharification and cofermentation (SSCF) of pretreated hybrid poplar wood and sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% of theoretical are achieved using 6% NaOH/15% peracetic acid-pretreated substrates and recombinant Zymomonas mobilis CP4/pZB5. Reduction of acetyl groups of the lignocellulosic materials is demonstrated following alkaline pre-pretreatments. Such processing may be helpful in reducing peracetic acid requirements. The influence of deacetylation is more significant in combined pretreatments using lower peracetic acid loadings.

  4. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.

    PubMed

    Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G

    2015-05-01

    The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.

  5. Viscous sludge sample collector

    DOEpatents

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  6. Experimental data developed to support the selection of a treatment process for West Valley alkaline supernatant

    SciTech Connect

    Bray, L.A.; Holton, L.K.; Myers, T.R.; Richardson, G.M.; Wise, B.M.

    1984-01-01

    At the request of West Valley Nuclear Services Co., Inc., the Pacific Northwest Laboratory (PNL) has studied alternative treatment processes for the alkaline PUREX waste presently being stored in Tank 8D2 at West Valley, New York. Five tasks were completed during FY 1983: (1) simulation and characterization of the alkaline supernatant and sludge from the tank. The radiochemical and chemical distributions between the aqueous and solid phase were determined, and the efficiency of washing sludge with water to remove ions such as Na/sup +/ and SO/sub 4//sup 2 -/ was investigated; (2) evaluation of a sodium tetraphenylboron (Na-TPB) precipitation process to recover cesium (Cs) and a sodium titanate (Na-TiA) sorption process to recover strontium (Sr) and plutonium (Pu) from the West Valley Alkaline supernatant. These processes were previously developed and tested at the US Department of Energy's Savannah River Plant; (3) evaluation of an organic cation-exchange resin (Duolite CS-100) to recover Cs and Pu from the alkaline supernatant followed by an organic macroreticular cation exchange resin (Amberlite IRC-718) to recover Sr; (4) evaluation of an inorganic ion exchanger (Linde Ionsiv IE-95) to recover Cs, Sr, and Pu from the alkaline supernatant; and (5) evaluation of Dowex-1,X8 organic anion exchange resin to recover technetium (Tc) from alkaline supernatant. The findings of these tasks are reported. 21 references, 36 figures, 34 tables.

  7. Optimization of municipal sludge and grease co-digestion using disintegration technologies.

    PubMed

    Bouchy, L; Pérez, A; Camacho, P; Rubio, P; Silvestre, G; Fernández, B; Cano, R; Polanco, M; Díaz, N

    2012-01-01

    Many drivers tend to foster the development of renewable energy production in wastewater treatment plants as many expectations rely upon energy recovery from sewage sludge, for example through biogas use. This paper is focused on the assessment of grease waste (GW) as an adequate substrate for co-digestion with municipal sludge, as it has a methane potential of 479-710 LCH(4)/kg VS, as well as the evaluation of disintegration technologies as a method to optimize the co-digestion process. With this objective three different pre-treatments have been selected for evaluation: thermal hydrolysis, ultrasound and enzymatic treatment. Results have shown that co-digestion processes without pre-treatment had a maximum increment of 128% of the volumetric methane productivity when GW addition was 23% inlet (at 20 days of HRT and with an OLR of 3.0 kg COD/m(3)d), compared with conventional digestion of sewage sludge alone. Concerning the application of the selected disintegration technologies, all pre-treatments showed improvements in terms of methane yield (51.8, 89.5 and 57.6% more for thermal hydrolysis, ultrasound and enzymatic treatment, respectively, compared with non-pretreated wastes), thermal hydrolysis of GW and secondary sludge being the best configuration as it improved the solubilization of the organic matter and the hydrodynamic characteristics of digestates.

  8. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure.

  9. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  10. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  11. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    PubMed

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions.

  12. Microbial diversity in various types of paper mill sludge: identification of enzyme activities with potential industrial applications.

    PubMed

    Ghribi, Manel; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-01-01

    This study is the first comprehensive investigation of enzyme-producing bacteria isolated from four sludge samples (primary, secondary, press and machine) collected in a Kraft paper mill. Overall, 41 strains encompassing 11 different genera were identified by 16S rRNA gene analysis and biochemical testing. Both biodiversity and enzymatic activities were correlated with sludge composition. Press sludge hosted the largest variety of bacterial strains and enzymatic activities, which included hydrolytic enzymes and ligninolytic enzymes. In contrast, strains isolated from secondary sludge were devoid of several enzymatic activities. Most strains were found to metabolize Kraft liquor at its alkaline pH and to decolorize industrial lignin-mimicking dyes. Resistance to lignin or the ability to metabolize this substrate is a prerequisite to survival in any paper mill sludge type. We demonstrate here that the bacterial strains found in a typical Kraft paper mill represent a source of potential novel enzymes for both industrial applications and bioremediation.

  13. Decline of phosphorus, copper, and zinc in anaerobic swine lagoon columns receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of both anaerobic lagoon liquid and sludge can increase nutrient accumulation beyond soil assimilative capacity and become a threat to water quality in regions with intensive confined swine production. In a 15-month meso-scale column study, we evaluated the effect of manure pretreat...

  14. Water quality and nitrogen mass loss from anaerobic lagoon columns receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control methods are needed to abate ammonia losses from swine anaerobic lagoons to reduce contribution of confined swine operations to air pollution. In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on water quality, reduction of N losses, and sludge accumulation...

  15. Co-digestion of grease trap sludge and sewage sludge.

    PubMed

    Davidsson, A; Lövstedt, C; Jansen, J la Cour; Gruvberger, C; Aspegren, H

    2008-01-01

    Redirection of organic waste, from landfilling or incineration, to biological treatment such as anaerobic digestion is of current interest in the Malmö-Copenhagen region. One type of waste that is expected to be suitable for anaerobic digestion is sludge from grease traps. Separate anaerobic digestion of this waste type and co-digestion with sewage sludge were evaluated. The methane potential was measured in batch laboratory tests, and the methane yield was determined in continuous pilot-scale digestion. Co-digestion of sludge from grease traps and sewage sludge was successfully performed both in laboratory batch and continuous pilot-scale digestion tests. The addition of grease trap sludge to sewage sludge digesters was seen to increase the methane yield of 9-27% when 10-30% of sludge from grease traps (on VS-basis) was added. It was also seen that the grease trap sludge increases the methane yield without increasing the sludge production. Single-substrate digestion of grease trap sludge gave high methane potentials in batch tests, but could not reach stable methane production in continuous digestion.

