Science.gov

Sample records for alkaline protease activity

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  3. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  4. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution.

    PubMed

    Martinez, Ronny; Jakob, Felix; Tu, Ran; Siegert, Petra; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2013-03-01

    Bacillus gibsonii Alkaline Protease (BgAP) is a recently reported subtilisin protease exhibiting activity and stability properties suitable for applications in laundry and dish washing detergents. However, BgAP suffers from a significant decrease of activity at low temperatures. In order to increase BgAP activity at 15°C, a directed evolution campaign based on the SeSaM random mutagenesis method was performed. An optimized microtiter plate expression system in B. subtilis was established and classical proteolytic detection methods were adapted for high throughput screening. In parallel, the libraries were screened for increased residual proteolytic activity after incubation at 58°C. Three iterative rounds of directed BgAP evolution yielded a set of BgAP variants with increased specific activity (K(cat)) at 15°C and increased thermal resistance. Recombination of both sets of amino acid substitutions resulted finally in variant MF1 with a 1.5-fold increased specific activity (15°C) and over 100 times prolonged half-life at 60°C (224 min compared to 2 min of the WT BgAP). None of the introduced amino acid substitutions were close to the active site of BgAP. Activity-altering amino acid substitutions were from non-charged to non-charged or from sterically demanding to less demanding. Thermal stability improvements were achieved by substitutions to negatively charged amino acids in loop areas of the BgAP surface which probably fostered ionic and hydrogen bonds interactions.

  5. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  6. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-29

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.

  7. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  8. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  9. Purification and characterization of an alkaline protease from Acetes chinensis

    NASA Astrophysics Data System (ADS)

    Xu, Jiachao; Liu, Xin; Li, Zhaojie; Xu, Jie; Xue, Changhu; Gao, Xin

    2005-07-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.

  10. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  11. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    PubMed

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C.

  12. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach.

  13. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR).

    PubMed

    Kocabiyik, Semra; Erdem, Bilge

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70 degrees C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes.

  14. Alkaline protease from Neurospora crassa. Purification and partial characterization

    SciTech Connect

    Lindberg, R.A.; Eirich, L.D.; Price, J.S.; Wolfinbarger, L. Jr.; Drucker, H.

    1981-01-25

    A simple purification procedure was developed for the extracellular alkaline protease from Neurospora crassa. Key steps in the purification were: (1) the choice of gelatin as the protein inducer, which induces optimally at a much lower concentration than other commonly employed protein inducers; (2) heat treatment, during which the inducer is digested by the protease; and (3) a concentration step that eliminates the usual precipitation procedures and removes much of the digested protein inducer. The preparation was homogeneous and had a molecular weight of approx. 30,500. The protease has 100% activity from pH 6.0 to 10.0, is heat labile above 45/sup 0/C, and susceptible to autodigestion. Hydrolysis of the ..beta.. chain from insulin indicates a preferential cleavage on the carboxyl group side of neutral and aromatic amino acids.

  15. Characterization of a chemostable serine alkaline protease from Periplaneta americana

    PubMed Central

    2013-01-01

    Background Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects’ gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. Results In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. Conclusion Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource. PMID:24229392

  16. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    PubMed Central

    Nirmal, Nilesh P.; Laxman, R. Seeta

    2014-01-01

    A fungal strain (Conidiobolus brefeldianus MTCC 5184) isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP) revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50%) and sorbitol (50%) at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory. PMID:25105022

  17. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes. PMID:17630120

  18. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity.

    PubMed

    Shrinivas, Dengeti; Kumar, Raghwendra; Naik, G R

    2012-01-01

    The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.

  19. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  20. Purification and characterisation of an alkaline protease used in tannery industry from Bacillus licheniformis.

    PubMed

    Tang, Xue-Ming; Lakay, F M; Shen, Wei; Shao, Wei-Lan; Fang, Hui-Ying; Prior, B A; Wang, Zheng-Xiang; Zhuge, Jian

    2004-09-01

    An extracellular alkaline protease produced by Bacillus licheniformis AP-1 was purified 76-fold, yielding a single 28 kDa band on SDS-PAGE. It was optimally active at pH 11 and at 60 degrees C (assayed over 10 min). The protease was completely inhibited by phenylmethylsulfonyl fluoride and diodopropyl fluorophosphate, with little increase upon Ca2+ and Mg2+ addition. PMID:15604774

  1. Studies on alkaline serine protease produced by Bacillus clausii GMBE 22.

    PubMed

    Kazan, Dilek; Bal, Hulya; Denizci, Aziz Akin; Ozturk, Nurcin Celik; Ozturk, Hasan Umit; Dilgimen, Aydan Salman; Ozturk, Dilek Coskuner; Erarslan, Altan

    2009-01-01

    An alkali tolerant Bacillus strain having extracellular serine alkaline protease activity was newly isolated from compost and identified as Bacillus clausii GMBE 22. An alkaline protease (AP22) was 4.66-fold purified in 51.5% yield from Bacillus clausii GMBE 22 by ethanol precipitation and DEAE-cellulose anion exchange chromatography. The purified enzyme was identified as serine protease by LC-ESI-MS analysis. Its complete inhibition by phenylmethanesulfonylfluoride (PMSF) also justified that it is a serine alkaline protease. The molecular weight of the enzyme is 25.4 kDa. Optimal temperature and pH values are 60 degrees C and 12.0, respectively. The enzyme showed highest specificity to N-Suc-Ala-Ala-Pro-Phe-pNA. The K(m) and k(cat) values for hydrolysis of this substrate are 0.347 mM and 1141 min(-1) respectively. The enzyme was affected by surface active agents to varying extents. The enzyme is stable for 2 h at 30 degrees C and pH 10.5. AP22 is also stable for 5 days over the pH range 9.0-11.0 at room temperature. AP22 has good pH stability compared with the alkaline proteases belonging to other strains of Bacillus clausii reported in the literature. PMID:19431045

  2. Identification and characterization of alkaline serine protease from goat skin surface metagenome.

    PubMed

    Pushpam, Paul Lavanya; Rajesh, Thangamani; Gunasekaran, Paramasamy

    2011-01-01

    Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively. PMID:21906326

  3. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    PubMed

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications.

  4. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry.

  5. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry. PMID:25224381

  6. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.

  7. Development of novel robust nanobiocatalyst for detergents formulations and the other applications of alkaline protease.

    PubMed

    Ibrahim, Abdelnasser S S; El-Toni, Ahmed M; Al-Salamah, Ali A; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-05-01

    Alkaline protease from alkaliphilic Bacillus sp. NPST-AK15 was immobilized onto functionalized and non-functionalized rattle-type magnetic core@mesoporous shell silica (RT-MCMSS) nanoparticles by physical adsorption and covalent attachment. However, the covalent attachment approach was superior for NPST-AK15 protease immobilization onto the activated RT-MCMSS-NH₂nanoparticles and was used for further studies. In comparison to free protease, the immobilized enzyme exhibited a shift in the optimal temperature and pH from 60 to 65 °C and pH 10.5-11.0, respectively. While free protease was completely inactivated after treatment for 1 h at 60 °C, the immobilized enzyme maintained 66.5% of its initial activity at similar conditions. The immobilized protease showed higher k cat and K m , than the soluble enzyme by about 1.3-, and 1.2-fold, respectively. In addition, the results revealed significant improvement of NPST-AK15 protease stability in variety of organic solvents, surfactants, and commercial laundry detergents, upon immobilization onto activated RT-MCMSS-NH₂nanoparticles. Importantly, the immobilized protease maintained significant catalytic efficiency for ten consecutive reaction cycles, and was separated easily from the reaction mixture using an external magnetic field. To the best of our knowledge this is the first report about protease immobilization onto rattle-type magnetic core@mesoporous shell silica nanoparticles that also defied activity-stability tradeoff. The results clearly suggest that the developed immobilized enzyme system is a promising nanobiocatalyst for various bioprocess applications requiring a protease.

  8. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases.

    PubMed

    Niehaus, F; Gabor, E; Wieland, S; Siegert, P; Maurer, K H; Eck, J

    2011-11-01

    In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non-redundant subtilase sequence tags with degenerate primers. Furthermore, an activity- as well as a sequence homology-based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full-length protease genes were recovered, sharing only 37-85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin-like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications.

  9. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases

    PubMed Central

    Niehaus, F.; Gabor, E.; Wieland, S.; Siegert, P.; Maurer, K. H.; Eck, J.

    2011-01-01

    Summary In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non‐redundant subtilase sequence tags with degenerate primers. Furthermore, an activity‐ as well as a sequence homology‐based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full‐length protease genes were recovered, sharing only 37–85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin‐like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications. PMID:21895993

  10. Kinetics of alkaline protease production by Streptomyces griseoflavus PTCC1130

    PubMed Central

    Hosseini, Seyed Vesal; Saffari, Zahra; Farhanghi, Ali; Atyabi, Seyed Mohammad; Norouzian, Dariush

    2016-01-01

    Background and Objectives: Proteases are a group of enzymes that catalyze the degradation of proteins resulting in the production of their amino acid constituents. They are the most important group of industrial enzymes which account for about 60% of total enzymes in the market and produced mainly by microorganisms. The attempts were made to study the kinetic parameters of protease produced by Streptomyces griseoflavus PTCC1130. Materials and Methods: Streptomyces griseoflavus PTCC1130 was grown on casein agar. Different media such as BM1, BM2, BM3 and BM4 were prepared. Data obtained from growth and protease production were subjected to kinetics evaluation. Casein was used as substrate for protease activity and the released soluble peptide bearing aromatic amino acid were quantified by Folin Cioclateaue reagent. Protein content of the enzyme and the sugar utilized by the organism were estimated by Bradford and Miller’s methods respectively. Results: Basal Medium named as BM1, BM2, BM3 and BM4(50 mL in 250 mL Erlen Meyer flasks) were screened out to evaluate protease production by Streptomyces griseoflavus PTCC1130. They were inoculated with known amount of seed culture and kept on rotary shaker. To obtain the specific growth rate, wet weight of biomass was plotted against the time. The clarified supernatant was used for the analysis of protease by measuring the soluble peptide containing aromatic amino acid residues employing Folin Cioclateaue reagent. Our results showed that maximum level of enzyme production (14035 U/L) was occurred at late exponential phase using Basal Medium supplemented with zinc sulfate (0.5g/L), casein (10g/L) at pH 6.5. Conclusions: A kinetic study of protease production by Streptomyces griseoflavus PTCC1130 provided highly quantitative information regarding the behavior of a system, which is essential to study the fermentation process. Exploitation of such kinetics analysis would be useful in commercialization of microbial enzyme

  11. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    PubMed

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. PMID:26834075

  12. Digestive alkaline proteases from thornback ray (Raja clavata): Characteristics and applications.

    PubMed

    Lassoued, Imen; Hajji, Sawssen; Mhamdi, Samiha; Jridi, Mourad; Bayoudh, Ahmed; Barkia, Ahmed; Nasri, Moncef

    2015-09-01

    This study describes the characterization of a crude protease extract from thornback ray (Raja clavata) and its evaluation in liquid detergent and in deproteinizattion of shrimp waste. At least five clear caseinolytic proteases bands were observed in a zymogram. The crude protease showed optimum activity at pH 8.0 and 50 °C, and it was highly stable over pH range from 8.0 to 11.0. Proteolytic enzymes were very stable in non-ionic surfactants and in the presence of oxidizing agents, maintaining 70% of their activity after incubation for 1 h at 30 °C in the presence of 1% sodium perborate. In addition, they showed high stability and compatibility with various liquid laundry-detergents available in the Tunisian market. The crude extract retained 100% of its activity after preincubation for 60 min at 30 °C in the presence of Nadhif Perfect, Textil and Carrefour laundry detergents. Further, proteases from R. clavata viscera were used for shrimp waste deproteinization in the process of chitin preparation. The percent of protein removal after 3 h hydrolysis at 45 °C with an enzyme/substrate ratio of 30 U/mg of proteins was 74%. These results suggest that enzymatic deproteinization of shrimp wastes by fish endogenous alkaline proteases could be applicable to the chitin production process.

  13. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  14. Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro.

    PubMed

    Kharazmi, A; Döring, G; Høiby, N; Valerius, N H

    1984-01-01

    Little is known about the interaction of Pseudomonas aeruginosa extracellular products and human polymorphonuclear leukocytes. The present study was designed to examine the effect of alkaline protease and elastase purified from P. aeruginosa on human neutrophil function. Neutrophil chemotaxis, oxygen consumption, glucose oxidation, superoxide production, and nitro blue tetrazolium reduction were studied. It was found that alkaline protease and elastase at fairly low concentrations (0.05 and 0.0025 micrograms/ml, respectively) inhibited chemotaxis. The inhibitory effect of both enzymes was increased at higher concentrations. The chemotaxis of preincubated and washed cells was also inhibited. Alkaline protease but not elastase inhibited opsonized zymosan-stimulated neutrophil oxygen consumption, whereas neither of the enzymes had any effect on glucose oxidation and nitro blue tetrazolium-reducing activity of stimulated neutrophils. The data on superoxide production ability of the cells indicated that the cells preincubated with enzyme and washed were capable of producing superoxide equal to the amount produced by untreated cells when they were stimulated with phorbol myristate acetate or zymosan. However, when elastase was present in the reaction mixture, the reduction of cytochrome c as a measure of superoxide production was inhibited. Inhibition of neutrophil function, particularly chemotaxis, will have important bearing on the escape of the microorganism from the phagocytic defense system of the host. The role of these products in localized infections and avascular areas such as skin burns, cornea, and, at least initially, in chronic lung colonization in cystic fibrosis patients becomes important.

  15. Biophysicochemical characterization of an alkaline protease from Beauveria sp. MTCC 5184 with multiple applications.

    PubMed

    Shankar, Shiv; Laxman, Ryali Seeta

    2015-01-01

    This study illustrates the biophysicochemical properties of an alkaline protease, BAP (Beauveria sp. alkaline protease) from Beauveria sp. MTCC 5184. This protease exhibited maximum activity at 50 °C, pH 9.0, and stability in a broad pH range, in the presence of organic solvents, denaturants, as well as detergents. Wash performance studies revealed that BAP was able to remove blood clots/stains from blood-soaked cloth. Peptide mass fingerprinting results demonstrated partial homology of BAP with subtilisin-like proteinase. BAP showed catalytic activity against natural as well as synthetic substrates. Active site characterization of BAP confirmed the involvement of serine, tryptophan, and aspartic acid in catalytic activity. Detailed kinetic and thermodynamic studies of BAP demonstrated that the activation energy (Ea) for casein hydrolysis was 82.55 kJ/M, the specificity constant (Kcat/K m), and the values of ∆G (change in Gibbs free energy) decreased with increase in temperature, whereas ∆H (change in enthalapy) and ∆S (change in entropy) were constant. The results of the present study indicate that BAP has potential for applications as detergent additive, in peptide synthesis, and in basic research.

  16. Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis.

    PubMed

    Bouacem, Khelifa; Bouanane-Darenfed, Amel; Laribi-Habchi, Hassiba; Elhoul, Mouna Ben; Hmida-Sayari, Aïda; Hacene, Hocine; Ollivier, Bernard; Fardeau, Marie-Laure; Jaouadi, Bassem; Bejar, Samir

    2015-11-01

    Caldicoprobacter guelmensis isolated from the hydrothermal hot spring of Guelma (Algeria) produced high amounts of extracellular thermostable serine alkaline protease (called SAPCG) (23,000U/mL). The latter was purified by ammonium sulphate precipitation, UNO Q-6 FPLC and Zorbex PSM 300 HPLC, and submitted to biochemical characterization assays. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer, with a molecular mass of 55,824.19Da. The 19 N-terminal residue sequence of SAPCG showed high homology with those of microbial proteases. The enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) and diiodopropyl fluorophosphates (DFP), which suggested its belonging to the serine protease family. It showed optimum protease activity at pH 10 and 70°C with casein as a substrate. The thermoactivity and thermostability of SAPCG were enhanced in the presence of 2mM Ca(2+). Its half-life times at 80 and 90°C were 180 and 60min, respectively. Interestingly, the SAPCG protease exhibited significant compatibility with iSiS and Persil, and wash performance analysis revealed that it could remove blood-stains effectively. Overall, SAPCG displayed a number of attractive properties that make it a promising candidate for future applications as an additive in detergent formulations.

  17. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations.

    PubMed

    Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef

    2008-01-01

    The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0-11.0 and 65-70 degrees C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 degrees C. The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 degrees C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 degrees C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.

  18. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    PubMed

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion.

  19. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    PubMed

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion. PMID:26304317

  20. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  1. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance.

  2. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive

    PubMed Central

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K.; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10–70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash. PMID:27536284

  3. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive.

    PubMed

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10-70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash. PMID:27536284

  4. Purification and properties of detergent-compatible extracellular alkaline protease from Scopulariopsis spp.

    PubMed

    Niyonzima, Francois Niyongabo; More, Sunil

    2014-10-01

    A fungal alkaline protease of Scopulariopsis spp. was purified to homogeneity with a recovery of 32.2% and 138.1 U/mg specific activity on lectin-agarose column. The apparent molecular mass was 15 ± 1 kD by sodium dodecyl sulfate polyacryalamide gel electrophoresis (SDS-PAGE). It was a homogenous monomeric glycoprotein as shown by a single band and confirmed by native PAGE and gelatin zymography. The enzyme was active and stable over pH range 8.0-12.0 with optimum activity at pH 9.0. The maximum activity was recorded at 50°C and remained unaltered at 50°C for 24 hr. The enzyme was stimulated by Co(2+) and Mn(2+) at 10 mM but was unaffected by Ba(2+), Mg(2+), Cu(2+), Na(+), K(+), and Fe(2+). Ca(2+) and Fe(3+) moderately reduced the activity (∼18%); however, a reduction of about 40% was seen for Zn(2+) and Hg(2+). The enzyme activity was completely inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF) and partially by N-bromosuccinimide (NBS) and tocylchloride methylketone (TLCK). The serine, tryptophan, and histidine may therefore be at or near the active site of the enzyme. The protease was more active against gelatin compared to casein, fibrinogen, egg albumin, and bovine serum albumin (BSA). With casein as substrate, Km and Vmax were 4.3 mg/mL and 15.9 U/mL, respectively. An activation was observed with sodium dodecyl sulfate (SDS), Tween-80, and Triton X-100 at 2% (v/v); however, H2O2 and NaClO did not affect the protease activity. Storage stability was better for all the temperatures tested (-20, 4, and 28 ± 2°C) with a retention of more than 85% of initial activity after 40 days. The protease retained more than 50% activity after 24 hr of incubation at 28, 60, and 90°C in the presence (0.7%, w/v) of commercial enzymatic and nonenzymatic detergents. The Super Wheel-enzyme solution was able to completely remove blood staining, differing from the detergent solution alone. The stability at alkaline pH and high temperatures, broad substrate specificity

  5. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  6. Statistical Approach for Optimization of Physiochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042

    PubMed Central

    Bhunia, Biswanath; Dey, Apurba

    2012-01-01

    The optimization of physiochemical parameters for alkaline protease production using Bacillus licheniformis NCIM 2042 were carried out by Plackett-Burman design and response surface methodology (RSM). The model was validated experimentally and the maximum protease production was found 315.28 U using optimum culture conditions. The protease was purified using ammonium sulphate (60%) precipitation technique. The HPLC analysis of dialyzed sample showed that the retention time is 1.84 min with 73.5% purity. This enzyme retained more than 92% of its initial activity after preincubation for 30 min at 37°C in the presence of 25% v/v DMSO, methanol, ethanol, ACN, 2-propanol, benzene, toluene, and hexane. In addition, partially purified enzyme showed remarkable stability for 60 min at room temperature, in the presence of anionic detergent (Tween-80 and Triton X-100), surfactant (SDS), bleaching agent (sodium perborate and hydrogen peroxide), and anti-redeposition agents (Na2CMC, Na2CO3). Purified enzyme containing 10% w/v PEG 4000 showed better thermal, surfactant, and local detergent stability. PMID:22347624

  7. Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases.

    PubMed

    Kamal Kumar, B; Balakrishnan, H; Rele, M V

    2004-02-01

    Alkaline xylanases from alkaliphilic Bacillus strains NCL (87-6-10) and Sam III were compared with the commercial xylanases Pulpzyme HC and Biopulp for their compatibility with detergents and proteases for laundry applications. Among the four xylanases evaluated, the enzyme from the alkaliphilic Bacillus strain NCL (87-6-10) was the most compatible. The enzyme retained its full activity (40 degrees C for 1 h) in the presence of detergents, whereas Pulpzyme HC and Sam III showed only 30% and 50% of their initial activity, respectively. Biopulp, though stable to detergents, had only marginal activity (5%)at pH 10. However, all four enzymes retained significant activity (80%) for 60 min in the presence of the proteases Alcalase and Conidiobolus protease. Supplementation of the enzyme enhanced the cleaning ability of the detergents.

  8. Elastase and alkaline protease production by Pseudomonas aeruginosa strains: comparison of two procedures.

    PubMed

    Yagci, A; Tuc, Y; Soyletir, G

    2002-04-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause fatal infections in immunocompromised hosts. The virulence of P. aeruginosa is associated with the presence of various extracellular factors like elastase and alkaline protease. These enzymes are suggested to contribute to tissue destruction and assist bacterial invasion during infection. Therefore it seems likely that determination of these virulence factors will be an important prognostic marker in the near future especially for follow up of cystic fibrosis patients, to start antimicrobial agents that are directly or indirectly inhibit microbial growth or virulence factor production. Herein, we suggest a simple test procedure to be used in routine laboratories for estimation of elastase and alkaline protease levels and compare them with quantitative methods in the literature. We detected the amount of elastase and alkaline protease in 49 clinical P. aeruginosa isolates by comparing agar plate method and colorimetric assay. The resulting values were in the range reported in the literature and differed from one strain to another(elastase: 0-1390 mg/ml, alkaline protease: 0- 770 mg/ml). Linear relationships were found when assays compared in pairs and significant correlation coefficients were obtained(r>0.788 for alkaline protease, p<0.0001- r>0.926 for elastase, p<0.0001). Our method can be applied in laboratories regardless of the availability of technical equipment.

  9. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    PubMed

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.

  10. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  11. Cloning and over-expression of an alkaline protease from Bacillus licheniformis.

    PubMed

    Tang, Xue-Ming; Shen, Wei; Lakay, F M; Shao, Wei-Lan; Wang, Zheng-Xiang; Prior, B A; Zhuge, Jian

    2004-06-01

    The alkaline protease gene, apr, from Bacillus licheniformis 2709 was cloned into a Bacillus shuttle expression vector, pHL, to yield the recombinant plasmid pHL-apr. The pHL-apr was expressed in Bacillus subtilis WB600, yielding a high expression strain BW-016. The amount of alkaline protease produced in the recombinant increased by 65% relative to the original strain. SDS-PAGE analysis indicated a Mr of 30.5 kDa. The amino acid sequence deduced from the DNA sequence analysis revealed a 98% identity to that of Bacillus licheniformis 6816. PMID:15269522

  12. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650.

    PubMed

    Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bejar, Wacim; Boulkour Touioui, Souraya; Hmidi, Maher; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-08-01

    An alkaline proteinase (STAP) was produced from strain TN650 isolated from a Tunisian off-shore oil field and assigned as Streptomyces koyangensis strain TN650 based on physiological and biochemical properties and 16S rRNA gene sequencing. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme was a monomer with a molecular mass of 45125.17-Da. The enzyme had an NH2-terminal sequence of TQSNPPSWGLDRIDQTTAFTKACSIKY, thus sharing high homology with those of Streptomyces proteases. The results showed that this protease was completely inhibited by phenylmethanesulfonyl fluoride (PMSF), diiodopropyl fluorophosphates (DFP), and partially inhibited by 5,5-dithio-bis-(2-nitro benzoic acid) (DTNB), which strongly suggested its belonging to the serine thiol protease family. Using casein as a substrate, the optimum pH and temperature values for protease activity were pH 10 and 70 °C, respectively. The protease was stable at pH 7-10 and 30-60 °C for 24 h. STAP exhibited high catalytic efficiency, significant detergent stability, and elevated organic solvent resistance compared to the SG-XIV proteases from S. griseus and KERAB from Streptomyces sp. AB1. The stap gene encoding STAP was isolated, and its DNA sequence was determined. These properties make STAP a potential candidate for future application in detergent formulations and non-aqueous peptide biocatalysis.

  13. Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42.

    PubMed

    Kazan, Dilek; Denizci, Aziz Akin; Oner, Mine N Kerimak; Erarslan, Altan

    2005-08-01

    An extracellular serine alkaline protease of Bacillus clausii GMBAE 42 was produced in protein-rich medium in shake-flask cultures for 3 days at pH 10.5 and 37 degrees C. Highest alkaline protease activity was observed in the late stationary phase of cell cultivation. The enzyme was purified 16-fold from culture filtrate by DEAE-cellulose chromatography followed by (NH(4))(2)SO(4) precipitation, with a yield of 58%. SDS-PAGE analysis revealed the molecular weight of the enzyme to be 26.50 kDa. The optimum temperature for enzyme activity was 60 degrees C; however, it is shifted to 70 degrees C after addition of 5 mM Ca(2+) ions. The enzyme was stable between 30 and 40 degrees C for 2 h at pH 10.5; only 14% activity loss was observed at 50 degrees C. The optimal pH of the enzyme was 11.3. The enzyme was also stable in the pH 9.0--12.2 range for 24 h at 30 degrees C; however, activity losses of 38% and 76% were observed at pH values of 12.7 and 13.0, respectively. The activation energy of Hammarsten casein hydrolysis by the purified enzyme was 10.59 kcal mol(-1) (44.30 kJ mol(-1)). The enzyme was stable in the presence of the 1% (w/v) Tween-20, Tween-40,Tween-60, Tween-80, and 0.2% (w/v) SDS for 1 h at 30 degrees C and pH 10.5. Only 10% activity loss was observed with 1% sodium perborate under the same conditions. The enzyme was not inhibited by iodoacetate, ethylacetimidate, phenylglyoxal, iodoacetimidate, n-ethylmaleimidate, n-bromosuccinimide, diethylpyrocarbonate or n-ethyl-5-phenyl-iso-xazolium-3'-sulfonate. Its complete inhibition by phenylmethanesulfonylfluoride and relatively high k (cat) value for N-Suc-Ala-Ala-Pro-Phe-pNA hydrolysis indicates that the enzyme is a chymotrypsin-like serine protease. K (m) and k (cat) values were estimated at 0.655 microM N-Suc-Ala-Ala-Pro-Phe-pNA and 4.21 x 10(3) min(-1), respectively. PMID:15988584

  14. Cloning and expression of the gene encoding an extracellular alkaline serine protease from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis in Lutjanus erythopterus (Bloch).

    PubMed

    Cai, S H; Wu, Z H; Jian, J C; Lu, Y S

    2007-08-01

    A 750-bp internal fragment of the alkaline serine protease gene (asp) from the Vibrio alginolyticus strain HY9901 was amplified by polymerase chain reaction (PCR). The flanking sequences of the 5'- and 3'- ends of the asp gene were characterized by reverse and nested PCR. Sequence analysis showed that the asp gene contained an 1893-bp ORF encoding 630 amino acids. The deduced amino acid sequence of the ASP (alkaline serine protease) precursor showed significant homology with several bacterial alkaline serine proteases. Expression of the asp gene in Escherichia coli and activity tests of the ASP indicated that the N-signal peptide of the ASP precursor was essential to autocatalyse and fold correctly the enzyme to obtain activity. The purified ASP was lethal for Lutjanus erythopterus with an LD(50) of 0.25 microg protein g(-1) body weight.

  15. Biased Signaling of Protease-Activated Receptors

    PubMed Central

    Zhao, Peishen; Metcalf, Matthew; Bunnett, Nigel W.

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions. PMID:24860547

  16. Partial purification and properties of a laundry detergent compatible alkaline protease from a newly isolated Bacillus species Y.

    PubMed

    Mala, M; Srividya, S

    2010-09-01

    Alkaline protease production by a newly isolated Bacillus species from laundry soil was studied for detergent biocompatibility. From its morphological and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus species with similarity to Bacillus species Y (Gen Bank entry: ABO 55095), and close homology with Bacillus cohnii YN-2000 (Gen Bank entry: ABO23412). Partial purification of the enzyme by ammonium sulfate (50-70% saturation) yielded 8-fold purity. Casein zymography and Sodium dodecylsulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) of the partially purified enzyme revealed two isozymes of molecular sizes approximately 66 kDa and 18 kDa, respectively. The enzyme was most active at pH 12 and 50°C. At pH 12 the enzyme was stable for 5 h and retained 60% activity. The enzyme retained 44% activity at 50°C up to 2 h. The protease showed good hydrolysis specificity with different substrates tested. The presence of Mn(2+), Co(2+) and ethylenediaminetetracetic acid (EDTA) showed profound increase in protease activity. The protease of Bacillus species Y showed excellent stability and compatibility with three locally available detergents (Kite, Tide and Aerial) up to 3 h retaining almost 70-80% activity and 10-20% activity at room temperature (30°C) and 50°C, respectively, indicating the potential role of this enzyme for detergent application.

  17. Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere.

    PubMed

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, Chand Karan

    2016-02-01

    A thermostable extracellular alkaline protease producing Bacillus amyloliquefaciens SP1 was isolated from apple rhizosphere having multifarious plant growth promoting activities. Strain SP1 was purified to 6.48-fold using four-step purification protocol and characterized in detail for its robustness and ecofriendly application in leather and detergent industries. Structural analysis revealed that the protease was monomeric and had a molecular weight of 43 kDa. It exhibited optimum activity at 60°C in alkaline environment (pH 8.0) and stable in the presence of surfactants and oxidizing agents. Enzyme was thermostable at 50°C and retained more than 70% activity after 30 min incubation. It has shown stain removal property and dehairing of goat skin without chemical assistance and hydrolyzing fibrous proteins. This protease showed Km of 0.125 mg ml(-1) and V(max) of 12820 μg ml(-1) indicating its excellent affinity and catalytic role. Thermal inactivation of the pure enzyme followed first-order kinetics. The half life of the pure enzyme at 50, 60, and 65°C was 77, 19.80, and 13.33 min, respectively. The activation energy was 37.19 KJ mol(-1). The results suggest that the B. amyloliquefaciens SP1 has a potential application in different industries. PMID:26375163

  18. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

    PubMed

    Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir

    2008-09-01

    We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had

  19. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination1

    PubMed Central

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C.; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A.L.

    2015-01-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. PMID:26048883

  20. Purification and characterization of novel organic solvent tolerant 98kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK.

    PubMed

    Waghmare, Shailesh R; Gurav, Aparna A; Mali, Sonal A; Nadaf, Naiem H; Jadhav, Deepak B; Sonawane, Kailas D

    2015-03-01

    Ability of microorganisms to grow at alkaline pH makes them an attractive target for several industrial applications. Thus, search for new extremozyme producing microorganisms must be a continuous exercise. Hence, we isolated a potent alkaline protease producing bacteria from slaughter house soil. The morphological, biochemical and 16S rDNA gene sequencing studies revealed that the isolated bacteria is Stenotrophomonas maltophilia strain SK. Alkaline protease from S. maltophilia strain SK was purified by using ammonium sulphate precipitation and DEAE-cellulose ion exchange column chromatography. The purified enzyme was optimally active at pH 9.0 and temperature 40°C with broad substrate specificity. It was observed that the metal ions such as Ca(++), Mg(++) and Fe(+++) completely repressed the enzyme activity. The enzyme was stable in presence of various water miscible solvents like ethanol, methanol, isopropanol at 25% (v/v) concentration and less stable at 37.5% (v/v) concentration. These robust properties of enzyme might be applicable for various applications in detergent and pharmaceutical industries. PMID:25462807

  1. Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes

    PubMed Central

    Gomaa, Eman Zakaria

    2013-01-01

    The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase) on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8–10, expressed their maximum activities at pH10 and temperature range of 30–50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51–97%) of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed. PMID:24294252

  2. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II.

    PubMed

    Rai, Sudhir K; Roy, Jetendra K; Mukherjee, Ashis K

    2010-02-01

    An alkaline-protease-producing bacterial strain (AS-S24-II) isolated from a soil sample in Assam is a Gram-stain-positive, catalase-positive, endospore-forming rod and grows at temperatures ranging from 30 degrees C to 60 degrees C and salinity ranging from 0% to 7% (w/v) NaCl. Phenotypic characterisation, chemotaxonomic properties, presence of Paenibacillus-specific signature sequences, and ribotyping data suggested that the strain AS-S24-II represents a novel species of the genus Paenibacillus, for which the name Paenibacillus tezpurensis sp. nov. (MTCC 8959) is proposed. Phylogenetic analysis revealed that P. lentimorbus strain DNG-14 and P. lentimorbus strain DNG-16 represent the closest phylogenetic neighbour of this novel strain. Alkaline protease production (598 x 10(3) U l(-1)) by P. tezpurensis sp. nov. in SmF was optimised by response surface method. A laundry-detergent-stable, Ca(2+)-independent, 43-kDa molecular weight alkaline serine protease from this strain was purified with a 1.7-fold increase in specific activity. The purified protease displayed optimum activity at pH 9.5 and 45-50 degrees C temperature range and exhibited a significant stability and compatibility with surfactants and most of the tested commercial laundry detergents at room temperature. Further, the protease improved the wash performance of detergents, thus demonstrating its feasibility for inclusion in laundry detergent formulations.

  3. Electrically sensing protease activity with nanopores

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Howorka, Stefan

    2010-11-01

    The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

  4. Recovery of Bacillus licheniformis Alkaline Protease from Supernatant of Fermented Wastewater Sludge Using Ultrafiltration and Its Characterization

    PubMed Central

    Bezawada, Jyothi; Yan, S.; John, Rojan P.; Tyagi, R. D.; Surampalli, R. Y.

    2011-01-01

    Investigation on recovery of alkaline protease from B. licheniformis ATCC 21424 fermented wastewater sludge was carried out by centrifugation and ultrafiltration. Optimization of ultrafiltration parameters (transmembrane pressure (TMP) and feed flux) was carried out with 10 kDa membrane. TMP of 90 kPa and feed flux of 714 L/h/m2 gave highest recovery (83%) of the enzyme from the centrifuged supernatant. The recovered enzyme had given maximum activity at temperature of 60°C and at pH 10. It was stable between pH 8 to 10 and retained 97% activity at 60°C after 180 min of incubation. Enzyme activity was significantly augmented by metal ions like Ca2+ and Mn2+. Protease inhibitors like phenylmethyl sulphonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFPs) completely inhibited the enzyme activity. The partially purified protease showed excellent stability and compatibility with various commercial detergents. The detergent (Sunlight) removed the blood stains effectively along with the enzyme as additive. PMID:21876816

  5. A novel organic solvent- and detergent-stable serine alkaline protease from Trametes cingulata strain CTM10101.

    PubMed

    Omrane Benmrad, Maroua; Moujehed, Emna; Ben Elhoul, Mouna; Zaraî Jaouadi, Nadia; Mechri, Sondes; Rekik, Hatem; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Sayadi, Sami; Bejar, Samir; Jaouadi, Bassem

    2016-10-01

    A protease-producing fungus was isolated from an alkaline wastewater of chemical industries and identified as Trametes cingulata strain CTM10101 on the basis of the ITS rDNA gene-sequencing. It was observed that the fungus strongly produce extracellular protease grown at 30°C in potato-dextrose-broth (PDB) optimized media (13500U/ml). The pure serine protease isolated by Trametes cingulata (designated SPTC) was purified by ammonium sulfate precipitation-dialysis followed by heat-treatment and UNO S-1 FPLC cation-exchange chromatography. The chemical characterization carried on include phisico-chemical determination and spectroscopie analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 31405.16-Da. The enzyme had an NH2-terminal sequence of ALTTQTEAPWALGTVSHKGQAST, thus sharing high homology with those of fungal-proteases. The optimum pH and temperature values of its proteolytic activity were pH 9 and 60°C, respectively, and its half-life times at 60 and 70°C were 9 and 5-h, respectively. It was completely inhibited by PMSF and DFP, which strongly suggested its belonging to the serine protease family. Compared to Flavourzyme(®)500L from Aspergillus oryzae and Thermolysin typeX from Geobacillus stearothermophilus, SPTC displayed higher levels of hydrolysis, substrate specificity, and catalytic efficiency as well as elevated organic solvent tolerance and considerable detergent stability. Finally, SPTC could potentially be used in peptide synthesis and detergent formulations. PMID:27296442

  6. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive.