  16. Chemical inhibition of nitrification in activated sludge.

    PubMed

    Kelly, R T; Henriques, I D S; Love, N G

    2004-03-20

    Conventional aerobic nitrification was adversely affected by single pulse inputs of six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-dinitrophenol, DNP), alkaline pH, and cyanide in its weak metal complexed form. The concentrations of each chemical source that caused 1 5, 25, and 50% respiratory inhibition of a nitrifying mixed liquor during a short-term assay were used to shock sequencing batch reactors containing nitrifying conventional activated sludge. The reactors were monitored for recovery over a period of 30 days or less. All shock conditions inhibited nitrification, but to different degrees. The nitrate generation rate (NGR) of the shocked reactors recovered overtime to control reactor levels and showed that it was a more sensitive indicator of nitrification inhibition than both initial respirometric tests conducted on unexposed biomass and effluent nitrogen species analyses. CDNB had the most severe impact on nitrification, followed by alkaline pH 11, cadmium, cyanide, octanol, and DNP. Based on effluent data, cadmium and octanol primarily inhibited ammonia-oxidizing bacteria (AOB) while CDNB, pH 11,and cyanide inhibited both AOB and nitrite-oxidizing bacteria (NOB). DNP initially inhibited nitrification but quickly increased the NGR relative to the control and stimulated nitrification after several days in a manner reflective of oxidative uncoupling. The shocked mixed liquor showed trends toward recovery from inhibition for all chemicals tested, but in some cases this reversion was slow. These results contribute to our broader effort to identify relationships between chemical sources and the process effects they induce in activated sludge treatment systems.

  17. Comparative study of low-energy ultrasonic and alkaline treatment on biosludge from secondary industrial wastewater treatment.

    PubMed

    Li, Dongzhe; Tan, Youming; Zhou, Yan; Pathak, Santosh; Sendjaja, Antonius Yudi; Abdul Majid, Maszenan; Chowdhury, Prannoy; Ng, Wun Jern

    2015-01-01

    In this study, low-energy ultrasonic (3 and 6 kJ/g volatile solids of feed biomass (FB) which was lower than the heat value of the FB), alkaline, and ultrasonic-alkaline pretreatments were applied on FB, a biosludge from secondary industrial wastewater treatment. Biochemical methane potential (BMP), particle size distribution, Biomass Stress Index (BSI™), soluble chemical oxygen demand (SCOD), protein, carbohydrate, and size-exclusion chromatography (SEC) fingerprints were used to comparatively study the mechanisms of these pretreatment methods. The results indicated that low-energy ultrasonication and alkali exhibited significantly different impacts on the FB. After ultrasonication with energy input of 6 kJ/g-VS, the average particle size of FB was reduced from 102.6 to 19.4 µm. However, ultrasonication had no obvious effect on microbial cells rupture, solubilization of protein and carbohydrate, and SEC fingerprint. Consequently, low-energy ultrasonication could not enhance methane generation. However, after alkaline pretreatment with dosage of 0.3 g-NaOH/g-VS, SCOD, soluble protein, and soluble carbohydrate concentration of FB increased from 0.66, 0.00, 0.07 to 2.83, 0.83, 0.47 g/L, respectively. At the same time, BSI™ increased from 5.3% to 96.8%, and the SEC fingerprint changed significantly. Consequently, the methane generation in the BMP test increased from 68.9 to 135.0 mL. Ultrasonic-alkaline pretreatment was similar to alkaline pretreatment in terms of methane generation. Based on this study, alkaline pretreatment is recommended over both low-energy ultrasonic and low-energy ultrasonic-alkaline pretreatment to enhance the biodegradability of FB.

  18. Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

    2009-02-28

    This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

  19. Gravity drainage of activated sludge: new experimental method and considerations of settling velocity, specific cake resistance and cake compressibility.

    PubMed

    Dominiak, Dominik; Christensen, Morten; Keiding, Kristian; Nielsen, Per Halkjær

    2011-02-01

    A laboratory scale setup was used for characterization of gravitational drainage of waste activated sludge. The aim of the study was to assess how time of drainage and cake dry matter depended on volumetric load, SS content and sludge floc properties. It was demonstrated that activated sludge forms compressible cakes, even at the low pressures found in gravitational drainage. The values of specific cake resistance were two to three orders of magnitude lower than those obtained in pressure filtration. Despite the compressible nature of sludge, key macroscopic parameters such as time of drainage and cake solid content showed simple functional dependency of the volumetric load and SS of a given sludge. This suggests that the proposed method may be applied for design purposes without the use of extensive numerical modeling. The possibilities for application of this new technique are, among others, the estimation of sludge drainability prior to mechanical dewatering on a belt filter, or the application of surplus sludge on reed beds, as well as adjustments of sludge loading, concentration or sludge pre-treatment in order to optimize the drainage process.

  20. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  1. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  2. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system.

    PubMed

    Guo, Ruixin; Xie, Xiaodan; Chen, Jianqiu

    2015-01-01

    The present study investigated the removal efficiency of amoxicillin by the Fenton process, individual activated sludge process and Fenton-activated sludge combined system. For the antibiotic at 1 g L(-1), the optimal conditions of the Fenton process included: 4 mL FeSO4·7H2O solution (20.43 g  L(-1)), 6 mL H2O2 solution (3%) and 40°C. Under the optimal conditions, the removal rate of amoxicillin achieved up to 80% in 70 min. In addition, the impact of amoxicillin on microorganism limited the removal capacity of the activated sludge process. When the concentration of amoxicillin was less than 350 mg L(-1), 69.04-88.79% of the antibiotic was removed. However, the antibiotic could not be treated by the activated sludge when the concentration increased up to 650 mg L(-1). On the other hand, ifamoxicillin was pretreated partly by the Fenton process it was then degraded completely by the same activated sludge. Thus, the combined system included two steps: 80% amoxicillin was degraded in step I and was removed completely in the cheaper biological treatment (step II). Our result showed that compared with the individual activated sludge process, the Fenton process improved the removal capacity of the subsequent activated sludge process in the combined system.

  3. Effects of heat treatment on microbial communities of granular sludge for biological hydrogen production.

    PubMed

    Alibardi, Luca; Favaro, Lorenzo; Lavagnolo, Maria Cristina; Basaglia, Marina; Casella, Sergio

    2012-01-01

    Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 10(3)CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.

  4. K Basins sludge removal temporary sludge storage tank system

    SciTech Connect

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  5. Improving performance of microbial fuel cell while controlling methanogenesis by Chaetoceros pretreatment of anodic inoculum.

    PubMed

    Rajesh, P P; Jadhav, D A; Ghangrekar, M M

    2015-03-01

    Loss of substrate due to methanogenesis reduces Coulombic efficiency (CE) of the microbial fuel cell (MFC) significantly. Hexadecatrienoic acid present in the marine algae Chaetoceros inhibits the growth of methanogenic archaea. Influence of Chaetoceros pre-treated mixed anaerobic sludge on the electrogenic activity of MFC was evaluated. A MFC inoculated with Chaetoceros pre-treated mixed anaerobic sludge demonstrated maximum CE of 45.18%, with volumetric power density of 21.43W/m(3) and current density of 93A/m(3). Cyclic voltammetry indicated higher electron discharge on the anode surface due to suppression of methanogenesis. Tafel analysis also showed a higher exchange current density and a lower Tafel slope and charge transfer resistance, indicating advantage of this pre-treatment method in reducing the cell internal losses. A 60% reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with Chaetoceros; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC.

  6. Selective Leaching of Chromium from Hanford Tank Sludge 241-U-108

    SciTech Connect

    Rapko, Brian M.; Vienna, John D.

    2002-09-09

    This study evaluated the oxidants permanganate, MnO4-, and peroxynitrite, ONOO-, as selective chromium-leaching agents from washed 241-U-108 tank sludge under varying conditions of hydroxide concentration, temperature, and time. The mass changes and final sludge compositions were evaluated using glass-property models to ascertain the relative impacts of the various oxidative alkaline leach conditions on the amount of borosilicate glass required to immobilize a given amount of washed 241-U-108 Hanford tank sludge. Only permanganate leaching removes sufficient chromium to make the chromium concentration in the oxidatively alkaline leached solids non-limiting. In the absence of added oxidants, continued washing or caustic leaching have no beneficial effects. Peroxynitrite addition reduces the amount of glass required to immobilize a given amount of washed 241-U-108 tank sludge by approximately a factor of two. Depending on the leach conditions and the exact chromium concentration limits, contact with alkaline permanganate solutions reduces the amount of immobilized high-level waste glass by a factor of 10 to 30.

  7. Determination of pesticide residues in sewage sludge: a review.

    PubMed

    Tadeo, José L; Sánchez-Brunete, Consuelo; Albero, Beatriz; García-Valcárcel, Ana I

    2010-01-01

    Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed.

  8. Process to stabilize scrubber sludge

    SciTech Connect

    Breen, B.P.; Gabrielson, J.E.; Schrecengost, R.A.

    1994-01-04

    A process for stabilizing sludge containing flyash and calcium sulfate formed by a lime or limestone scrubber increases the sludge particles to a size at which leaching of toxic metals from the particles no longer occurs at toxic levels. The sludge is dewatered and injected into the furnace in a manner to cause the flyash to soften and stick together. The agglomerated particles then fall into a bottom ash pit for removal as a common waste. 4 figs.

  9. [Technology of sewage sludge hygienization].

    PubMed

    Keller, U

    1983-09-01

    That the use of modern technology against the laws of Nature must fail, has been clearly demonstrated again some years ago when sewage sludge postpasteurization was rashly introduced. Although many attempts were made to improve this procedure, it had to be abandoned because of unavoidable massive regrowth of pathogens which invaded the germ-free postpasteurized sludge. In contrast of postpasteurization, long-term large-scale tests with the pasteurization of fresh sludge (prepasteurization) have demonstrated that this procedure where methane digestion with its pathogen displacing effect constitutes the final stage, is basically able to function. With respect to the Swiss Sewage Sludge Decree which came into force in May 1981, and which imposes sludge hygienization for most applications throughout the year, various thermal prepasteurization methods have been offered on the market ready for application to meet the legally prescribed requirements. However, some of them still need selective improvements in order to ensure the desired hygienisation effect permanently. For some time now, attention has been focussed on a novel biological 2-stage procedure based on partial aerobic thermophilic fermentation followed by anaerobic sludge digestion which in addition to good hygienisation promises improved sludge thickening, reduced digestion time, more favourable energy consumption and added process stability etc. Although it has already been offered on the market, this interesting process is being thouroughly tested and optimized in parallel pilot tests plant at the WWTP Altenrhein. Finally, reference is made to further sludge treatment processes such as sludge drying and sludge composting which mostly comprise efficent sludge hygienisation although they may not entirely prevent pathogenic regrowth. Moreover, some unconventional and less popular processes such as liquid sludge irradiation and chemical methods are also mentioned.

  10. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    SciTech Connect

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  11. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  12. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  13. Pretreatment and Enzymatic Hydrolysis

    SciTech Connect

    2006-06-01

    Activities in this project are aimed at overcoming barriers associated with high capital and operating costs and sub-optimal sugar yields resulting from pretreatment and subsequent enzymatic hydrolysis of biomass.

  14. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.

    PubMed

    Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

    2012-10-15

    Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3).

  15. Disposal of domestic sludge and sludge ash on volcanic soils.

    PubMed

    Escudey, Mauricio; Förster, Juan E; Becerra, Juan P; Quinteros, Magdalena; Torres, Justo; Arancibia, Nicolas; Galindo, Gerardo; Chang, Andrew C

    2007-01-31

    Column leaching experiments were conducted to test the ability of Chilean volcanic soils in retaining the mineral constituents and metals in sewage sludge and sludge ash that were incorporated into the soils. Small or negligible amounts of the total content of Pb, Fe, Cr, Mn, Cd, and Zn (0 to <2%), and more significant amounts of mineral constituents such as Na (7-9%), Ca (7-13%), PO4 (4-10%), and SO4 (39-46%) in the sludge and sludge ash were readily soluble. When they were incorporated on the surface layer of the soils and leached with 12 pore volumes of water over a 3 month period of time, less than 0.1% of the total amount of heavy metals and PO4 in the sludge and sludge ash were collected in the drainage water. Cation exchange selectivity, specific anion adsorption and solubility are the processes that cause the reduction of leaching. The volcanic soils were capable of retaining the mineral constituents, P, and metals in applied sewage sludge and sludge ash and gradually released them as nutrients for plant growth.

  16. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    PubMed

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel.