    PubMed

    Haddar, Anissa; Agrebi, Rym; Bougatef, Ali; Hmidet, Noomen; Sellami-Kamoun, Alya; Nasri, Moncef

    2009-07-01

    Two detergent stable alkaline serine-proteases (BM1 and BM2) from Bacillus mojavensis A21 were purified. The molecular weights of BM1 and BM2 enzymes determined by SDS-PAGE were approximately 29,00 Da and 15,50 Da, respectively. The optimum pH values of BM1 and BM2 proteases were shown to be 8.0-10.0 and 10.0, respectively. Both enzymes exhibited maximal activity at 60 degrees C, using casein as a substrate. The N-terminal amino acid sequences of BM1 and BM2 proteases were AQSVPYGISQIKA and AIPDQAATTLL, respectively. Both proteases showed high stability towards non-ionic surfactants. The enzymes were found to be relatively stable towards oxidizing agents. In addition, both enzymes showed excellent stability and compatibility with a wide range of commercial liquid and solid detergents. These properties and the high activity in high alkaline pH make these proteases an ideal choice for application in detergent formulations.

  7. Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp.

    PubMed

    Zanphorlin, Letícia Maria; Facchini, Fernanda Dell Antonio; Vasconcelos, Filipe; Bonugli-Santos, Rafaella Costa; Rodrigues, André; Sette, Lara Durães; Gomes, Eleni; Bonilla-Rodriguez, Gustavo Orlando

    2010-06-01

    Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50 degrees C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.

  8. Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia's hot springs

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Lin, Xuezheng; Huang, Xiaohang; Zheng, Li; Zilda, Dewi Seswita

    2012-06-01

    A total of 69 strains of thermophilic bacteria were isolated from water, soil and sediment samples from three Indonesia's hot spring areas (Pantai cermin, Kalianda and Banyu wedang) by using Minimal Synthetic Medium (MSM). The extreme thermophile Brevibacillus sp. PLI-1 was found to produce extracellular thermophilic alkaline protease with optimal activity at 70° and pH 8.0-9.0. The molecular weight of the protease was estimated to be around 56 kD by SDS-PAGE. The maximum activity of the protease was 26.54 U mL-1. The protease activity did not decrease after 30 min and still retained more than 70% of relative activity after 60 min at 70°C and pH 8.0. The ion Mg2+ was found to promote protease activity at both low and high concentrations, whereas Cu2+ and Zn2+ could almost completely inhibit the activity. Divalent cation chelator EDTA inhibited the enzyme activity by 55.06% ± 0.27%, while the inhibition caused by PMSF, Leupeptin, Pepstain A and Benzamidine were 66.78% ± 3.25%, 52.37% ± 0.25%, 62.47% ± 2.96% and 50.99% ± 0.24%, respectively. Based on these observations, the enzyme activity was conspicuously sensitive to the serine and cysteine protease inhibitors. All these results indicated that the protease isolated from the strain PLI-1 was a thermophilic protease and had a high-temperature stability and a pH stability.

  9. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India.

    PubMed

    Rathod, Mukundraj Govindrao; Pathak, Anupama Prabhakarrao

    2016-09-01

    Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time) approach. Alkaline protease production (U/mL) recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002) [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach. PMID:27508233

  10. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India.

    PubMed

    Rathod, Mukundraj Govindrao; Pathak, Anupama Prabhakarrao

    2016-09-01

    Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time) approach. Alkaline protease production (U/mL) recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002) [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach.

  11. Purification and characterization of alkaline-thermostable protease enzyme from Pitaya (Hylocereus polyrhizus) waste: a potential low cost of the enzyme.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid A B D; Zohdi, Nor Khanani

    2014-01-01

    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  12. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  13. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM-04.

    PubMed

    Rai, Sudhir K; Mukherjee, Ashis K

    2009-05-01

    An organic solvent stable, alkaline serine protease (Bsubap-I) with molecular mass of 33.1 kDa, purified from Bacillus subtilis DM-04 showed optimum activity at temperature and pH range of 37-45 degrees C and 10.0-10.5, respectively. The enzyme activity of Bsubap-I was significantly enhanced in presence of Fe(2+). The thermal resistance and stability and of Bsubap-I in presence of surfactants, detergents, and organic solvents, and its dehairing activity supported its candidature for application in laundry detergent formulations, ultrafiltration membrane cleaning, peptide synthesis and in leather industry. The broad substrate specificity and differential antibacterial property of Bsubap-I suggested the natural ecological role of this enzyme for the producing bacterium.

  14. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  15. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  16. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a Lonar soda lake isolate.

    PubMed

    Pathak, Anupama P; Deshmukh, Kshipra B

    2012-08-01

    A bacterium producing an alkaline protease was isolated from the Lonar soda lake, Buldhana district (19 degrees 58' N; 76 degrees 31' E), Maharashtra, India. The most appropriate medium for the growth and protease production was composed of (g/L): casein 10; yeast extract 4; KH2PO4 0.5, K2HPO4 0.5 and CaCl2 0.5. The enzyme showed maximum activity with and without 5 mM Ca2+ at 70 and 60 degrees C, respectively. The enzyme retained 40 and 82% of its initial activity after heating for 60 min at 60 degrees C, in absence and presence of 5 mM CaCl2 respectively. The enzyme remained active and stable at pH 8-12, with an optimum at pH 10. The enzyme showed stability towards non-ionic and anionic surfactants, and oxidizing agents. It also showed excellent stability and compatibility with commonly used laundry detergents. Wash performance analysis revealed that enzyme could effectively remove blood stains. It also showed decomposition of gelatinous coating on X- ray film.

  17. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a Lonar soda lake isolate.

    PubMed

    Pathak, Anupama P; Deshmukh, Kshipra B

    2012-08-01

    A bacterium producing an alkaline protease was isolated from the Lonar soda lake, Buldhana district (19 degrees 58' N; 76 degrees 31' E), Maharashtra, India. The most appropriate medium for the growth and protease production was composed of (g/L): casein 10; yeast extract 4; KH2PO4 0.5, K2HPO4 0.5 and CaCl2 0.5. The enzyme showed maximum activity with and without 5 mM Ca2+ at 70 and 60 degrees C, respectively. The enzyme retained 40 and 82% of its initial activity after heating for 60 min at 60 degrees C, in absence and presence of 5 mM CaCl2 respectively. The enzyme remained active and stable at pH 8-12, with an optimum at pH 10. The enzyme showed stability towards non-ionic and anionic surfactants, and oxidizing agents. It also showed excellent stability and compatibility with commonly used laundry detergents. Wash performance analysis revealed that enzyme could effectively remove blood stains. It also showed decomposition of gelatinous coating on X- ray film. PMID:23016494

  18. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition

    PubMed Central

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  19. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    PubMed

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  20. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    PubMed

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions.

  1. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence.

    PubMed

    Huang, Rong; Yang, Qingjun; Feng, Hong

    2015-02-01

    Dehairing alkaline protease (DHAP) from Bacillus pumilus BA06 has been demonstrated to have high catalytic efficiency and good thermostability, with potential application in leather processing. In order to get insights into its catalytic mechanism, two mutants with single amino acid substitution according to the homology modeling and multiple sequence alignment were characterized in thermodynamics of thermal denaturation and temperature dependence of substrate hydrolysis. The results showed that both mutants of V149I and R249E have a systematic increase in catalytic efficiency (kcat/Km) in a wide range of temperatures, mainly due to an increase of k1 (substrate diffusion) and k2 (acylation) for V149I and of k2 and k3 (deacylation) for R249E. In comparison with the wild-type DHAP, the thermostability is increased for V149I and decreased for R249E. Thermodynamic analysis indicated that the free energy (ΔGa°) of activation for thermal denaturation may govern the thermostability. The value of ΔGa° is increased for V149I and decreased for R249E. Based on these data and the structural modeling, it is suggested that substitution of Val149 with Ile may disturb the local flexibility in the substrate-binding pocket, leading to enhancement of binding affinity for the substrate. In contrast, substitution of Arg249 with Glu leads to interruption of interaction with the C-terminal of enzyme, thus resulting in less thermostability. This study indicates that amino acid residues in the active center or in the substrate-binding pocket may disturb the catalytic process and can be selected as the target for protein engineering in the bacterial alkaline proteases.

  2. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  3. Draft Genome Sequence of Bacillus pumilus BA06, a Producer of Alkaline Serine Protease with Leather-Dehairing Function

    PubMed Central

    Zhao, Chuan-Wu; Wang, Hai-Yan; Zhang, Yi-Zheng

    2012-01-01

    Bacillus pumilus BA06 was isolated from the proteinaceous soil and produced an extracellular alkaline protease with leather-dehairing function. The genome of BA06 was sequenced. The comparative genome analysis indicated that strain BA06 is different in genome from the other B. pumilus strains, with limited insertions, deletions, and rearrangements. PMID:23144411

  4. Homology modeling and molecular dynamics simulation studies of a marine alkaline protease.

    PubMed

    Ji, Xiaofeng; Wang, Wei; Zheng, Yuan; Hao, Jianhua; Sun, Mi

    2012-01-01

    A cold-adapted marine alkaline protease (MP, accession no. ACY25898) was produced by a marine bacterium strain, which was isolated from Yellow Sea sediment in China. Many previous researches showed that this protease had potential application as a detergent additive. It was therefore crucial to determine the tertiary structure of MP. In this study, a homology model of MP was constructed using the multiple templates alignment method. The tools PROCHECK, ERRAT, and Verify_3D were used to check the effectiveness of the model. The result showed that 94% of residues were found in the most favored allowed regions, 6% were in the additional allowed region, and 96.50% of the residues had average 3D-1D scores of no less than 0.2. Meanwhile, the overall quality factor (ERRAT) of our model was 80.657. In this study, we also focused on elucidating the molecular mechanism of the two "flap" motions. Based on the optimized model, molecular-dynamics simulations in explicit solvent environments were carried out by using the AMBER11 package, for the entire protein, in order to characterize the dynamical behavior of the two flaps. Our results showed an open motion of the two flaps in the water solvent. This research may facilitate inhibitor virtual screening for MP and may also lay the foundation knowledge of mechanism of the inhibitors. PMID:23226008

  5. Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil.

    PubMed

    Giri, Sib Sankar; Sukumaran, V; Sen, Shib Sankar; Oviya, M; Banu, B Nazeema; Jena, Prasant Kumar

    2011-06-01

    An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0-11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl(2). This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H(2)O(2) and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations.

  6. Gene expression and activity of digestive proteases in Daphnia: effects of cyanobacterial protease inhibitors

    PubMed Central

    2010-01-01

    Background The frequency of cyanobacterial blooms has increased worldwide, and these blooms have been claimed to be a major factor leading to the decline of the most important freshwater herbivores, i.e. representatives of the genus Daphnia. This suppression of Daphnia is partly attributed to the presence of biologically active secondary metabolites in cyanobacteria. Among these metabolites, protease inhibitors are found in almost every natural cyanobacterial bloom and have been shown to specifically inhibit Daphnia's digestive proteases in vitro, but to date no physiological responses of these serine proteases to cyanobacterial protease inhibitors in Daphnia have been reported in situ at the protein and genetic levels. Results Nine digestive proteases were detected in D. magna using activity-stained SDS-PAGE. Subsequent analyses by LC-MS/MS and database search led to the identification of respective protease genes. D. magna responded to dietary protease inhibitors by up-regulation of the expression of these respective proteases at the RNA-level and by the induction of new and less sensitive protease isoforms at the protein level. The up-regulation in response to dietary trypsin- and chymotrypsin-inhibitors ranged from 1.4-fold to 25.6-fold. These physiological responses of Daphnia, i.e. up-regulation of protease expression and the induction of isoforms, took place even after feeding on 20% cyanobacterial food for only 24 h. These physiological responses proved to be independent from microcystin effects. Conclusion Here for the first time it was shown in situ that a D. magna clone responds physiologically to dietary cyanobacterial protease inhibitors by phenotypic plasticity of the targets of these specific inhibitors, i.e. Daphnia gut proteases. These regulatory responses are adaptive for D. magna, as they increase the capacity for protein digestion in the presence of dietary protease inhibitors. The type and extent of these responses in protease expression might

  7. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    PubMed

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p < 0.05) compared with the activity of these proteases from the non-infested one group. The infested drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant.

  8. The total protein content, protein fractions and proteases activities of drone prepupae of Apis mellifera due to varrosis.

    PubMed

    Zółtowska, Krystyna; Lipiński, Zbigniew; Dmitryjuk, Małgorzata

    2005-01-01

    The proteins level and activities of acid and alkaline proteases in whole body extracts of drone prepupae of Apis mellifera naturally infested with Varroa destructor were studied. The infested and a non-infested group did not differ significantly in their total protein content. However, some differences in protein profiles were found. A lack of three protein fractions of moderate and lower molecular weight in infested prepupae was noted. Moreover, some differences in the quantity of protein in most of the fractions were observed. The activity of acid proteases from infested prepupae was lower (p < 0.05) compared with the activity of these proteases from the non-infested one group. The infested drone had higher activity of alkaline proteases than non-infested but this difference was not statisticaly significant. PMID:16841690

  9. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization.

    PubMed

    Ibrahim, Abdelnasser S S; Al-Salamah, Ali A; El-Badawi, Yahya B; El-Tayeb, Mohamed A; Antranikian, Garabed

    2015-09-01

    Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.

  10. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus) Waste: A Potential Low Cost of the Enzyme

    PubMed Central

    ABD Manap, Mohd Yazid; Zohdi, Nor Khanani

    2014-01-01

    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent Km and Vmax of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications. PMID:25328883

  11. Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities

    PubMed Central

    Mielech, Anna M.; Chen, Yafang; Mesecar, Andrew D.; Baker, Susan C.

    2014-01-01

    Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs’ enzymatic activity and their role in virus pathogenesis. PMID:24512893

  12. Isolation, purification and characterization of a surfactants-, laundry detergents- and organic solvents-resistant alkaline protease from Bacillus sp. HR-08.

    PubMed

    Moradian, Fatemeh; Khajeh, Khosro; Naderi-Manesh, Hossein; Sadeghizadeh, Majid

    2009-10-01

    Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 degrees C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 degrees C in the presence of 10 mM CaCl(2). Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 degrees C, respectively. This enzyme had good stability in the presence of H(2)O(2), nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO.

  13. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols. PMID:24092453

  14. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  15. Endogenous Protease Activation of ENaC

    PubMed Central

    Adebamiro, Adedotun; Cheng, Yi; Johnson, John P.; Bridges, Robert J.

    2005-01-01

    Endogenous serine proteases have been reported to control the reabsorption of Na+ by kidney- and lung-derived epithelial cells via stimulation of electrogenic Na+ transport mediated by the epithelial Na+ channel (ENaC). In this study we investigated the effects of aprotinin on ENaC single channel properties using transepithelial fluctuation analysis in the amphibian kidney epithelium, A6. Aprotinin caused a time- and concentration-dependent inhibition (84 ± 10.5%) in the amiloride-sensitive sodium transport (INa) with a time constant of 18 min and half maximal inhibition constant of 1 μM. Analysis of amiloride analogue blocker–induced fluctuations in INa showed linear rate–concentration plots with identical blocker on and off rates in control and aprotinin-inhibited conditions. Verification of open-block kinetics allowed for the use of a pulse protocol method (Helman, S.I., X. Liu, K. Baldwin, B.L. Blazer-Yost, and W.J. Els. 1998. Am. J. Physiol. 274:C947–C957) to study the same cells under different conditions as well as the reversibility of the aprotinin effect on single channel properties. Aprotinin caused reversible changes in all three single channel properties but only the change in the number of open channels was consistent with the inhibition of INa. A 50% decrease in INa was accompanied by 50% increases in the single channel current and open probability but an 80% decrease in the number of open channels. Washout of aprotinin led to a time-dependent restoration of INa as well as the single channel properties to the control, pre-aprotinin, values. We conclude that protease regulation of INa is mediated by changes in the number of open channels in the apical membrane. The increase in the single channel current caused by protease inhibition can be explained by a hyperpolarization of the apical membrane potential as active Na+ channels are retrieved. The paradoxical increase in channel open probability caused by protease inhibition will require further

  16. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  17. Isolation and characterization of a metal ion-dependent alkaline protease from a halotolerant Bacillus aquimaris VITP4.

    PubMed

    Shivanand, Pooja; Jayaraman, Gurunathan

    2011-04-01

    A halotolerant bacterium Bacillus acquimaris VITP4 was used for the production of extracellular protease. Fractional precipitation using ammonium chloride was used to obtain the enzyme. The protease exhibited optimum activity at pH 8.0 and 40 degrees C and retained 50% of its optimal proteolytic activity even in the presence of 4 M NaCl, suggesting that it is halotolerant. The molecular mass of protease, as revealed by SDS-PAGE was found to be 34 kDa and the homogeneity of the enzyme was confirmed by gelatin zymography and reverse-phase HPLC. Upon purification, the specific activity of th enzyme increased from 533 U/mg to 1719 U/mg. Protease inhibitors like phenyl methane sulphonyl fluoride and 2-mercaptoethanol did not affect the activity of the enzyme, but EDTA inhibited the activity, indicating the requirement of metal ions for activity. Cu2, Ni2+ and Mn2+ enhanced the enzyme activity, but Zn2+, Hg2+ and Fe2+ decreased the activity, while Mg2+, Ca2+ and K+ had no effect on the enzyme activity. The protease was quite stable in the presence of cationic (CTAB), anionic (SDS) and neutral detergents (Triton X-100 and Tween-20) and exhibited antimicrobial activity against selected bacterial and fungal strains. The stability characteristics and broad spectrum antimicrobial activity indicated the potential use of this protease in industrial applications.

  18. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  19. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.

  20. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential. PMID:27630776

  1. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology.

    PubMed

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte; da Silva-López, Raquel Elisa

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200-57, 40-37, and 20-15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential. PMID:27630776

  2. Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: process parameters optimization.

    PubMed

    Prakasham, R S; Subba Rao, Ch; Sreenivas Rao, R; Sarma, P N

    2005-01-01

    Alkaline protease production using isolated Bacillus circulans under solid-state fermentation environment was optimized by using Taguchi orthogonal array (OA) experimental design (DOE) methodology to understand the interaction of a large number of variables spanned by factors and their settings with a small number of experiments in order to economize the process optimization. The software-designed experiments with an OA worksheet of L-27 was selected to optimize fermentation (temperature, particle size, moisture content and pH), nutrition (yeast extract and maltose), and biomaterial-related (inoculum size and incubation time) factors for the best production yields. Analysis of experimental data using Qualitek-4 methodology showed significant variation in enzyme production levels (32,000-73,000 units per gram material) and dependence on the selected factors and their assigned levels. Validation of experimental results on alkaline protease production by this bacterial strain based on DOE methodology revealed 51% enhanced protease production compared to average performance of the fermentation, indicating the importance of this methodology in the evaluation of main and interaction effects of the selected factors individually and in combination for bioprocess optimization. PMID:16209541

  3. Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design.

    PubMed

    Hajji, Mohamed; Rebai, Ahmed; Gharsallah, Néji; Nasri, Moncef

    2008-07-01

    Medium composition and culture conditions for the bleaching stable alkaline protease production by Aspergillus clavatus ES1 were optimized. Two statistical methods were used. Plackett-Burman design was applied to find the key ingredients and conditions for the best yield. Response surface methodology (RSM) including full factorial design was used to determine the optimal concentrations and conditions. Results indicated that Mirabilis jalapa tubers powder (MJTP), culture temperature, and initial medium pH had significant effects on the production. Under the proposed optimized conditions, the protease experimental yield (770.66 U/ml) closely matched the yield predicted by the statistical model (749.94 U/ml) with R (2)=0.98. The optimum operating conditions obtained from the RSM were MJTP concentration of 10 g/l, pH 8.0, and temperature of 30 degrees C, Sardinella heads and viscera flour (SHVF) and other salts were used at low level. The medium optimization contributed an about 14.0-fold higher yield than that of the unoptimized medium (starch 5 g/l, yeast extract 2 g/l, temperature 30 degrees C, and pH 6.0; 56 U/ml). More interestingly, the optimization was carried out with the by-product sources, which may result in cost-effective production of alkaline protease by the strain.

  4. Hepatitis C virus NS3 protease is activated by low concentrations of protease inhibitors.

    PubMed

    Dahl, Göran; Arenas, Omar Gutiérrez; Danielson, U Helena

    2009-12-01

    The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) is a bifunctional enzyme with a protease and a helicase functionality located in each of the two domains of the single peptide chain. There is little experimental evidence for a functional role of this unexpected arrangement since artificial single domain forms of both enzymes are catalytically competent. We have observed that low concentrations of certain protease inhibitors activate the protease of full-length NS3 from HCV genotype 1a with up to 100%, depending on the preincubation time and the inhibitor used. The activation was reduced, but not eliminated, by increased ionic strength, lowered glycerol concentration, or lowered pH. In all cases, it was at the expense of a significant loss of activity. Activation was not seen with the artificial protease domain of genotype 1b NS3 fused with a fragment of the NS4A cofactor. This truncated and covalently modified enzyme form was much less active and exhibited fundamentally different catalytic properties to the full-length NS3 protease without the fused cofactor. The most plausible explanation for the activation was found to involve a slow transition between two enzyme conformations, which differed in their catalytic ability and affinity for inhibitors. Equations derived based on this assumption resulted in better fits to the experimental data than the equation for simple competitive inhibition. The mechanism may involve an inhibitor-induced stabilization of the helicase domain in a conformation that enhances the protease activity, or an improved alignment of the catalytic triad in the protease. The proposed mnemonic mechanism and derived equations are viable for both these explanations and can serve as a basic framework for future studies of enzymes activated by inhibitors or other ligands.

  5. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  6. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment.

    PubMed

    Fyfe, Cameron D; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W; Cogdell, Richard J; Wall, Daniel M; Burchmore, Richard J S; Byron, Olwyn; Walker, Daniel

    2015-07-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  7. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  8. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  9. Production and estimation of alkaline protease by immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas and its reusability

    PubMed Central

    Chatterjee, Shamba

    2015-01-01

    Microbial alkaline protease has become an important industrial and commercial biotech product in the recent years and exerts major applications in food, textile, detergent, and pharmaceutical industries. By immobilization of microbes in different entrapment matrices, the enzyme produced can be more stable, pure, continuous, and can be reused which in turn modulates the enzyme production in an economical manner. There have been reports in support of calcium alginate and corn cab as excellent matrices for immobilization of Bacillus subtilis and Bacillus licheniformis, respectively. This study has been carried out using calcium alginate, κ-carrageenan, agar-agar, polyacrylamide gel, and gelatin which emphasizes not only on enzyme activity of immobilized whole cells by different entrapment matrices but also on their efficiency with respect to their reusability as first attempt. Gelatin was found to be the best matrix among all with highest enzyme activity (517 U/ml) at 24 h incubation point and also showed efficiency when reused. PMID:25709962

  10. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  11. Amplified detection of protease activity using porous silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel

    This dissertation will focus on harnessing the optical properties of porous silicon to sense protease activity. Electrochemical etching of polished silicon wafers produces porous silicon with unique optical properties such as Fabry-Perot fringes or a dielectric mirror reflecting specific wavelengths. Porous silicon optical transducers are coupled to a biochemical reaction (protease activity) and optically measured in a label-free manner. The first chapter is an introductory chapter discussing the current methods of detecting protease activity. Also discussed is the use of porous silicon for label-free sensing. The second chapter discusses the use of thin protein layers that are spin coated on the surface of a porous silicon film and excluded from the porous matrix based on size. When active proteases are introduced to the protein layer, small peptide fragments are generated, causing a change in refractive index from low to high. This can be used as a tool to monitor protease activity and amplify the signal to the naked eye. To extend on the second chapter, a double layered porous silicon film with the first layer have large pores and the second layer etched below having small pores was used for sensing protease activity. Proteases are adsorbed into the first layer and introduction of whole protein substrate produces small peptide fragments that can enter the second layer (changing the effective optical thickness). The fourth chapter describes a method of using luminescent transducers coupled to protein films. An "on-off" sensor using protein coated luminescent porous silicon was used to detect a decrease in the intensity of luminescence due to degradation of the protein film. An "off-on" sensor involved a fluorescent dye housed in the porous film and capped with a protein coating. The release of the dye is caused by the action of a protease causing an increase in fluorescent intensity from the dye.

  12. Statistical medium optimization of an alkaline protease from Pseudomonas aeruginosa MTCC 10501, its characterization and application in leather processing.

    PubMed

    Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose

    2013-04-01

    Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.

  13. Characterization of the protease activity of detergents: laboratory practicals for studying the protease profile and activity of various commercial detergents.

    PubMed

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-07-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body fluids, and food soils. This article describes two easy and cheap laboratory exercises to study the presence, profile, and basic enzymology of detergent proteases. These laboratory practicals are based on the determination of the detergent protease activity of various commercial detergents using the N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine p-nitroanilide method and the bovine serum albumin degradation capacity. Students are also required to elucidate the enzymatic subtype of detergent proteases by studying the inhibitory potential of several types of protease inhibitors revealed by the same experimental methodology. Additionally, the results of the exercises can be used to provide additional insights on elementary enzymology by studying the influence of several important parameters on protease activity such as temperature (in this article) and the influence of pH and effects of surfactants and oxidizers (proposed). Students also develop laboratory skills, problem-solving capacities, and the ability to write a laboratory report. The exercises are mainly designed for an advanced undergraduate project in the biochemistry and biotechnology sciences. Globally, these laboratory practicals show students the biotechnological applications of proteases in the detergent industry and also reinforce important enzymology concepts.

  14. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex.

  15. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  16. Purification, characterization, and N-terminal amino acid sequence of the adenylyl cyclase-activating protease from bovine sperm.

    PubMed

    Adeniran, A J; Shoshani, I; Minuth, M; Awad, J A; Elce, J S; Johnson, R A

    1995-03-01

    We previously reported the extraction of a factor from bovine sperm that activated adenylyl cyclases of rat brain and human platelets, and identified it as a trypsin-like protease that was referred to as "ninhibin." This proteolytic activity was purified to near homogeneity from an alkaline extract of washed sperm particles by sequential chromatography on p-aminobenzamidine agarose and CM-Sephadex. Purification was greater than 100-fold with nearly 30% recovery of protease activity exhibiting a major band of approximately 40 kDa. An approximately 45-kDa form of the protease was also evident in crude extracts and was preferentially isolated when the enzyme was prepared in the presence of a mixture of protease inhibitors. The larger form of the protease was substantially less effective in stimulating adenylyl cyclase than was the smaller form; it is likely to be a zymogen form from which the smaller, more active form is derived. Purified forms of acrosin and ninhibin exhibited similar mobilities on PAGE, similar capacities for activating adenylyl cyclase, similar patterns of proteolytic fragmentation, and similar immunoblot patterns obtained with an antibody against purified bovine acrosin. More importantly, the N-terminal amino acid sequence of bovine ninhibin was found to be identical with that of bovine acrosin and caprine acrosin and more than 75% identical with porcine acrosin. The data support the conclusion that the adenylyl cyclase-activating protease previously referred to as ninhibin is, in fact, acrosin. PMID:7756444

  17. Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease.

    PubMed

    Zhang, Liang; Franks, Jonathon; Stolz, Donna B; Conway, James F; Thibodeau, Patrick H

    2014-10-21

    Self-assembling proteins represent potential scaffolds for the organization of enzymatic activities. The alkaline protease repeats-in-toxin (RTX) domain from Pseudomonas aeruginosa undergoes multiple structural transitions in the presence and absence of calcium, a native structural cofactor. In the absence of calcium, this domain is capable of spontaneous, ordered polymerization, producing amyloid-like fibrils and large two-dimensional protein sheets. This polymerization occurs under near-physiological conditions, is rapid, and can be controlled by regulating calcium in solution. Fusion of the RTX domain to a soluble protein results in the incorporation of engineered protein function into these macromolecular assemblies. Applications of this protein sequence in bacterial adherence and colonization and the generation of biomaterials are discussed. PMID:25232897

  18. Inducible Polymerization and Two-Dimensional Assembly of the Repeats-in-Toxin (RTX) Domain from the Pseudomonas aeruginosa Alkaline Protease

    PubMed Central

    2015-01-01

    Self-assembling proteins represent potential scaffolds for the organization of enzymatic activities. The alkaline protease repeats-in-toxin (RTX) domain from Pseudomonas aeruginosa undergoes multiple structural transitions in the presence and absence of calcium, a native structural cofactor. In the absence of calcium, this domain is capable of spontaneous, ordered polymerization, producing amyloid-like fibrils and large two-dimensional protein sheets. This polymerization occurs under near-physiological conditions, is rapid, and can be controlled by regulating calcium in solution. Fusion of the RTX domain to a soluble protein results in the incorporation of engineered protein function into these macromolecular assemblies. Applications of this protein sequence in bacterial adherence and colonization and the generation of biomaterials are discussed. PMID:25232897

  19. Effects of urine composition on epithelial Na+ channel-targeted protease activity

    PubMed Central

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-01-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H+-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15–515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0–500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm–Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  20. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  1. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  2. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  3. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  4. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  5. A tunable, modular approach to fluorescent protease-activated reporters.

    PubMed

    Wu, Peng; Nicholls, Samantha B; Hardy, Jeanne A

    2013-04-01

    Proteases are one of the most important and historically utilized classes of drug targets. To effectively interrogate this class of proteins, which encodes nearly 2% of the human proteome, it is necessary to develop effective and cost-efficient methods that report on their activity both in vitro and in vivo. We have developed a robust reporter of caspase proteolytic activity, called caspase-activatable green fluorescent protein (CA-GFP). The caspases play central roles in homeostatic regulation, as they execute programmed cell death, and in drug design, as caspases are involved in diseases ranging from cancer to neurodegeneration. CA-GFP is a genetically encoded dark-to-bright fluorescent reporter of caspase activity in in vitro, cell-based, and animal systems. Based on the CA-GFP platform, we developed reporters that can discriminate the activities of caspase-6 and -7, two highly related proteases. A second series of reporters, activated by human rhinovirus 3C protease, demonstrated that we could alter the specificity of the reporter by reengineering the protease recognition sequence. Finally, we took advantage of the spectrum of known fluorescent proteins to generate green, yellow, cyan, and red reporters, paving the way for multiplex protease monitoring. PMID:23561537

  6. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  7. [Isolation of Actinomycetes synthesizing proteases with thrombolytic activity].

    PubMed

    Lysenko, S V; Salivonik, S M

    1988-01-01

    Proteases with the thrombolytic activity were studied in 212 strains of actinomycetes isolated from different soils of the Soviet Union. The cultures belonged to the genera Micromonospora, Nocardia and Streptomyces. Proteases were synthesized by 41% of the studied actinomycetes and some of their strains completely dissolved in vitro artificially obtained blood thrombi within 120-240 min. In the Streptomyces genus, more active strains were found in the groups Flavus, Fradia and Globisporus. The groups Olivaceus, Violaceus and Viridis had less active strains. PMID:3062331

  8. Low serum alkaline phosphatase activity in Wilson's disease.

    PubMed

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  9. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  10. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications. PMID:26942486

  11. Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis.

    PubMed

    Khan, Muhammad Bashir; Khan, Hidayatullah; Shah, Muhammad Usman; Khan, Sanaullah

    2016-01-01

    A low molecular weight serine protease from seeds of Citrullus colocynthis was purified to electrophoretic homogeneity with high level of catalytic efficiency (22,945 M(-1) S(-1)). The enzyme was a monomer with molecular mass of 25 kDa estimated by SDS-PAGE. The enzyme was highly active over a pH range of 6.5-9.0 and temperature range of 20-80 °C, with maximum activity at pH 7.5 and at 50 °C. The K(m) and K(cat) were 73 μg/mL and 67/s, respectively. The enzyme was strongly inhibited by PMSF, moderately by soybean trypsin inhibitor, indicating that the enzyme was a serine protease. The enzyme retained 86 and 73% of its activity in the presence of urea and DTT, respectively, and its activity was slightly enhanced in the presence of anionic detergent (SDS). Thus, the enzyme is a novel SDS-stable protease with high catalytic efficiency over wide ranges of pH and temperature which is commercially promising for various industrial applications.

  12. Neutralizing monoclonal antibodies to an extracellular Pseudomonas cepacia protease.

    PubMed Central

    Kooi, C; Cox, A; Darling, P; Sokol, P A

    1994-01-01

    Pseudomonas cepacia produces at least two extracellular proteases with apparent molecular masses of 36,000 and 40,000 Da. The 36-kDa protease has high proteolytic activity and the 40-kDa protease has low proteolytic activity with hide powder azure as a substrate. Monoclonal antibodies (MAbs) were raised against the purified 36- and 40-kDa proteases. Several MAbs directed against the 36-kDa protease were found to recognize the 40-kDa protease by Western immunoblot analysis. Similarly, a MAb directed against the 40-kDa protease recognized the 36-kDa protease, suggesting that these two proteases may be immunologically related. A MAb directed against the 36-kDa protease, designated 36-6-8, and a MAb directed against the 40-kDa protease (MAb G-11) cross-reacted with other extracellular proteases, such as Pseudomonas aeruginosa elastase and alkaline protease, Pseudomonas pseudomallei protease, and the Vibrio cholerae hemagglutinin/protease. MAb 36-6-8 neutralized the P. cepacia 36-kDa protease, P. aeruginosa elastase, P. pseudomallei protease, and V. cholerae hemagglutinin/protease but did not affect P. aeruginosa alkaline protease activity. In contrast, MAb G-11 to the 40-kDa protease neutralized only the P. cepacia 36-kDa protease. This evidence suggests that the neutralizing MAb, 36-6-8, recognizes an epitope conserved among some metalloproteases. This epitope may lie at or near the active site of the P. cepacia 36-kDa protease and P. aeruginosa elastase. Images PMID:7516312

  13. Unexpected Activity of a Novel Kunitz-type Inhibitor: INHIBITION OF CYSTEINE PROTEASES BUT NOT SERINE PROTEASES.

    PubMed

    Smith, David; Tikhonova, Irina G; Jewhurst, Heather L; Drysdale, Orla C; Dvořák, Jan; Robinson, Mark W; Cwiklinski, Krystyna; Dalton, John P

    2016-09-01

    Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity toward serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4-27 nm). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pulldown experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2, and FhCL5. Substitution of the unusual P1 Leu(15) within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu(15)/Arg(15)) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nm). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu(15) in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity toward FhCL1, FhCL2, and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.

  14. Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4.

    PubMed

    Touioui, Souraya Boulkour; Jaouadi, Nadia Zaraî; Boudjella, Hadjira; Ferradji, Fatma Zohra; Belhoul, Mouna; Rekik, Hatem; Badis, Abdelmalek; Bejar, Samir; Jaouadi, Bassem

    2015-07-01

    Streptomyces sp. strain AH4 exhibited a high ability to produce two extracellular proteases when cultured on a yeast malt-extract (ISP2)-casein-based medium. Pure proteins were obtained after heat treatment (30 min at 70 °C) and ammonium sulphate fractionation (30-60 %), followed by size exclusion HPLC column. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that the purified enzymes (named SAPS-P1 and SAPS-P2) were monomers with molecular masses of 36,417.13 and 21,099.10 Da, respectively. Their identified N-terminal amino acid displayed high homologies with those of Streptomyces proteases. While SAPS-P1 was optimally active at pH 12.0 and 70 °C, SAPS-P2 showed optimum activity at pH 10.0 and 60 °C. Both enzymes were completely stable within a wide range of temperature (45-75 °C) and pH (8.0-11.5). They were noted to be completely inhibited by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphates, which confirmed their belonging to the serine proteases family. Compared to SAPS-P2, SAPS-P1 showed high thermostability and excellent stability towards bleaching, denaturing, and oxidizing agents. Both enzymes displayed marked stability and compatibility with a wide range of commercial laundry detergents and significant catalytic efficiencies compared to Subtilisin Carlsberg and Protease SG-XIV. Overall, the results indicated that SAPS-P1 and SAPS-P2 can be considered as potential promising candidates for future application as bioadditives in detergent formulations.

  15. Serine protease activation of near-silent epithelial Na+ channels.

    PubMed

    Caldwell, Ray A; Boucher, Richard C; Stutts, M Jackson

    2004-01-01

    The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels. PMID:12967915

  16. Studies on activity, distribution, and zymogram of protease, α-amylase, and lipase in the paddlefish Polyodon spathula.