  17. Efficient pretreatment of Vietnamese rice straw by soda and sulfate cooking methods for enzymatic saccharification.

    PubMed

    Dien, Le Quang; Phuong, Nguyen Thi Minh; Hoa, Doan Thai; Hoang, Phan Huy

    2015-02-01

    This manuscript presents a study on alkaline pretreatment of Vietnamese rice (Oryza sativa L.) straw that grows in Northern Vietnam for enzymatic saccharification. The NaOH pretreatment (soda cooking) and NaOH/Na2S pretreatment (sulfate cooking) were applied for rice straw pretreatment, which have relatively similar condition with industrial pulping processes but at lower temperature. Pretreated biomass solid was then enzymatic hydrolyzed by commercial enzyme Cellic®CTec2 (Novozymes) with enzyme dosage of 35 FPU/g to achieve reducing sugars. The suitable condition for pretreatment was found at temperature of about 100 °C, pretreatment time of 2 h, and solid/liquid ratio of 1:10 with active alkali dosage of 20 % of dry rice straw. Under this pretreatment condition, sugar yield in enzymatic hydrolysis up to 45.33 and 48.92 % over dry rice straw could be obtained after soda cooking and sulfate cooking pretreatment, respectively. Moreover, the changes of components of rice straw after pretreatment were also studied. The crystallinity of cellulose in pretreated biomass solid was calculated from XRD pattern. And the fibril morphology after treatment was revealed by the microscopic observations performed by scanning electron microscope (SEM).

  18. Performance of a sulfidogenic bioreactor and bacterial community shifts under different alkalinity levels.

    PubMed

    Zhao, Yang-Guo; Li, Xin-Wei; Wang, Jun-Cai; Bai, Jie; Tian, Wei-Jun

    2010-12-01

    The performance of a sulfidogenic bioreactor and the response of bacterial populations to influent alkalinity changes were investigated. The bioreactor reached 40% of sulfate removal efficiency (SRE) with 0 mg l(-1) of alkalinity, and single-stranded conformation polymorphism profiles showed that some members of Bacteroides, Dysgonomonas, Sporobacter, Quinella, and Citrobacter became dominant populations. 16S rRNA gene library analysis indicated that the Actinobacteria group increased from 0% in seed to 23% in sludge. An increase in alkalinity to 1300 mg l(-1) led to a rapid increase of SRE to 65% and changes in the bacterial community. Sequences representing Dysgonomonas, Raoultella, Kluyvera, and Phascolarctobacterium were now found. When alkalinity was deceased to 0 mg l(-1), SRE dropped and the bands representing Raoultella, Kluyvera, and Phascolarctobacterium disappeared, while bands representing Clostridium appeared. A second cycle of low/high alkalinity did not result in obvious changes to the bacterial community. These results indicate that the sulfidogenic bioreactor favored higher influent alkalinity and that the different functional microbial populations responded well to the alkalinity changes.

  19. Effect of microwave hydrolysis on transformation of steroidal hormones during anaerobic digestion of municipal sludge cake.

    PubMed

    Hamid, Hanna; Eskicioglu, Cigdem

    2013-09-15

    Fate and removal of 16 steroidal (estrogenic, androgenic and progestogenic) hormones were studied during advanced anaerobic digestion of sludge cake using microwave (MW) pretreatment. Effect of pretreatment temperature (80, 120, 160 °C), operating temperature (mesophilic at 35 ± 2 °C, thermophilic at 55 ± 2 °C) and sludge retention time (SRT: 20, 10, 5 days) were studied employing eight lab-scale semi-continuously fed digesters. To determine the potential effect of MW hydrolysis, hormones were quantified in total (sorbed + soluble) and supernatant (soluble) phases of the digester influent and effluent streams. Seven of 16 hormones were above the method reporting limit (RL) in one or more of the samples. Hormone concentrations in total phase of un-pretreated (control) and pretreated digester feeds ranged in <157-2491 ng/L and <157-749 ng/L, respectively. The three studied factors were found to be statistically significant (95% confidence level) in removal of one or more hormones from soluble and/or total phase. MW hydrolysis of the influent resulted in both release (from sludge matrix) and attenuation of hormones in the soluble phase. Accumulation of estrone (E1) as well as progesterone (Pr) and androstenedione (Ad) in most of the digesters indicated possible microbial transformations among the hormones. Compared to controls, all pretreated digesters had lower total hormone concentrations in their influent streams. At 20 days SRT, highest total removal (E1+E2+Ad +Pr) was observed for the thermophilic control digester (56%), followed by pretreated mesophilic digesters at 120 °C and 160 °C with around 48% efficiency. In terms of conventional performance parameters, relative (to control) improvements of MW pretreated digesters at a 5-d SRT ranged in 98-163% and 57-121%, for volatile solids removal and methane production, respectively.

  20. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    SciTech Connect

    King, William D.; Hay, Michael S.

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  1. The effects of co-substrate and thermal pretreatment on anaerobic digestion performance.

    PubMed

    Amiri, Leyla; Abdoli, Mohammad Ali; Gitipour, Saeid; Madadian, Edris

    2016-11-29

    The influence of anaerobic co-digestion of leachate and sludge with organic fraction of municipal solid waste (OFMSW) under mesophilic condition in three batch digesters of 5 L capacity has been studied. OFMSW was mixed with leachate and sludge at three different ratios. Experimental results illustrated that the digester with a ratio of 2000/2500 (leachate (mL) or sludge/OFMSW (mL)) had significantly higher performance. Furthermore, this study compared the performance of anaerobic digestion of different substrates with three different mixing ratios with and without thermal pretreatment at low temperature (65°C) in terms of biogas production, chemical oxygen demand (COD) elimination as well as hydraulic retention time. In addition, to predict the biogas yield and evaluate the kinetic parameters, the modified Gompertz model was applied. Based on the results, the maximum biogas yield from adding different leachate and sludge ratios to OFMSW was recorded to be 0.45 and 0.38 m(3 )kg(-1) COD which was higher about 7% in comparison with co-digestion original OFMSW without thermal pretreatment. In addition, thermal pretreatment accelerated the hydrolysis step. Moreover, the total COD elimination was relatively stable in the range of 52-60% at all types of substrate mixtures. Also, the modified Gompertz model demonstrated a good fit to the experimental results.

  2. Phosphate removal using sludge from fuller's earth production.

    PubMed

    Moon, Yong Hee; Kim, Jae Gon; Ahn, Joo Sung; Lee, Gyoo Ho; Moon, Hi-Soo

    2007-05-08

    This study assesses the phosphate removal capacity and mechanism of precipitation or adsorption from aqueous solutions in batch experiments by an industrial sludge containing gypsum (CaSO(4).2H(2)O) obtained as a by-product from a fuller's earth process. The potential capacity for phosphate removal was tested using various solution concentrations, pH values, reaction times, and amount of sludge. The maximum phosphate adsorption capacity calculated using the Langmuir equation was 2.0 g kg(-1). The pH for the maximum adsorption by the sludge was neutral to alkaline (pH 7-12). Over 99% of phosphate was removed from a phosphate solution of 30 mg L(-1) using 0.15 g of sludge in a 9-h reaction. Sulfate (SO(4)(2-)) concentration increased with increasing initial phosphate concentration, possibly because of dissolution of gypsum and adsorption of both sulfate and phosphate. At high phosphate concentration (>1000 mg L(-1)), relative constant concentration of Ca(2+) was not consistent with adsorption of the most important phosphate removal mechanism. Results suggest that precipitation of calcium phosphate is principally responsible for phosphate removal under its high concentration. Agglomerated precipitate in the reaction sludge was observed by SEM and identified as brushite (CaHPO(4).2H(2)O) by XRD, FT-IR, and DTA. Based on thermodynamic considerations, it is suggested that the brushite will readily transform to more stable phases, such as hydroxyapatite (Ca(5)(PO(4))(3).OH).

  3. Improving thermal dewatering characteristics of mechanically dewatered sludge: response surface analysis of combined lime-heat treatment.

    PubMed

    Tunçal, Tolga

    2011-05-01

    In this study, disintegration of dewatered sludge (dry solids content [DS%] = 23 +/- 2) was studied to assess the possibility of enhancing the overall performance of a thermal dewatering processes. Powdered lime was used as an alkaline disintegrator. The combined effects of drying temperature, powdered lime dosage, and organic content on the thermal drying rate of dewatered sludge were investigated in a full-scale wastewater treatment plant. Effects of selected design parameters on the sludge drying rate were modeled using a response surface method. In addition, the possible interaction between lost on ignition and total organic carbon parameters also was investigated statistically. Specific resistance to filtration and free water contents of raw and disintegrated mixed sludge (DS% = 1.0 to 1.8) samples were compared statistically. The obtained results indicated that all of the selected design parameters have a significant effect on thermal dewatering characteristics, and the alkaline disintegration technique could remarkably improve thermal evaporation rate of dewatered sludge. These results are important because they could help to establish a sustainable sludge management model, which is critical in reducing environmental health risks.

  4. When Research Turns to Sludge

    ERIC Educational Resources Information Center

    Wing, Steve

    2010-01-01

    Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…

  5. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  6. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-03-20

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production.

  7. A Technology of Wastewater Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  8. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    NASA Astrophysics Data System (ADS)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.

  9. Potential of high-frequency ultrasounds to improve sludge anaerobic conversion and surfactants removal at different food/inoculum ratio.

    PubMed

    Gallipoli, A; Gianico, A; Gagliano, M C; Braguglia, C M

    2014-05-01

    High-frequency ultrasounds have recently gained interest as oxidative technique for sonochemical degradation of organic contaminants in water. In this study an innovative approach applying 200 kHz ultrasounds to improve both sludge anaerobic biodegradability and decontamination is proposed. Digestion tests were performed on batch reactors fed either with untreated or sonicated sludge, at different food/inoculum (F/I) ratio, in the range 0.3-0.9. First order kinetic highlighted a decreasing trend of the hydrolysis rate by increasing F/I, both for untreated and sonicated sludge. Positive effect of ultrasounds on specific biogas production was evident, but the conversion rate for pretreated sludge was strongly affected by F/I, and decreased by increasing F/I. Anionic surfactants anaerobic removal occurred in all tests, but the effect of ultrasounds was significant only at F/I=0.3. By pretreating sludge with high frequency ultrasounds, low F/I was the ideal ratio improving both sludge anaerobic digestion and decontamination.

  10. GREET Pretreatment Module

    SciTech Connect

    Adom, Felix K.; Dunn, Jennifer B.; Han, Jeongwoo

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  11. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load.

  12. Evaluation of Municipal Wastewater Treatment Plant Activated Sludge for Biodegradation of Propylene Glycol as an Aircraft Deicing Fluid

    DTIC Science & Technology

    2012-03-01

    unit for use. 31 Explore other treatment and disposal options for used ADF. While anaerobic digestion of used ADF has been widely...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...all used ADF in an approved manner. Available options include recycling, disposal under a waste contract, or onsite pretreatment (United States EPA

  13. Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth.

    PubMed

    Patinvoh, Regina J; Feuk-Lagerstedt, Elisabeth; Lundin, Magnus; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2016-12-01

    Chicken feathers are available in large quantities around the world causing environmental challenges. The feathers are composed of keratin that is a recalcitrant protein and is hard to degrade. In this work, chicken feathers were aerobically pretreated for 2-8 days at total solid concentrations of 5, 10, and 20 % by Bacillus sp. C4, a bacterium that produces both α- and β-keratinases. Then, the liquid fraction (feather hydrolysate) as well as the total broth (liquid and solid fraction of pretreated feathers) was used as substrates for biogas production using anaerobic sludge or bacteria granules as inoculum. The biological pretreatment of feather waste was productive; about 75 % of feather was converted to soluble crude protein after 8 days of degradation at initial feather concentration of 5 %. Bacteria granules performed better during anaerobic digestion of untreated feathers, resulting in approximately two times more methane yield (i.e., 199 mlCH4/gVS compared to 105 mlCH4/gVS when sludge was used). Pretreatment improved methane yield by 292 and 105 % when sludge and granules were used on the hydrolysate. Bacteria granules worked effectively on the total broth, yielded 445 mlCH4/gVS methane, which is 124 % more than that obtained with the same type of inoculum from untreated feather.

  14. PRETREATING THORIUM FOR ELECTROPLATING

    DOEpatents

    Beach, J.G.; Schaer, G.R.

    1959-07-28

    A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.

  15. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  16. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    PubMed

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2016-10-06

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  17. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases.