    PubMed

    Ji, H; Sun, H T; Xiong, D M

    2012-06-01

    A series of biochemical determination and electrophoretic observations have been conducted to analyze the activities and characteristics of protease, α-amylase, and lipase of paddlefish Polyodon spathula. The results obtained have been compared with those of bighead carp (Aristichthys nobilis) and hybrid sturgeon (Huso dauricus ♀ × Acipenser schrenki Brandt ♂), in order to increase available knowledge of the physiological characteristics of this sturgeon species and to gain information with regard to its nutrition. Further, a comparative study of enzymatic activity, distribution, and characterization between commercial feed-reared paddlefish (CG) and natural live food-reared (NG) paddlefish was conducted. Results showed that higher proteolytic activity was observed in the pH range 2.5-3.0 and at a pH of 7.0 for paddlefish. Levels of acid protease activity of paddlefish were similar to that of hybrid sturgeon, and significantly higher than that of bighead carp. The inhibition assay of paddlefish showed that the rate of inhibition of tosyl-phenylalanine chloromethyl ketone was approximately 2.6-fold that of tosyl-lysine chloromethyl ketone. There was no significant difference observed for acid protease activity between PG and CG groups, whereas the activity of alkaline protease, α-amylase, and lipase in the PG group were significantly lower than those in the CG group. The substrate sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis further showed that there were certain types of enzymes, especially α-amylase, with similar molecular mass in the paddlefish and hybrid sturgeon. It can be inferred that acid digestion was main mechanism for protein hydrolysis in paddlefish, as reported for other fishes with a stomach. This indicates that the paddlefish requires higher alkaline protease, α-amylase, and lipase activity to digest natural live food. PMID:21894570

  17. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  18. Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film.

    PubMed

    Masui, Akihiko; Yasuda, Masahiro; Fujiwara, Nobuaki; Ishikawa, Haruo

    2004-01-01

    To develop a new efficient and potential industrial enzymatic process for the recovery of silver and poly(ethylene terephthalate) (PET) from used lith film for printing, which has not been recycled at all, enzymatic hydrolysis of gelatin layers on lith film was investigated using the thermostabilized mutant enzyme of the alkaline protease from alkaliphilic Bacillus sp. B21-2. The rate of gelatin hydrolysis of lith film in a stirred-tank reactor increased with the temperature and enzyme concentration. The time required to complete the hydrolysis of gelatin on lith film was longer than that on X-ray film because of the tightly cross-linked structure of the gelatin layers of lith film. The time required to complete the hydrolysis by using the mutant enzyme was less than that using the wild-type enzyme. The gelatin hydrolysis of lith film was well explained by a model that took into consideration a number of physical processes in addition to the chemical process. PMID:15296460

  19. Differential protease activity augments polyphagy in Helicoverpa armigera.

    PubMed

    Chikate, Y R; Tamhane, V A; Joshi, R S; Gupta, V S; Giri, A P

    2013-06-01

    Helicoverpa armigera (Lepidoptera: Noctuidae) and other polyphagous agricultural pests are extending their plant host range and emerging as serious agents in restraining crop productivity. Dynamic regulation, coupled with a diversity of digestive and detoxifying enzymes, play a crucial role in the adaptation of polyphagous insects. To investigate the functional intricacy of serine proteases in the development and polyphagy of H. armigera, we profiled the expression of eight trypsin-like and four chymotrypsin-like phylogenetically diverse mRNAs from different life stages of H. armigera reared on nutritionally distinct host plants. These analyses revealed diet- and stage-specific protease expression patterns. The trypsins expressed showed structural variations, which might result in differential substrate specificity and interaction with inhibitors. Protease profiles in the presence of inhibitors and their mass spectrometric analyses revealed insight into their differential activity. These findings emphasize the differential expression of serine proteases and their consequences for digestive physiology in promoting polyphagy in H. armigera. PMID:23432026

  20. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.

  1. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  2. Moringa oleifera Lam.: Protease activity against blood coagulation cascade

    PubMed Central

    Satish, A; Sairam, Sudha; Ahmed, Faiyaz; Urooj, Asna

    2012-01-01

    Background: The present study evaluated the protease activity of aqueous extracts of Moringa oleifera (Moringaceae) leaf (MOL) and root (MOR). Materials and Methods: Protease activity was assayed using casein, human plasma clot and human fibrinogen as substrates. Results: Caseinolytic activity of MOL was significantly higher (P ≤ 0.05) than that of MOR. Similar observations were found in case of human plasma clot hydrolyzing activity, wherein MOL caused significantly higher (P ≤ 0.05) plasma clot hydrolysis than MOR. Zymographic techniques were used to detect proteolytic enzymes following electrophoretic separation in gels. Further, both the extracts exhibited significant procoagulant activity as reflected by a significant decrease (P ≤ 0.05) in recalcification time, accompanied by fibrinogenolytic and fibrinolytic activities; clotting time was decreased from 180 ± 10 sec to 119 ± 8 sec and 143 ± 10 sec by MOL and MOR, respectively, at a concentration of 2.5 mg/mL. Fibrinogenolytic (human fibrinogen) and fibrinolytic activity (human plasma clot) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), plate method and colorimetric method. Zymographic profile indicated that both the extracts exerted their procoagulant activity by selectively hydrolyzing Aα and Bβ subunits of fibrinogen to form fibrin clot, thereby exhibiting fibrinogenolytic activity. However, prolonged incubation resulted in degradation of the formed fibrin clot, suggesting fibrinolytic like activity. Conclusions: These findings support the traditional usage of M. oleifera extracts for wound healing. PMID:22224061

  3. Peptide-modified optical filters for detecting protease activity.

    PubMed

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-11-01

    The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).

  4. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  5. Factor V activation and inactivation by venom proteases.

    PubMed

    Rosing, J; Govers-Riemslag, J W; Yukelson, L; Tans, G

    2001-01-01

    Blood coagulation factor V is a single-chain glycoprotein with M(r) = 330,000 which plays an important role in the procoagulant and anticoagulant pathways. Thrombin activates factor V into factor Va, a two-chain molecule which is composed of a heavy (M(r) = 105,000) and a light chain (M(r) = 71,000/74,000). Factor Va accelerates factor Xa-catalysed prothrombin activation more than 1,000-fold and under physiological conditions the cofactor activity of factor Va in prothrombin activation is down-regulated by activated protein C. Factor V can also be activated by a wide variety of snake venoms (e.g. from Vipera species, Naja naja oxiana, Bothrops atrox) and by proteases present in the bristles of a South American caterpillar (Lonomia achelous). Some venoms, notably of Vipera lebetina turanica and Lonomia achelous, contain proteases that are able to inactivate factor V or factor Va. Venom factor V activators are excellent tools in studying the structure-function relationship of factor V(a) and they are also used in diagnostic tests for quantification of plasma factor V levels and for the screening of defects in the protein C pathway. In this review, the structural and functional properties of animal venom factor V activators and inactivators is described. PMID:11910191

  6. Expression and activation of proteases in co-cultures.

    PubMed

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  7. Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization

    PubMed Central

    Patil, Ulhas; Chaudhari, Ambalal

    2013-01-01

    In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412 U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100 rpm. The competence of strain to grow in various organic solvents—n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. PMID:25937965

  8. The unique stability of Vibrio proteolyticus neutral protease under alkaline conditions affords a selective step for purification and use in amino acid-coupling reactions.

    PubMed

    Durham, D R

    1990-08-01

    A procedure is described for the purification of a neutral protease from fermentation broths of Vibrio proteolyticus. The key feature of the purification scheme is the selective, irreversible inactivation of a contaminating exoenzyme, aminopeptidase, by alkali treatment, rather than removal of this enzyme by conventional chromatographic methods. Fermentation broths or concentrates were brought to pH 11.5 to 11.7 by Na2CO3-NaOH addition and incubated at 25 degrees C until aminopeptidase activity was diminished. The alkali treatment resulted in greater than 99% reduction of aminopeptidase activity with minimal loss of neutral protease activity. The neutral protease could be further purified to apparent homogeneity by QA-52 cellulose chromatography. The alkali treatment of fermentation concentrates was also useful for preparation of V. proteolyticus neutral protease to effect the coupling of N-protected aspartic acid and phenylalanine methyl ester for the production of N-aspartylphenylalanine methyl ester, a precursor for the sweetener aspartame.

  9. Activity based chemical proteomics: profiling proteases as drug targets.

    PubMed

    Heal, William Percy; Wickramasinghe, Sasala Roshinie; Tate, Edward William

    2008-09-01

    The pivotal role of proteases in many diseases has generated considerable interest in their basic biology, and in the potential to target them for chemotherapy. Although fundamental to the initiation and progression of diseases such as cancer, diabetes, arthritis and malaria, in many cases their precise role remains unknown. Activity-based chemical proteomics-an emerging field involving a combination of organic synthesis, biochemistry, cell biology, biophysics and bioinformatics-allows the detection, visualisation and activity quantification of whole families or selected sub-sets of proteases based upon their substrate specificity. This approach can be applied for drug target/lead identification and validation, the fundamentals of drug discovery. The activity-based probes discussed in this review contain three key features; a 'warhead' (binds irreversibly but selectively to the active site), a 'tag' (allowing enzyme 'handling', with a combination of fluorescent, affinity and/or radio labels), and a linker region between warhead and tag. From the design and synthesis of the linker arise some of the latest developments discussed here; not only can the physical properties (e.g., solubility, localisation) of the probe be tuned, but the inclusion of a cleavable moiety allows selective removal of tagged enzyme from affinity beads etc. The design and synthesis of recently reported probes is discussed, including modular assembly of highly versatile probes via solid phase synthesis. Recent applications of activity-based protein profiling to specific proteases (serine, threonine, cysteine and metalloproteases) are reviewed as are demonstrations of their use in the study of disease function in cancer and malaria.

  10. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  11. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  12. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  13. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  14. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  15. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  16. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  17. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses

    PubMed Central

    Yu, Jong W.; Hoffman, Sandy; Beal, Allison M.; Dykon, Angela; Ringenberg, Michael A.; Hughes, Anna C.; Dare, Lauren; Anderson, Amber D.; Finger, Joshua; Kasparcova, Viera; Rickard, David; Berger, Scott B.; Ramanjulu, Joshi; Emery, John G.; Gough, Peter J.; Bertin, John; Foley, Kevin P.

    2015-01-01

    CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo. PMID:25965667

  18. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  19. Fracture healing in protease-activated receptor-2 deficient mice.

    PubMed

    O'Neill, Kevin R; Stutz, Christopher M; Mignemi, Nicholas A; Cole, Heather; Murry, Matthew R; Nyman, Jeffry S; Hamm, Heidi; Schoenecker, Jonathan G

    2012-08-01

    Protease-activated receptor-2 (PAR-2) provides an important link between extracellular proteases and the cellular initiation of inflammatory responses. The effect of PAR-2 on fracture healing is unknown. This study investigates the in vivo effect of PAR-2 deletion on fracture healing by assessing differences between wild-type (PAR-2(+/+)) and knock-out (PAR-2(-/-)) mice. Unilateral mid-shaft femur fractures were created in 34 PAR-2(+/+) and 28 PAR-2(-/-) mice after intramedullary fixation. Histologic assessments were made at 1, 2, and 4 weeks post-fracture (wpf), and radiographic (plain radiographs, micro-computed tomography (µCT)) and biomechanical (torsion testing) assessments were made at 7 and 10 wpf. Both the fractured and un-fractured contralateral femur specimens were evaluated. Polar moment of inertia (pMOI), tissue mineral density (TMD), bone volume fraction (BV/TV) were determined from µCT images, and callus diameter was determined from plain radiographs. Statistically significant differences in callus morphology as assessed by µCT were found between PAR-2(-/-) and PAR-2(+/+) mice at both 7 and 10 wpf. However, no significant histologic, plain radiographic, or biomechanical differences were found between the genotypes. The loss of PAR-2 was found to alter callus morphology as assessed by µCT but was not found to otherwise effect fracture healing in young mice.

  20. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases.

    PubMed

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers.

  1. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  2. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.

    PubMed

    Kageyama, Yasushi; Takaki, Yoshihiro; Shimamura, Shigeru; Nishi, Shinro; Nogi, Yuichi; Uchimura, Kohsuke; Kobayashi, Tohru; Hitomi, Jun; Ozaki, Katsuya; Kawai, Shuji; Ito, Susumu; Horikoshi, Koki

    2007-07-01

    Alkaliphilic Bacillus sp. strain KSM-K16, which produces high-alkaline M-protease, was characterized phenotypically, biochemically and genetically. This strain was identified as Bacillus clausii based on the results of taxonomic studies, including sequencing of the 16S rRNA gene and DNA-DNA hybridization. Seven rRNA operons in the genome were identified by pulsed-field gel electrophoresis. Sequencing of cloned 16S rRNA genes revealed two distinct types of variable region V1. Moreover, some cloned 16S rRNA genes in some of the reference strains of B. clausii had a V1 region of yet another type. The B. clausii strains could clearly be divided into at least two subgroups based on the frequencies of the types of cloned V1 sequence. Bacillus sp. strain KSM-K16 was found to be in a different phylogenetic position from other high-alkaline protease-producing strains of B. clausii. PMID:17429572

  3. Comparative analysis on the distribution of protease activities among fruits and vegetable resources.

    PubMed

    Sun, Qian; Zhang, Bin; Yan, Qiao-Juan; Jiang, Zheng-Qiang

    2016-12-15

    In this study, a comparative analysis on the distribution of protease activities among 90 plant resources, including fruits and vegetables, has been performed. Protease activities of plant extracts were assayed at different pH values (pH 3.0, pH 7.5 and pH 10.5) using casein as a substrate. Ten fruits and thirteen vegetables show protease activities above 10U/g. Pineapple, fig and papaya, which are used for commercial protease production, exhibited high protease activities. Additionally, high protease activities were detected in kiwifruit (28.8U/g), broccoli (16.9U/g), ginger (16.6U/g), leek (32.7U/g) and red pepper (15.8U/g) at different pH values. SDS-PAGE and zymograms confirmed that various types of proteases existed in the five plant extracts and might be explored. Furthermore, five plant extracts were treated by different protease inhibitors. These results show that there are still many plant resources unexplored, which may be promising candidates for plant-derived protease production.

  4. Comparative analysis on the distribution of protease activities among fruits and vegetable resources.

    PubMed

    Sun, Qian; Zhang, Bin; Yan, Qiao-Juan; Jiang, Zheng-Qiang

    2016-12-15

    In this study, a comparative analysis on the distribution of protease activities among 90 plant resources, including fruits and vegetables, has been performed. Protease activities of plant extracts were assayed at different pH values (pH 3.0, pH 7.5 and pH 10.5) using casein as a substrate. Ten fruits and thirteen vegetables show protease activities above 10U/g. Pineapple, fig and papaya, which are used for commercial protease production, exhibited high protease activities. Additionally, high protease activities were detected in kiwifruit (28.8U/g), broccoli (16.9U/g), ginger (16.6U/g), leek (32.7U/g) and red pepper (15.8U/g) at different pH values. SDS-PAGE and zymograms confirmed that various types of proteases existed in the five plant extracts and might be explored. Furthermore, five plant extracts were treated by different protease inhibitors. These results show that there are still many plant resources unexplored, which may be promising candidates for plant-derived protease production. PMID:27451238

  5. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease.

    PubMed

    Gray, Daniel C; Mahrus, Sami; Wells, James A

    2010-08-20

    Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus (TEV) protease under small-molecule control, which we call the SNIPer, with caspase alleles containing genetically encoded TEV cleavage sites. These studies reveal that all three caspases are transiently activated but only activation of caspase-3 or -7 is sufficient to induce apoptosis. Proteomic analysis shown here and from others reveals that 20 of the 33 subunits of the 26S proteasome can be cut by caspases, and we demonstrate synergy between proteasome inhibition and dose-dependent caspase activation. We propose a model of proteolytic reciprocal negative regulation with mechanistic implications for the combined clinical use of proteasome inhibitors and proapoptotic drugs.

  6. Protease activities of Candida spp. isolated from otitis externa: preliminary result.

    PubMed

    Arsović, N A; Banko, A V; Dimitrijević, M V; Djordjević, V Z; Milovanović, J P; Arsenijević, V A

    2009-01-01

    Otomycosis is a fungal infection of the ear predominantly caused by Candida and Aspergillus spp. The possible virulence factors of Candida spp. are enzymes, such as proteases, phospholipases, phosphatases and esterase. According to our knowledge, protease production in Candida strains isolated from patients with otomycosis has not been investigated. The present study was aimed at determining in vitro protease activity in 8 strains of Candida spp. (C. parapsilosis, C. famata, C. guilliermondii and C. albicans) isolated from children with otomycosis. A majority of isolated strains 7/8 (87.5%) were protease positive. The protease activity ranged from Pz 0.61 to 0.78. Further investigation is necessary to clarify the contribution of protease production to Candida virulence associated with otomycosis.

  7. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID

  8. Nematotoxicity of Marasmius oreades Agglutinin (MOA) Depends on Glycolipid Binding and Cysteine Protease Activity*

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Zurfluh, Katrin; Vonesch, Sibylle C.; auf dem Keller, Ulrich; Gehrig, Peter; Bleuler-Martinez, Silvia; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2011-01-01

    Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca2+ concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes. PMID:21757752

  9. Fluorescence molecular tomography resolves protease activity in vivo.

    PubMed

    Ntziachristos, Vasilis; Tung, Ching-Hsuan; Bremer, Christoph; Weissleder, Ralph

    2002-07-01

    Systematic efforts are under way to develop novel technologies that would allow molecular sensing in intact organisms in vivo. Using near-infrared fluorescent molecular beacons and inversion techniques that take into account the diffuse nature of photon propagation in tissue, we were able to obtain three-dimensional in vivo images of a protease in orthopic gliomas. We demonstrate that enzyme-activatable fluorochromes can be detected with high positional accuracy in deep tissues, that molecular specificities of different beacons towards enzymes can be resolved and that tomography of beacon activation is linearly related to enzyme concentration. The tomographic imaging method offers a range of new capabilities for studying biological function; for example, identifying molecular-expression patterns by multispectral imaging or continuously monitoring the efficacy of therapeutic drugs.

  10. Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet.

    PubMed

    Shavit, Efrat; Michaelson, Daniel M; Chapman, Joab

    2011-11-01

    We studied the localization, activation and function of protease-activated receptor 1 (PAR-1) at the CNS synapse utilizing rat brain synaptosomes and slices. Confocal immunofluoresence and transmission electron microscopy in brain slices with pre-embedding diaminobenzidine (DAB) immunostaining found PAR-1 predominantly localized to the peri-synaptic astrocytic endfeet. Structural confocal immunofluorescence microscopy studies of isolated synaptosomes revealed spherical structures stained with anti-PAR-1 antibody which co-stained mainly for glial-filament acidic protein compared with the neuronal markers synaptophysin and PSD-95. Immunoblot studies of synaptosomes demonstrated an appropriate major band corresponding to PAR-1 and activation of the receptor by a specific agonist peptide (SFLLRN) significantly modulated phosphorylated extracellular signal-regulated kinase. A significant membrane potential depolarization was produced by thrombin (1 U/mL) and the PAR-1 agonist (100 μM) and depolarization by high K(+) elevated extracellular thrombin-like activity in the synaptosomes preparation. The results indicate PAR-1 localized to the peri-synaptic astrocytic endfeet is most likely activated by synaptic proteases and induces cellular signaling and modulation of synaptic electrophysiology. A protease mediated neuron-glia pathway may be important in both physiological and pathological regulation of the synapse. PMID:21854391

  11. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  12. Evidence for pH-Dependent Protease Activity in the Adeno-Associated Virus Capsid

    PubMed Central

    Salganik, Maxim; Venkatakrishnan, Balasubramanian; Bennett, Antonette; Lins, Bridget; Yarbrough, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Incubation of highly purified adeno-associated virus (AAV) capsids in vitro at pH 5.5 induced significant autocleavage of capsid proteins at several amino acid positions. No autocleavage was seen at pH 7.5. Examination of other AAV serotypes showed at least two different pH-induced cleavage patterns, suggesting that different serotypes have evolved alternative protease cleavage sites. In contrast, incubation of AAV serotypes with an external protease substrate showed that purified AAV capsid preparations have robust protease activity at neutral pH but not at pH 5.5, opposite to what is seen with capsid protein autocleavage. Several lines of evidence suggested that protease activity is inherent in AAV capsids and is not due to contaminating proteins. Control virus preparations showed no protease activity on external substrates, and filtrates of AAV virus preparations also showed no protease activity contaminating the capsids. Further, N-terminal Edman sequencing identified unique autocleavage sites in AAV1 and AAV9, and mutagenesis of amino acids adjacent to these sites eliminated cleavage. Finally, mutation of an amino acid in AAV2 (E563A) that is in a conserved pH-sensitive structural region eliminated protease activity on an external substrate but did not seem to affect autocleavage. Taken together, our data suggested that AAV capsids have one or more protease active sites that are sensitive to pH induction. Further, it appears that acidic pHs comparable to those seen in late endosomes induce a structural change in the capsid that induces autolytic protease activity. The pH-dependent protease activity may have a role in viral infection. PMID:22915820

  13. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  14. Intestinal protease-activated receptor-2 and fecal serine protease activity are increased in canine inflammatory bowel disease and may contribute to intestinal cytokine expression.

    PubMed

    Maeda, Shingo; Ohno, Koichi; Uchida, Kazuyuki; Igarashi, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Tsujimoto, Hajime

    2014-08-01

    Serine proteases elicit cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate inflammation and the immune response. Although the gastrointestinal tract is exposed to large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel disease (IBD) remains unclear. The objective of this study was to investigate the effects of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with IBD. Duodenal biopsies from healthy dogs were cultured and treated ex vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and protein expression levels in the duodenal mucosa were examined by real-time PCR and immunohistochemistry, respectively. Fecal serine protease activity was determined by azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β (IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal serine protease activity was significantly elevated in dogs with IBD, and the level of activity correlated positively with the clinical severity score. These results suggest that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of inflammatory mediators in response to luminal serine proteases.

  15. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. PMID:27608950

  16. [Identification of Target Extracellular Proteases--Activators of Proteins of Haemostasis System Produced by Micromycetes Aspergillus ochraceus and Aspergillus terreus].

    PubMed

    Zvonareva, E S; Osmolovskiy, A A; Kreyer, V G; Baranova, N A; Kotova, I B; Egorov, N S

    2015-01-01

    Effects of extracellular proteases of Aspergillus ochraceus and Aspergillus terreus on plasma hemostasis proteins, consist of initiating the activation of prothrombin complex proteins, was detected. Was discovered, that A. ochraceus proteases have a direct influence on protein C and coagulation factor X, and A. terreus proteases causes their activation indirectly through kallikrein system stimulation. The ability of extracellular proteases of micromycetes activate prekallikrein in human blood plasma on the example of A. terreus was first demonstrated.

  17. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  18. Versatile substrates and probes for IgA1 protease activity.

    PubMed

    Choudary, Santosh K; Qiu, Jiazhou; Plaut, Andrew G; Kritzer, Joshua A

    2013-10-11

    Bacterial meningitis is a severe infectious disease with high mortality. Gram-positive and Gram-negative bacteria that cause meningitis secrete immunoglobulin A1 (IgA1) proteases to assist in mucosal colonization, invasion, and immune evasion. IgA1 proteases have unique selectivity, with few reported substrates other than IgA1 from human tissue. Here we describe the design, characterization, and application of peptide substrates for diverse IgA1 proteases from Neisseria, Haemophilus, and Streptococcus bacteria. IgA1 proteases from diverse strains showed unexpected selectivity profiles among peptide substrates derived from autoproteolytic sites. A fluorescence probe derived from one of these peptides was used to quantitate IgA1 protease activity in buffer and in human cerebrospinal fluid; it was able to detect recombinant Haemophilus influenzae type 1 IgA1 protease at less than 1 μg mL(-1) . We also used the probe to establish the first high-throughput screen for IgA1 protease inhibitors. This work provides tools that will help investigate the roles of IgA1 proteases in bacterial colonization, immune evasion, and infection.

  19. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    SciTech Connect

    Spannaus, Ralf; Bodem, Jochen

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.

  20. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.

  1. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  2. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation

    PubMed Central

    Heires, Art J.; Nordgren, Tara M.; Souder, Chelsea P.; West, William; Liu, Xiang-de; Poole, Jill A.; Toews, Myron L.; Wyatt, Todd A.

    2015-01-01

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  3. Plant collagenase: unique collagenolytic activity of cysteine proteases from ginger.

    PubMed

    Kim, Misook; Hamilton, Susan E; Guddat, Luke W; Overall, Christopher M

    2007-12-01

    Two cysteine proteases, GP2 and GP3, have been isolated from ginger rhizomes (Zingiber officinale). GP2 is virtually identical to a previously identified ginger protease GPII [K.H. Choi, and R.A. Laursen, Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale, Eur. J. Biochem. 267 (2000) 1516-1526.], and cleaves native type I collagen at multiple discrete sites, which are in the interior of the triple helical region of this molecule. In reaction with proline-containing peptides GP2 shows preference for Pro in the P2 position, and at least 10-fold higher efficiency of hydrolysis than papain. Comparison of models of GP2 and GP3 with the crystal structure of papain shows that the three enzymes have different S2 pocket structures. The S2 pocket in GP2 and GP3 is half the size of that of papain. GP2 is the only reported plant cysteine protease with a demonstrated ability to hydrolyse native collagen. The results support a role for ginger proteases as an alternative to papain, in commercial applications such as meat tenderization, where collagen is the target substrate. PMID:17920199

  4. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  5. [Coupling of protease activity and sodium loading with intestinal absorption of amino acids].

    PubMed

    Basova, N A; Markov, Iu G; Berzinia, N I

    2005-09-01

    Membrane-bound serine proteases to play a certain role in activation of sodium transport in epithelial cells. To were found explain the protease activity and sodium-dependent L-tryptophan transport across chicken small intestine interaction, four experiments were conducted. One hundred chicks were fed diets that contained 0; 0.3; 3 or 6% of supplemental NaCl and were given distillated water ad libitum. Signs of salt toxicity observed were as follows: a decreased body weight, increased heart and kidney weights, formation of secondary lysosomes in enterocytes and lymphocytes. Such chickens were in the state of negative nitrogen balance. Intestinal absorption of L-tryptophan correlated with mucosal protease activity during increased dietary sodium chloride intake. Recent in vitro and in vivo experiments indicate that enterocyte proteases may be of critical importance in activation of sodium-dependent intestinal transporters for L-tryptophan.

  6. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation. PMID:26993244

  7. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  8. Design, synthesis, and activity of nanocellulosic protease sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we contrast the molecular assembly, and biochemical utility of nanocellulosic materials prepared from cotton and wood as protease sensors. The cotton-based nanocellulosic substrates were prepared in a variety of ways to produce nanocrystals, films and aerogels, which were derivatized with eithe...

  9. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation.

    PubMed

    Wright, S C; Wei, Q S; Zhong, J; Zheng, H; Kinder, D H; Larrick, J W

    1994-12-01

    We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1-tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala-borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24-kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis. PMID:7964487

  10. Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease.

    PubMed

    Ogino, Hiroyasu; Tsuchiyama, Shotaro; Yasuda, Masahiro; Doukyu, Noriyuki

    2010-03-01

    The PST-01 protease is highly stable and catalyzes the synthesis of the aspartame precursor with high reaction yields in the presence of organic solvents. However, the synthesis rate using the PST-01 protease was slower than that observed when thermolysin was used. Structural comparison of both enzymes showed particular amino acid differences near the active center. These few residue differences in the PST-01 protease were mutated to match those amino acid types found in thermolysin. The mutated PST-01 proteases at the 114th residue from tyrosine to phenylalanine showed enhancement of synthetic activity. This activity was found to be similar to thermolysin. In addition, mutating the residue in the PST-01 protease with arginine and serine showed more improvement of the activity. The mutant PST-01 protease should be more useful than thermolysin for the synthesis of the aspartame precursor, because this enzyme has higher stability and activity in the presence of organic solvents. The results show the potential of organic solvent-stable enzymes as industrial catalysts.

  11. Protease activity in protein-free NS0 myeloma cell cultures.

    PubMed

    Spens, Erika; Häggström, Lena

    2005-01-01

    Zymography of concentrated conditioned medium (CM) from protein-free NS0 myeloma cell cultures showed that this cell line produced and released/secreted several proteases. Two caseinolytic activities at 45-50 and 90 kDa were identified as aspartic acid proteases, and at least two cathepsins of the papain-like cysteine protease family with molecular masses of 30-35 kDa were found by gelatin zymography. One of these cathepsins was identified as cathepsin L by using an enzyme assay exploiting the substrate Z-Phe-Arg-AMC and the inhibitor Z-Phe-Tyr-t(Bu)-DMK. The aspartic acid and cysteine proteases were active only at acidic pH and are therefore not a potential risk for degrading the product or affecting cell growth during culture. Secreted proforms of cathepsins may, however, possess mitogenic functions, but addition of anti-procathepsin L antibodies to NS0 cultures did not influence proliferation. The recombinant antibody product was not degraded in cell-free CM incubated at pH 7, but when the pH was decreased to 3.5-4, the aspartic acid proteases degraded the product. Gelatin zymography also revealed the presence of several serine proteases in NS0 CM, one at 85 kDa and two at 50 kDa, with pH optima close to culture pH. Addition of the serine protease inhibitor aprotinin significantly increased the specific proliferation rate as compared to the control. In addition to these data, N-terminal amino acid sequencing identified two proteins in NS0 CM as the protease inhibitors secretory leukocyte protease inhibitor and cystatin C.

  12. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator.

    PubMed

    Ost, Kyla S; O'Meara, Teresa R; Huda, Naureen; Esher, Shannon K; Alspaugh, J Andrew

    2015-04-01

    The Rim101/PacC transcription factor acts in a fungal-specific signaling pathway responsible for sensing extracellular pH signals. First characterized in ascomycete fungi such as Aspergillus nidulans and Saccharomyces cerevisiae, the Rim/Pal pathway maintains conserved features among very distantly related fungi, where it coordinates cellular adaptation to alkaline pH signals and micronutrient deprivation. However, it also directs species-specific functions in fungal pathogens such as Cryptococcus neoformans, where it controls surface capsule expression. Moreover, disruption of the Rim pathway central transcription factor, Rim101, results in a strain that causes a hyper-inflammatory response in animal infection models. Using targeted gene deletions, we demonstrate that several genes encoding components of the classical Rim/Pal pathway are present in the C. neoformans genome. Many of these genes are in fact required for Rim101 activation, including members of the ESCRT complex (Vps23 and Snf7), ESCRT-interacting proteins (Rim20 and Rim23), and the predicted Rim13 protease. We demonstrate that in neutral/alkaline pH, Rim23 is recruited to punctate regions on the plasma membrane. This change in Rim23 localization requires upstream ESCRT complex components but does not require other Rim101 proteolysis components, such as Rim20 or Rim13. Using a forward genetics screen, we identified the RRA1 gene encoding a novel membrane protein that is also required for Rim101 protein activation and, like the ESCRT complex, is functionally upstream of Rim23-membrane localization. Homologs of RRA1 are present in other Cryptococcus species as well as other basidiomycetes, but closely related genes are not present in ascomycetes. These findings suggest that major branches of the fungal Kingdom developed different mechanisms to sense and respond to very elemental extracellular signals such as changing pH levels.

  13. High-throughput Protease Activity Cytometry Reveals Dose-dependent Heterogeneity in PMA-mediated ADAM17 Activation†

    PubMed Central

    Wu, Lidan; Claas, Allison M.; Sarkar, Aniruddh; Lauffenburger, Douglas A.; Han, Jongyoon

    2015-01-01

    As key components of autocrine signaling, pericellular proteases, A Disintegrin and Metalloproteinases (ADAMs) in particular, are known to impact the microenvironment of individual cells and have significant implications in various pathological situations including cancer, inflammatory and vascular diseases.1-3 There is great incentive to develop a high-throughput platform for single-cell measurement of pericellular protease activity, as it is essential for studying the heterogeneity of protease response and the corresponding cell behavioral consequences. In this work, we developed a microfluidic platform to simultaneously monitor protease activity of many single cells in a time-dependent manner. This platform isolates individual microwells rapidly on demand and thus allows single-cell activity measurement of both cell-surface and secreted proteases by confining individual cells with diffusive FRET-based substrates. With this platform, we observed dose-dependent heterogeneous protease activation of HepG2 cells treated with phorbol 12-myristate 13-acetate (PMA). To study the temporal behavior of PMA-induced protease response, we monitored the pericellular protease activity of the same single cells during three different time periods and revealed the diversity in the dynamic patterns of single-cell protease activity profile upon PMA stimulation. The unique temporal information of single-cell protease response can help unveil the complicated functional role of pericellular proteases. PMID:25832727

  14. Nematicidal activity of three novel extracellular proteases of the nematophagous fungus Monacrosporium sinense.

    PubMed

    Soares, Filippe E F; Braga, Fabio R; Araújo, Jackson V; Geniêr, Hugo L A; Gouveia, Angélica S; Queiroz, José H

    2013-04-01

    Extracellular proteases are an important virulence factor for the nematophagous fungi Monacrosporium. The objective of this study was to optimize, purify, partially characterize, and to evaluate the nematicidal activity of the proteases produced by the nematophagous fungus Monacrosporium sinense (SF53) by solid-state fermentation. Wheat bran was used as substrate for protease production. The variables moisture, pH, incubation time, temperature, glucose, yeast extract, and the number of conidia were tested for their influences on protease production by SF53. To determine the optimal level of the selected variables the central composite design was applied. The crude extract obtained was purified in two steps, an ion exchange chromatography and a gel excision. SDS-PAGE and zymogram were performed for analysis of the purification process. Proteolytic activity was also tested at different pHs and temperatures. In the in vitro assay, the nematicidal activity of the three proteases was evaluated. pH and incubation time showed a significant effect (p<0.05) on production of protease. The highest value of activity was 38.0 (U/ml) under the conditions of pH 5.0 and incubation time of 211 h. SF53 produced three different proteases (Ms1, Ms2, and Ms3) which were directly purified from the zymogram. Ms1, Ms2, and Ms3 showed the following percentage of reduction (p<0.05) on the number of Panagrellus redivivus compared to control after 24 h: 76.8, 68.1, and 92.1%. This is the first report of the use of proteases of the isolate SF53 on a phytonematode, which may be a research tool in future works. PMID:23371498

  15. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    PubMed

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.

  16. Approaches for the generation of active papain-like cysteine proteases from inclusion bodies of Escherichia coli.

    PubMed

    Ling, Chunfang; Zhang, Junyan; Lin, Deqiu; Tao, Ailin

    2015-05-01

    Papain-like cysteine proteases are widely expressed, fulfill specific functions in extracellular matrix turnover, antigen presentation and processing events, and may represent viable drug targets for major diseases. In depth and rigorous studies of the potential for these proteins to be targets for drug development require sufficient amounts of protease protein that can be used for both experimental and therapeutic purposes. Escherichia coli was widely used to express papain-like cysteine proteases, but most of those proteases are produced in insoluble inclusion bodies that need solubilizing, refolding, purifying and activating. Refolding is the most critical step in the process of generating active cysteine proteases and the current approaches to refolding include dialysis, dilution and chromatography. Purification is mainly achieved by various column chromatography. Finally, the attained refolded proteases are examined regarding their protease structures and activities.

  17. Trypsin causes platelet activation independently of known protease-activated receptors

    PubMed Central

    Mao, Yingying; Kunapuli, Satya P.

    2014-01-01

    To identify a physiological agonist of PAR3, we used PAR4 null murine platelets, which were known to express only PAR3. In this study, we tested several proteases and found that trypsin, but not heat-inactivated trypsin, activated PAR4 null murine platelets. Even at high concentrations, trypsin caused shape change without increasing intracellular calcium levels in PAR4 null murine platelets. Consistent with this result, the Gq inhibitor YM-254890 had no effect on trypsin-induced shape change. However, trypsin-induced platelet shape change was abolished by either p160ROCK inhibitor, Y27632 or H1152. Furthermore, trypsin caused phosphorylation of myosin light chain (Thr18), but not Akt or Erk. Surprisingly, trypsin caused a similar shape change in PAR4-desensitized PAR3 null murine platelets as in PAR4 null murine platelets, indicating that trypsin did not activate PAR3 to cause shape change. More interestingly, the Src family kinase (SFK) inhibitor PP2 abolished trypsin-induced, but not AYPGKF-induced, shape change. Hence, trypsin activated a novel signaling pathway through RhoA/p160ROCK and was regulated by SFKs. In conclusion, our study demonstrates a novel protease signaling pathway in platelets that is independent of PARs. This protease-induced novel signaling pathway regulates platelet shape change through SFKs and p160ROCK. PMID:24030758

  18. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process.

  19. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  20. Temperature-induced changes of HtrA2(Omi) protease activity and structure.