    PubMed

    Beukes, Natasha; Pletschke, Brett I

    2010-06-01

    Agricultural crop wastes are typically lignocellulosic in composition and thus partially recalcitrant to enzymatic degradation. The recalcitrant nature of plant biomass and the inability to obtain complete enzymatic hydrolysis has led to the establishment of various pre-treatment strategies. Alkaline pre-treatments increase the accessibility of the exposed surface to enzymatic hydrolysis through the removal of acetyl and uronic acid substituents on hemicelluloses. Unlike the use of steam and acid pre-treatments, alkaline pre-treatments (e.g. lime) solubilise lignin and a small percentage of the hemicelluloses. The most common alkaline pre-treatments that are employed make use of sodium hydroxide and lime. This study compared the synergistic degradation of un-treated and lime pre-treated sugarcane bagasse using cellulosomal and non-cellulosomal hemicellulases as free enzymes. The enzyme combination of 37.5% ArfA and 62.5% ManA produced the highest amount of reducing sugar of 91.834 micromol/min for the degradation of un-treated bagasse. This enzyme combination produced a degree of synergy of 1.87. The free enzymes displayed an approximately 6-fold increase in the enzyme activity, i.e. the total amount of reducing sugar released (593.65 micromol/min) with the enzyme combination of 37.5% ArfA, 25% ManA and 37.5% XynA for the lime pre-treated substrate and a degree of synergy of 2.14. To conclude, this study indicated that pre-treating the sugarcane bagasse is essential, in order to increase the efficiency of lignocellulose enzymatic hydrolysis by disruption of the lignin sheath, that the lime pre-treatment did not have any dramatic effect on the synergistic relationship between the free enzymes, and that time may play an important role in the establishment of synergistic relationships between enzymes.

  18. Co-digestion of intermediate landfill leachate and sewage sludge as a method of leachate utilization.

    PubMed

    Montusiewicz, A; Lebiocka, M

    2011-02-01

    This study examines the co-digestion of intermediate landfill leachate and sewage sludge from a municipal wastewater treatment plant. Application of leachate as a co-fermentation component increased the concentrations of soluble organic compounds (expressed as total organic carbon), ammonium nitrogen, and alkalinity in the digester influents. The biogas yield obtained from the co-fermentation of a 20:1 sewage sludge: intermediate leachate mixture was 1.30 m(3) per kg of removed volatile solids (VS), while that from a 10:1 mixture was 1.24 m(3) per kg of removed VS. These values exceeded the biogas yield for the sludge alone by 13% and 8%, respectively. The leachate addition influenced the proportion of methane to a minor extent. Increased methane yields of 16.9% and 6.2% per kg of removed VS were found for the two sewage sluge:intermediate leachate mixtures, respectively.

  19. The processing of simulated high-level radioactive waste sludges containing nitrites and mercury

    SciTech Connect

    Zamecnik, J.R.; Hutson, N.D.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The reaction of formic acid with simulated alkaline sludge containing mercury and nitrite was studied in an engineering-scale facility. Quantification of offgas production was performed, with the major offgases being CO{sub 2} and NO{sub x}. A small amount of CO was also found. The NO{sub x} was scrubbed in the offgas condenser and formed very acidic solutions of nitrous and nitric acids. These acids dissolved mercury that was stripped from the sludge. However, the overall efficiency of mercury stripping was greater than expected, and the final mercury concentration in the sludge was lower than expected. The NO{sub x} in the offgas also caused large temperature rises in the offgas system due to the exothermic reaction of NO with O{sub 2}. This temperature rise had a detrimental effect on the performance of the Formic Acid Vent Condenser, such that redesign is being contemplated. 6 refs., 6 figs., 3 tabs.

  20. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    SciTech Connect

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  1. Comparison of the effects of microwave irradiation with different intensities on the biodegradability of sludge from the dairy- and meat-industry.

    PubMed

    Beszédes, Sándor; László, Zsuzsanna; Horváth, Zsuzsanna H; Szabó, Gábor; Hodúr, Cecilia

    2011-01-01

    Microwave (MW) irradiation is a relatively new possibility of conditioning and pretreating for wastewater sludge. Following its application in the telecommunications and food-industries, the environmental use of this technique has come into the limelight in recent years, and has become increasingly popular. Various publications have dealt with the examination of the effects of MW irradiation in municipal sludge-handling processes. We focused on the effects of MW irradiation at different power levels on solubilization (sCOD/tCOD), biodegradation and anaerobic digestion of sludge from the food-industry. For evaluating the efficiency of MW pre-treatment, the changes in the soluble fraction of the organic matter, the VS/TS ratio, the biogas yield, the methane content in the biogas, and the rate of batch mesophilic digestion were used as control parameters. Additionally, the energetic efficiency of MW pre-treatment was also examined. The results were compared with those of conventional heat (CH) treatments of the same sludge. The MW treatment proved to increase both the sCOD/tCOD and the VS/TS ratio. Furthermore, the biogas and methane yields increased during the digestion of the MW-pretreated food-industry sludge. A higher MW power level generally enhanced the biogas and methane production. Energetically, the most economic pre-treatment of sludge from dairy and meat processing was at a power level of 1.5 Wg(-1) and 2.5 Wg(-1) MW respectively; the surplus energy content of the enhanced biogas product could not compensate the extra energy demand of the stronger MW pre-treatments.

  2. Process Development for Permanganate Addition During Oxidative Leaching of Hanford Tanks Sludges

    SciTech Connect

    Rapko, Brian M.; Lumetta, Gregg J.; Deschane, Jaquetta R.; Peterson, Reid A.; Blanchard, David L.

    2007-10-30

    Previous Bechtel National, Incorporated (BNI)-sponsored studies have targeted optimizing sodium permanganate for the selective oxidation of chromium from washed Hanford tank sludges (Rapko et al. 2004; Rapko et al. 2005). The recommendation from previous work was that contact with sodium permanganate in a minimally caustic solution, i.e., 0.1 to 0.25 M [OH-] initially, provided maximum Cr dissolution while minimizing concomitant Pu dissolution. At the request of BNI, further work on oxidative alkaline leaching was performed.

  3. Fungal pretreatment of lignocellulosic biomass.

    PubMed

    Wan, Caixia; Li, Yebo

    2012-01-01

    Pretreatment is a crucial step in the conversion of lignocellulosic biomass to fermentable sugars and biofuels. Compared to thermal/chemical pretreatment, fungal pretreatment reduces the recalcitrance of lignocellulosic biomass by lignin-degrading microorganisms and thus potentially provides an environmentally-friendly and energy-efficient pretreatment technology for biofuel production. This paper provides an overview of the current state of fungal pretreatment by white rot fungi for biofuel production. The specific topics discussed are: 1) enzymes involved in biodegradation during the fungal pretreatment; 2) operating parameters governing performance of the fungal pretreatment; 3) the effect of fungal pretreatment on enzymatic hydrolysis and ethanol production; 4) efforts for improving enzymatic hydrolysis and ethanol production through combinations of fungal pretreatment and physical/chemical pretreatment; 5) the treatment of lignocellulosic biomass with lignin-degrading enzymes isolated from fungal pretreatment, with a comparison to fungal pretreatment; 6) modeling, reactor design, and scale-up of solid state fungal pretreatment; and 7) the limitations and future perspective of this technology.

  4. Plant uptake of pentachlorophenol from sludge-amended soils

    SciTech Connect

    Bellin, C.A.; O'Connor, G.A.

    1990-01-01

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent of sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.

  5. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge

    PubMed Central

    Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei

    2015-01-01

    The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132

  6. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge.

    PubMed

    Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei

    2015-01-01

    The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L(-1) flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 10(10) m∙kg(-1). Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions.

  7. Influence of heavy metal rich tannery sludge on soil enzymes vis-à-vis growth of Tagetes minuta, an essential oil bearing crop.

    PubMed

    Patel, Anju; Patra, D D

    2014-10-01

    Tannery sludge is available in plenty and is hazardous to environment as well as plant and animal life. It is very important to manage the tannery sludge in an environmentally sound manner. The aim of this study was to assess the physico-chemical, microbial and biochemical properties of soil treated with different levels of sludge. In this study, Tagetes minuta an essential oil bearing crop was grown in two different textured soils treated with different levels of tannery sludge. Application of tannery sludge (TS) increased the growth and oil yield of plant and also the activity of urease and soil microbial biomass nitrogen (SMBN) when applied in 50:50 combinations of soil:sludge. The crop performed well in coarse soil with a soil:sludge ratio of 50:50. High concentration of tannery sludge exhibited inhibitory effect on SMBN and urease activity. Acid/alkaline phosphatase, dehydrogenase and soil microbial biomass carbon (SMBC) increased as the sludge concentration increased in soil. This may be due to high organic matter present in tannery sludge. Roots accumulated more metal than the shoot. No detectable amount of metal was found in oil of T.minuta. To test the relation between 20 characters principal component analysis (PCA) was performed. PCA analysis indicates that cation exchange capacity (CEC), SMBC, dehydrogenase, acid and alkaline phosphatases were grouped in group 1. SMBN, urease and cis-ocimene content in oil were in group 2 whereas biomasss, chlorophyll a, limonene, Z and E-tagetone were in group 3. PC-I contributes 54% of total variance and PC-II contributes 38% of the total variance. The results concluded that T.minuta can mitigate metal toxicity by root absorption. Microbial activity and biomass of plant was higher in coarse soil with TS than fine soil with TS.

  8. Effect of ozonation on activated sludge from pulp and paper industry.

    PubMed

    Gupta, S; Chakrabarti, S K; Singh, S

    2010-01-01

    Aerobic biological treatment with activated sludge is the predominant process all over the world for treatment of pulp and paper industry wastewater. 50-70% of the biodegradable organic material is oxidized to CO₂ and the rest is converted to bacterial biomass, typically termed as excess sludge or waste activated sludge (WAS). Handling and disposal of WAS in general and in particular from the pulp and paper industry face different processing difficulties, regulatory stringency due to organochlorine contamination and reluctance of people for reuse. With an objective of reducing the net disposable biomass, ozonation of WAS from a pulp and paper mill and from a laboratory scale batch activated sludge process operated with the wastewater and bacterial seed of the same pulp and paper mill have been carried out. With the mill sludge having predominant filamentous organisms 18% MLSS was reduced at an ozone dosage of 55 mg O₃/g dry MLSS solid (DS) resulting in 2.5 times COD increase. With the laboratory sludge which is well structured and flocculating, only 6% MLSS was reduced at an ozone dosage of 55 mg O₃/g DS. Ozonation mineralizes 26% and 20% AOX compounds embedded in the secondary sludge in the mill and laboratory sludge respectively at an ozone dosage of 55 mg O₃/g DS. During ozonation, absorbed/adsorbed lignin on biomass was released which resulted in increased colour concentration. Ozonation can be a potential oxidative pretreatment process for reducing the WAS and paving the way for cost effective overall treatment of WAS.

  9. Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge.

    PubMed

    Cavka, Adnan; Alriksson, Björn; Rose, Shaunita H; van Zyl, Willem H; Jönsson, Leif J

    2011-08-01

    The possibility to utilize fiber sludge, waste fibers from pulp mills and lignocellulose-based biorefineries, for combined production of liquid biofuel and biocatalysts was investigated. Without pretreatment, fiber sludge was hydrolyzed enzymatically to monosaccharides, mainly glucose and xylose. In the first of two sequential fermentation steps, the fiber sludge hydrolysate was fermented to cellulosic ethanol with the yeast Saccharomyces cerevisiae. Although the final ethanol yields were similar, the ethanol productivity after 9.5 h was 3.3 g/l/h for the fiber sludge hydrolysate compared with only 2.2 g/l/h for a reference fermentation with similar sugar content. In the second fermentation step, the spent fiber sludge hydrolysate (the stillage obtained after distillation) was used as growth medium for recombinant Aspergillus niger expressing the xylanase-encoding Trichoderma reesei (Hypocrea jecorina) xyn2 gene. The xylanase activity obtained with the spent fiber sludge hydrolysate (8,500 nkat/ml) was higher than that obtained in a standard medium with similar monosaccharide content (1,400 nkat/ml). Analyses based on deglycosylation with N-glycosidase F suggest that the main part of the recombinant xylanase was unglycosylated and had molecular mass of 20.7 kDa, while a minor part had N-linked glycosylation and molecular mass of 23.6 kDa. Chemical analyses of the growth medium showed that important carbon sources in the spent fiber sludge hydrolysate included xylose, small aliphatic acids, and oligosaccharides. The results show the potential of converting waste fiber sludge to liquid biofuel and enzymes as coproducts in lignocellulose-based biorefineries.

  10. Effects of scrubber by-product-stabilized dairy lagoon sludge on growth and physiological responses of sunflower (Helianthus annuus L.).