    PubMed

    Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Polit, Agnieszka; Skorko-Glonek, Joanna; Lesner, Adam; Gitlin, Agata; Gieldon, Artur; Ciarkowski, Jerzy; Glaza, Przemyslaw; Lubomska, Agnieszka; Lipinska, Barbara

    2013-01-01

    HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ-protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ-protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ-protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

  1. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery.

    PubMed

    Simova-Stoilova, Lyudmila; Vaseva, Irina; Grigorova, Biliana; Demirevska, Klimentina; Feller, Urs

    2010-01-01

    The involvement of acidic proteases in soil drought response of winter wheat (Triticum aestivum L.) at seedling stage in three cultivars differing in water stress tolerance was studied. Withholding irrigation for seven days resulted in severe drought stress corresponding to 60% leaf water deficit. Stressed plants were recovered by providing optimal water supply for 3 days. Reversible changes in leaf pigment and protein content were registered, being least expressed in the drought-resistant cultivar Katya. Protein loss was inversely related to the increase in total proteolytic activity at pH 5 and in aminopeptidase activity at pH 7. Quantitative differences among the cultivars were established only for azocaseinolytic activity (pH 5). The drought-resistant cultivar (Katya) showed relatively little increase in acid protease activity whereas the highest values of this activity were detected in cultivar Pobeda. In-gel staining for cysteine-activated proteases revealed four to five separate activity bands. The upper band, specifically inhibited by E-64, was raised at severe drought. Transcript abundance of two wheat cysteine proteases -Ta.61026 putative thiol protease, and WCP2 peptidase of papain type was analyzed by RT-PCR. Gene expression of the cysteine proteases under study was suppressed in the drought-tolerant cultivar, while in the less resistant ones it remained unchanged or augmented. The results suggest that lower proteolytic activity and decreased expression of certain cysteine protease genes under water deficit during early developmental stage could be regarded as an indicator for drought resistance of winter wheat cultivars.

  2. Characterization of the Protease Activity of Detergents: Laboratory Practicals for Studying the Protease Profile and Activity of Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-01-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body…

  3. Activation of human pro-urokinase by unrelated proteases secreted by Pseudomonas aeruginosa.

    PubMed

    Beaufort, Nathalie; Seweryn, Paulina; de Bentzmann, Sophie; Tang, Aihua; Kellermann, Josef; Grebenchtchikov, Nicolai; Schmitt, Manfred; Sommerhoff, Christian P; Pidard, Dominique; Magdolen, Viktor

    2010-06-15

    Pathogenic bacteria, including Pseudomonas aeruginosa, interact with and engage the host plasminogen (Plg) activation system, which encompasses the urokinase (uPA)-type Plg activator, and is involved in extracellular proteolysis, including matrilysis and fibrinolysis. We hypothesized that secreted bacterial proteases might contribute to the activation of this major extracellular proteolytic system, thereby participating in bacterial dissemination. We report that LasB, a thermolysin-like metalloprotease secreted by Ps. aeruginosa, converts the human uPA zymogen into its active form (kcat=4.9 s-1, Km=8.9 microM). Accordingly, whereas the extracellular secretome from the LasB-expressing pseudomonal strain PAO1 efficiently activates pro-uPA, the secretome from the isogenic LasB-deficient strain PDO240 is markedly less potent in pro-uPA activation. Still, both secretomes induce some metalloprotease-independent activation of the human zymogen. The latter involves a serine protease, which we identified via both recombinant protein expression in Escherichia coli and purification from pseudomonal cultures as protease IV (PIV; kcat=0.73 s-1, Km=6.2 microM). In contrast, neither secretomes nor the pure proteases activate Plg. Along with this, LasB converts Plg into mini-Plg and angiostatin, whereas, as reported previously, it processes the uPA receptor, inactivates the plasminogen activator inhibitor 1, and activates pro-matrix metalloproteinase 2. PIV does not target these factors at all. To conclude, LasB and PIV, although belonging to different protease families and displaying quite different substrate specificities, both activate the urokinase-type precursor of the Plg activation cascade. Direct pro-uPA activation, as also reported for other bacterial proteases, might be a frequent phenomenon that contributes to bacterial virulence.

  4. Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification

    PubMed Central

    Yao, Jiayi; Guihard, Pierre J.; Blazquez-Medela, Ana M.; Guo, Yina; Moon, Jeremiah H.; Jumabay, Medet; Boström, Kristina I.; Yao, Yucheng

    2015-01-01

    Rationale Endothelial cells have the ability to undergo endothelial-mesenchymal transitions (EndMTs), by which they acquire a mesenchymal phenotype and stem-cell like characteristics. We previously found that EndMTs ocurred in the endothelium deficient in matrix Gla protein (MGP) enabling endothelial cells to contribute cells to vascular calcification. However, the mechanism responsible for initiating EndMTs is not fully understood. Objective To determine the role of specific serine proteases and sex determining region Y-box 2 (Sox2) in the initiation of EndMTs. Methods and Results In this study, we used in vivo and in vitro models of vascular calcification to demonstrate that serine proteases and Sox2 are essential for the initiation of EndMTs in MGP-deficient endothelium. We showed that expression of a group of specific serine proteases was highly induced in endothelial cells at sites of vascular calcification in Mgp null aortas. Treatment with serine protease inhibitors decreased both stem-cell marker expression and vascular calcification. In human aortic endothelial cells, this group of serine proteases also induced EndMTs, and the activation of proteases was mediated by Sox2. Knockdown of the serine proteases or Sox2 diminished EndMTs and calcification. Endothelial-specific deletion of Sox2 decreased expression of stem-cell markers and aortic calcification in MGP-deficient mice. Conclusions Our results suggest that Sox2-mediated activation of specific serine proteases is essential for initiating EndMTs, and thus, may provide new therapeutic targets for treating vascular calcification. PMID:26265629

  5. A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.

    PubMed

    Qi, Peng; Zhang, Dun; Wan, Yi

    2014-11-01

    Sulfate-reducing bacteria (SRB) have been extensively studied in corrosion and environmental science. However, fast enumeration of SRB population is still a difficult task. This work presents a novel specific SRB detection method based on inhibition of cysteine protease activity. The hydrolytic activity of cysteine protease was inhibited by taking advantage of sulfide, the characteristic metabolic product of SRB, to attack active cysteine thiol group in cysteine protease catalytic sites. The active thiol S-sulfhydration process could be used for SRB detection, since the amount of sulfide accumulated in culture medium was highly related with initial bacterial concentration. The working conditions of cysteine protease have been optimized to obtain better detection capability, and the SRB detection performances have been evaluated in this work. The proposed SRB detection method based on inhibition of cysteine protease activity avoided the use of biological recognition elements. In addition, compared with the widely used most probable number (MPN) method which would take up to at least 15days to accomplish whole detection process, the method based on inhibition of papain activity could detect SRB in 2 days, with a detection limit of 5.21×10(2) cfu mL(-1). The detection time for SRB population quantitative analysis was greatly shortened.

  6. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India.

    PubMed

    Panda, Ananta Narayan; Mishra, Samir R; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  7. Draft Genome Sequence of Halobacillus sp. Strain KGW1, a Moderately Halophilic and Alkaline Protease-Producing Bacterium Isolated from the Rhizospheric Region of Phragmites karka from Chilika Lake, Odisha, India

    PubMed Central

    Panda, Ananta Narayan; Mishra, Samir R.; Ray, Lopamudra; Sahu, Neha; Acharya, Ankita; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    Halobacillus sp. strain KGW1 is a moderately halophilic, rod shaped, Gram-positive, yellow pigmented, alkaline protease-producing bacterium isolated from a water sample from Chilika Lake, Odisha, India. Sequencing of bacterial DNA assembled a 3.68-Mb draft genome. The genome annotation analysis showed various gene clusters for tolerance to stress, such as elevated pH, salt concentration, and toxic metals. PMID:27365341

  8. A conserved activation cluster is required for allosteric communication in HtrA-family proteases

    PubMed Central

    de Regt, Anna; Kim, Seokhee; Sohn, Jungsan; Grant, Robert A.; Baker, Tania A.; Sauer, Robert T.

    2015-01-01

    Summary In E. coli, outer-membrane stress causes a transcriptional response through a signaling cascade initiated by DegS cleavage of a transmembrane anti-sigma factor. Each subunit of DegS, an HtrA-family protease, contains a protease domain and a PDZ domain. The trimeric protease domain is autoinhibited by the unliganded PDZ domains. Allosteric activation requires binding of unassembled outer-membrane proteins (OMPs) to the PDZ domains and protein-substrate binding. Here, we identify a set of DegS residues that cluster together at subunit-subunit interfaces in the trimer, link the active sites and substrate-binding sites, and are crucial for stabilizing the active enzyme conformation in response to OMP signaling. These residues are conserved across the HtrA-protease family, including orthologs linked to human disease, supporting a common mechanism of allosteric activation. Indeed, mutation of residues at homologous positions in the DegP quality-control protease also eliminates allosteric activation. PMID:25703375

  9. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification.

  10. Imaging of alkaline phosphatase activity in bone tissue.

    PubMed

    Gade, Terence P; Motley, Matthew W; Beattie, Bradley J; Bhakta, Roshni; Boskey, Adele L; Koutcher, Jason A; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with (19)Flourine magnetic resonance spectroscopic imaging ((19)FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using (19)Fluorine magnetic resonance spectroscopy ((19)FMRS) and (19)FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. (19)FMRS and (19)FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. (19)FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized (19)FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of (19)FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, (19)FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  11. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  12. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  13. Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice.

    PubMed

    Shimura, Sakiko; Takai, Toshiro; Iida, Hideo; Maruyama, Natsuko; Ochi, Hirono; Kamijo, Seiji; Nishioka, Izumi; Hara, Mutsuko; Matsuda, Akira; Saito, Hirohisa; Nakae, Susumu; Ogawa, Hideoki; Okumura, Ko; Ikeda, Shigaku

    2016-07-01

    Allergen sources such as mites, insects, fungi, and pollen contain proteases. Airway exposure to proteases induces allergic airway inflammation and IgE/IgG1 responses via IL-33-dependent mechanisms in mice. We examined the epicutaneous sensitization of mice to a model protease allergen, papain; the effects of tape stripping, which induces epidermal barrier dysfunction; and the atopic march upon a subsequent airway challenge. Papain painting on ear skin and tape stripping cooperatively promoted dermatitis, the skin gene expression of proinflammatory cytokines and growth factors, up-regulation of serum total IgE, and papain-specific IgE/IgG1 induction. Epicutaneous sensitization induced T helper (Th) 2 cells and Th17 differentiation in draining lymph nodes. Ovalbumin and protease inhibitor-treated papain induced no or weak responses, whereas the co-administration of ovalbumin and papain promoted ovalbumin-specific IgE/IgG1 induction. Wild-type and IL-33-deficient mice showed similar responses in the epicutaneous sensitization phase. The subsequent airway papain challenge induced airway eosinophilia and maintained high papain-specific IgE levels in an IL-33-dependent manner. These results suggest that allergen source-derived protease activity and mechanical barrier damage such as that caused by scratching cooperatively promote epicutaneous sensitization and skin inflammation and that IL-33 is dispensable for epicutaneous sensitization but is crucial in the atopic march upon a subsequent airway low-dose encounter with protease allergens. PMID:26987428

  14. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress. PMID:24230976

  15. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress.

  16. Essential role of platelet activation via protease activated receptor 4 in tissue factor-initiated inflammation

    PubMed Central

    Busso, Nathalie; Chobaz-Péclat, Veronique; Hamilton, Justin; Spee, Pieter; Wagtmann, Nicolai; So, Alexander

    2008-01-01

    Introduction Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood – in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). Methods We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1–219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. Results Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. Conclusion Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation. PMID:18412955

  17. Purified and Recombinant Hemopexin: Protease Activity and Effect on Neutrophil Chemotaxis

    PubMed Central

    Lin, Tian; Liu, Jialin; Huang, Feng; van Engelen, Tjitske SR; Thundivalappil, Sujatha R; Riley, Frank E; Super, Michael; Watters, Alexander L; Smith, Ann; Brinkman, Nathan; Ingber, Donald E; Warren, H Shaw

    2016-01-01

    Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme. PMID:26772775

  18. Dynamical Network of HIV-1 Protease Mutants Reveals the Mechanism of Drug Resistance and Unhindered Activity.

    PubMed

    Appadurai, Rajeswari; Senapati, Sanjib

    2016-03-15

    HIV-1 protease variants resist drugs by active and non-active-site mutations. The active-site mutations, which are the primary or first set of mutations, hamper the stability of the enzyme and resist the drugs minimally. As a result, secondary mutations that not only increase protein stability for unhindered catalytic activity but also resist drugs very effectively arise. While the mechanism of drug resistance of the active-site mutations is through modulating the active-site pocket volume, the mechanism of drug resistance of the non-active-site mutations is unclear. Moreover, how these allosteric mutations, which are 8-21 Å distant, communicate to the active site for drug efflux is completely unexplored. Results from molecular dynamics simulations suggest that the primary mechanism of drug resistance of the secondary mutations involves opening of the flexible protease flaps. Results from both residue- and community-based network analyses reveal that this precise action of protease is accomplished by the presence of robust communication paths between the mutational sites and the functionally relevant regions: active site and flaps. While the communication is more direct in the wild type, it traverses across multiple intermediate residues in mutants, leading to weak signaling and unregulated motions of flaps. The global integrity of the protease network is, however, maintained through the neighboring residues, which exhibit high degrees of conservation, consistent with clinical data and mutagenesis studies. PMID:26892689

  19. Thrombin regulation of cell function through protease-activated receptors: implications for therapeutic intervention.

    PubMed

    Derian, C K; Damiano, B P; D'Andrea, M R; Andrade-Gordon, P

    2002-01-01

    The serine protease thrombin is well recognized as being pivotal to the maintenance of hemostasis under both normal and pathological conditions. Its cellular actions are mediated through a unique family of protease-activated receptors (PARs). These receptors represent a novel family of G protein-coupled receptors that undergo proteolytic cleavage of their amino terminus and subsequent autoactivation by a tethered peptide ligand. This paper reviews the consequences of PAR activation in thrombosis, vascular injury, inflammation, tissue injury, and within the tumor microenvironment.

  20. The activation of protease-activated receptor 1 mediates proliferation and invasion of nasopharyngeal carcinoma cells.

    PubMed

    Zhu, Qingyao; Luo, Jianchao; Wang, Tao; Ren, Jinghua; Hu, Kai; Wu, Gang

    2012-07-01

    Protease-activated receptor 1 (PAR-1) is a G-coupled membrane protein, which is involved in physiological and malignant invasion processes. It is activated by serine proteases such as thrombin through a unique form or by specific synthetic peptides. In this study, we determined the expression of PAR-1 in five nasopharyngeal carcinoma (NPC) cell lines with different characteristics of invasiveness and metastasis, and found that the levels of PAR-1 expression were higher in invasive or metastatic cell lines than those in low invasive or metastatic ones. Of the five NPC cell lines, CNE1-LMP1 cells had the highest expression levels of PAR-1, which was mainly distributed at the membrane and in the cytoplasm of tumor cells. Further study showed that the thrombin receptor synthetic activating peptide SFLLRN could stimulate the growth of CNE1-LMP1 cells in a dose-dependent manner. However, thrombin itself had a dual effect on the proliferation of NPC cells. Concentrations of thrombin in the range of 0.1-0.5 U/ml promoted cell growth, but concentrations higher than 0.5 U/ml impaired cell growth. Moreover, thrombin and SFLLRN also enhanced the invasive capabilities of CNE1-LMP1 cells in vitro, and this was partly due to enhancing the activities of MMP-2 and MMP-9. Our findings suggest that PAR-1 may contribute to the growth and invasive potential of NPC cells. PMID:22562397

  1. A continuous assay for foot-and-mouth disease virus 3C protease activity.

    PubMed

    Jaulent, Agnès M; Fahy, Aodhnait S; Knox, Stephen R; Birtley, James R; Roqué-Rosell, Núria; Curry, Stephen; Leatherbarrow, Robin J

    2007-09-15

    Foot-and-mouth disease virus is a highly contagious pathogen that spreads rapidly among livestock and is capable of causing widespread agricultural and economic devastation. The virus genome is translated to produce a single polypeptide chain that subsequently is cleaved by viral proteases into mature protein products, with one protease, 3C(pro), carrying out the majority of the cleavages. The highly conserved nature of this protease across different viral strains and its crucial role in viral maturation and replication make it a very desirable target for inhibitor design. However, the lack of a convenient and high-throughput assay has been a hindrance in the characterization of potential inhibitors. In this article, we report the development of a continuous assay with potential for high throughput using fluorescence resonance energy transfer-based peptide substrates. Several peptide substrates containing the 3C-specific cleavage site were synthesized, varying both the positions and separation of the fluorescent donor and quencher groups. The best substrate, with a specificity constant k(cat)/K(M) of 57.6+/-2.0M(-1) s(-1), was used in inhibition assays to further characterize the protease's activity against a range of commercially available inhibitors. The inhibition profile of the enzyme showed characteristics of both cysteine and serine proteases, with the chymotrypsin inhibitor TPCK giving stoichiometric inhibition of the enzyme and allowing active site titration of the 3C(pro).

  2. A Lon-like protease with no ATP-powered unfolding activity.

    PubMed

    Liao, Jiahn-Haur; Kuo, Chiao-I; Huang, Ya-Yi; Lin, Yu-Ching; Lin, Yen-Chen; Yang, Chen-Yui; Wu, Wan-Ling; Chang, Wei-Hau; Liaw, Yen-Chywan; Lin, Li-Hua; Chang, Chung-I; Wu, Shih-Hsiung

    2012-01-01

    Lon proteases are a family of ATP-dependent proteases involved in protein quality control, with a unique proteolytic domain and an AAA(+) (ATPases associated with various cellular activities) module accommodated within a single polypeptide chain. They were classified into two types as either the ubiquitous soluble LonA or membrane-inserted archaeal LonB. In addition to the energy-dependent forms, a number of medically and ecologically important groups of bacteria encode a third type of Lon-like proteins in which the conserved proteolytic domain is fused to a large N-terminal fragment lacking canonical AAA(+) motifs. Here we showed that these Lon-like proteases formed a clade distinct from LonA and LonB. Characterization of one such Lon-like protease from Meiothermus taiwanensis indicated that it formed a hexameric assembly with a hollow chamber similar to LonA/B. The enzyme was devoid of ATPase activity but retained an ability to bind symmetrically six nucleotides per hexamer; accordingly, structure-based alignment suggested possible existence of a non-functional AAA-like domain. The enzyme degraded unstructured or unfolded protein and peptide substrates, but not well-folded proteins, in ATP-independent manner. These results highlight a new type of Lon proteases that may be involved in breakdown of excessive damage or unfolded proteins during stress conditions without consumption of energy.

  3. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    PubMed

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  4. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    PubMed

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-01

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. PMID:26776523

  5. Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2

    PubMed Central

    Maharshak, Nitsan; Huh, Eun Young; Paiboonrungruang, Chorlada; Shanahan, Michael; Thurlow, Lance; Herzog, Jeremy; Djukic, Zorka; Orlando, Roy; Pawlinski, Rafal; Ellermann, Melissa; Borst, Luke; Patel, Siten; Dotan, Iris; Sartor, Ryan B.

    2015-01-01

    Microbial protease-mediated disruption of the intestinal epithelium is a potential mechanism whereby a dysbiotic enteric microbiota can lead to disease. This mechanism was investigated using the colitogenic, protease-secreting enteric microbe Enterococcus faecalis. Caco-2 and T-84 epithelial cell monolayers and the mouse colonic epithelium were exposed to concentrated conditioned media (CCM) from E. faecalis V583 and E. faecalis lacking the gelatinase gene (gelE). The flux of fluorescein isothiocyanate (FITC)-labeled dextran across monolayers or the mouse epithelium following exposure to CCM from parental or mutant E. faecalis strains indicated paracellular permeability. A protease-activated receptor 2 (PAR2) antagonist and PAR2-deficient (PAR2−/−) mice were used to investigate the role of this receptor in E. faecalis-induced permeability. Gelatinase (GelE) purified from E. faecalis V583 was used to confirm the ability of this protease to induce epithelial cell permeability and activate PAR2. The protease-mediated permeability of colonic epithelia from wild-type (WT) and PAR2−/− mice by fecal supernatants from ulcerative colitis patients was assessed. Secreted E. faecalis proteins induced permeability in epithelial cell monolayers, which was reduced in the absence of gelE or by blocking PAR2 activity. Secreted E. faecalis proteins induced permeability in the colonic epithelia of WT mice that was absent in tissues from PAR2−/− mice. Purified GelE confirmed the ability of this protease to induce epithelial cell permeability via PAR2 activation. Fecal supernatants from ulcerative colitis patients induced permeability in the colonic epithelia of WT mice that was reduced in tissues from PAR2−/− mice. Our investigations demonstrate that GelE from E. faecalis can regulate enteric epithelial permeability via PAR2. PMID:25916983

  6. Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2.

    PubMed

    Maharshak, Nitsan; Huh, Eun Young; Paiboonrungruang, Chorlada; Shanahan, Michael; Thurlow, Lance; Herzog, Jeremy; Djukic, Zorka; Orlando, Roy; Pawlinski, Rafal; Ellermann, Melissa; Borst, Luke; Patel, Siten; Dotan, Iris; Sartor, Ryan B; Carroll, Ian M

    2015-07-01

    Microbial protease-mediated disruption of the intestinal epithelium is a potential mechanism whereby a dysbiotic enteric microbiota can lead to disease. This mechanism was investigated using the colitogenic, protease-secreting enteric microbe Enterococcus faecalis. Caco-2 and T-84 epithelial cell monolayers and the mouse colonic epithelium were exposed to concentrated conditioned media (CCM) from E. faecalis V583 and E. faecalis lacking the gelatinase gene (gelE). The flux of fluorescein isothiocyanate (FITC)-labeled dextran across monolayers or the mouse epithelium following exposure to CCM from parental or mutant E. faecalis strains indicated paracellular permeability. A protease-activated receptor 2 (PAR2) antagonist and PAR2-deficient (PAR2(-/-)) mice were used to investigate the role of this receptor in E. faecalis-induced permeability. Gelatinase (GelE) purified from E. faecalis V583 was used to confirm the ability of this protease to induce epithelial cell permeability and activate PAR2. The protease-mediated permeability of colonic epithelia from wild-type (WT) and PAR2(-/-) mice by fecal supernatants from ulcerative colitis patients was assessed. Secreted E. faecalis proteins induced permeability in epithelial cell monolayers, which was reduced in the absence of gelE or by blocking PAR2 activity. Secreted E. faecalis proteins induced permeability in the colonic epithelia of WT mice that was absent in tissues from PAR2(-/-) mice. Purified GelE confirmed the ability of this protease to induce epithelial cell permeability via PAR2 activation. Fecal supernatants from ulcerative colitis patients induced permeability in the colonic epithelia of WT mice that was reduced in tissues from PAR2(-/-) mice. Our investigations demonstrate that GelE from E. faecalis can regulate enteric epithelial permeability via PAR2. PMID:25916983

  7. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3.

    PubMed

    Burnier, Laurent; Mosnier, Laurent O

    2013-08-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC's cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC's cytoprotective versus thrombin's proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  8. Activity of calcium activated protease in skeletal muscles and its changes in atrophy and stretch

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Nagainis, P. A.

    1984-01-01

    The reduction of protein content in skeletal muscle undergoing disuse-induced atrophy is correlated with accelerated rates of protein degradation and reduced rates of protein synthesis (Goldspink, 1977). It is not known in what manner myofibers are partially disassembled during disuse atrophy to fibers of smaller diameter; nor is it known which proteases are responsible for this morphological change in contractile protein mass. Dayton and colleagues (1975) have suggested that the Ca(2+)-activated protease (CaP) may initiate myofibril degradation. The discovery of a form of CaP that is activatable by nano-molar concentrations of Ca(2+) indicates that CaP activity may be regulated by physiological concentrations of Ca(2+) (Mellgren, 1980). The enhancement of proteolysis by the Ca(2+) ionophore A23187, reported by Etlinger (1979), is consistent with a significant role for CaP in protein degradation. It was of interest, therefore, to measure the levels of CaP activity and the CaP inhibitor in extracts obtained from skeletal muscles of rat and chicken limbs undergoing disuse atrophy or stretch hypertrophy, respectively.

  9. Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against meat proteins.

    PubMed

    Benito, María J; Rodríguez, Mar; Núñez, Félix; Asensio, Miguel A; Bermúdez, María E; Córdoba, Juan J

    2002-07-01

    An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60 degrees C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45 degrees C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products. PMID:12089038

  10. Protease activity higher in postmortem water buffalo meat than Brahman beef.

    PubMed

    Neath, K E; Del Barrio, A N; Lapitan, R M; Herrera, J R V; Cruz, L C; Fujihara, T; Muroya, S; Chikuni, K; Hirabayashi, M; Kanai, Y

    2007-11-01

    We previously demonstrated that postmortem water buffalo meat had higher tenderness than Brahman beef. In order to explain this difference in tenderness, the objective of the current study was to investigate the protease activity in these two meats. Five female crossbred water buffalo (Philippine Carabao×Bulgarian Murrah) and five female crossbred cattle (Brahman×Philippine Native) were slaughtered at 30months of age, followed by immediate sampling of Longissimus thoracis muscle for measurement of protease activity. Results showed that buffalo meat had significantly higher protease activity compared to beef (P<0.05). Furthermore, calpain inhibitor 1, a specific inhibitor of calpains 1 and 2, was the most effective inhibitor of protease activity. There was no difference in calpastatin activity, and no major differences were observed in calpains 1, 2, and calpastatin expression by Western blotting. This study suggests that higher calpain activity in early postmortem buffalo meat was responsible for the increased tenderness of water buffalo meat compared to beef.

  11. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  12. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis.

  13. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen

    PubMed Central

    Michels, P. C.; Clark, D. S.

    1997-01-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988). PMID:16535711

  14. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    PubMed

    Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory.

  15. Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants

    PubMed Central

    Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992

  16. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    PubMed

    Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992

  17. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    PubMed Central

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  18. Effect of a plant polyphenol-rich extract on the lung protease activities of influenza-virus-infected mice.

    PubMed

    Serkedjieva, Julia; Toshkova, Reneta; Antonova-Nikolova, Stefka; Stefanova, Tsvetanka; Teodosieva, Ani; Ivanova, Iskra

    2007-01-01

    Influenza infection was induced in white mice by intranasal inoculation of the virus A/Aichi/2/68 (H3N2). The lung protease and the protease-inhibitory activities were followed for 9 days after infection. The intranasal application of a polyphenol-rich extract (PC) isolated from Geranium sanguineum L. induced a continuous rise in the anti-protease activity but did not cause substantial changes in the lung protease activity of healthy mice. Influenza virus infection triggered a slight reduction in protease activity in the lungs at 5 and 48 h post infection (p.i.) and a marked increase at 24 h and 6 day p.i.. Protease inhibition in the lungs was reduced at 24 and 48 h p.i. and an increase was observed at 5 h and 6 and 9 days p.i.. PC treatment brought both activities to normal levels. The restoration of the examined parameters was consistent with a prolongation of mean survival time and reduction of mortality rate, infectious virus titre and lung consolidation. PC reinstated superoxide production by alveolar macrophages and increased their number in virus-infected mice. The favourable effect on the protease and the protease-inhibitory activities in the lungs of influenza-virus-infected mice apparently contributes to the overall protective effect of PC in the murine experimental influenza A/Aichi infection. The antiviral effect of the individual constituents was evaluated. PMID:17542152

  19. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities.

    PubMed

    Sainsbury, Frank; Rhéaume, Ann-Julie; Goulet, Marie-Claire; Vorster, Juan; Michaud, Dominique

    2012-12-01

    Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets. PMID:23082957

  20. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities.

    PubMed

    Sainsbury, Frank; Rhéaume, Ann-Julie; Goulet, Marie-Claire; Vorster, Juan; Michaud, Dominique

    2012-12-01

    Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets.

  1. Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir

    NASA Astrophysics Data System (ADS)

    Tseng, Y.

    2011-12-01

    This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.

  2. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  3. Activity, specificity, and probe design for the smallpox virus protease K7L.

    PubMed

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  4. The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding

    PubMed Central

    Bendjennat, Mourad; Saffarian, Saveez

    2016-01-01

    HIV virions assemble on the plasma membrane and bud out of infected cells using interactions with endosomal sorting complexes required for transport (ESCRTs). HIV protease activation is essential for maturation and infectivity of progeny virions, however, the precise timing of protease activation and its relationship to budding has not been well defined. We show that compromised interactions with ESCRTs result in delayed budding of virions from host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and ~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and had ~60 minutes delay in budding. We demonstrate that during budding delay, activated proteases release critical HIV enzymes back to host cytosol leading to production of non-infectious progeny virions. To explain the molecular mechanism of the observed budding delay, we modulated the Pol size artificially and show that virion release delays are size-dependent and also show size-dependency in requirements for Tsg101 and ALIX. We highlight the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release. PMID:27280284

  5. Localization and activity of various lysosomal proteases in Leishmania amazonensis-infected macrophages.

    PubMed Central

    Prina, E; Antoine, J C; Wiederanders, B; Kirschke, H

    1990-01-01

    In mammalian hosts, Leishmania amastigotes are obligatory intracellular parasites of macrophages and multiply within parasitophorous vacuoles of phagolysosomal origin. To understand how they escape the harmful strategies developed by macrophages to kill ingested microorganisms, it is important to obtain information on the functional state of parasitophorous vacuole. For this purpose, we studied the intracellular distribution and activity of host lysosomal proteases in rat bone marrow-derived macrophages infected with Leishmania amazonensis amastigotes. Localization of cathepsins B, H, L, and D was investigated by using specific immunoglobulins. In uninfected macrophages, these enzymes were located in perinuclear granules (most of them were probably secondary lysosomes) which, after infection, disappeared progressively. In infected macrophages, cathepsins were detected mainly in the parasitophorous vacuoles, suggesting that the missing secondary lysosomes had fused with these organelles. Biochemical assays of various proteases (cathepsins B, H, and D and dipeptidyl peptidases I and II) showed that infection was accompanied by a progressive increase of all activities tested, except that of dipeptidyl peptidase II, which remained constant. No more than 1 to 10% of these activities could be attributed to amastigotes. These data indicate that (i) Leishmania infection is followed by an increased synthesis and/or a reduced catabolism of host lysosomal proteases, and (ii) amastigotes grow in a compartment rich in apparently fully active proteases. Unexpectedly, it was found that infected and uninfected macrophages degraded endocytosed proteins similarly. The lack of correlation in infected macrophages between increase of protease activities and catabolism of exogenous proteins could be linked to the huge increase in volume of the lysosomal compartment. Images PMID:2187806

  6. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  7. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation.

  8. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin.

    PubMed

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin; Vogel, Lotte K; Kataoka, Hiroaki; Bugge, Thomas H

    2014-08-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.

  9. A novel Ca2+-activated protease from germinating Vigna radiata seeds and its role in storage protein mobilization.

    PubMed

    Khan, Sadaf; Verma, Giti; Sharma, Samir

    2010-07-15

    Calcium (Ca(2+))-dependent/activated proteases make decisive cleavages in proteins, affecting their further degradation/activation. Few such Ca(2+)-dependent proteases have been reported from plants, and none during germination-related events. Seeds are woken up from their quiescent state upon imbibition of water. The subsequent process of germination is strongly influenced by hormones (mainly gibberellins) and light, with both resulting in change in intracellular Ca(2+). We have investigated the effect of Ca(2+) on protease activity in extracts prepared from dry Vigna radiata (L.) Wilczec seeds and cotyledons 4, 24, 48 and 72h post-imbibition. Ca(2+)-activated protease activity is present at a very low level in dry seeds, rises with imbibition and peaks 24h post-imbibition. Subsequently, the activity rapidly declines, even as total protease activity continues to rise. Calcium activation of proteolysis was reversed by ethylene diamine tetraacetic acid (EDTA), ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), 1,10, phenanthroline, chlorpromazine and by beta-mercaptoethanol in a concentration-dependent manner. Protease activity was also inhibited by para chloro mercuribenzoate (pCMB) and l-trans-epoxysuccinyl-leucylamido(4-guanidino) butane (E 64), while phenyl methyl sulfonyl fluoride (PMSF) and pepstatin did not effect Ca(2+) activation. The protease could be separated from the calmodulin fraction by size-exclusion chromatography, while retaining its ability for Ca(2+) activation, excluding the possibility of activation through calmodulin-based pathways. The presence of a Ca(2+)-activated protease in the cotyledons suggests its role in a predetermined program of germination involving elevation of cytosolic Ca(2+) levels during germination. This protease could be an important enzyme interfacing cytoplasmic signaling events and initiation of storage protein mobilization during seed germination.

  10. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  11. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  12. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  13. The dynamics of alkaline phosphatase activity during operculum regeneration in the polychaete Pomatoceros lamarckii.

    PubMed

    Szabó, Réka; Ferrier, David E K

    2014-01-01

    Alkaline phosphatase enzymes are found throughout the living world and fulfil a variety of functions. They have been linked to regeneration, stem cells and biomineralisation in a range of animals. Here we describe the pattern of alkaline phosphatase activity in a spiralian appendage, the operculum of the serpulid polychaete Pomatoceros lamarckii. The P. lamarckii operculum is reinforced by a calcified opercular plate and is capable of rapid regeneration, making it an ideal model system to study these key processes in annelids. Alkaline phosphatase activity is present in mesodermal tissues of both intact and regenerating opercular filaments, in a strongly regionalised pattern correlated with major morphological features. Based on the lack of epidermal activity and the broad distribution of staining in mesodermal tissues, calcification- or stem cell-specific roles are unlikely. Transcriptomic data reveal that at least four distinct genes contribute to the detected activity. Opercular alkaline phosphatase activity is sensitive to levamisole. Phylogenetic analysis of metazoan alkaline phosphatases indicates homology of the P. lamarckii sequences to other annelid alkaline phosphatases, and shows that metazoan alkaline phosphatase evolution was characterised by extensive lineage-specific duplications. PMID:25690977

  14. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae).

    PubMed

    Malagón, David; Adroher, Francisco Javier; Díaz-López, Manuel; Benítez, Rocío

    2010-06-11

    Proteases play a vital role in both the life cycle of parasites and the parasite-host relationship and are considered important virulence factors. In the present study, the presence of proteases with collagenolytic activity was investigated in the fish nematode Hysterothylacium aduncum during in vitro development. Collagenolytic activity was found in all studied developmental stages of the nematode (third [L3] and fourth [L4] larval stages and adults). In L3, the activity was maximum at pH 6.5 and, in the other stages, at 7.0. Pepsin is known to favour in vitro development of the worm, but, in this study, collagenolytic activity was shown to be significantly greater when no pepsin was added to the culture medium (at pH 6.5, p = 0.011). At pH 7.0, most activity was observed in the immature adult, after the final moult, suggesting that the collagenolytic activity may be involved in remodelling of the cuticle and in sexual maturity. On the other hand, at pH 6.5, activity may be related to tissue migration by L3 within the host. Using specific inhibitors, it was demonstrated that most of the collagenolytic activity detected in all the developmental stages was due to metalloproteases (40 to 100%), although serine proteases were also detected in L4 and adults (10 to 30%). PMID:20662369

  15. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  16. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  17. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  18. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    PubMed

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  19. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  20. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  1. In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases.

    PubMed

    Eckhoff, Julia; Dohmen, R Jürgen

    2016-01-01

    SUMO-specific proteases, known as Ulps in baker's yeast and SENPs in humans, have important roles in controlling the dynamics of SUMO-modified proteins. They display distinct modes of action and specificity, in that they may act on the SUMO precursor, mono-sumoylated, and/or polysumoylated proteins, and they might be specific for substrates with certain SUMO paralogs. SUMO chains may be dismantled either by endo or exo mechanisms. Biochemical characterization of a protease usually requires purification of the protein of interest. Developing a purification protocol, however, can be very difficult, and in some cases, isolation of a protease in its pure form may go along with a substantial loss of activity. To characterize the reaction mechanism of Ulps, we have developed an in vitro assay, which makes use of substrates endowed with artificial poly-SUMO chains of defined lengths, and S. cerevisiae Ulp enzymes in crude extract from E. coli. This fast and economic approach should be applicable to SUMO-specific proteases from other species as well. PMID:27631802

  2. Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity

    PubMed Central

    Jones, Stephen K.; Clarke, Starlynn C.; Craik, Charles S.

    2015-01-01

    ABSTRACT Peptide-based pheromones are used throughout the fungal kingdom for coordinating sexual responses between mating partners. Here, we address the properties and function of Bar1, an aspartyl protease that acts as a “barrier” and antagonist to pheromone signaling in multiple species. Candida albicans Bar1 was purified and shown to exhibit preferential cleavage of native α pheromone over pheromones from related fungal species. This result establishes that protease substrate specificity coevolved along with changes in its pheromone target. Pheromone cleavage by Bar1 occurred between residues Thr-5 and Asn-6 in the middle of the tridecapeptide sequence. Surprisingly, proteolytic activity was independent of the amino acid residues present at the scissile bond and instead relied on residues at the C terminus of α pheromone. Unlike most aspartyl proteases, Bar1 also exhibited a near-neutral pH optimum and was resistant to the class-wide inhibitor pepstatin A. In addition, genetic analysis was performed on C. albicans BAR1 and demonstrated that the protease not only regulates endogenous pheromone signaling but also can limit interspecies pheromone signaling. We discuss these findings and propose that the unusual substrate specificity of Bar1 is a consequence of its coevolution with the α pheromone receptor Ste2 for their shared peptide target. PMID:26604258

  3. A drug discovery platform: a simplified immunoassay for analyzing HIV protease activity.

    PubMed

    Kitidee, Kuntida; Nangola, Sawitree; Hadpech, Sudarat; Laopajon, Witida; Kasinrerk, Watchara; Tayapiwatana, Chatchai

    2012-12-01

    Although numerous methods for the determination of HIV protease (HIV-PR) activity have been described, new high-throughput assays are required for clinical and pharmaceutical applications due to the occurrence of resistant strains. In this study, a simple enzymatic immunoassay to identify HIV-PR activity was developed based on a Ni(2+)-immobilized His(6)-Matrix-Capsid substrate (H(6)MA-CA) is cleaved by HIV protease-His(6) (HIV-PRH(6)) which removes the CA domain and exposes the free C terminus of MA. Following this cleavage, two monoclonal antibodies specific for either the free C-terminal MA or CA epitope are used to quantify the proteolytic activity using a standard ELISA-based system. Specificity for detection of the HIV-PRH(6) activity was confirmed with addition of protease inhibitor (PI), lopinavir. In addition, the assay was able to detect an HIV-PR variant activity indicating that this assay is capable of assessing viral mutation affect HIV-PR activity. The efficacy of commercially available PIs and their 50% inhibitory concentration (IC(50)) were determined. This assay provides a high-throughput method for both validating the efficiency of new drugs in vitro and facilitating the discovery of new PIs. In addition, it could serve as a method for examining the influence of various mutations in HIV-PRs isolated from drug-resistant strains.

  4. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  5. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-01-01

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease. PMID:27525888

  6. A novel TMPRSS6 mutation that prevents protease auto-activation causes IRIDA

    PubMed Central

    Altamura, Sandro; D'Alessio, Flavia; Selle, Barbara; Muckenthaler, Martina U.

    2010-01-01

    IRIDA (iron-refractory iron-deficiency anaemia) is a rare autosomal-recessive disorder hallmarked by hypochromic microcytic anaemia, low transferrin saturation and high levels of the iron-regulated hormone hepcidin. The disease is caused by mutations in the transmembrane serine protease TMPRSS6 (transmembrane protease serine 6) that prevent inactivation of HJV (haemojuvelin), an activator of hepcidin transcription. In the present paper, we describe a patient with IRIDA who carries a novel mutation (Y141C) in the SEA domain of the TMPRSS6 gene. Functional characterization of the TMPRSS6(Y141C) mutant protein in cultured cells showed that it localizes to similar subcellular compartments as wild-type TMPRSS6 and binds HJV, but fails to auto-catalytically activate itself. As a consequence, hepcidin mRNA expression is increased, causing the clinical symptoms observed in this IRIDA patient. The present study provides important mechanistic insight into how TMPRSS6 is activated. PMID:20704562

  7. A novel serine protease secreted by medicinal maggots enhances plasminogen activator-induced fibrinolysis.

    PubMed

    van der Plas, Mariena J A; Andersen, Anders S; Nazir, Sheresma; van Tilburg, Nico H; Oestergaard, Peter R; Krogfelt, Karen A; van Dissel, Jaap T; Hensbergen, Paul J; Bertina, Rogier M; Nibbering, Peter H

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis.

  8. Activities of pork muscle proteases in model cured meat systems.

    PubMed

    Toldrá, F; Rico, E; Flores, J

    1992-03-01

    The effect of curing agents (salt, nitrate, ascorbic acid and glucose) and processing parameters (pH, water activity and drying and cooking temperatures) on pork muscle cathepsins B, D, H and L as well as leucyl, arginyl and tyrosyl hydrolysing activities is reported. Salt (60 g/l) showed a powerful inhibitory effect, especially on cathepsin D and aminopeptidase activities where less than 13% of the original activity was recovered. Cathepsin H was also affected (38% of the original activity) while cathepsins B and B+L recovered 72.5 and 63.0%, respectively. Nitrate (0.2-0.25 g/l) and ascorbic acid (0.2-0.4 g/l) did not significantly affect the enzyme activities. On the other hand, 0.5-2 g/l of glucose activated both cathepsins B and D with an increase of 39.5 and 28.5% and also leucyl and arginyl hydrolysing activities which were 75.0 and 24.0%, respectively. No aminopeptidase activity was detected when assayed in 100 mM sodium citrate buffer, pH 5.1. Cathepsin H was also very affected at that pH and only 12.0% of activity was recovered. A decrease in water activity, especially below 0.84, also affected the enzyme activities which were found below 50%. Temperatures in the usual range of the drying process (22 and 30 degrees C) gave substantial enzyme activities (around 40-50 and 80%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt.

    PubMed

    Satheesh, L Shilpa; Murugan, K

    2011-05-01

    Antimicrobial activity of protease inhibitor isolated from Coccinia grandis (L.) Voigt. has been reported. A 14.3 kDa protease inhibitor (PI) was isolated and purified to homogeneity by ammonium sulfate precipitation (20-85% saturation), sephadex G-75, DEAE sepharose column and trypsin-sepharose affinity chromatography from the leaves of C. grandis. The purity was checked by reverse phase high performance liquid chromatography. PI exhibited marked growth inhibitory effects on colon cell lines in a dose-dependent manner. PI was thermostable and showed antimicrobial activity without hemolytic activity. PI strongly inhibited pathogenic microbial strains, including Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Eschershia coli, Bacillus subtilis and pathogenic fungus Candida albicans, Mucor indicus, Penicillium notatum, Aspergillus flavus and Cryptococcus neoformans. Examination by bright field microscopy showed inhibition of mycelial growth and sporulation. Morphologically, PI treated fungus showed a significant shrinkage of hyphal tips. Reduced PI completely lost its activity indicating that disulfide bridge is essential for its protease inhibitory and antifungal activity. Results reported in this study suggested that PI may be an excellent candidate for development of novel oral or other anti-infective agents. PMID:21615062

  10. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    PubMed Central

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  11. Tobacco etch virus protease retains its activity in various buffers and in the presence of diverse additives.

    PubMed

    Sun, Changsheng; Liang, Jiongqiu; Shi, Rui; Gao, Xuna; Zhang, Ruijuan; Hong, Fulin; Yuan, Qihang; Wang, Shengbin

    2012-03-01

    Tobacco etch virus (TEV) protease is widely used to remove tags from recombinant fusion proteins because of its stringent sequence specificity. It is generally accepted that the high concentrations of salts or other special agents in most protein affinity chromatography buffers can affect enzyme activity, including that of TEV protease. Consequently, tedious desalination or the substitution of standard TEV reaction buffer for elution buffer are often needed to ensure TEV protease activity when removing fusion tags after purifying target proteins using affinity chromatography. To address this issue, we used SOE PCR technology to synthesize a TEV protease gene with a codon pattern adapted to the codon usage bias of Escherichia coli, recovered the purified recombinant TEV protease, and examined its activity in various elution buffers commonly used in affinity chromatography as well as the effects of selected additives on its activity. Our results showed that the rTEV protease maintained high activity in all affinity chromatography elution buffers tested and tolerated high concentrations of additives commonly used in protein purification procedures, such as ethylene glycol, EGTA, Triton X-100, Tween-20, NP-40, CHAPS, urea, SDS, guanidine hydrochloride and β-mercaptoethanol. These results will facilitate the use of rTEV protease in removing tags from fusion proteins.

  12. Thalidomide combined with irradiation alters the activity of two proteases.

    PubMed

    Şimşek, Ece; Aydemir, Esra; Korcum, Aylin Fidan; Fişkın, Kayahan

    2015-02-01

    The aim of the present study was to investigate the effects of thalidomide, a drug known for its anti‑angiogenic and antitumor properties, at its cytotoxic dose previously determined as 40 µg/ml (according to four cytotoxic test results). The effect of the drug alone and in combination with radiotherapy using Cobalt 60 (60Co) at 45 Gy on the enzymatic activity of substance‑P degrading A disintegrin and metalloproteinase (ADAM)10 and neprilysin (NEP) was investigated in the mouse breast cancer cell lines 4T1 and 4T1 heart metastases post‑capsaicin (4THMpc). Thalidomide (40 µg/ml) exerted differing effects on the activities of ADAM10 and NEP enzymes. In 4T1 cells, 40 µg/ml thalidomide alone did not alter ADAM10 enzyme activity. 60Co irradiation at 45 Gy alone caused a 42% inhibition in ADAM10 activity, however, the inhibition increased to 89% when combined therapy was used. By contrast, in the 4THMpc cell line, 40 µg/ml thalidomide alone induced a 66.6% increase in ADAM10 enzyme activity. Radiotherapy alone and thalidomide with 60Co combined therapy caused a 33.3 and 40% inhibition of ADAM10 activity, respectively. In 4T1 cells, thalidomide alone caused a 40.9% increase in NEP activity. Radiation therapy alone or in combination with the drug caused a 40.7% increase in NEP activity. In more aggressive 4THMpc cells, thalidomide alone caused a 26.6% increase in NEP activity. Radiotherapy alone and combined therapy caused a 33.3 and 37% increase in enzyme activity, respectively. To the best of our knowledge, the present study is the first to demonstrate that thalidomide alone or in combination with radiotherapy exhibits significant cytotoxic effects on 4T1 and 4THMpc mouse breast cancer cell lines indicating that this drug affects the enzymatic activity of ADAM10 and NEP in vitro.

  13. Sclerotiamide: The First Non-Peptide-Based Natural Product Activator of Bacterial Caseinolytic Protease P.

    PubMed

    Lavey, Nathan P; Coker, Jesse A; Ruben, Eliza A; Duerfeldt, Adam S

    2016-04-22

    Caseinolytic protease P (ClpP) maintains essential roles in bacterial homeostasis. As such, both the inhibition and activation of this enzyme result in bactericidal activity, making ClpP a promising target for antibacterial drug development. Herein, we report the results of a fluorescence-based screen of ∼450 structurally diverse fungal and bacterial secondary metabolites. Sclerotiamide (1), a paraherquamide-related indolinone, was identified as the first non-peptide-based natural product activator of ClpP. Structure-activity relationships arising from the initial screen, preliminary biochemical evaluation of 1, and rationale for the exploitation of this chemotype to develop novel ClpP activators are presented.

  14. Influence of skin penetration enhancers on skin barrier function and skin protease activity.

    PubMed

    Mohammed, Diar; Hirata, Kazumasa; Hadgraft, Jonathan; Lane, Majella E

    2014-01-23

    In order to overcome the skin's excellent barrier function formulation scientists often employ skin penetration enhancers (SPEs) in topical and transdermal formulations. The effects of these compounds on skin health is still not well understood at the molecular level. The aim of the present work was to probe the effects of some common SPEs on desquamatory protease activity in healthy skin. The SPEs studied were isopropyl myristate (IPM), propylene glycol, (PG), propylene glycol laurate (PGL) and Transcutol™ (TC). Occluded infinite doses of each SPE were applied to human volunteers for 24 h. Transepidermal water loss (TEWL) measurements were taken before and after application of SPEs. Tape strips were collected from the treated sites to determine protein content and the activity of two desquamatory proteases kallikrein 5 (KLK5) and kallikrein 7 (KLK7). TEWL values were also measured after tape stripping. PG was found to elevate both TEWL values and KLK7 activity to a significant extent (p<0.05). No significant effects were observed for the other SPEs. The ability of PG to alter the skin barrier at the macroscopic level and the influence of the molecule on protease activity reported here may have implications for its use in topical formulations used for the management of impaired skin barrier function such as atopic eczema or psoriasis. PMID:24063883

  15. A New Class of Rhomboid Protease Inhibitors Discovered by Activity-Based Fluorescence Polarization

    PubMed Central

    Wolf, Eliane V.; Zeißler, Annett; Vosyka, Oliver; Zeiler, Evelyn; Sieber, Stephan; Verhelst, Steven H. L.

    2013-01-01

    Rhomboids are intramembrane serine proteases that play diverse biological roles, including some that are of potential therapeutical relevance. Up to date, rhomboid inhibitor assays are based on protein substrate cleavage. Although rhomboids have an overlapping substrate specificity, substrates cannot be used universally. To overcome the need for substrates, we developed a screening assay using fluorescence polarization activity-based protein profiling (FluoPol ABPP) that is compatible with membrane proteases. With FluoPol ABPP, we identified new inhibitors for the E. coli rhomboid GlpG. Among these was a structural class that has not yet been reported as rhomboid inhibitors: β-lactones. They form covalent and irreversible complexes with the active site serine of GlpG. The presence of alkyne handles on the β-lactones also allowed activity-based labeling. Overall, these molecules represent a new scaffold for future inhibitor and activity-based probe development, whereas the assay will allow inhibitor screening of ill-characterized membrane proteases. PMID:23991088

  16. Enhanced permeation, leaf retention, and plant protease inhibitor activity with bicontinuous microemulsions.

    PubMed

    Tamhane, Vaijayanti A; Dhaware, Deepika G; Khandelwal, Neha; Giri, Ashok P; Panchagnula, Venkateswarlu

    2012-10-01

    Bicontinuous microemulsions (BCMEs) have excellent solubulizing properties along with low interfacial tension and aqueous content that can be controlled. In this work, water soluble plant protease inhibitor (PI), well characterized for its activity against insect pests, was incorporated into a BCME system and explored for permeation on hydrophobic leaf surfaces and protease inhibition activity. The bicontinuous nature of the microemulsion containing water:2-propanol:1-butanol (55:35:10 w/w) was characterized using conductivity and self-diffusion coefficient measurements. The PI was soluble in the water-rich bicontinuous domains, stable in the microemulsions, and protease inhibition activity was retained for a prolonged duration. The microemulsions ensured greater wettability and a wider spread of the PI on hydrophobic leaf surfaces as revealed by contact angle measurements. Significantly, trypsin inhibition activity assays of the PI recovered from the leaves after delivery from the microemulsion indicated a significant increase in the PI retention on the leaf. This BCME enabled greater leaf permeation and retention of the PI can be attributed to a temporary disruption of the waxy leaf surface followed by self-repair without causing any long term damage to the plant.

  17. Influence of skin penetration enhancers on skin barrier function and skin protease activity.

    PubMed

    Mohammed, Diar; Hirata, Kazumasa; Hadgraft, Jonathan; Lane, Majella E

    2014-01-23

    In order to overcome the skin's excellent barrier function formulation scientists often employ skin penetration enhancers (SPEs) in topical and transdermal formulations. The effects of these compounds on skin health is still not well understood at the molecular level. The aim of the present work was to probe the effects of some common SPEs on desquamatory protease activity in healthy skin. The SPEs studied were isopropyl myristate (IPM), propylene glycol, (PG), propylene glycol laurate (PGL) and Transcutol™ (TC). Occluded infinite doses of each SPE were applied to human volunteers for 24 h. Transepidermal water loss (TEWL) measurements were taken before and after application of SPEs. Tape strips were collected from the treated sites to determine protein content and the activity of two desquamatory proteases kallikrein 5 (KLK5) and kallikrein 7 (KLK7). TEWL values were also measured after tape stripping. PG was found to elevate both TEWL values and KLK7 activity to a significant extent (p<0.05). No significant effects were observed for the other SPEs. The ability of PG to alter the skin barrier at the macroscopic level and the influence of the molecule on protease activity reported here may have implications for its use in topical formulations used for the management of impaired skin barrier function such as atopic eczema or psoriasis.

  18. Design, Synthesis and Biological Evaluation of a Library of Thiocarbazates and their Activity as Cysteine Protease Inhibitors

    PubMed Central

    Liu, Zhuqing; Myers, Michael C.; Shah, Parag P.; Beavers, Mary Pat; Benedetti, Phillip A.; Diamond, Scott L.

    2010-01-01

    Recently, we identified a novel class of potent cathepsin L inhibitors, characterized by a thiocarbazate warhead. Given the potential of these compounds to inhibit other cysteine proteases, we designed and synthesized a library of thiocarbazates containing diversity elements at three positions. Biological characterization of this library for activity against a panel proteases indicated a significant preference for members of the papain family of cysteine proteases over serine, metallo-, and certain classes of cysteine proteases, such as caspases. Several very potent inhibitors of Cathepsin L and S were identified. The SAR data was employed in docking studies in an effort to understand the structural elements required for Cathepsin S inhibition. This study provides the basis for the design of highly potent and selective inhibitors of the papain family of cysteine proteases. PMID:20438448

  19. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    SciTech Connect

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  20. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB.

    PubMed

    Sugimoto, Satoshi; Fujii, Tadashi; Morimiya, Tatsuo; Johdo, Osamu; Nakamura, Takumi

    2007-09-01

    Tempeh is a traditional Indonesian soybean-fermented food produced by filamentous fungi, Rhizopus sp. and Fusarium sp. We isolated and sequenced the genomic gene and a cDNA clone encoding a novel protease (FP) from Fusarium sp. BLB. The genomic gene was 856 bp in length and contained two introns. An isolated cDNA clone encoded a protein of 250 amino acids. The predicted amino acid sequence of FP showed highest homology, of 76%, with that of trypsin from Fusarium oxysporum. The hydrolysis activity of FP toward synthetic peptide was higher than that of any other protease tested, including Nattokinases. Furthermore, the thrombolytic activity of FP was about 2.1-fold higher than that of Nattokinase when the concentration of plasminogen was 24 units/ml. These results suggest that FP is superior to Nattokinases in dissolving fibrin when absorbed into the blood.

  1. Three Pseudomonas aeruginosa strains with different protease profiles.

    PubMed

    Andrejko, Mariola; Zdybicka-Barabas, Agnieszka; Janczarek, Monika; Cytryńska, Małgorzata

    2013-01-01

    The proteolytic activity of three Pseudomonas aeruginosa strains, ATCC 27853 - a reference strain, and two clinical isolates was tested. The activity was examined after culturing the bacteria in two different growth media: the minimal M9 medium and rich Luria-Bertani broth (LB). Based on zymograms and protease activity specific assays, it was concluded that the reference strain produced three proteolytic enzymes in the LB medium: protease IV, elastase B and elastase A, while alkaline protease was only produced in the M9 medium. The clinical isolates of P. aeruginosa produced elastase B and alkaline protease when grown in the LB medium and the minimal M9 medium, respectively. PCR analysis confirmed the presence of both the lasB gene encoding elastase B and aprA coding for alkaline protease in the genomes of the three P. aeruginosa strains analyzed. The expression of these genes coding for two important P. aeruginosa virulence factors was dependent on the growth conditions in all the strains studied. The contribution of the extracellular proteinases to the virulence of P. aeruginosa strains used in this study was investigated using an insect model, the greater wax moth Galleria mellonella.

  2. Plasmin is involved in inflammation via protease-activated receptor-1 activation in human dental pulp.

    PubMed

    Kamio, Naoto; Hashizume, Hideki; Nakao, Sumi; Matsushima, Kiyoshi; Sugiya, Hiroshi

    2008-05-15

    Plasmin is a proteolytic enzyme produced from plasminogen by plasminogen activators. We investigated the function of plasmin in human dental pulp fibroblast-like cells. Plasmin induced an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a concentration-dependent manner. Expression of mRNA for protease-activated receptor-1 (PAR-1) was detected, and the PAR-1 activating peptide SFLLRN induced an increase in [Ca(2+)](i) in the cells. The plasmin-induced increase in [Ca(2+)](i) was inhibited in the presence of the PAR-1 antagonist SCH79797. Plasmin stimulated the expression of interleukin-8 (IL-8) mRNA and prostaglandin E(2) release, which are involved in inflammation. These effects of plasmin on expression of IL-8 mRNA and prostaglandin E(2) release were inhibited in the presence of the PAR-1 antagonist SCH79797. These results suggest that plasmin activates PAR-1 and is involved in inflammation in human dental pulp. PMID:18384756

  3. The Effect of Clade-Specific Sequence Polymorphisms on HIV-1 Protease Activity and Inhibitor Resistance Pathways

    SciTech Connect

    Bandaranayake, Rajintha M.; Kolli, Madhavi; King, Nancy M.; Nalivaika, Ellen A.; Heroux, Annie; Kakizawa, Junko; Sugiura, Wataru; Schiffer, Celia A.

    2010-09-08

    The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01{_}AE (AE) strain is seen principally in Southeast Asia. AE protease differs by {approx}10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B and AE protease variants. The relationship between clade-specific sequence variations and pathways to inhibitor resistance was also assessed. AE protease has a lower catalytic turnover rate than clade B protease, and it also has weaker affinity for both NFV and darunavir (DRV). This weaker affinity may lead to the nonactive-site N88S variant in AE, which exhibits significantly decreased affinity for both NFV and DRV. The D30N/N88D mutations in clade B resulted in a significant loss of affinity for NFV and, to a lesser extent, for DRV. A comparison of crystal structures of AE protease shows significant structural rearrangement in the flap hinge region compared with those of clade B protease and suggests insights into the alternative pathways to NFV resistance. In combination, our studies show that sequence polymorphisms within clades can alter protease activity and inhibitor binding and are capable of altering the pathway to inhibitor resistance.

  4. The zinc-dependent protease activity of the botulinum neurotoxins.

    PubMed

    Lebeda, Frank J; Cer, Regina Z; Mudunuri, Uma; Stephens, Robert; Singh, Bal Ram; Adler, Michael

    2010-05-01

    The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov).

  5. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A

    PubMed Central

    Mallorquí-Fernández, Noemí; Manandhar, Surya P.; Mallorquí-Fernández, Goretti; Usón, Isabel; Wawrzonek, Katarzyna; Kantyka, Tomasz; Solà, Maria; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan; Gomis-Rüth, F.Xavier

    2009-01-01

    Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defences and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and its self-processed mature form. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. PMID:17993455

  6. Arrested cell proliferation through cysteine protease activity of eukaryotic ribosomal protein S4.

    PubMed

    Yadaiah, Madasu; Sudhamalla, Babu; Rao, P Nageswara; Roy, Karnati R; Ramakrishna, Dasari; Hussain Syed, Gulam; Ramaiah, Kolluru V A; Bhuyan, Abani K

    2013-02-01

    S4 is an integral protein of the smaller subunit of cytosolic ribosome. In prokaryotes, it regulates the synthesis of ribosomal proteins by feedback inhibition of the α-operon gene expression, and it facilitates ribosomal RNA synthesis by direct binding to RNA polymerase. However, functional roles of S4 in eukaryotes are poorly understood, although its deficiency in humans is thought to produce Turner syndrome. We report here that wheat S4 is a cysteine protease capable of abrogating total protein synthesis in an actively translating cell-free system of rabbit reticulocytes. The translation-blocked medium, imaged by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, shows dispersed polysomes, and the disbanded polyribosome elements aggregate to form larger bodies. We also show that human embryonic kidney cells transfected with recombinant wheat S4 are unable to grow and proliferate. The mutant S4 protein, where the putative active site residue Cys 41 is replaced by a phenylalanine, can neither suppress protein synthesis nor arrest cell proliferation, suggesting that the observed phenomenon arises from the cysteine protease attribute of S4. The results also inspire many questions concerning in vivo significance of extraribosomal roles of eukaryotic S4 performed through its protease activity.

  7. Probing the Crucial Role of Leu31 and Thr33 of the Bacillus pumilus CBS Alkaline Protease in Substrate Recognition and Enzymatic Depilation of Animal Hide

    PubMed Central

    Zaraî Jaouadi, Nadia; Jaouadi, Bassem; Ben Hlima, Hajer; Rekik, Hatem; Belhoul, Mouna; Hmidi, Maher; Aicha, Houda Slimene Ben; Hila, Chiraz Gorgi; Toumi, Abdessatar; Aghajari, Nushin; Bejar, Samir

    2014-01-01

    The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity. PMID:25264614

  8. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide.

    PubMed

    Zaraî Jaouadi, Nadia; Jaouadi, Bassem; Ben Hlima, Hajer; Rekik, Hatem; Belhoul, Mouna; Hmidi, Maher; Ben Aicha, Houda Slimene; Hila, Chiraz Gorgi; Toumi, Abdessatar; Aghajari, Nushin; Bejar, Samir

    2014-01-01

    The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity. PMID:25264614

  9. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Li, Ju-Fang; Huang, Ping-Ying; Dong, Xu-Yan; Guo, Lu-Lu; Yang, Liang; Cao, Yuan-Cheng; Wei, Fang; Zhao, Yuan-Di; Chen, Hong

    2010-07-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  10. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  11. Enhancing alkaline hydrogen evolution reaction activity through Ni-Mn3O4 nanocomposites.

    PubMed

    Li, Xu; Liu, Peng Fei; Zhang, Le; Zu, Meng Yang; Yang, Yun Xia; Yang, Hua Gui

    2016-08-18

    Developing efficient, stable and cost-effective electrocatalysts towards hydrogen production in alkaline environments is vital to improve energy efficiency for water splitting. In this work, we prepared Ni-Mn3O4 nanocomposites on Ni foam which exhibit an excellent hydrogen evolution reaction catalytic activity with a current density (j) of 10 mA cm(-2) at an overpotential (η) of 91 mV and show good stability in an alkaline medium. PMID:27500290

  12. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity.

    PubMed

    Quirós, Pedro M; Español, Yaiza; Acín-Pérez, Rebeca; Rodríguez, Francisco; Bárcena, Clea; Watanabe, Kenta; Calvo, Enrique; Loureiro, Marta; Fernández-García, M Soledad; Fueyo, Antonio; Vázquez, Jesús; Enríquez, José Antonio; López-Otín, Carlos

    2014-07-24

    We generated mice deficient in Lon protease (LONP1), a major enzyme of the mitochondrial quality control machinery. Homozygous deletion of Lonp1 causes early embryonic lethality, whereas its haploinsufficiency protects against colorectal and skin tumors. Furthermore, LONP1 knockdown inhibits cellular proliferation and tumor and metastasis formation, whereas its overexpression increases tumorigenesis. Clinical studies indicate that high levels of LONP1 are a poor prognosis marker in human colorectal cancer and melanoma. Additionally, functional analyses show that LONP1 plays a key role in metabolic reprogramming by remodeling OXPHOS complexes and protecting against senescence. Our findings demonstrate the relevance of LONP1 for cellular and organismal viability and identify this protease as a central regulator of mitochondrial activity in oncogenesis.

  13. 7-hydroxycalamenene Effects on Secreted Aspartic Proteases Activity and Biofilm Formation of Candida spp.

    PubMed Central

    Azevedo, Mariana M. B.; Almeida, Catia A.; Chaves, Francisco C. M.; Rodrigues, Igor A.; Bizzo, Humberto R.; Alviano, Celuta S.; Alviano, Daniela S.

    2016-01-01

    Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure PMID:27019560

  14. A biosensor for the protease TACE reveals actin damage induced TACE activation

    PubMed Central

    Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong

    2016-01-01

    Ligand shedding has gained increased attention as a major posttranslational modification mechanism used by cells to respond to diverse environmental conditions. The TACEadam17 protease is a critical mediator of such ligand shedding, regulating the maturation and release of an impressive range of extracellular substrates that drive diverse cellular responses. Exactly how this protease is itself activated remains unclear, in part due to the lack of available tools to measure TACE activity with temporal and spatial resolution in live cells. We have developed a FRET based biosensor for TACE activity (TSen), which is capable of reporting TACE activation kinetics in live cells with a high degree of specificity. TSen was used in combination with chemical biology to probe the dependence of various means of TACE activation on p38 and Erk kinase activities, as well as to identify a novel connection between actin cytoskeletal disruption and TACE activation. Such cytoskeletal disruption leads to rapid and robust TACE activation in some cell types and accumulation of TACE at the plasma membrane, allowing for increased cleavage of endogenous substrates. Our study highlights both the versatility of TSen as a tool to understand the mechanisms of TACE activation in live cells and the importance of actin cytoskeletal integrity as a modulator of TACE activity. PMID:25714465

  15. Cysteine Protease Activity of Feline Tritrichomonas foetus Promotes Adhesion-Dependent Cytotoxicity to Intestinal Epithelial Cells

    PubMed Central

    Tolbert, M. K.; Stauffer, S. H.; Brand, M. D.

    2014-01-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis. PMID:24752513

  16. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities.

    PubMed

    Shivaprasad, H V; Riyaz, M; Venkatesh Kumar, R; Dharmappa, K K; Tarannum, Shaista; Siddesha, J M; Rajesh, R; Vishwanath, B S

    2009-10-01

    In the present study we evaluated the presence of cysteine protease from the latex of four plants Asclepias curassavica L., Calotropis gigantea R.Br., Pergularia extensa R.Br. and Cynanchum puciflorum R.Br. belongs to the family Asclepiadaceae. Cysteine proteases from these plants latex exhibited both thrombin and plasmin like activities. Latex enzyme fraction in a concentration dependent manner induced the formation of clot in citrated blood plasma. Direct incubation of fibrinogen with latex enzyme fraction resulted in the formation of fibrin clot similar to thrombin enzyme. However prolonged incubation resulted in degradation of the formed fibrin clot suggesting plasmin like activity. Latex enzyme fraction preferentially hydrolyzed Aalpha and Bbeta chains of fibrinogen to form fibrin clot. Latex enzyme fraction also hydrolyzed the subunits of fully cross linked fibrin efficiently, the order of hydrolysis was alpha-polymer > alpha-chains > beta-chain and gamma-gamma dimer. Cysteine proteases from all the four Asclepiadaceae plants latex exhibited similar action on fibrinogen and fibrin. This study scientifically validate the use of plant latex in stop bleeding and wound healing by traditional healers all over the world.

  17. Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens.

    PubMed

    Cheong, Peter; Glare, Travis R; Rostás, Michael; Haines, Stephen R

    2016-01-01

    Entomopathogenic fungi produce a variety of destructive enzymes and metabolites to overcome the unique defense mechanisms of insects. In a first step, fungal chitinases and proteinases need to break down the insect's cuticle. Both enzyme classes support the infection process by weakening the chitin barrier and by producing nutritional cleavage products for the fungus. In a second step, the pathogen can now mechanically penetrate the weakened cuticle and reach the insect's hemolymph where it starts proliferating. The critical enzymes chitinase and proteinase are also excreted into the supernatants of fungal cultures and can be used as indicators of virulence. Chromogenic assays adapted for 96-well microtiter plates that measure these enzymes provide a sensitive, fast, and easy screening method for evaluating the potential biocontrol activity of fungal isolates and may be considered as an alternative to laborious and time-consuming bioassays. Furthermore, monitoring fungal enzyme production in dependence of time, nutrient sources, or other factors can facilitate in establishing optimal growth and harvesting conditions for selected isolates with the aim of achieving maximum biocontrol activity. PMID:27565500

  18. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism.

    PubMed

    Leite, Ney Ribeiro; Faro, Aline Regis; Dotta, Maria Amélia Oliva; Faim, Livia Maria; Gianotti, Andreia; Silva, Flavio Henrique; Oliva, Glaucius; Thiemann, Otavio Henrique

    2013-02-14

    Xylella fastidiosa is responsible for a wide range of economically important plant diseases. We report here the crystal structure and kinetic data of Xylellain, the first cysteine protease characterized from the genome of the pathogenic X. fastidiosa strain 9a5c. Xylellain has a papain-family fold, and part of the N-terminal sequence blocks the enzyme active site, thereby mediating protein activity. One novel feature identified in the structure is the presence of a ribonucleotide bound outside the active site. We show that this ribonucleotide plays an important regulatory role in Xylellain enzyme kinetics, possibly functioning as a physiological mediator.

  19. Neuronal protease-activated receptor 1 drives synaptic retrograde signaling mediated by the endocannabinoid 2-arachidonoylglycerol.

    PubMed

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Yamazaki, Maya; Sakimura, Kenji; Kano, Masanobu

    2011-02-23

    Protease-activated receptor 1 (PAR1) is a member of the G-protein coupled receptors that are proteolytically activated by serine proteases. Recent studies suggest a definite contribution of PAR1 to brain functions, including learning and memory. However, cellular mechanisms by which PAR1 activation influences neuronal activity are not well understood. Here we show that PAR1 activation drives retrograde endocannabinoid signaling and thereby regulates synaptic transmission. In cultured hippocampal neurons from rat, PAR1 activation by thrombin or PAR1-specific peptide agonists transiently suppressed inhibitory transmission at cannabinoid-sensitive, but not cannabinoid-insensitive, synapses. The PAR1-induced suppression of synaptic transmission was accompanied by an increase in paired-pulse ratio, and was blocked by a cannabinoid CB(1) receptor antagonist. The PAR1-induced suppression was blocked by pharmacological inhibition of postsynaptic diacylglycerol lipase (DGL), a key enzyme for biosynthesis of the major endocannabinoid 2-arachidonoylglycerol (2-AG), and was absent in knock-out mice lacking the α isoform of DGL. The PAR1-induced IPSC suppression remained intact under the blockade of metabotropic glutamate receptors and was largely resistant to the treatment that blocked Ca(2+) elevation in glial cells following PAR1 activation, which excludes the major contribution of glial PAR1 in IPSC suppression. We conclude that activation of neuronal PAR1 triggers retrograde signaling mediated by 2-AG, which activates presynaptic CB(1) receptors and suppresses transmitter release at hippocampal inhibitory synapses.

  20. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  1. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors.

    PubMed

    Birkus, Gabriel; Bam, Rujuta A; Willkom, Madeleine; Frey, Christian R; Tsai, Luong; Stray, Kirsten M; Yant, Stephen R; Cihlar, Tomas

    2016-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  2. Assessing the impact of long term frozen storage of faecal samples on protein concentration and protease activity

    PubMed Central

    Morris, Laura S.; Marchesi, Julian R.

    2016-01-01

    Background The proteome is the second axis of the microbiome:host interactome and proteases are a significant aspect in this interaction. They interact with a large variety of host proteins and structures and in many situations are implicated in pathogenesis. Furthermore faecal samples are commonly collected and stored frozen so they can be analysed at a later date. So we were interested to know whether long term storage affected the integrity of proteases and total protein and whether historical native faecal samples were still a viable option for answering research questions around the functional proteome. Methods Faecal samples were collected from 3 healthy volunteers (3 biological replicates) and processed in order to be stored at both − 20 °C and − 80 °C and in a variety of storage buffers. Protein extraction, protein content and protease activity were assessed at the time of collection, after 24 h, 1 week, 1 month, 3 months 6 months and finally 1 year. Results Beadbeating impacted the quantity of protein extracted, while sodium azide did not impact protease assays. Long term storage of extracted proteins showed that both total protein and protease activity were affected when they were stored as extracted protein. Intact faecal samples were shown to maintain both protein levels and protease activity regardless of time and temperature. Conclusions Beadbeating increases the protein and protease activity when extracting from a faecal sample, however, the extracted protein is not stable and activity is lost, even with a suitable storage buffer. The most robust solution is to store the proteins in an intact frozen native faecal matrix and extract at the time of assay or analysis, this approach was shown to be suitable for samples in which, there are low levels of protease activity and which had been frozen for a year. PMID:26853125

  3. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    PubMed

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (<12 kDa) for Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P<0.05, Bonferroni test). The two fractions of Crotalaria spectabilis showed the same ovicidal activity (P>0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties. PMID:25054490

  4. Staphylococcal SplB Serine Protease Utilizes a Novel Molecular Mechanism of Activation*

    PubMed Central

    Pustelny, Katarzyna; Zdzalik, Michal; Stach, Natalia; Stec-Niemczyk, Justyna; Cichon, Przemyslaw; Czarna, Anna; Popowicz, Grzegorz; Mak, Pawel; Drag, Marcin; Salvesen, Guy S.; Wladyka, Benedykt; Potempa, Jan; Dubin, Adam; Dubin, Grzegorz

    2014-01-01

    Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process. PMID:24713703

  5. NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex.

    PubMed

    Kim, Young Mee; Gayen, Shovanlal; Kang, CongBao; Joy, Joma; Huang, Qiwei; Chen, Angela Shuyi; Wee, John Liang Kuan; Ang, Melgious Jin Yan; Lim, Huichang Annie; Hung, Alvin W; Li, Rong; Noble, Christian G; Lee, Le Tian; Yip, Andy; Wang, Qing-Yin; Chia, Cheng San Brian; Hill, Jeffrey; Shi, Pei-Yong; Keller, Thomas H

    2013-05-01

    The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.

  6. Rapid method for measuring protease activity in milk using radiolabeled casein

    SciTech Connect

    Christen, G.L.

    1987-09-01

    A rapid means to detect the presence of protease activity in raw milk could be useful in predicting keeping ability of products made from that milk. A 30-min assay has been developed and compared with three other methods of detecting protease. Casein, (methyl-/sup 14/C)-methylated-alpha was purchased from a radioisotope supplier. Concentrations of substrate from 2 to 20 nCi gave counts per minute, which increased linearly when counted with the Charm analyzer. There was not a significant difference in counting times of 10, 20, or 30 min. A mixture of sodium acetate and acetic acid precipitated nonhydrolyzed substrate with an efficiency of 97%. Comparison of the (/sup 14/C) casein assay, a casein fluorescein isothiocyanate assay, trinitrobenzenesulfonic acid procedure, and the Hull procedure using protease from psychrotrophic bacteria revealed that the (/sup 14/C) casein and casein fluorescein isothiocyanate methods were roughly equivalent and that the radiometric procedure was 10 times more sensitive than the trinitrobenzenesulfonic acid assay. The radiometric procedure was approximately 10(4) times more sensitive than the Hull procedure. The (/sup 14/C) casein and casein fluorescein isothiocyanate methods were similar in time required, about 30 min, while the trinitrobenzenesulfonic acid assay and Hull method required about 1 h plus reagent preparation time. The (/sup 14/C) casein procedure was most expensive per test; the other three were cheaper and similar to each other in cost.

  7. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease

    PubMed Central

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  8. Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals.

    PubMed

    Gupta, Bakul; Mai, Kelly; Lowe, Stuart B; Wakefield, Denis; Di Girolamo, Nick; Gaus, Katharina; Reece, Peter J; Gooding, J Justin

    2015-10-01

    Herein is presented a microsensor technology as a diagnostic tool for detecting specific matrix metalloproteinases (MMPs) at very low concentrations. MMP-2 and MMP-9 are detected using label free porous silicon (PSi) photonic crystals that have been made selective for a given MMP by filling the nanopores with synthetic polymeric substrates containing a peptide sequence for that MMP. Proteolytic cleavage of the peptide sequence results in a shift in wavelength of the main peak in the reflectivity spectrum of the PSi device, which is dependent on the amount of MMP present. The ability to detect picogram amounts of MMP-2 and MMP-9 released by primary retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells stimulated with lipopolysaccharide (LPS) is demonstrated. It was found that both cell types secrete higher amounts of MMP-2 than MMP-9 in their stimulated state, with RPE cells producing higher amounts of MMPs than IPE cells. The microsensor performance was compared to conventional protease detection systems, including gelatin zymography and enzyme linked immunosorbent assay (ELISA). It was found that the PSi microsensors were more sensitive than gelatin zymography; PSi microsensors detected the presence of both MMP-2 and MMP-9 while zymography could only detect MMP-2. The MMP-2 and MMP-9 quantification correlated well with the ELISA. This new method of detecting protease activity shows superior performance to conventional protease assays and has the potential for translation to high-throughput multiplexed analysis.

  9. Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease.

    PubMed

    Tan, Yong Wah; Ang, Melgious Jin Yan; Lau, Qiu Ying; Poulsen, Anders; Ng, Fui Mee; Then, Siew Wen; Peng, Jianhe; Hill, Jeffrey; Hong, Wan Jin; Chia, Cheng San Brian; Chu, Justin Jang Hann

    2016-01-01

    Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery. PMID:27645381

  10. Protease inhibitor from insect silk-activities of derivatives expressed in vitro and in transgenic potato.

    PubMed

    Kodrík, Dalibor; Kludkiewicz, Barbara; Navrátil, Oldřich; Skoková Habuštová, Oxana; Horáčková, Vendulka; Svobodová, Zdeňka; Vinokurov, Konstantin S; Sehnal, František

    2013-09-01

    Several recombinant derivatives of serine protease inhibitor called silk protease inhibitor 2 (SPI2), which is a silk component in Galleria mellonella (Lepidoptera, Insecta), were prepared in the expression vector Pichia pastoris. Both the native and the recombinant protease inhibitors were highly active against subtilisin and proteinase K. The synthetic SPI2 gene with Ala codon in the P1 position was fused with mGFP-5 to facilitate detection of the transgene and its protein product. A construct of the fusion gene with plant regulatory elements (promoter 35S and terminator OCS) was inserted into the binary vector pRD400. The final construct was introduced into Agrobacterium tumefaciens that was then used for genetic transformation of the potato variety Velox. The transgene expression was monitored with the aid of ELISA employing polyclonal antibody against natural SPI2. In vitro tests showed increased resistance to the late blight Phytophthora infestans in several transformed lines. No effect was seen on the growth, mortality, life span or reproduction of Spodoptera littoralis (Lepidoptera, Insecta) caterpillars, while feeding on transformed potato plants expressing the fusion protein, indicating that the transformed potatoes may be harmless to non-target organisms.

  11. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    PubMed Central

    Cotârleţ, Mihaela; Negoiţă, Teodor Gh.; Bahrim, Gabriela E.; Stougaard, Peter

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20°C, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20°C. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures. PMID:24031702

  12. Transcriptional activation by heat and cold of a thiol protease gene in tomato. [Lycopersicon esculentum

    SciTech Connect

    Schaffer, M.A.; Fischer, R.L. )

    1990-08-01

    We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.

  13. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  14. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    SciTech Connect

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C.

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  15. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  16. Secreted proteases. Regulation of their activity and their possible role in metastasis.

    PubMed

    Goldberg, G I; Frisch, S M; He, C; Wilhelm, S M; Reich, R; Collier, I E

    1990-01-01

    Extracellular matrix metalloproteases are secreted by the resident cells of the tissue in a proenzyme form, and their extracellular activity is regulated at the level of gene expression, proenzyme activation, and interaction with inhibitors. To understand the molecular mechanisms that control the activity of ECM metalloproteases and their effect on the cellular phenotype, we have established cell lines in which the transcription of the protease genes is repressed. We also have undertaken a detailed study of the pathway of extracellular activation of interstitial procollagenase. Stable transfection of three human tumor cell lines--H-ras-transformed bronchial epithelial cells TBE-1, fibrosarcoma cells HT1080, and melanoma cells A2058--with the adenovirus E1A gene dramatically repressed the expression of the secreted proteases, type IV and interstitial collagenases, and urokinase-type plasminogen activator. Concomitantly, E1A-expressing cells showed reduced metastatic activity in vivo and reduced ability to traverse a reconstituted basement membrane in vitro. Monospecific anti-type IV collagenase antibody inhibited the invasive activity of parental tumor cell lines in the in vitro system, suggesting a possible causal relationship between the effect of E1A on the expression of secreted proteases and the reduced metastatic potential of the E1A-expressing transformants. We have also studied the mechanism of regulation of metalloprotease activity at the level of extracellular activation by investigating the cascade of proteolytic events that results in the activation of interstitial procollagenase. Cocultivation of the major cellular components of skin, dermal fibroblasts, and epidermal keratinocytes induces activation of interstitial procollagenase and prostromelysin in the presence of plasminogen. This activation occurs through a uPA-plasmin-dependent pathway in which plasmin catalyzes the first step in activation of both collagenase and stromelysin by amino

  17. Synthesis of Indole Derived Protease-Activated Receptor 4 Antagonists and Characterization in Human Platelets

    PubMed Central

    Young, Summer E.; Duvernay, Matthew T.; Schulte, Michael L.; Lindsley, Craig W.; Hamm, Heidi E.

    2013-01-01

    Protease activated receptor-4 (PAR4) is one of the thrombin receptors on human platelets and is a potential target for the management of thrombotic disorders. We sought to develop potent, selective, and novel PAR4 antagonists to test the role of PAR4 in thrombosis and hemostasis. Development of an expedient three-step synthetic route to access a novel series of indole-based PAR4 antagonists also necessitated the development of a platelet based high-throughput screening assay. Screening and subsequent structure activity relationship analysis yielded several selective PAR4 antagonists as well as possible new scaffolds for future antagonist development. PMID:23776495

  18. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  19. Production, Purification, and Biochemical Characterization of Thermostable Metallo-Protease from Novel Bacillus alkalitelluris TWI3 Isolated from Tannery Waste.

    PubMed

    Anandharaj, Marimuthu; Sivasankari, Balayogan; Siddharthan, Nagarajan; Rani, Rizwana Parveen; Sivakumar, Subramaniyan

    2016-04-01

    Protease enzymes in tannery industries have enormous applications. Seeking a potential candidate for efficient protease production has emerged in recent years. In our study, we sought to isolate proteolytic bacteria from tannery waste dumping site in Tamilnadu, India. Novel proteolytic Bacillus alkalitelluris TWI3 was isolated and tested for protease production. Maximum protease production was achieved using lactose and skim milk as a carbon and nitrogen source, respectively, and optimum growth temperature was found to be 40 °C at pH 8. Protease enzyme was purified using ammonium sulfate precipitation method and anion exchange chromatography. Diethylaminoethanol (DEAE) column chromatography and Sephadex G-100 chromatography yielded an overall 4.92-fold and 7.19-fold purification, respectively. The 42.6-kDa TWI3 protease was characterized as alkaline metallo-protease and stable up to 60 °C and pH 10. Ca(2+), Mn(2+), and Mg(2+) ions activated the protease, while Hg(2+), Cu(2+), Zn(2+), and Fe(2+) greatly inhibited it. Ethylenediaminetetraacetic acid (EDTA) inhibited TWI3 protease and was activated by Ca(2+), which confirmed that TWI3 protease is a metallo-protease. Moreover, this protease is capable of dehairing goat skin and also removed several cloth stains, which makes it more suitable for various biotechnological applications. PMID:26749296

  20. Effect of cobalt on synthesis and activation of Bacillus licheniformis alkaline phosphatase.

    PubMed Central

    Spencer, D B; Chen, C P; Hulett, F M

    1981-01-01

    The effect of CO2+ on the synthesis and activation of Bacillus licheniformis MC14 alkaline phosphatase has been shown by the development of a defined minimal salts medium in which this organism produces 35 times more (assayable) alkaline phosphatase than when grown in a low-phosphate complex medium or in the defined medium without cobalt. Stimulation of enzyme activity with cobalt is dependent on a low phosphate concentration in the medium (below 0.075 mM) and continued protein synthesis. Cobalt stimulation resulted in alkaline phosphate production being a major portion of total protein synthesized during late-logarithmic and early-stationary-phase culture growth. Cells cultured in the defined medium minus cobalt, or purified enzyme partially inactivated with a chelating agent, showed a 2.5-fold increase in activity when assayed in the presence of cobalt. Atomic spectral analysis indicated the presence of 3.65 +/- 0.45 g-atoms of cobalt associated with each mole of purified active alkaline phosphatase. A biochemical localization as a function of culture age in this medium showed that alkaline phosphatase was associated with the cytoplasmic membrane and was also found as a soluble enzyme in the periplasmic region and secreted into the growth medium. PMID:7462163

  1. Tissue factor trafficking in fibroblasts: involvement of protease-activated receptor–mediated cell signaling

    PubMed Central

    Mandal, Samir K.; Pendurthi, Usha R.

    2007-01-01

    Tissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa), and the formation of TF-FVIIa complexes on cell surfaces triggers the activation of the coagulation cascade and the cell signaling. Our recent studies have shown that a majority of TF resides in various intracellular compartments, predominantly in the Golgi, and that FVIIa binding to cell surface TF induces TF endocytosis and mobilizes the Golgi TF pool to translocate it to the cell surface. This present study is aimed to elucidate the mechanisms involved in TF endocytosis and its mobilization from the Golgi. Activation of protease-activated receptor 1 (PAR1) and PAR2 by specific peptide agonists and proteases, independent of FVIIa, mobilized TF from the Golgi store and increased the cell surface expression of TF. Blocking PAR2 activation, but not PAR1, with neutralizing antibodies fully attenuated the FVIIa-induced TF mobilization. Consistent with these data, silencing the PAR2 receptor, and not PAR1, abrogated the FVIIa-mediated TF mobilization. In contrast to their effect on TF mobilization, PAR1 and PAR2 activation, in the absence of FVIIa, had no effect on TF endocytosis. However, PAR2 activation is found to be critical for the FVIIa-induced TF endocytosis. Overall the data herein provide novel insights into the role of PARs in regulating cell surface TF expression. PMID:17384202

  2. Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors.

    PubMed

    Yonamine, Camila M; Kondo, Marcia Y; Nering, Marcela B; Gouvêa, Iuri E; Okamoto, Débora; Andrade, Douglas; da Silva, José Alberto A; Prieto da Silva, Alvaro R B; Yamane, Tetsuo; Juliano, Maria A; Juliano, Luiz; Lapa, Antônio J; Hayashi, Mirian A F; Lima-Landman, Maria Teresa R

    2014-03-01

    Gyroxin is a serine protease displaying a thrombin-like activity found in the venom of the South American rattlesnake Crotalus durissus terrificus. Typically, intravenous injection of purified gyroxin induces a barrel rotation syndrome in mice. The serine protease thrombin activates platelets aggregation by cleaving and releasing a tethered N-terminus peptide from the G-protein-coupled receptors, known as protease-activated receptors (PARs). Gyroxin also presents pro-coagulant activity suggested to be dependent of PARs activation. In the present work, the effects of these serine proteases, namely gyroxin and thrombin, on PARs were comparatively studied by characterizing the hydrolytic specificity and kinetics using PARs-mimetic FRET peptides. We show for the first time that the short (sh) and long (lg) peptides mimetizing the PAR-1, -2, -3, and -4 activation sites are all hydrolyzed by gyroxin exclusively after the Arg residues. Thrombin also hydrolyzes PAR-1 and -4 after the Arg residue, but hydrolyzes sh and lg PAR-3 after the Lys residue. The kcat/KM values determined for gyroxin using sh and lg PAR-4 mimetic peptides were at least 2150 and 400 times smaller than those determined for thrombin, respectively. For the sh and lg PAR-2 mimetic peptides the kcat/KM values determined for gyroxin were at least 6500 and 2919 times smaller than those determined for trypsin, respectively. The kcat/KM values for gyroxin using the PAR-1 and -3 mimetic peptides could not be determined due to the extreme low hydrolysis velocity. Moreover, the functional studies of the effects of gyroxin on PARs were conducted in living cells using cultured astrocytes, which express all PARs. Despite the ability to cleavage the PAR-1, -2, -3, and -4 peptides, gyroxin was unable to activate the PARs expressed in astrocytes as determined by evaluating the cytosolic calcium mobilization. On the other hand, we also showed that gyroxin is able to interfere with the activation of PAR-1 by thrombin or

  3. Ostrinia furnacalis serpin-3 regulates melanization cascade by inhibiting a prophenoloxidase-activating protease.

    PubMed

    Chu, Yuan; Zhou, Fan; Liu, Yang; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae. PMID:25818483

  4. Achillea millefolium L. s.l. -- is the anti-inflammatory activity mediated by protease inhibition?

    PubMed

    Benedek, Birgit; Kopp, Brigitte; Melzig, Matthias F

    2007-09-01

    Achillea millefolium L. s.l. is traditionally used not only in the treatment of gastro-intestinal and hepato-biliary disorders, but also as an antiphlogistic drug. As various proteases, for instance human neutrophil elastase (HNE) and matrix metalloproteinases (MMP-2 and -9), are associated with the inflammatory process, the aim of this study was to test a crude plant extract in in vitro-protease inhibition assays for understanding the mechanisms of anti-inflammatory action. Furthermore, two fractions enriched in flavonoids and dicaffeoylquinic acids (DCQAs), respectively, were also tested in order to evaluate their contribution to the antiphlogistic activity of the plant. The extract and the flavonoid fraction inhibited HNE showing IC(50) values of approximately 20 microg/ml, whereas the DCQA fraction was less active (IC(50)=72 microg/ml). The inhibitory activity on MMP-2 and -9 was observed at IC(50) values from 600 to 800 microg/ml, whereas the DCQA fraction showed stronger effects than the flavonoid fraction and the extract. In conclusion, the in vitro-antiphlogistic activity of Achillea is at least partly mediated by inhibition of HNE and MMP-2 and -9. After the recently described spasmolytic and choleretic effects the obtained results give further insights into the pharmacological activity of Achillea and confirm the traditional application as antiphlogistic drug.

  5. Achillea millefolium L. s.l. -- is the anti-inflammatory activity mediated by protease inhibition?

    PubMed

    Benedek, Birgit; Kopp, Brigitte; Melzig, Matthias F

    2007-09-01

    Achillea millefolium L. s.l. is traditionally used not only in the treatment of gastro-intestinal and hepato-biliary disorders, but also as an antiphlogistic drug. As various proteases, for instance human neutrophil elastase (HNE) and matrix metalloproteinases (MMP-2 and -9), are associated with the inflammatory process, the aim of this study was to test a crude plant extract in in vitro-protease inhibition assays for understanding the mechanisms of anti-inflammatory action. Furthermore, two fractions enriched in flavonoids and dicaffeoylquinic acids (DCQAs), respectively, were also tested in order to evaluate their contribution to the antiphlogistic activity of the plant. The extract and the flavonoid fraction inhibited HNE showing IC(50) values of approximately 20 microg/ml, whereas the DCQA fraction was less active (IC(50)=72 microg/ml). The inhibitory activity on MMP-2 and -9 was observed at IC(50) values from 600 to 800 microg/ml, whereas the DCQA fraction showed stronger effects than the flavonoid fraction and the extract. In conclusion, the in vitro-antiphlogistic activity of Achillea is at least partly mediated by inhibition of HNE and MMP-2 and -9. After the recently described spasmolytic and choleretic effects the obtained results give further insights into the pharmacological activity of Achillea and confirm the traditional application as antiphlogistic drug. PMID:17689902

  6. A high-resolution, fluorescence-based method for localization of endogenous alkaline phosphatase activity.

    PubMed

    Cox, W G; Singer, V L

    1999-11-01

    We describe a high-resolution, fluorescence-based method for localizing endogenous alkaline phosphatase in tissues and cultured cells. This method utilizes ELF (Enzyme-Labeled Fluorescence)-97 phosphate, which yields an intensely fluorescent yellow-green precipitate at the site of enzymatic activity. We compared zebrafish intestine, ovary, and kidney cryosections stained for endogenous alkaline phosphatase using four histochemical techniques: ELF-97 phosphate, Gomori method, BCIP/NBT, and naphthol AS-MX phosphate coupled with Fast Blue BB (colored) and Fast Red TR (fluorescent) diazonium salts. Each method localized endogenous alkaline phosphatase to the same specific sample regions. However, we found that sections labeled using ELF-97 phosphate exhibited significantly better resolution than the other samples. The enzymatic product remained highly localized to the site of enzymatic activity, whereas signals generated using the other methods diffused. We found that the ELF-97 precipitate was more photostable than the Fast Red TR azo dye adduct. Using ELF-97 phosphate in cultured cells, we detected an intracellular activity that was only weakly labeled with the other methods, but co-localized with an antibody against alkaline phosphatase, suggesting that the ELF-97 phosphate provided greater sensitivity. Finally, we found that detecting endogenous alkaline phosphatase with ELF-97 phosphate was compatible with the use of antibodies and lectins. (J Histochem Cytochem 47:1443-1455, 1999)

  7. Antimalarial activity enhancement in hydroxymethylcarbonyl (HMC) isostere-based dipeptidomimetics targeting malarial aspartic protease plasmepsin

    PubMed Central

    Hidaka, Koushi; Kimura, Tooru; Ruben, Adam J.; Uemura, Tsuyoshi; Kamiya, Mami; Kiso, Aiko; Okamoto, Tetsuya; Tsuchiya, Yumi; Hayashi, Yoshio; Freire, Ernesto; Kiso, Yoshiaki

    2015-01-01

    Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm. PMID:18952439

  8. The propeptide is not required to produce catalytically active neutral protease from Bacillus stearothermophilus.

    PubMed

    Mansfeld, Johanna; Petermann, Eva; Dürrschmidt, Peter; Ulbrich-Hofmann, Renate

    2005-02-01

    The thermolysin-like neutral protease from Bacillus stearothermophilus (TLP-ste) is usually produced extracellularly in Bacillus subtilis, where it is expressed as preproenzyme and subsequently processed in an autocatalytic, intramolecular process. To create the basis for the production of inactive mutants of TLP-ste, which cannot be processed in B. subtilis, we studied the expression of TLP-ste and its propeptide in cis and in trans in Escherichia coli. In contrast to thermolysin, subtilisin and alpha-lytic protease, which could be obtained only in the presence of the corresponding propeptides, TLP-ste could be produced as an active mature enzyme in E. coli in the absence of its prosequence. Surprisingly, however, a much more effective access to active mature protease was found when TLP-ste (devoid of its prosequence) was expressed as protein with an N-terminal His6 tag which accumulated in the form of inclusion bodies. Completely unexpected, the protein could be renatured from the inclusion bodies after solubilization in guanidine hydrochloride solutions in high yields. Purification to homogeneity was possible by affinity chromatography on Bacitracin silica as well as by immobilized metal ion affinity chromatography. By addition of separately expressed propeptide to the renaturation mixture yields of renaturation could not be increased significantly, confirming that the propeptide is not essential for proper folding of the enzyme or its stabilization during the folding process. Also in vivo, the expression levels of active mature TLP-ste in Escherichia coli did not significantly differ when the mature sequence was expressed alone or coexpressed with the prosequence in cis or in trans.

  9. Characterization of the protease activity that cleaves the extracellular domain of {beta}-dystroglycan

    SciTech Connect

    Zhong Di; Saito, Fumiaki; Saito, Yuko; Nakamura, Ayami; Shimizu, Teruo; Matsumura, Kiichiro . E-mail: k-matsu@med.teikyo-u.ac.jp

    2006-06-30

    Dystroglycan (DG) complex, composed of {alpha}DG and {beta}DG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of {beta}DG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of {beta}DG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of {beta}DG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of {beta}DG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.

  10. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis).

    PubMed

    Hahn, B S; Cho, S Y; Wu, S J; Chang, I M; Baek, K; Kim, Y C; Kim, Y S

    1999-03-19

    Mantis egg fibrolase (MEF) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The protease was assessed homogeneous by SDS-polyacrylamide gel electrophoresis and has a molecular mass of 31500 Da. An isoelectric point of 6.1 was determined by isoelectric focusing. Amino acid sequencing of the N-terminal region established a primary structure composed of Ala-Asp-Val-Val-Gln-Gly-Asp-Ala-Pro-Ser. MEF readily digested the Aalpha- and Bbeta-chains of fibrinogen and more slowly the gamma-chain. The nonspecific action of the enzyme results in extensive hydrolysis of fibrinogen and fibrin releasing a variety of fibrinopeptide. The enzyme is inactivated by Cu2+ and Zn2+ and inhibited by PMSF and chymostatin, yet elastinal, aprotinin, TLCK, TPCK, EDTA, EGTA, cysteine, beta-mercaptoethanol, iodoacetate, E64, benzamidine and soybean trypsin inhibitor do not affect activity. Antiplasmin was not sensitive to MEF but antithrombin III inhibited the enzymatic activity of MEF. Among chromogenic protease substrates, the most sensitive to MEF hydrolysis was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 30 degrees C. MEF preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. D-Dimer concentrations increased on incubation of cross-linked fibrin with MEF, indicating the enzyme has a strong fibrinolytic activity. PMID:10082965

  11. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.

  12. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae

    PubMed Central

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K.; Wai, Sun Nyunt

    2016-01-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  13. Synthesis, antiviral activity, and bioavailability studies of gamma-lactam derived HIV protease inhibitors.

    PubMed

    Hungate, R W; Chen, J L; Starbuck, K E; Vacca, J P; McDaniel, S L; Levin, R B; Dorsey, B D; Guare, J P; Holloway, M K; Whitter, W

    1994-09-01

    Incorporation of a gamma-lactam in hydroxyethylene isosteres results in modest inhibitors of HIV-1 protease. Additional structural activity studies have produced significantly more potent inhibitors with the introduction of the trisubstituted cyclopentane (see compound 20) as the optimum substituent for the C-terminus. This new amino acid amide surrogate can be readily prepared in large scale from (R)-pulegone. Optimized compounds (36) and (60) are potent antiviral agents and are well absorbed (15-20%) in a dog model after oral administration. PMID:7712123

  14. Sucrolytic Enzyme Activities in Cotyledons of the Faba Bean (Developmental Changes and Purification of Alkaline Invertase).

    PubMed Central

    Ross, H. A.; McRae, D.; Davies, H. V.

    1996-01-01

    In terms of maximum extractable catalytic activity, sucrose synthase is the predominant sucrolytic enzyme in developing cotyledons of faba bean (Vicia faba L.). Although acid invertase activity is extremely low, there is significant activity of alkaline invertase, the majority of which is extractable only with high concentrations of NaCl. Calculations of potential activity in vivo indicate that alkaline invertase is the predominant sucrolytic enzyme from 50 days after anthesis onward. However, at almost all stages of cotyledon development analyzed, the maximum extractable catalytic activities of both enzymes is in excess of the actual rate of starch deposition. Two forms of alkaline invertase were identified in developing cotyledons. The major form has been purified to homogeneity, and antibodies have been raised against it. The native protein has a molecular mass of about 238 [plus or minus] 4.5 kD. It is apparently a homotetramer (subunit molecular mass 53.4 [plus or minus] 0.9 kD). The enzyme has a pH optimum of 7.4, an isoelectric point of 5.2, and a Km[sucrose] of 10 mM and is inhibited by Tris (50% inhibition at 5 mM) and fructose (30% inhibition at 10 mM). Bean alkaline invertase is a [beta]-fructofuranosidase with no significant activity against raffinose, stachyose, trehalose, maltose, or lactose. PMID:12226291

  15. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  16. Tubulin polymerization by paclitaxel (taxol) phosphate prodrugs after metabolic activation with alkaline phosphatase.

    PubMed

    Mamber, S W; Mikkilineni, A B; Pack, E J; Rosser, M P; Wong, H; Ueda, Y; Forenza, S

    1995-08-01

    Paclitaxel (taxol) phosphate derivatives BMY46366, BMY-46489, BMS180661 and BMS180820 were used to determine the ability of alkaline phosphatase to convert these water-soluble potential prodrugs to tubulin-polymerizing metabolites (i.e., paclitaxel). Compounds were treated up to 180 min with an in vitro metabolic activation system composed of 10% bovine alkaline phosphatase in 0.2 M tris, pH 7.4, or in 0.2 M glycine, pH 8.8, plus 0.05 M MgCl2. Samples were tested (either by direct addition or after methylene chloride extraction/dimethyl-sulfoxide resuspension) in spectrophotometric tubulin polymerization assays utilizing bovine-derived microtubule protein. Pretreatment of 2'- and 7-phosphonoxyphenylpropionate prodrugs BMS180661 and BMS180820 with alkaline phosphatase for 30 to 120 min yielded relative initial slopes of about 20 to 100% at test concentrations equimolar to paclitaxel. High-performance liquid chromatography/mass spectrometry of BMS180661 treated with alkaline phosphatase confirmed the production of paclitaxel from the prodrug. In contrast, 2'- and 7-phosphate analogs BMY46366 and BMY46489 treated with alkaline phosphatase were not active in tubulin assays. None of the paclitaxel phosphate prodrugs polymerized tubulin in the absence of metabolic activation. The differences in tubulin polymerization with metabolic activation may be related both to accessibility of the phosphate group to the enzyme and to anionic charge effects. These results demonstrate that certain paclitaxel phosphate prodrugs can be metabolized by alkaline phosphatase to yield effective tubulin polymerization. PMID:7636751

  17. [Reliability of extracellular protease and lipase activities of Beauveria bassiana isolates used as their virulence indices].

    PubMed

    Feng, M

    1998-12-01

    The extracellular protease and lipase activities of 17 Beauveria bassiana isolates from different hosts and countries were evaluated for the reliability for the indices of their virulence to the migratory grasshopper, Melanoplus sanguinipes. Virulence assay of each isolate included about 30 10-d-old grasshoppers receiving topical inoculation with the suspension of 10(7) conidia/ml. In the assays of the enzymes, N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and p-nitrophenyl palmitate were used as a substrate to measure the activities of protease (3 replicates) and lipase (4 replicates) in the filtrates of gelatin-based and sunflower oil-based liquid cultures of each isolate, respectively. Varying among the isolates assayed, the estimates of LT50's, protease units (PU), and lipase units (LU) were 5.27-16.89 d, 0.47-3.37 x 10(-2) mumol.ml-1.min-1, and 0.00-56.75 mumol.ml-1.h-1, respectively. Regression analysis revealed that PU was significantly (P < 0.01) correlated to the daily cumulative mortality of M. sanguinipes 5-17 d after inoculation and the LT50's whereas LU had little correlation to either the mortalities or the LT50's (P > 0.10). Based on the determination coefficients (r2) from the regression, PU alone interpreted at most 67% of the variation in the mortality 7d after inoculation but less than 50% in most of the days considered and only 38% in LT50's. Thus, the author suggested that PU could be used as virulence index only for early-stage selection of candidate isolates in large quantity and could not entirely replace conventional virulence assay method that remains most reliable.

  18. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    PubMed

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

  19. Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine.

    PubMed Central

    Mynott, T L; Luke, R K; Chandler, D S

    1996-01-01

    The virulence of enterotoxigenic Escherichia coli (ETEC) is attributed to their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. A novel approach to preventing ETEC induced diarrhoea would be to prevent attachment of ETEC to intestine by proteolytically modifying the receptor attachment sites. This study aimed to examine the effect of bromelain, a proteolytic extract obtained from pineapple stems, on ETEC receptor activity in porcine small intestine. Bromelain was administered orally to piglets and K88+ ETEC attachment to small intestine was measured at 50 cm intervals using an enzyme immunoassay. K88+ ETEC attachment to intestinal sections that were not treated with bromelain varied appreciably between sampling sites. Variability in receptor activity along the intestinal surface is though to be caused by the localised effects of endogenous proteases. Oral administration of exogenous protease inhibited K88+ ETEC attachment to pig small intestine in a dose dependent manner (p < 0.05). Attachment of K88+ ETEC was negligible after treatment, resembling the levels of attachment of K88 to piglets of the genetically determined non-adhesive phenotype, which are resistant to K88+ ETEC infection. Serum biochemical analysis and histopathological examination of treated piglets showed no adverse effects of the bromelain treatment. It is concluded that administration of bromelain can inhibit ETEC receptor activity in vivo and may therefore be useful for prevention of K88+ ETEC induced diarrhoea. PMID:8566855

  20. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    PubMed Central

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  1. Myoglobin inhibition of most protease activities measured with fluorescent substrates is an artifact!

    PubMed

    Volle, B; Dutaud, D; Ouali, A

    1999-05-01

    Myoglobin has been suggested to be a potential inhibitor of endogenous muscle proteases as different as cathepsin B, cathepsin L, cathepsin H and calpains all being supposed to be important in post-mortem muscle. The present work aimed at verifying the ability of myoglobin and its prosthetic group, hemin, to inhibit a series of endopeptidases including papain, cathepsin B, trypsin, calpains as well as two activities of the 20S proteasome. The conclusion of the present work was that inhibition of proteolytic activities of endopeptidases by myoglobin is an artifact. This was based on the following evidences: (1) a similar extent of inhibition was observed for all proteases tested whether myoglobin or hemin were added before starting the reaction or after having stopped it; (2) a quenching of the probes fluorescence by myoglobin and hemin; (3) no inhibition of calpains were found when assayed with non labeled casein as substrate and the activity expressed as the increase in the absorbency at 280 nm of the TCA soluble protein fragments.(1). PMID:22062146

  2. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  3. Protease with collagenolytic activity produced by Bacillus sp. DPUA 1728 from Amazonian soil

    PubMed Central

    Lima, Lorena A.; Cruz, Raimundo F.; dos Santos, Januário G.; Silva, Wilson C.

    2015-01-01

    Qualitative analyses were carried out on solid medium with insoluble collagen 0.25% (w/v) to detect proteases with collagenolytic activity produced by Bacillus sp. In cultures incubated for 24 h, a 23 full factorial design with four repetitions at the center point was developed to analyze the effects and interactions between initial pH, temperature and the concentration of gelatin. Based on the results of the first 23 full factorial design, a successive 23 full factorial design was performed. The most favorable production conditions were found to be 1.5% (w/v) gelatin, pH 9.0 and 37 °C with enzymatic activity of 86.27 U/mL. The enzyme showed optimal activity at 50 °C and pH 9.0, and it was stable over wide pH (7.2-10.0) and temperature (45 °C-60 °C) ranges. These results indicate that Bacillus sp DPUA 1728 is a potential source for producing collagenolytic protease with possible biotechnological applications, such as in the food, cosmetics and leather industries. PMID:26691484

  4. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp.

    PubMed

    Mageswari, Anbazhagan; Subramanian, Parthiban; Chandrasekaran, Suganthi; Karthikeyan, Sivashanmugam; Gothandam, Kodiveri Muthukaliannan

    2017-02-15

    Psychrotolerant bacteria isolated from natural and artificially cold environments were screened for synthesis of cold-active protease. The strain IMDY showing the highest protease production at 5°C was selected and phylogenetic analysis revealed that IMDY as novel bacterium with Chryseobacterium soli(T) as its nearest neighbor. Classical optimization enhanced the protease production from 18U/mg to 26U/mg and the enzyme was found to be active at low temperature, activity enhanced by CaCl2, inhibited by PMSF, stable against NaCl, and its activity retained in the presence of surfactants, organic solvents and detergents. On testing, the meat tenderization, myofibril fragmentation, pH, and TBA values were favorable in IMDY-protease treated meat compared to control. SDS profiling and SEM analysis also showed tenderization in meat samples. Hence, this study proposes to consider the cold-active protease from Chryseobacterium sp. IMDY as a pertinent candidate to develop potential applications in food processing industry. PMID:27664603

  5. Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways

    PubMed Central

    Muthuramalingam, Meenakumari; White, John C.; Bourne, Christina R.

    2016-01-01

    Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation. An understanding of these processes can answer long-standing questions regarding stochastic versus specific activation of TA modules and provide insight into the potential for manipulation of TA modules to alter bacterial growth. PMID:27409636

  6. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  7. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  8. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  9. Antimicrobial Activity of a Halocidin-Derived Peptide Resistant to Attacks by Proteases

    PubMed Central

    Shin, Yong Pyo; Park, Ho Jin; Shin, Seo Hwa; Lee, Young Shin; Park, Seungmi; Jo, Sungho; Lee, Yong Ho; Lee, In Hee

    2010-01-01

    Cationic antimicrobial peptides (AMPs) have attracted a great deal of interest as a promising candidate for a novel class of antibiotics that might effectively treat recalcitrant infections caused by a variety of microbes that are resistant to currently available drugs. However, the AMPs are inherently limited in that they are inevitably susceptible to attacks by proteases generated by human and pathogenic microbes; this vulnerability severely hinders their pharmaceutical use in human therapeutic protocols. In this study, we report that a halocidin-derived AMP, designated HG1, was found to be resistant to proteolytic degradation. As a result of its unique structural features, HG1 proved capable of preserving its antimicrobial activity after incubation with trypsin, chymotrypsin, and human matrix metalloprotease 7 (MMP-7). Additionally, HG1 was observed to exhibit profound antimicrobial activity in the presence of fluid from human skin wounds or proteins extracted from the culture supernatants of Staphylococcus aureus and Pseudomonas aeruginosa. Greater understanding of the structural motifs of HG1 required for its protease resistance might provide feasible ways to solve the problems intrinsic to the development of an AMP-based antibiotic. PMID:20385874

  10. Benzophenone derivatives as cysteine protease inhibitors and biological activity against Leishmania(L.) amazonensis amastigotes.

    PubMed

    de Almeida, Letícia; Alves, Karina Ferreira; Maciel-Rezende, Claudia Mara; Jesus, Larissa de Oliveira Passos; Pires, Francieli Ribeiro; Junior, Claudio Viegas; Izidoro, Mario Augusto; Júdice, Wagner Alves de Souza; dos Santos, Marcelo Henrique; Marques, Marcos José

    2015-10-01

    The leishmanicidal potential of benzophenones has been described, some of them highlighting their potential as cysteine protease inhibitors. Therefore, this work described leishmanicidal activity of nine benzophenone derivatives (1a-c;2a-c;3a-c) against intramacrophage amastigote forms of Leishmania(L.)amazonensis (IC50) and the cytotoxic effect on murine peritoneal macrophages (CC50). The derivative 1c exhibited a selectivity index SI (CC50/IC50) of 6.7, besides cytotoxicity lower than Amphotericin B (p< 0.05). Moreover it showed inhibitory activity against papain (42.8±0.3, p<0.05), and when tested on trypanosomatids cysteine proteases 1c also proved to be a potent inhibitor of rCPB2.8, rCPB3.0 and cruzain, showing non-competitive inhibition mechanism by enzymatic assays in vitro.So, benzophenone 1c is interesting drug candidate prototype, with a multi-target directed mode of action, inhibiting rCPB2.8, rCPB3.0 and cruzain.

  11. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  12. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    PubMed

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  13. Characterization of the StcE Protease Activity of Escherichia coli O157:H7

    PubMed Central

    Grys, Thomas E.; Walters, Laura L.; Welch, Rodney A.

    2006-01-01

    The StcE zinc metalloprotease is secreted by enterohemorrhagic Escherichia coli (EHEC) O157:H7 and contributes to intimate adherence of this bacterium to host cells, a process essential for mammalian colonization. StcE has also been shown to localize the inflammatory regulator C1 esterase inhibitor (C1-INH) to cell membranes. We tried to more fully characterize StcE activity to better understand its role in EHEC pathogenesis. StcE was active at pH 6.1 to 9.0, in the presence of NaCl concentrations ranging from 0 to 600 mM, and at 4°C to 55°C. Interestingly, antisera against StcE or C1-INH did not eliminate StcE cleavage of C1-INH. Treatment of StcE with the proteases trypsin, chymotrypsin, human neutrophil elastase, and Pseudomonas aeruginosa elastase did not eliminate StcE activity against C1-INH. After StcE was kept at 23°C for 65 days, it exhibited full proteolytic activity, and it retained 30% of its original activity after incubation for 8 days at 37°C. Together, these results show the StcE protease is a stable enzyme that is probably active in the environment of the colon. Additionally, kcat/Km data showed that StcE proteolytic activity was 2.5-fold more efficient with the secreted mucin MUC7 than with the complement regulator C1-INH. This evidence supports a model which includes two roles for StcE during infection, in which StcE acts first as a mucinase and then as an anti-inflammatory agent by localizing C1-INH to cell membranes. PMID:16788173

  14. The Role of Calcium Activated Protease Calpain in Experimental Retinal Pathology

    PubMed Central

    Azuma, M.; Shearer, T.R.

    2008-01-01

    The purpose of this review is to present the recent evidence linking the family of ubiquitous proteases called calpains (EC 3.4.22.17) to neuropathologies of the retina. The hypothesis being tested in such studies is that over-activation of calpains by elevated intracellular calcium contributes to retinal cell death produced by conditions such as elevated intraocular pressure and hypoxia. Recent x-ray diffraction studies have provided insight into the molecular events causing calpain activation. Further, x-ray diffraction data has provided details on how side chains on calpain inhibitors affect docking into the active site of calpain 1. This opens the possibility of testing calpain-specific inhibitors, such as SJA6017 and SNJ1945, for human safety and as a site-directed form of treatment for retinal pathologies. PMID:18348880

  15. A Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage.

    PubMed

    Emmott, Edward; Sweeney, Trevor R; Goodfellow, Ian

    2015-11-13

    The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6-7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present. PMID:26363064

  16. A Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage*

    PubMed Central

    Emmott, Edward; Sweeney, Trevor R.; Goodfellow, Ian

    2015-01-01

    The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6–7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present. PMID:26363064

  17. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. PMID:27043172

  18. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition.

  19. The enterovirus protease inhibitor rupintrivir exerts cross-genotypic anti-norovirus activity and clears cells from the norovirus replicon.

    PubMed

    Rocha-Pereira, J; Nascimento, M S J; Ma, Q; Hilgenfeld, R; Neyts, J; Jochmans, D

    2014-08-01

    Potent and safe inhibitors of norovirus replication are needed for the treatment and prophylaxis of norovirus infections. We here report that the in vitro anti-norovirus activity of the protease inhibitor rupintrivir is extended to murine noroviruses and that rupintrivir clears human cells from their Norwalk replicon after only two passages of antiviral pressure. In addition, we demonstrate that rupintrivir inhibits the human norovirus (genogroup II [GII]) protease and further explain the inhibitory effect of the molecule by means of molecular modeling on the basis of the crystal structure of the Norwalk virus protease. The combination of rupintrivir with the RNA-dependent RNA polymerase inhibitors 2'-C-methylcytidine and favipiravir (T-705) resulted in a merely additive antiviral effect. The fact that rupintrivir is active against noroviruses belonging to genogroup I (Norwalk virus), genogroup V (murine norovirus), and the recombinant 3C-like protease of a GII norovirus suggests that the drug exerts cross-genotypic anti-norovirus activity and will thus most likely be effective against the clinically relevant human norovirus strains. The design of antiviral molecules targeting the norovirus protease could be a valuable approach for the treatment and/or prophylaxis of norovirus infections.

  20. Monocytes can be induced by lipopolysaccharide-triggered T lymphocytes to express functional factor VII/VIIa protease activity

    PubMed Central

    1984-01-01

    In the present study we demonstrate that human monocytes can be induced by the model stimulus, lipopolysaccharide (LPS), to produce and assemble on their surface functional Factor VII/VIIa. This protease was not induced in relatively purified monocytes alone following exposure to LPS; but was induced in the presence of Leu-3a positive helper/inducer T cells. The Factor VII/VIIa protease activity represented 35-40% of the potential initiating activity for the extrinsic coagulation pathway and was demonstrated using functional coagulation assays, as well as in amidolytic assays for the activation of Factor X. This activity of cell-bound Factor VII/VIIa appeared to involve a tight adduct of calcium. The identity of the Factor X- activating protease as Factor VII/VIIa was confirmed by the capacity of antibody specific for Factor VII/VIIa to neutralize the cell-bound protease. Further propagation of the extrinsic pathway following generation of Factor Xa required addition of exogenous Factor Va. These results expand the repertoire of proteases that have been identified with appropriately triggered cells of the monocyte/macrophage series, and suggest that initiation and propagation of the extrinsic coagulation protease network on induced monocytes involves not only expression of the initiating cofactor molecule, tissue factor, but also production of Factor VII and its organization into the molecular assembly. Thus, in the absence of exogenous Factor VII/VIIa a directly proteolytic effector cell can be generated. Further molecular assembly of the extrinsic pathway on the monocyte surface sequentially expands the proteolytic capacity of this response. The synthesis and assembly of the extrinsic activation complex by the monocyte and its derived progeny, the macrophage, provides a mechanism by which coagulation is initiated under T cell instruction at sites of immunologic responses. PMID:6368733

  1. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  2. Role of Porphyromonas gingivalis protease activity in colonization of oral surfaces.

    PubMed Central

    Tokuda, M; Duncan, M; Cho, M I; Kuramitsu, H K

    1996-01-01

    Cysteine proteases, including Arg-gingipain of Porphyromonas gingivalis, have been implicated as important virulence factors in periodontal diseases. These enzymes are also involved in the hemagglutinating activity of the organisms. In order to determine the role of proteases in the colonization of the gingival margin, we have compared the attachment properties of P. gingivalis 381 with those of its Arg-gingipain-defective mutant, G-102. Interactions with gram-positive bacteria, human oral epithelial cells, extracellular matrix proteins, and type I collagen were evaluated. In all cases, mutant G-102 was deficient in attachment relative to the parental strain. The mutant's defects could be explained, in part, by the weak autoaggregation displayed by the mutant, which appeared to result from altered fimbrial expression. Both Western blot (immunoblot) and Northern (RNA) blot analyses indicated reduced expression of the major 43-kDa fimbrillin subunit in the mutant. These results suggest that Arg-gingipain may play both direct and indirect roles in the colonization of the gingival margin. In addition, fimbriae may play a direct role in interacting with some host surfaces. PMID:8926070

  3. Pulmonary hypertension in smoking mice over-expressing protease-activated receptor-2.

    PubMed

    De Cunto, G; Cardini, S; Cirino, G; Geppetti, P; Lungarella, G; Lucattelli, M

    2011-04-01

    The mechanism(s) involved in the development of pulmonary hypertension (PH) in COPD is still the object of investigation. Cigarette smoke (CS) may lead to remodelling of intrapulmonary vessels and dynamic changes in vascular function, at least in some smokers. A role for proteases in PH has been recently put forward. We investigated, in smoking mice, the role of protease-activated receptor (PAR)-2 in the pathogenesis of PH associated with emphysema. We demonstrated that CS exposure can modulate PAR-2 expression in mouse lung. Acute CS exposure induces in wildtype (WT) and in transgenic mice over-expressing PAR-2 (FVB(PAR-2-TgN)) a similar degree of neutrophil influx in bronchoalveolar lavage fluids. After chronic CS exposure WT and FVB(PAR-2-TgN) mice show emphysema, but only transgenic mice develop muscularisation of small intrapulmonary vessels that precedes the development of PH (~45% increase) and right ventricular hypertrophy. Smoking in FVB(PAR-2-TgN) mice results in an imbalance between vasoconstrictors (especially endothelin-1) and vasodilators (i.e. vascular endothelial growth factor, endothelial nitric oxide synthase and inducible nitric oxide synthase) and enhanced production of growth factors involved both in fibroblast-smooth muscle cell transaction (i.e. platelet-derived growth factor (PDGF) and transforming growth factor β) and vascular cell proliferation (PDGF). PAR-2 signalling can influence the production and release of many factors, which may play a role in the development of PH in smokers. PMID:20693251

  4. Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response.

    PubMed

    Zellmeier, Stephan; Schumann, Wolfgang; Wiegert, Thomas

    2006-09-01

    The induction of Bacillus subtilis genes controlled by the extracytoplasmic function alternative sigma factor sigmaW is strongly impaired in a strain deleted for the ClpP peptidase gene and in a double knockout of the ClpX and ClpE ATPase genes. Truncated soluble forms of the sigmaW anti-sigma factor RsiW are stabilized in a clpP minus strain as revealed by the green fluorescent reporter protein fused to the N-terminus of RsiW and by pulse-chase experiments. Conserved alanine residues are present in the transmembrane region of RsiW, and mutations in these positions abolish induction of sigmaW-controlled genes. Following alkaline shock, a truncated cytoplasmic form of RsiW is detectable in a strain expressing a triple alanine mutant allele of rsiW. These data point to a mechanism where the trans-membrane segment of RsiW contains a cryptic proteolytic tag that is uncovered as a result of intramembrane proteolysis of RsiW by RasP (YluC). After RasP-clipped RsiW is detached from the membrane, this proteolytic tag becomes crucial for the complete degradation of RsiW by cytoplasmic proteases and the release of sigmaW. ClpXP plays a major role in this third proteolytic step of stress-induced degradation of RsiW. Overexpression of SsrA-tagged green fluorescent protein as a ClpXP substrate protein reduces alkali induction of a sigmaW-controlled gene by a factor of about three, indicating that a titration mechanism is able to tune the sigmaW-mediated stress response to the cellular state. PMID:16899079

  5. QSAR prediction of HIV-1 protease inhibitory activities using docking derived molecular descriptors.

    PubMed

    Fatemi, Mohammad H; Heidari, Afsane; Gharaghani, Sajjad

    2015-03-21

    In this study, application of a new hybrid docking-quantitative structure activity relationship (QSAR) methodology to model and predict the HIV-1 protease inhibitory activities of a series of newly synthesized chemicals is reported. This hybrid docking-QSAR approach can provide valuable information about the most important chemical and structural features of the ligands that affect their inhibitory activities. Docking studies were used to find the actual conformations of chemicals in active site of HIV-1 protease. Then the molecular descriptors were calculated from these conformations. Multiple linear regression (MLR) and least square support vector machine (LS-SVM) were used as QSAR models, respectively. The obtained results reveal that statistical parameters of the LS-SVM model are better than the MLR model, which indicate that there are some non-linear relations between selected molecular descriptors and anti-HIV activities of interested chemicals. The correlation coefficient (R), root mean square error (RMSE) and average absolute error (AAE) for LS-SVM are: R=0.988, RMSE=0.207 and AAE=0.145 for the training set, and R=0.965, RMSE=0.403 and AAE=0.338 for the test set. Leave one out cross validation test was used for assessment of the predictive power and validity of models which led to cross-validation correlation coefficient QUOTE of 0.864 and 0.850 and standardized predicted relative error sum of squares (SPRESS) of 0.553 and 0.581 for LS-SVM and MLR models, respectively.

  6. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  7. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  8. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA. PMID:16394504

  9. Coordinate activation of human platelet protease-activated receptor-1 and -4 in response to subnanomolar alpha-thrombin.

    PubMed

    Ofosu, Frederick A; Dewar, Lori; Craven, Sharon J; Song, Yingqi; Cedrone, Aisha; Freedman, John; Fenton, John W

    2008-10-01

    We previously demonstrated that human platelets activated with SFLLRN release PAR-1 activation peptide, PAR-1-(1-41), even in the presence of hirudin. This observation suggests that during their activation, platelets generate a protease that activates PAR-1. In this study, PAR-1 and -4 activation peptides were detected 10 s after activation peptides was complete at 10 s. Generation of both PAR-1 and -4 activation peptides in response to 1 nm alpha-thrombin was significantly inhibited by affinity-purified anti-PAR-1-(35-62) IgY, anti-PAR-4-(34-54) IgY, and by the specific PAR-1 antagonist BMS 200261, but not by the PAR-4 antagonist YD3. Effective inhibition of platelet aggregation in response to 1.0 nm alpha-thrombin occurred only in the presence of both anti-PAR span antibodies. We conclude that platelet activation initiated with activation. Inhibiting the activation of either PAR inhibits activation of the other. Both PAR-1 and -4 activation must be inhibited to prevent platelet activation subsequent to thrombin binding to platelets. The more efficient generation of PAR activation peptides by platelets activated with SFLLRN or AYGPKF, compared with alpha-thrombin, indicates that a platelet-derived serine protease that is inactivated by soybean trypsin inhibitor propagates PAR-1 and -4 activation. PMID:18682394

  10. Jojoba seed meal proteins associated with proteolytic and protease inhibitory activities.

    PubMed

    Shrestha, Madan K; Peri, Irena; Smirnoff, Patricia; Birk, Yehudith; Golan-Goldhirsh, Avi

    2002-09-25

    The jojoba, Simmondsia chinensis, is a characteristic desert plant native to the Sonoran desert. The jojoba meal after oil extraction is rich in protein. The major jojoba proteins were albumins (79%) and globulins (21%), which have similar amino acid compositions and also showed a labile thrombin-inhibitory activity. SDS-PAGE showed two major proteins at 50 kDa and 25 kDa both in the albumins and in the globulins. The 25 kDa protein has trypsin- and chymotrypsin-inhibitory activities. In vitro digestibility of the globulins and albumins resembled that of casein and soybean protein concentrates and was increased after heat treatment. The increased digestibility achieved by boiling may be attributed to inactivation of the protease inhibitors and denaturation of proteins.

  11. Fabrication, characterization, and enzymatic activity of fungal protease--nanogold membrane bioconjugate.

    PubMed

    Vinod, V P; Phadtare, S; Joshi, H M; Sastry, Murali; Rao, Mala

    2007-08-01

    This study describes the synthesis of a free-standing nanogold membrane by the spontaneous reduction of aqueous chloroaurate ions by the diamine molecule DAEE at a liquid-liquid interface. The free standing nanogold membrane, provides a biocompatible surface for the immobilization of proteins. F-Protease (F-Prot) was then bound to the nanogold membrane via interaction with the gold nanoparticles leading to a new class of biocatalyst. A highlight of the new biocatalyst wherein the enzyme is bound to the nanogold membrane is the ease with which separation from the reaction medium may be achieved by simple filtration. In relation to the free enzyme in solution, the F-Prot in the bioconjugate material exhibited a slightly higher biocatalytic activity and significantly enhanced pH and temperature stability. The F-Prot nanogold membrane bioconjugate material also exhibited excellent biocatalytic activity over ten successive reuse cycles.

  12. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  13. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  14. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  15. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed Central

    Weinberg, R A; Zusman, D R

    1990-01-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  16. Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products

    NASA Astrophysics Data System (ADS)

    Fernández-Jimenez, A.; García-Lodeiro, I.; Palomo, A.

    2015-11-01

    The alkaline activation of aluminosiliceous industrial by-products such as blast furnace slag and fly ash is widely known to yield binders whose properties make them comparable to or even stronger and more durable than ordinary Portland cement. The present paper discusses activation fundamentals (such as the type and concentration of alkaline activator and curing conditions) as well as the structure of the cementitious gels formed (C-A-S-H, N-A-S-H). The durability and strength of these systems make these materials apt for use in many industrial applications, such as precast concrete elements (masonery blocks, railroad sleepers), protective coatings for materials with low fire ratings and lightweight elements.

  17. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  18. Increase in alkaline phosphatase activity in calvaria cells cultured with diphosphonates.

    PubMed Central

    Felix, R; Fleisch, H

    1979-01-01

    1. Dichloromethanediphosphonate and to a lesser degree 1-hydroxyethane-1,1-diphosphonate, two compounds characterized by a P-C-P bond, increased the alkaline phosphatase activity of cultured rat calvaria cells up to 30 times in a dose-dependent fashion. 2. Both diphosphonates also slightly inhibited the protein synthesis in these cells. 3. Thymidine, an inhibitor of cell division, did not inhibit the induction of the enzyme, indicating that the increase in enzyme activity was not due to the formation of a specific population of cells with high alkaline phosphatase activity. 4. The effect on alkaline phosphatase was suppressed by the addition of cycloheximide, an inhibitor of protein synthesis. 5. After subculturing the stimulated cells in medium without diphosphonates, the enzyme activity fell almost to the control value. 6. Bovine parathyrin diminished the enzyme activity of the control cells and the cells treated with dichloromethanediphosphonate; however, at high concentration the effect of parathyrin was greater on the diphosphonate-treated cells than on the control cells. 7. The electrophoretic behaviour, heat inactivation, inhibition by bromotetramisole or by phenylalanine, and the Km value of the induced enzyme were identical with that of the control enzyme. PMID:534490

  19. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    PubMed

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities.

  20. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis. PMID:27039890

  1. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis.

  2. Construction, expression, and characterization of a novel fully activated recombinant single-chain hepatitis C virus protease.

    PubMed Central

    Taremi, S. S.; Beyer, B.; Maher, M.; Yao, N.; Prosise, W.; Weber, P. C.; Malcolm, B. A.

    1998-01-01

    Efficient proteolytic processing of essential junctions of the hepatitis C virus (HCV) polyprotein requires a heterodimeric complex of the NS3 bifunctional protease/helicase and the NS4A accessory protein. A single-chain recombinant form of the protease has been constructed in which NS4A residues 21-32 (GSVVIVGRIILS) were fused in frame to the amino terminus of the NS3 protease domain (residues 3-181) through a tetrapeptide linker. The single-chain recombinant protease has been overexpressed as a soluble protein in E. coli and purified to homogeneity by a combination of metal chelate and size-exclusion chromatography. The single-chain recombinant protease domain shows full proteolytic activity cleaving the NS5A-5B synthetic peptide substrate, DTEDVVCCSMSYTWTGK with a Km and k(cat) of 20.0 +/- 2.0 microM and 9.6 +/- 2.0 min(-1), respectively; parameters identical to those of the authentic NS3(1-631)/NS4A(1-54) protein complex generated in eukaryotic cells (Sali DL et al., 1998, Biochemistry 37:3392-3401). PMID:9792101

  3. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide.

    PubMed

    Zhen, Xia; Ng, Ethel Sau Kuen; Lam, Francis Fu Yuen

    2016-09-01

    Ischaemic stroke has become one of the leading causes of death and disability worldwide. The role of protease activated receptor-1 (PAR-1) in this disease is uncertain. In the present study, the actions of a protease activated receptor-1 activating peptide (PAR-1 AP) SFLLRN-NH2 were investigated in an in vivo rat model of ischaemic stroke induced by middle cerebral artery occlusion (MCAO) and in an in vitro model induced by oxygen and glucose deprivation (OGD) in primary cultured rat embryonic cortical neurones. Rats subjected to MCAO exhibited increased brain infarct volume, oedema, and neurological deficit. Rat cortical neurones subjected to OGD showed increased lactate dehydrogenase, caspase-3 activity and TUNEL positive cells, whereas, mitochondrial membrane potential and cell viability were decreased. Furthermore, both models had elevated levels of reactive oxygen species, nitrite, and malondialdehyde, while anti-oxidant enzymes and bcl-2/bax ratio were decreased. These detrimental changes were suppressed by SFLLRN-NH2, and its protective actions were inhibited by a PAR-1 antagonist (BMS-200261). In summary, SFLLRN-NH2 was found to possess anti-oxidant and anti-apoptotic properties, and it produced marked inhibition on the detrimental effects of ischaemia in in vivo and in vitro models of ischaemic stroke. The present findings suggest PAR-1 is a promising target for development of novel treatments of ischaemic brain disease. PMID:27238976

  4. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia.

    PubMed

    Junge, Candice E; Sugawara, Taku; Mannaioni, Guido; Alagarsamy, Sudar; Conn, P Jeffrey; Brat, Daniel J; Chan, Pak H; Traynelis, Stephen F

    2003-10-28

    The serine proteases tissue plasminogen activator, plasmin, and thrombin and their receptors have previously been suggested to contribute to neuronal damage in certain pathological situations. Here we demonstrate that mice lacking protease-activated receptor 1 (PAR1) have a 3.1-fold reduction in infarct volume after transient focal cerebral ischemia. Intracerebroventricular injection of PAR1 antagonist BMS-200261 reduced infarct volume 2.7-fold. There are no detectable differences between PAR1-/- and WT mice in cerebrovascular anatomy, capillary density, or capillary diameter, demonstrating that the neuroprotective phenotype is not likely related to congenital abnormalities in vascular development. We also show that the exogenously applied serine proteases thrombin, plasmin, and tissue plasminogen activator can activate PAR1 signaling in brain tissue. These data together suggest that if blood-derived serine proteases that enter brain tissue in ischemic situations can activate PAR1, this sequence of events may contribute to the harmful effects observed. Furthermore, PAR1 immunoreactivity is present in human brain, suggesting that inhibition of PAR1 may provide a novel potential therapeutic strategy for decreasing neuronal damage associated with ischemia and blood-brain barrier breakdown.

  5. MALT1 Protease Activation Triggers Acute Disruption of Endothelial Barrier Integrity via CYLD Cleavage.

    PubMed

    Klei, Linda R; Hu, Dong; Panek, Robert; Alfano, Danielle N; Bridwell, Rachel E; Bailey, Kelly M; Oravecz-Wilson, Katherine I; Concel, Vincent J; Hess, Emily M; Van Beek, Matthew; Delekta, Phillip C; Gu, Shufang; Watkins, Simon C; Ting, Adrian T; Gough, Peter J; Foley, Kevin P; Bertin, John; McAllister-Lucas, Linda M; Lucas, Peter C

    2016-09-27

    Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response.

  6. Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization.

    PubMed

    Mendieta, Julieta R; Pagano, Mariana R; Muñoz, Fernando F; Daleo, Gustavo R; Guevara, María G

    2006-07-01

    Solanum tuberosum aspartic proteases (StAPs) with antimicrobial activity are induced after abiotic and biotic stress. In this study the ability of StAPs to produce a direct antimicrobial effect was investigated. Viability assays demonstrated that StAPs are able to kill spores of Fusarium solani and Phytophthora infestans in a dose-dependent manner. Localization experiments with FITC-labelled StAPs proved that the proteins interact directly with the surface of spores and hyphae of F. solani and P. infestans. Moreover, incubation of spores and hyphae with StAPs resulted in membrane permeabilization, as shown by the uptake of the fluorescent dye SYTOX Green. It is concluded that the antimicrobial effect of StAPs against F. solani and P. infestans is caused by a direct interaction with the microbial surfaces followed by membrane permeabilization.

  7. MALT1 Protease Activation Triggers Acute Disruption of Endothelial Barrier Integrity via CYLD Cleavage.

    PubMed

    Klei, Linda R; Hu, Dong; Panek, Robert; Alfano, Danielle N; Bridwell, Rachel E; Bailey, Kelly M; Oravecz-Wilson, Katherine I; Concel, Vincent J; Hess, Emily M; Van Beek, Matthew; Delekta, Phillip C; Gu, Shufang; Watkins, Simon C; Ting, Adrian T; Gough, Peter J; Foley, Kevin P; Bertin, John; McAllister-Lucas, Linda M; Lucas, Peter C

    2016-09-27

    Microvascular endothelial cells maintain a tight barrier to prevent passage of plasma and circulating immune cells into the extravascular tissue compartment, yet endothelial cells respond rapidly to vasoactive substances, including thrombin, allowing transient paracellular permeability. This response is a cornerstone of acute inflammation, but the mechanisms responsible are still incompletely understood. Here, we demonstrate that thrombin triggers MALT1 to proteolytically cleave cylindromatosis (CYLD). Fragmentation of CYLD results in microtubule disruption and a cascade of events leading to endothelial cell retraction and an acute permeability response. This finding reveals an unexpected role for the MALT1 protease, which previously has been viewed mostly as a driver of pro-inflammatory NF-κB signaling in lymphocytes. Thus, MALT1 not only promotes immune cell activation but also acutely regulates endothelial cell biology, actions that together facilitate tissue inflammation. Pharmacologic inhibition of MALT1 may therefore have synergistic impact by targeting multiple disparate steps in the overall inflammatory response. PMID:27681433

  8. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  9. Antioxidant Activities of Hydrolysates of Arca Subcrenata Prepared with Three Proteases

    PubMed Central

    Song, Liyan; Li, Tingfei; Yu, Rongmin; Yan, Chunyan; Ren, Shengfang; Zhao, Yu

    2008-01-01

    In order to get products with antioxidant activity from Arca subcrenata Lischke, the optimal hydrolase and hydrolysis conditions were investigated in the paper. Three proteases (neutrase, alcalase and papain) were applied to hydrolyze the homogenate of A. subcrenata. An orthogonal design was used to optimize hydrolysis conditions, and the pH-stat methods was used to determine the degree of hydrolysis. Viewed from the angle of reducing power, such as scavenging activities against α,α-diphenyl-β-picrylhydrazyl (DPPH) radical and hydrogen peroxide, the antioxidant activities of the alcalase hydrolysate (AH) were superior to neutrase hydrolysate (NH) and papain hydrolysate (PH), and its EC50 values in DPPH radical and hydrogen peroxide scavenging effect were 6.23 mg/ml and 19.09 mg/ml, respectively. Moreover, compared with products hydrolyzed by neutrase and papain, the molecular mass of AH was lower and its content of amino acid of peptides was higher. Therefore, alcalase was selected as the optimal enzyme to produce active ingredients since its hydrolysate exhibited the best antioxidant activity among them and possessed large amount of potential active peptides. PMID:19172198

  10. The Diagnostic Potential of Salivary Protease Activities in Periodontal Health and Disease

    PubMed Central

    Thomadaki, Konstantina; Bosch, Jos A.; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2013-01-01

    Periodontal disease is characterised by proteolytic processes involving enzymes that are released by host immune cells and periodontal bacteria. These enzymes, when detectable in whole saliva, may serve as valuable diagnostic markers for disease states and progression. Because the substrate specificities of salivary proteases in periodontal health and disease are poorly characterised we probed these activities using several relevant substrates: 1) gelatin and collagen type IV; 2) the Arg/Lys–rich human salivary substrate histatin-5; and 3) a histatin-derived synthetic analog benzyloxycarbonyl-Arg-Gly-Tyr-Arg-methyl cumaryl amide (Z-RGYR-MCA). Substrate degradation was assessed in gel (zymography) and in solution. Whole saliva supernatant enzyme activities directed at gelatin, quantitated from the 42 kDa, 92 kDa and 130 kDa bands in the zymograms, were 1.3, 1.4 and 2.0 fold higher, respectively, in the periodontal patient group (p<0.01), consistent with enhanced activities observed towards collagen type IV. On the other hand, histatin 5 degraded equally fast in healthy and periodontal patients' whole saliva supernatant samples (p>0.10). Likewise, the hydrolysis rates of the Z-RGYR-MCA substrate were the same in the healthy and periodontal patient groups (p>0.10). In conclusion, gelatinolytic/collagenolytic activities but not trypsin-like activities in human saliva differentiate health from periodontal disease, and may thus provide an adjuvant to diagnosis for monitoring of disease activity. PMID:23379269

  11. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  12. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  13. Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji.

    PubMed

    Su, Nan-Wei; Wang, Mei-Ling; Kwok, Kam-Fu; Lee, Min-Hsiung

    2005-03-01

    This study investigated the effects of temperature and sodium chloride concentration on the proteolytic and amylolytic activities of soy sauce koji. The optimal temperatures for both protease and amylase were found in the range of 50-55 degrees C. The protease was not stable at 55 degrees C and retained only approximately 20% residual activity after incubation at 55 degrees C for 4 h. The protease was labile in sodium chloride solution, whereas the amylase was quite stable. The residual protease activity in an 18% NaCl solution was only approximately 3%. The harvested koji was mixed with 1.5 volumes of water (v/w) and incubated at 45 degrees C for 48 h; the total nitrogen and amino nitrogen contents were 1.3 and 0.56%, respectively. The results indicated that the hydrolysis of koji at the critical temperature of 45 degrees C could be employed as a rapid fermentation method to reduce the time for soy sauce manufacturing. According to this study, the combination of 5% sodium chloride and fermentation at 45 degrees C was considered as the best condition for the prohydrolysis of koji for making soy sauce. In addition, the critical temperature of 45 degrees C was very important when used in the preparation of protein hydrolysates for the flavoring industry and for the preparation of biologically active peptides.

  14. Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease.

    PubMed Central

    Shahabuddin, M; Toyoshima, T; Aikawa, M; Kaslow, D C

    1993-01-01

    During development in the mosquito midgut, malarial parasites must traverse a chitin-containing peritrophic matrix (PM) that forms around the food bolus. Previously Huber et al. [Huber, M., Cabib, E. & Miller, L. H. (1991) Proc. Natl. Acad. Sci. USA 88, 2807-2810] reported that the parasite secretes a protein with chitinase activity, and they suggested that parasite chitinase (EC 3.2.1.14) plays an important role in the parasite's egress from the blood meal. We found that allosamidin, a specific inhibitor of chitinase, completely blocked oocyst development in vivo and thus blocked malaria parasite transmission. Addition of exogenous chitinase to the blood meal prevented the PM from forming and reversed the transmission-blocking activity of allosamidin. Using exogenous chitinase, we also found that the PM does not limit the number of parasites that develop into oocysts, suggesting that the parasite produces sufficient quantities of chitinase to penetrate this potential barrier. In addition, we found that treatment of parasite chitinase with a diisopropyl fluorophosphate-sensitive trypsinlike protease from the mosquito midgut or endoproteinase Lys-C increased its enzymatic activity. These results suggest that malaria parasite has evolved an intricate mechanism to adapt to the PM and the protease-rich environment of the mosquito midgut. Images Fig. 2 PMID:8483942

  15. A novel protease-resistant alpha-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization.

    PubMed

    Cao, Yanan; Wang, Yaru; Meng, Kun; Bai, Yingguo; Shi, Pengjun; Luo, Huiying; Yang, Peilong; Zhou, Zhigang; Zhang, Zhifang; Yao, Bin

    2009-07-01

    A novel alpha-galactosidase gene (aga-F75) from Gibberella sp. F75 was cloned and expressed in Escherichia coli. The gene codes for a protein of 744 amino acids with a 24-residue putative signal peptide and a calculated molecular mass of 82.94 kDa. The native structure of the recombinant Aga-F75 was estimated to be a trimer or tetramer. The deduced amino acid sequence showed highest identity (69%) with an alpha-galactosidase from Hypocrea jecorina (Trichoderma reesei), a member of the glycoside hydrolase family 36. Purified recombinant Aga-F75 was optimally active at 60 degrees C and pH 4.0 and was stable at pH 3.0-12.0. The enzyme exhibited broad substrate specificity and substantial resistance to neutral and alkaline proteases. The enzyme K (m) values using pNPG, melibiose, stachyose, and raffinose as substrates were 1.06, 1.75, 54.26, and 8.23 mM, respectively. Compared with the commercial alpha-galactosidase (Aga-A) from Aspergillus niger var. AETL and a protease-resistant alpha-galactosidase (Aga-F78) from Rhizopus sp. F78, Aga-F75 released 1.4- and 4.9-fold more galactose from soybean meal alone, respectively, and 292.5- and 8.6-fold more galactose from soybean meal in the presence of trypsin, respectively. The pH and thermal stability and hydrolytic activity of Aga-F75 make it potentially useful in the food and feed industries.

  16. Protease-activated receptor-2-mediated inhibition of ion transport in human bronchial epithelial cells.

    PubMed

    Danahay, H; Withey, L; Poll, C T; van de Graaf, S F; Bridges, R J

    2001-06-01

    A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.

  17. Von Willebrand Factor-Cleaving Protease Activity in Thrombotic Microangiopathy: First Report From Iran

    PubMed Central

    Ardalan, Mohammadreza; Rezaeifar, Parisa

    2014-01-01

    Background: Thrombotic microangiopathy (TMA) is a rare but devastating small vessels disorder that is characterized by intravascular platelet thrombi, thrombocytopenia, and various degrees of organ ischemia and anemia, which is due to erythrocyte fragmentation in microcirculation. Objectives: The Aim of this study was to determine the von Willebrand factor-cleaving protease (ADAMTS13) activity during the acute phase of TMA. We also investigated inhibiting antibodies against ADAMTS13 in these patients. Patients and Methods: In a collaborative work with Mario-Negro institute of pharmacological research in Bergamo-Italy, we registered the clinical and laboratory data, collected the serum samples, and transferred the samples to the laboratories. Serum samples were taken before the start of plasmapheresis or at least 15 days after the final exchange. Results: We recruited 40 patients (14 males and 26 females) with the mean age of 46.12 ± 17.26 years. The mean activity of ADAMTS13 was 34.58% ± 21.83%. Two patients had inhibitory antibodies against ADAMTS13 with profound deficiency of ADAMTS13 activity (< 6%). Infectious diseases were the most common underlying condition, followed by systemic lupus erythematous. Conclusions: Majority of patients had an underlying condition and had various ADAMTS13 activity. The presence of inhibiting antibodies and accompanied complete deficiency of ADAMTS13 activity is an indicator of severity. PMID:25738110

  18. The circadian Clock gene regulates acrosin activity of sperm through serine protease inhibitor A3K

    PubMed Central

    Cheng, Shuting; Liang, Xin; Wang, Yuhui; Jiang, Zhou; Liu, Yanyou; Hou, Wang; Li, Shiping; Zhang, Jing

    2015-01-01

    Our previous study found that CLOCK knockdown in the testes of male mice led to a reduced fertility, which might be associated with the lower acrosin activity. In this present study, we examined the differential expression in proteins of CLOCK knockdown sperm. Clock gene expression was knocked down in cells to confirm those differentially expressions and serine protease inhibitor SERPINA3K was identified as a potential target. The up-regulated SERPINA3K revealed an inverse relationship with Clock knockdown. Direct treatment of normal sperm with recombinant SERPINA3K protein inhibited the acrosin activity and reduced in vitro fertilization rate. The luciferase reporter gene assay showed that the down-regulated of Clock gene could activate the Serpina3k promoter, but this activation was not affected by the mutation of E-box core sequence. Co-IP demonstrated a natural interaction between SERPIAN3K and RORs (α and β). Taken together, these results demonstrated that SERPINA3K is involved in the Clock gene-mediated male fertility by regulating acrosin activity and provide the first evidence that SERPINA3K could be regulated by Clock gene via retinoic acid-related orphan receptor response elements. PMID:26264441

  19. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  20. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity.

    PubMed

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection - induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone's antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  1. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    PubMed

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments. PMID:19515201

  2. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression

    PubMed Central

    Felix, Klaus; Gaida, Matthias M.

    2016-01-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma. PMID:26929737

  3. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity

    PubMed Central

    Counts, Christopher J.; Ho, P. Shing; Donlin, Maureen J.; Tavis, John E.; Chen, Chaoping

    2015-01-01

    HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77–93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity. PMID:25893662

  4. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity.

    PubMed

    Counts, Christopher J; Ho, P Shing; Donlin, Maureen J; Tavis, John E; Chen, Chaoping

    2015-01-01

    HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77-93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity.

  5. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  6. Pravastatin and C reactive protein modulate protease- activated receptor-1 expression in vitro blood platelets.

    PubMed

    Chu, L-X; Zhou, S-X; Yang, F; Qin, Y-Q; Liang, Z-S; Mo, C-G; Wang, X-D; Xie, J; He, L-P

    2016-01-01

    Protease-activated receptor-1 (PAR-1) plays an important role in mediating activation of human platelets by thrombin. However, mechanism of statin in ADP-induced platelet PAR-1 expression is also unknown. Aggregometry, flow cytometry, immunoblotting and ELISA were used to determine role of pravastatin participating in ADP-induced platelet activation and PAR-1 expression. ADP stimulation significantly increased PAR-1 expression on platelets. PAR-1 antagonist SCH-79797 inhibited platelet aggregation as well as decreased platelet P-selectin expression induced by ADP. CRP inhibited PAR-1 expression induced by ADP in a concentration-dependent manner. Pravastatin treatment reduced PAR-1 expression in a concentration-dependent manner. Combination treatment of CRP and Pravastatin significantly reduced platelet PAR-1 expression induced by ADP. By western-blot analysis, pravastatin treatment did not influence total PAR-1 after ADP treatment. CRP decreased platelet total PAR-1 expression induced by ADP. Pravastatin and CRP reduced TXB2 formation by ADP significantly. CRP decreased thrombin fragment F1+2 level with ADP treatment. Pravastatin, in contrast, did not influence F1+2 level. Upon treatment with Pravastatin reduced platelet LOX-1 expression induced by ADP. In conclusion, PAR-1 served as a critical mechanism to relay platelet activation process induced by ADP. CRP and pravastatin reduce PAR-1 expression in platelet by ADP pathway. PMID:26950455

  7. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  8. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice

    PubMed Central

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C. Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  9. α-Lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities

    PubMed Central

    Haddad, Kristin Coffman; Sudmeier, James L.; Bachovchin, Daniel A.; Bachovchin, William W.

    2005-01-01

    α-Lytic protease is a bacterial serine protease widely studied as a model system of enzyme catalysis. Here we report that lyophilization induces a structural change in the enzyme that is not reversed by redissolution in water. The structural change reduces the mobility of the active-site histidine residue and the catalytic activity of the enzyme. The application of mild pressure to solutions of the altered enzyme reverses the lyophilization-induced structural change and restores the mobility of the histidine residue and the enzyme's catalytic activity. This effect of lyophilization permits a unique opportunity for investigating the relationship between histidine ring dynamics and catalytic activity. The results demonstrate that His57 in resting enzymes is more mobile than previously thought, especially when protonated. The histidine motion and its correlation to enzyme activity lend support to the reaction-driven ring flip hypothesis. PMID:15657134

  10. Characterization of the in vitro activities of the P1 and helper component proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potyviruses express their RNA genomes through the production of polyproteins that are processed in host cells by three virus-encoded proteases. Soybean plants produce large amounts of protease inhibitors during seed development and in response to wounding that could affect the activities of these pr...

  11. Role of the backbone conformation at position 7 in the structure and activity of marinostatin, an ester-linked serine protease inhibitor.

    PubMed

    Taichi, Misako; Yamazaki, Toshimasa; Nishiuchi, Yuji

    2012-09-01

    Rational design of inhibitors: The cis-amide backbone at position 7 in the serine protease inhibitor marinostatin was replaced with an E or Z olefin. The E olefin analogue was not active, but the Z analogue was. The cis conformation might play a critical role in organizing a canonical structure for binding to proteases.

  12. Genetic characterization and expression of the novel fungal protease, EPg222 active in dry-cured meat products.

    PubMed

    Benito, María J; Connerton, Ian F; Córdoba, Juan J

    2006-11-01

    EPg222 protease is a novel extracellular enzyme produced by Penicillium chrysogenum (Pg222) isolated from dry-cured hams that has the potential for use over a broad range of applications in industries that produce dry-cured meat products. The gene encoding EPg222 protease has been identified. Peptide sequences of EPg222 were obtained by de novo sequencing of tryptic peptides using mass spectrometry. The corresponding gene was amplified by PCR using degenerated primers based on a combination of conserved serine protease-encoding sequences and reverse translation of the peptide sequences. EPg222 is encoded as a gene of 1,361 bp interrupted by two introns. The deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a putative signal sequence of 19 amino acids (aa), a prosequence of 96 aa and a mature protein of 283 aa. A cDNA encoding EPg222 has been cloned and expressed as a functionally active enzyme in Pichia pastoris. The recombinant enzyme exhibits similar activities to the native enzyme against a wide range of protein substrates including muscle myofibrillar protein. The mature sequence contains conserved aa residues characteristic of those forming the catalytic triad of serine proteases (Asp42, His76 and Ser228) but notably the food enzyme exhibits specific aa substitutions in the immunoglobulin-E recognition regions that have been identified in protein homologues that are allergenic.

  13. Transcriptional activation of the human cytotoxic serine protease gene CSP-B in T lymphocytes.

    PubMed Central

    Hanson, R D; Ley, T J

    1990-01-01

    The cytotoxic serine protease B (CSP-B) gene is activated during cytotoxic T-lymphocyte maturation. In this report, we demonstrate that the PEER T-cell line (bearing gamma/delta T-cell receptors) accumulates CSP-B mRNA following exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) and N6-2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (bt2cAMP) because of transcriptional activation of the CSP-B gene. TPA and bt2cAMP act synergistically to induce CSP-B expression, since neither agent alone causes activation of CSP-B transcription or mRNA accumulation. Chromatin upstream from the CSP-B gene is resistant to DNase I digestion in untreated PEER cells, but becomes sensitive following TPA-bt2cAMP treatment. Upon activation of PEER cells, a DNase I-hypersensitive site forms upstream from the CSP-B gene within a region that is highly conserved in the mouse. Transient transfection of CSP-B promoter constructs identified two regulatory regions in the CSP-B 5'-flanking sequence, located at positions -609 to -202 and positions -202 to -80. The region from -615 to -63 is sufficient to activate a heterologous promoter in activated PEER cells, but activation is orientation specific, suggesting that this region behaves as an upstream promoter element rather than a classical enhancer. Consensus AP-1, AP-2, and cAMP response elements are found upstream from the CSP-B gene (as are several T-cell-specific consensus elements), but the roles of these elements in CSP-B gene activation have yet to be determined. Images PMID:2233710

  14. Characterization of a new peptide agonist of the protease-activated receptor-1.

    PubMed

    Mao, Yingying; Jin, Jianguo; Kunapuli, Satya P

    2008-01-15

    A new peptide (TFRRRLSRATR), derived from the c-terminal of human platelet P2Y(1) receptor, was synthesized and its biological function was evaluated. This peptide activated platelets in a concentration-dependent manner, causing shape change, aggregation, secretion and calcium mobilization. Of the several receptor antagonists tested, only BMS200261, a protease activated receptor 1 (PAR-1) specific antagonist, totally abolished the peptide-induced platelet aggregation, secretion and calcium mobilization. The TFRRR-peptide-pretreated washed platelets failed to aggregate in response to SFLLRN (10 microM) but not to AYPGKF (500 microM). In addition, in mouse platelets, peptide concentrations up to 600 microM failed to cause platelet activation, indicating that the TFRRR-peptide activated platelets through the PAR-1 receptor, rather than through the PAR-4 receptor. The shape change induced by 10 microM peptide was totally abolished by Y-27632, an inhibitor of p160(ROCK) which is a downstream mediator of G12/13 pathways. The TFRRR-peptide, YFLLRNP, and the physiological agonist thrombin selectively activated G12/13 pathways at low concentrations and began to activate both Gq and G12/13 pathways with increasing concentrations. Similar to SFLLRN, the TFRRR-peptide caused phosphorylation of Akt and Erk in a P2Y(12) receptor-dependent manner, and p-38 MAP kinase activation in a P2Y(12)-independent manner. The effects of this peptide are elicited by the first six amino acids (TFRRRL) whereas the remaining peptide (LSRATR), TFERRN, or TFEERN had no effects on platelets. We conclude that TFRRRL activates human platelets through PAR-1 receptors. PMID:17950254

  15. Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice.

    PubMed

    Miyakawa, Kazuhisa; Joshi, Nikita; Sullivan, Bradley P; Albee, Ryan; Brandenberger, Christina; Jaeschke, Hartmut; McGill, Mitchell R; Scott, Michael A; Ganey, Patricia E; Luyendyk, James P; Roth, Robert A

    2015-10-01

    Acetaminophen (APAP)-induced liver injury in humans is associated with robust coagulation cascade activation and thrombocytopenia. However, it is not known whether coagulation-driven platelet activation participates in APAP hepatotoxicity. Here, we found that APAP overdose in mice caused liver damage accompanied by significant thrombocytopenia and accumulation of platelets in the liver. These changes were attenuated by administration of the direct thrombin inhibitor lepirudin. Platelet depletion with an anti-CD41 antibody also significantly reduced APAP-mediated liver injury and thrombin generation, indicated by the concentration of thrombin-antithrombin (TAT) complexes in plasma. Compared with APAP-treated wild-type mice, biomarkers of hepatocellular and endothelial damage, plasma TAT concentration, and hepatic platelet accumulation were reduced in mice lacking protease-activated receptor (PAR)-4, which mediates thrombin signaling in mouse platelets. However, selective hematopoietic cell PAR-4 deficiency did not affect APAP-induced liver injury or plasma TAT levels. These results suggest that interconnections between coagulation and hepatic platelet accumulation promote APAP-induced liver injury, independent of platelet PAR-4 signaling. Moreover, the results highlight a potential contribution of nonhematopoietic cell PAR-4 signaling to APAP hepatotoxicity. PMID:26179083

  16. A Matrix Metalloproteinase-1/Protease Activated Receptor-1 signaling axis promotes melanoma invasion and metastasis

    PubMed Central

    Blackburn, Jessica S.; Liu, Ingrid; Coon, Charles I.; Brinckerhoff, Constance E.

    2009-01-01

    Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, giving patients with advanced disease a poor prognosis. The transition of melanoma from non-invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth phase (VGP) is a major step in tumor progression, yet the mechanisms governing this transformation are unknown. Matrix Metalloproteinase-1 (MMP-1) is highly expressed by VGP melanomas, and is thought to contribute to melanoma progression by degrading type I collagen within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated by MMP-1, and is also expressed by VGP melanomas. However, the effects MMP-1 signaling through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a major contributor to the transformation of melanoma from non-invasive to malignant disease. PMID:19734937

  17. Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation.

    PubMed

    Strik, Merel C M; de Koning, Pieter J A; Kleijmeer, Monique J; Bladergroen, Bellinda A; Wolbink, Angela M; Griffith, Janice M; Wouters, Dorine; Fukuoka, Yoshihiro; Schwartz, Lawrence B; Hack, C Erik; van Ham, S Marieke; Kummer, J Alain

    2007-07-01

    Mast cells are widely distributed throughout the body and express effector functions in allergic reactions, inflammatory diseases, and host defense. Activation of mast cells results in exocytosis of preformed chemical mediators and leads to novel synthesis and secretion of lipid mediators and cytokines. Here, we show that human mast cells also express and release the cytotoxic lymphocyte-associated protease, granzyme B. Granzyme B was active and localized in cytoplasmic granules, morphologically resembling those present in cytotoxic lymphocytes. Expression and release of granzyme B by mast cell-lines HMC-1 and LAD 2 and by cord blood- and mature skin-derived human mast cells depended on the mode of activation of these cells. In mast cell lines and cord blood-derived mast cells, granzyme B expression was mainly induced by non-physiological stimuli (A23187/PMA, Compound 48/80) and substance P. In contrast, mature skin-derived mast cells only produced granzyme B upon IgE-dependent stimulation. We conclude that granzyme B is expressed and released by human mast cells upon physiologic stimulation. This suggests a role for granzyme B as a novel mediator in mast cell biology.

  18. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  19. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury.

  20. Protease Activated Receptor-1 Deficiency Diminishes Bleomycin-Induced Skin Fibrosis

    PubMed Central

    Duitman, JanWillem; Ruela-de-Sousa, Roberta R; Shi, Kun; de Boer, Onno J; Borensztajn, Keren S; Florquin, Sandrine; Peppelenbosch, Maikel P; Spek, C Arnold

    2014-01-01

    Accumulating evidence shows that protease-activated receptor-1 (PAR-1) plays an important role in the development of fibrosis, including lung fibrosis. However, whether PAR-1 also plays a role in the development of skin fibrosis remains elusive. The aim of this study was to determine the role of PAR-1 in the development of skin fibrosis. To explore possible mechanisms by which PAR-1 could play a role, human dermal fibroblasts and keratinocytes were stimulated with specific PAR-1 agonists or antagonists. To investigate the role of PAR-1 in skin fibrosis, we subjected wild-type and PAR-1-deficient mice to a model of bleomycin-induced skin fibrosis. PAR-1 activation leads to increased proliferation and extra cellular matrix (ECM) production, but not migration of human dermal fibroblasts (HDF) in vitro. Moreover, transforming growth factor (TGF)-β production was increased in keratinocytes upon PAR-1 activation, but not in HDF. The loss of PAR-1 in vivo significantly attenuated bleomycin-induced skin fibrosis. The bleomycin-induced increase in dermal thickness and ECM production was reduced significantly in PAR-1-deficient mice compared with wild-type mice. Moreover, TGF-β expression and the number of proliferating fibroblasts were reduced in PAR-1-deficient mice although the difference did not reach statistical significance. This study demonstrates that PAR-1 contributes to the development of skin fibrosis and we suggest that PAR-1 potentiates the fibrotic response mainly by inducing fibroblast proliferation and ECM production. PMID:24842054

  1. Possible involvement of thrombin/protease-activated receptor 1 system in the pathogenesis of endometriosis.

    PubMed

    Hirota, Yasushi; Osuga, Yutaka; Hirata, Tetsuya; Yoshino, Osamu; Koga, Kaori; Harada, Miyuki; Morimoto, Chieko; Nose, Emi; Yano, Tetsu; Tsutsumi, Osamu; Taketani, Yuji

    2005-06-01

    Endometriosis is known to be associated with local inflammatory reactions. Given the emerging concept of thrombin and its specific receptor, protease-activated receptor 1 (PAR1), as important players in inflammation and cell proliferation, we investigated whether thrombin and PAR1 might be involved in the pathophysiology of the disease, using a primary cell culture system of endometriotic tissues. PAR1 mRNA was expressed in primary endometriotic stromal cells (ESCs). Thrombin and SFLLRN (Ser-Phe-Leu-Leu-Arg-Asp), a PAR1 agonist peptide, increased the mRNA expression of IL-8, monocyte chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) and the protein secretion of IL-8 nd MCP-1 in ESCs. The addition of thrombin inhibitor d-phenylalanyl-l-prolyl-l arginine chloromethyl ketone (PPACK) together with thrombin inhibited the thrombin-induced secretion of IL-8 and MCP-1. Thrombin, but not SFLLRN, activated matrix metalloproteinase-2 in ESCs, and the effect was inhibited by PPACK. Thrombin and SFLLRN increased proliferating cell nuclear antigen-positive ratio of ESCs, indicating their cell proliferation-stimulating effects. The thrombin-induced increase in proliferating cell nuclear antigen-positive ratio was diminished by PPACK. These findings imply that the thrombin system might be involved in the pathophysiology of endometriosis, stimulating inflammatory responses of endometriotic cells and their mitogenic activity. PMID:15755869

  2. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase

    PubMed Central

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0–9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30–32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG* (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol−1, 57.6 kJ mol−1, 62.9 mM and 746.2 s−1, respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged. PMID:27553125

  3. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase.

    PubMed

    Zhou, Junpei; He, Limei; Gao, Yajie; Han, Nanyu; Zhang, Rui; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-01-01

    A glycoside hydrolase family 32 invertase from Bacillus sp. HJ14 was expressed in Escherichia coli. The purified recombinant enzyme (rInvHJ14) showed typical biochemical properties of low-temperature-active and alkaline enzymes: (i) rInvHJ14 was active and stable in the range of pH 7.0-9.5 with an apparent pH optimum of 8.0; (ii) rInvHJ14 was most active but not stable at 30-32.5 °C, with 19.7, 48.2 and 82.1% of its maximum activity when assayed at 0, 10 and 20 °C, respectively, and the Ea, ΔG(*) (30 °C), Km (30 °C) and kcat (30 °C) values for hydrolysis of sucrose by rInvHJ14 was 47.6 kJ mol(-1), 57.6 kJ mol(-1), 62.9 mM and 746.2 s(-1), respectively. The enzyme also showed strong sucrose tolerance. rInvHJ14 preserved approximately 50% of its highest activity in the presence of 2045.0 mM sucrose. Furthermore, potential factors for low-temperature-active and alkaline adaptations of rInvHJ14 were presumed. Compared with more thermostable homologs, rInvHJ14 has a higher frequency of glycine residues and a longer loop but a lower frequency of proline residues (especially in a loop) in the catalytic domain. The catalytic pockets of acid invertases were almost negatively charged while that of alkaline rInvHJ14 was mostly positively charged. PMID:27553125

  4. The factor VII-activating protease (FSAP) enhances the activity of bone morphogenetic protein-2 (BMP-2).

    PubMed

    Roedel, Elfie Kathrin; Schwarz, Elisabeth; Kanse, Sandip Madhav

    2013-03-01

    Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg(282)↓Gln(283)), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg(289)↓Lys(290)). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg(289)↓Lys(290)). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. PMID:23341458

  5. The Factor VII-activating Protease (FSAP) Enhances the Activity of Bone Morphogenetic Protein-2 (BMP-2)*

    PubMed Central

    Roedel, Elfie Kathrin; Schwarz, Elisabeth; Kanse, Sandip Madhav

    2013-01-01

    Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg282↓Gln283), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg289↓Lys290). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg289↓Lys290). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. PMID:23341458

  6. A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract

    PubMed Central

    2011-01-01

    Background Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, Cassia tora (Senna tora) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, Aspergillus flavus and Bacillus sp. proteases. Methods The crushed seeds of Cassia tora were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools. Results The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, Aspergillus flavus and Bacillus sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml-1 seed protein

  7. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan

    2014-04-15

    The present study investigated the effects of both l- and iso-ascorbic acid (AA) on the activity of four plant proteases (papain, bromelain, actinidin and zingibain) and three microbial proteases (Bacterial Protease G, Fungal 31,000 and Fungal 60,000) preparations using fluorescent-labelled casein, meat myofibrillar and connective tissue extracts to explore their effects on meat structure components upon treatment with individual proteases. While l-AA in the range 0.8-3.2mM inhibited the activity of papain, bromelain and zingibain, iso-AA acted as an inhibitor of papain but as an activator of zingibain and had no significant effect on bromelain. Both AA isoforms acted as an activator of the actinidin protease and the concentration of AA isoforms appeared to affect the level of activation of the protease. The effect of the two AA isoforms on collagen and myofibrillar protein hydrolyzing activity varied depending on the concentration of the two AA isoforms. The results indicate the ability to up and down regulate the activity of the investigated proteases by using an appropriate concentration of the AA isoform.

  8. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan

    2014-04-15

    The present study investigated the effects of both l- and iso-ascorbic acid (AA) on the activity of four plant proteases (papain, bromelain, actinidin and zingibain) and three microbial proteases (Bacterial Protease G, Fungal 31,000 and Fungal 60,000) preparations using fluorescent-labelled casein, meat myofibrillar and connective tissue extracts to explore their effects on meat structure components upon treatment with individual proteases. While l-AA in the range 0.8-3.2mM inhibited the activity of papain, bromelain and zingibain, iso-AA acted as an inhibitor of papain but as an activator of zingibain and had no significant effect on bromelain. Both AA isoforms acted as an activator of the actinidin protease and the concentration of AA isoforms appeared to affect the level of activation of the protease. The effect of the two AA isoforms on collagen and myofibrillar protein hydrolyzing activity varied depending on the concentration of the two AA isoforms. The results indicate the ability to up and down regulate the activity of the investigated proteases by using an appropriate concentration of the AA isoform. PMID:24295669

  9. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  10. Nonpeptidic HIV protease inhibitors possessing excellent antiviral activities and therapeutic indices. PD 178390: a lead HIV protease inhibitor.

    PubMed

    Prasad, J V; Boyer, F E; Domagala, J M; Ellsworth, E L; Gajda, C; Hamilton, H W; Hagen, S E; Markoski, L J; Steinbaugh, B A; Tait, B D; Humblet, C; Lunney, E A; Pavlovsky, A; Rubin, J R; Ferguson, D; Graham, N; Holler, T; Hupe, D; Nouhan, C; Tummino, P J; Urumov, A; Zeikus, E; Zeikus, G; Gracheck, S J; Erickson, J W

    1999-12-01

    With the insight generated by the availability of X-ray crystal structures of various 5,6-dihydropyran-2-ones bound to HIV PR, inhibitors possessing various alkyl groups at the 6-position of 5,6-dihydropyran-2-one ring were synthesized. The inhibitors possessing a 6-alkyl group exhibited superior antiviral activities when compared to 6-phenyl analogues. Antiviral efficacies were further improved upon introduction of a polar group (hydroxyl or amino) on the 4-position of the phenethyl moiety as well as the polar group (hydroxymethyl) on the 3-(tert-butyl-5-methyl-phenylthio) moiety. The polar substitution is also advantageous for decreasing toxicity, providing inhibitors with higher therapeutic indices. The best inhibitor among this series, (S)-6-[2-(4-aminophenyl)-ethyl]-(3-(2-tert-butyl-5-methyl-phenylsulfa nyl)-4-hydroxy-6-isopropyl-5,6-dihydro-pyran-2-one (34S), exhibited an EC50 of 200 nM with a therapeutic index of > 1000. More importantly, these non-peptidic inhibitors, 16S and 34S, appear to offer little cross-resistance to the currently marketed peptidomimetic PR inhibitors. The selected inhibitors tested in vitro against mutant HIV PR showed a very small increase in binding affinities relative to wild-type HIV PR. Cmax and absolute bioavailability of 34S were higher and half-life and time above EC95 were longer compared to 16S. Thus 34S, also known as PD 178390, which displays good antiviral efficacy, promising pharmacokinetic characteristics and favorable activity against mutant enzymes and CYP3A4, has been chosen for further preclinical evaluation.

  11. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid.

    PubMed

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-09-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH₂ and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca²⁺ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH₂ and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH₂-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH₂ downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH₂ in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  12. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease.

    PubMed

    Foo, Alexander C Y; Harvey, Brandon G R; Metz, Jeff J; Goto, Natalie K

    2015-04-01

    Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10-12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo.

  13. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  14. A specific cathepsin-L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria.

    PubMed

    Byeon, Jin Hee; Seo, Eun Sil; Lee, Jun Beom; Lee, Min Ja; Kim, Jiyeun Kate; Yoo, Jin Wook; Jung, Yunjin; Lee, Bok Luel

    2015-11-01

    Because gut symbiotic bacteria affect host biology, host insects are expected to evolve some mechanisms for regulating symbiont population. The bean bug, Riptortus pedestris, harbors the Burkholderia genus as a gut symbiont in the midgut organ, designated as the M4 region. Recently, we demonstrated that the lysate of M4B, the region adjacent to M4, harbors potent antibacterial activity against symbiotic Burkholderia but not to cultured Burkholderia. However, the bona fide substance responsible for observed antibacterial activity was not identified in the previous study. Here, we report that cathepsin-L-like protease purified from the lysate of M4B showed strong antibacterial activity against symbiotic Burkholderia but not the cultured Burkholderia. To further confirm this activity, recombinant cathepsin-L-like protease expressed in Escherichia coli also showed antibacterial activity against symbiotic Burkholderia. These results suggest that cathepsin-L-like protease purified from the M4B region plays a critical role in controlling the population of the Burkholderia gut symbiont.

  15. Separation of the prodigiosin-localizing crude vesicles which retain the activity of protease and nuclease in Serratia marcescens.

    PubMed

    Kobayashi, N; Ichikawa, Y

    1991-01-01

    Crude vesicles in which prodigiosin is localized were separated from pigmented Serratia marcescens. The bacteria were grown on peptone-glycerol agar plate, suspended in saline, and fractionated into cells, vesicles, and supernatant by differential centrifugation. Electron microscopic observations showed that the fractionation was conducted properly and the separated vesicles were lysed in distilled water. The vesicles suspended in saline retained 100 kilodalton protein of which amount is correlated with prodigiosin level, but the 100 kDa protein was found in the supernatant when the vesicles were lysed in distilled water. The vesicle fraction retained few colony-forming units and little detectable activity of NADH oxidase, but showed much higher activities of protease and nuclease than the cell fraction. The profiles of the activities of the protease and the nuclease in the fractions were different from each other, that is, the protease activity in the vesicle fraction was lower than that in the supernatant fraction, whereas the nuclease activity in the vesicle fraction was higher than that in the supernatant fraction, suggesting that the two extracellular enzymes were released from the pigmented bacteria by different mechanisms.

  16. A fibrinolytic protease AfeE from Streptomyces sp. CC5, with potent thrombolytic activity in a mouse model.

    PubMed

    Sun, Zhibin; Liu, Pingping; Cheng, Guangyan; Zhang, Biying; Dong, Weiliang; Su, Xingli; Huang, Yan; Cui, Zhongli; Kong, Yi

    2016-04-01

    Fibrinolytic proteases have potential applications in cardiovascular disease therapy. A novel fibrinolytic protease, AfeE, with strong thrombolytic activity was purified from Streptomyces sp. CC5. AfeE displayed maximum activity at 40°C in the pH range of 7.0-12.0. It was strongly inhibited by serine protease inhibitor phenylmethanesulfonylfluoride, soybean trypsin inhibitor, tosyl-l-lysine chloromethyl ketone and tosyl-l-phenylalanine chloromethyl ketone. The activity of the enzyme was partially inhibited by Cu(2+), Co(2+) and Zn(2+). AfeE exhibited higher substrate specificity for fibrin than fibrinogen, which has rarely been reported in fibrinolytic enzymes. AfeE also showed high thrombolytic activity in a carrageenan-induced mouse tail thrombosis model. AfeE prolonged prothrombin time, activated partial thromboplastin time, and thrombin time in rat blood. A bleeding time assay revealed that AfeE did not prolong bleeding time in mice at a dose of 1mg/kg. No acute cytotoxicity was observed for AfeE at 320μg/well in human umbilical vein endothelial cells. The afeE gene was cloned from the genome of Streptomyces sp. CC5. Full-length AFE-CC5E contained 434 amino acids and was processed into a mature form consisting 284 amino acids by posttranslational modification, as revealed by high-resolution mass spectrometry analysis. These results indicate that AfeE is a prospective candidate for antithrombotic drug development. PMID:26721382

  17. Effects of Alkaline Phosphatase Activity on Nucleotide Measurements in Aquatic Microbial Communities †

    PubMed Central

    Karl, D. M.; Craven, D. B.

    1980-01-01

    Alkaline phosphatase (APase) activity was detected in aquatic microbial assemblages from the subtropics to Antarctica. The occurrence of APase in environmental nucleotide extracts was shown to significantly affect the measured concentrations of cellular nucleotides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, guanosine triphosphate, uridine triphosphate, and cytidine triphosphate), adenylate energy charge, and guanosine triphosphate/adenosine triphosphate ratios, when conventional methods of nucleotide extraction were employed. Under the reaction conditions specified in this report, the initial rate of hydrolysis of adenosine triphosphate was directly proportional to the activity of APase in the sample extracts and consequently can be used as a sensitive measure of APase activity. A method was devised for obtaining reliable nucleotide measurements in naturally occurring microbial populations containing elevated levels of APase activity. The metabolic significance of APase activity in microbial cells is discussed, and it is concluded that the occurrence and regulation of APase in nature is dependent upon microscale inorganic phosphate limitation of the autochthonous microbial communities. PMID:16345634

  18. Functional regulation of PVBV Nuclear Inclusion protein-a protease activity upon interaction with Viral Protein genome-linked and phosphorylation

    SciTech Connect

    Mathur, C.; Jimsheena, V.K.; Banerjee, S.; Makinen, K.; Gowda, L.R.; Savithri, H.S.

    2012-01-20

    Regulation of NIa-Pro is crucial for polyprotein processing and hence, for successful infection of potyviruses. We have examined two novel mechanisms that could regulate NIa-Pro activity. Firstly, the influence of VPg domain on the proteolytic activity of NIa-Pro was investigated. It was shown that the turnover number of the protease increases when these two domains interact (cis: two-fold; trans: seven-fold) with each other. Secondly, the protease activity of NIa-Pro could also be modulated by phosphorylation at Ser129. A mutation of this residue either to aspartate (phosphorylation-mimic) or alanine (phosphorylation-deficient) drastically reduces the protease activity. Based on these observations and molecular modeling studies, we propose that interaction with VPg as well as phosphorylation of Ser129 could relay a signal through Trp143 present at the protein surface to the active site pocket by subtle conformational changes, thus modulating protease activity of NIa-Pro.

  19. Occurrence and activity of iron and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1980-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (1) acidic pyrite-rich waste coal, (2) oxidation halo material, and (3) alkaline, which was the most widespread type. Bacterial numbers, sulfur oxidation, and /sup 14/CO/sub 2/ uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH indicating that bacterial pyrite oxidation occurred in localized areas where groundwaters contacted either replaced spoils or coal which contained either pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching which occur in the area.

  20. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1981-01-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron-and sulphur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal; (b) oxidation halo material; and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulphur oxidation and /SUP/1/SUP/4CO/SUB/2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulphur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils of coal that contained pyrite or other metal sulphides. Bacterial activity may contribute to trace metal and sulphate leaching in the area. (27 refs.)

  1. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  2. Osteopontin gene expression and alkaline phosphatase activity in avian tibial dyschondroplasia.

    PubMed

    Knopov, V; Leach, R M; Barak-Shalom, T; Hurwitz, S; Pines, M

    1995-04-01

    Osteopontin (OPN) gene expression and alkaline phosphatase activity were evaluated in the epiphyseal growth plates of normal chickens and in diet-induced tibial dyschdroplasia (TD)-afflicted chickens. In the normal growth plate, OPN gene was expressed by a) cells of the subperichondrial zone surrounding the articular cartilage, b) a narrow layer of hypertrophic chondrocytes at the hypertrophic zone, and c) lower hypertrophic chondrocytes at the zone of matrix calcification and endochondral bone formation. The latter two layers were separated by OPN-negative chondrocytes. Osteopontin gene was not expressed throughout the zone of articular cartilage in the nonhypertrophic or upper hypertrophic portions of the growth plate cartilage. Only at sites of calcification of the lower hypertrophic zone was the expression of the OPN gene associated with alkaline phosphatase activity. In all TD lesions, regardless of the induction procedure, the layer of chondrocytes of the lower hypertrophic zone expressing the OPN gene and the layer of OPN-negative cells separating the two areas of OPN-expressing cells were grossly enlarged. This resulted in a wide discontinuity between the chondrocytes of the lower hypertrophic zone expressing the OPN gene and the cells expressing the OPN gene that are associated with mineralization. In TD, no alkaline phosphatase activity was detected within the growth plate cartilage, but normal OPN gene expression was observed at the subperichondrium zone and at the zone of endochondral bone formation. The results of this study suggest that in the epiphyseal growth plate, OPN expression is not restricted to sites of bone calcification.

  3. In Silico Identification and Evaluation of Leads for the Simultaneous Inhibition of Protease and Helicase Activities of HCV NS3/4A Protease Using Complex Based Pharmacophore Mapping and Virtual Screening

    PubMed Central

    Wadood, Abdul; Riaz, Muhammad; Uddin, Reaz; ul-Haq, Zaheer

    2014-01-01

    Hepatitis C virus (HCV) infection is an alarming and growing threat to public health. The present treatment gives limited efficacy and is poorly tolerated, recommending the urgent medical demand for novel therapeutics. NS3/4A protease is a significant emerging target for the treatment of HCV infection. This work reports the complex-based pharmacophore modeling to find out the important pharmacophoric features essential for the inhibition of both protease and helicase activity of NS3/4A protein of HCV. A seven featured pharmacophore model of HCV NS3/4A protease was developed from the crystal structure of NS3/4A protease in complex with a macrocyclic inhibitor interacting with both protease and helicase sites residues via MOE pharmacophore constructing tool. It consists of four hydrogen bond acceptors (Acc), one hydrophobic (Hyd), one for lone pair or active hydrogen (Atom L) and a heavy atom feature (Atom Q). The generated pharmacophore model was validated by a test database of seventy known inhibitors containing 55 active and 15 inactive/least active compounds. The validated pharmacophore model was used to virtually screen the ChemBridge database. As a result of screening 1009 hits were retrieved and were subjected to filtering by Lipinski’s rule of five on the basis of which 786 hits were selected for further assessment using molecular docking studies. Finally, 15 hits of different scaffolds having interactions with important active site residues were predicted as lead candidates. These candidates having unique scaffolds have a strong likelihood to act as further starting points in the development of novel and potent NS3/4A protease inhibitors. PMID:24551230

  4. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  5. Crystal structure of the caseinolytic protease gene regulator, a transcriptional activator in actinomycetes.

    PubMed

    Russo, Santina; Schweitzer, Jens-Eric; Polen, Tino; Bott, Michael; Pohl, Ehmke

    2009-02-20

    Human pathogens of the genera Corynebacterium and Mycobacterium possess the transcriptional activator ClgR (clp gene regulator) which in Corynebacterium glutamicum has been shown to regulate the expression of the ClpCP protease genes. ClgR specifically binds to pseudo-palindromic operator regions upstream of clpC and clpP1P2. Here, we present the first crystal structure of a ClgR protein from C. glutamicum. The structure was determined from two different crystal forms to resolutions of 1.75 and 2.05 A, respectively. ClgR folds into a five-helix bundle with a helix-turn-helix motif typical for DNA-binding proteins. Upon dimerization the two DNA-recognition helices are arranged opposite to each other at the protein surface in a distance of approximately 30 A, which suggests that they bind into two adjacent major grooves of B-DNA in an anti-parallel manner. A binding pocket is situated at a strategic position in the dimer interface and could possess a regulatory role altering the positions of the DNA-binding helices. PMID:19019826

  6. Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro.

    PubMed

    Purohit, Jogeswar S; Tomar, Raghuvir S; Panigrahi, Anil K; Pandey, Shashibhal M; Singh, Divya; Chaturvedi, Madan M

    2013-11-01

    Site-specific proteolysis of the N or C-terminus of histone tails has emerged as a novel form of irreversible post-translational modifications assigned to histones. Though there are many reports describing histone specific proteolysis, there are very few studies on purification of a histone specific protease. Here, we demonstrate a histone H3 specific protease (H3ase) activity in chicken liver nuclear extract. H3ase was purified to homogeneity and identified as glutamate dehydrogenase (GDH) by sequencing. A series of biochemical experiments further confirmed that the H3ase activity was due to GDH. The H3ase clipped histone H3 products were sequenced by N-terminal sequencing and the precise clipping sites of H3ase were mapped. H3ase activity was only specific to chicken liver as it was not demonstrated in other tissues like heart, muscle and brain of chicken. We assign a novel serine like protease activity to GDH which is specific to histone H3. PMID:23856561

  7. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity

    PubMed Central

    Koltai, Tomas

    2015-01-01

    Objective: To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. Methods: We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. Conclusions: The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes. PMID:26097685

  8. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  9. Chronic Cadmium Exposure Lead to Inhibition of Serum and Hepatic Alkaline Phosphatase Activity in Wistar Rats.

    PubMed

    Treviño, Samuel; Andrade-García, Alejandra; Herrera Camacho, Irma; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Flores, Gonzalo; Brambila, Eduardo

    2015-12-01

    Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time-dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo-ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd-ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn-ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.

  10. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  11. Heparin Modulates the Endopeptidase Activity of Leishmania mexicana Cysteine Protease Cathepsin L-Like rCPB2.8

    PubMed Central

    Judice, Wagner A. S.; Manfredi, Marcella A.; Souza, Gerson P.; Sansevero, Thiago M.; Almeida, Paulo C.; Shida, Cláudio S.; Gesteira, Tarsis F.; Juliano, Luiz; Westrop, Gareth D.; Sanderson, Sanya J.; Coombs, Graham H.; Tersariol, Ivarne L. S.

    2013-01-01

    Background Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity. Methodology/Principal Findings The data analysis revealed that the presence of heparin affects all steps of the enzyme reaction: (i) it decreases 3.5-fold the k1 and 4.0-