    PubMed

    Thomas, Carla N; Bauerle, William L; Chastain, John P; Owino, Tom O; Moore, Kathy P; Klaine, Stephen J

    2006-06-01

    Brick manufacturing industries are challenged to comply with clean air mandates. Dry air scrubbers have been used to remove acid gases from the exhaust air from brick manufacturing plants. The use of dry air scrubbers results in the production of large quantities of an alkaline powder by-product. A greenhouse experiment was conducted to evaluate the potential of using dairy lagoon sludge stabilized with the scrubber by-product as a soil amendment. Lagoon sludge was stabilized with scrubber by-product at an application rate of 20 gl(-1). The sludge-scrubber by-product mixture was applied to a sandy loam soil to provide amendments ranging between 28 and 168 kg of plant available nitrogen (PAN)/ha for the growth of Helianthus annuus (sunflower). Use of the sludge-scrubber by-product mixture as a nitrogen fertilizer did not adversely affect sunflower seedling emergence; however, significantly higher (p<0.05) plant volume indices, leaf area, dry shoot and root masses, and seed yields were obtained for mature plants grown in sludge-treated soil relative to the control or fertilizer treatment. The sludge amendment did not severely impact gas exchange or chlorophyll a fluorescence of the plants and nutrient content of the sunflower tissues was generally within a sufficient range. The increased growth and yield of sunflower plants indicated the potential of the sludge-scrubber by-product mixture as a soil amendment in agricultural crop production.

  11. Removal of sulfur dioxide from flue gas using the sludge sodium humate.

    PubMed

    Zhao, Yu; Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m(3)/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g(-1) SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components.

  12. Removal of Sulfur Dioxide from Flue Gas Using the Sludge Sodium Humate

    PubMed Central

    Hu, Guoxin

    2013-01-01

    This study shows the ability of sodium humate from alkaline treatment sludge on removing sulfur dioxide (SO2) in the simulated flue gas. Experiments were conducted to examine the effect of various operating parameters, like the inlet SO2 concentration or temperature or O2, on the SO2 absorption efficiency and desulfurization time in a lab-scale bubbling reactor. The sludge sodium humate in the supernatant after alkaline sludge treatment shows great performance in SO2 absorption, and such efficiency can be maintained above 98% with 100 mL of this absorption solution at 298 K (flue gas rate of 0.12 m3/h). The highest SO2 absorption by 1.63 g SHA-Na is 0.946 mmol in the process, which is translated to 0.037 g SO2 g−1 SHA-Na. The experimental results indicate that the inlet SO2 concentration slightly influences the SO2 absorption efficiency and significantly influences the desulfurization time. The pH of the absorption solution should be above 3.5 in this process in order to make an effective desulfurization. The products of this process were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. It can be seen that the desulfurization products mainly contain sludge humic acid sediment, which can be used as fertilizer components. PMID:24453875

  13. Chemical removal and recovery of phosphorus from excess sludge in a sewage treatment plant.

    PubMed

    Kato, K; Murotani, N; Matsufuji, H; Saitoh, M; Tashiro, Y

    2006-05-01

    We describe a process for the recovery of phosphorus from excess sludge in a sewage treatment plant that currently uses polyaluminium chloride for chemical phosphorus removal. Instead, we employed alkaline dissolution of excess sludge with calcium phosphate precipitation to recover phosphorus from sewage. The recovery ratio for phosphorus from sewage using the phosphorus recovery system is approximately 50%. In addition, the amount of excess sludge in the phosphorus recovery system is approximately half that of conventional chemical phosphorus removal. Alkaline dissolution of excess sludge resulted in dissolution of aluminium into the supernatant. Furthermore, since dissolved aluminium can be reused as a coagulant, the phosphorus recovery system could be used to economize coagulant consumption. Operation and maintenance costs of the phosphorus recovery system are 25.9 U.S. cents per 1 m3 of sewage compared to 32.0 U.S. cents per 1 m3 of sewage for conventional chemical phosphorus removal, representing a decrease of 20% in the operation and maintenance costs.

  14. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge.

    PubMed

    Villar, Iria; Alves, David; Pérez-Díaz, Domingo; Mato, Salustiano

    2016-02-01

    Municipal sewage sludge is a waste with high organic load generated in large quantities that can be treated by biodegradation techniques to reduce its risk to the environment. This research studies vermicomposting and vermicomposting after composting of sewage sludge with the earthworm specie Eisenia andrei. In order to determine the effect that earthworms cause on the microbial dynamics depending on the treatment, the structure and activity of the microbial community was assessed using phospholipid fatty acid analysis and enzyme activities, during 112days of vermicomposting of fresh and composted sewage sludge, with and without earthworms. The presence of earthworms significantly reduced microbial biomass and all microbial groups (Gram+ bacteria, Gram- bacteria and fungi), as well as cellulase and alkaline phosphatase activities. Combined composting-vermicomposting treatment showed a lesser development of earthworms, higher bacterial and fungal biomass than vermicomposting treatment and greater differences, compared with the control without earthworms, in cellulase, β-glucosidase, alkaline and acid phosphatase. Both treatments were suitable for the stabilization of municipal sewage sludge and the combined composting-vermicomposting treatment can be a viable process for maturation of fresh compost.

  15. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge.

    PubMed

    Mehdizadeh, Seyedeh Neda; Eskicioglu, Cigdem; Bobowski, Jake; Johnson, Thomas

    2013-09-15

    Microwave (2.45 GHz, 1200 W) and conventional heating (custom pressure vessel) pretreatments were applied to dewatered municipal waste sludge (18% total solids) using identical heating profiles that span a wide range of temperatures (80-160 °C). Fourteen lab-scale semi-continuous digesters were set up to optimize the energy (methane) output and sludge retention time (SRT) requirements of untreated (control) and thermally pretreated anaerobic digesters operated under mesophilic and thermophilic temperatures. Both pretreatment methods indicated that in the pretreatment range of 80-160 °C, temperature was a statistically significant factor (p-value < 0.05) for increasing solubilization of chemical oxygen demand and biopolymers (proteins, sugars, humic acids) of the waste sludge. However, the type of pretreatment method, i.e. microwave versus conventional heating, had no statistically significant effect (p-value >0.05) on sludge solubilization. With the exception of the control digesters at a 5-d SRT, all control and pretreated digesters achieved steady state at all three SRTs, corresponding to volumetric organic loading rates of 1.74-6.96 g chemical oxygen demand/L/d. At an SRT of 5 d, both mesophilic and thermophilic controls stopped producing biogas after 20 d of operation with total volatile fatty acids concentrations exceeding 1818 mg/L at pH <5.64 for mesophilic and 2853 mg/L at pH <7.02 for thermophilic controls, while the pretreated digesters continued producing biogas. Furthermore, relative (to control) organic removal efficiencies dramatically increased as SRT was shortened from 20 to 10 and then 5 d, indicating that the control digesters were challenged as the organic loading rate was increased. Energy analysis showed that, at an elevated temperature of 160 °C, the amount of methane recovered was not enough to compensate for the energy input. Among the digesters with positive net energy productions, control and pretreated digesters at 80 °C were more

  16. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    PubMed Central

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical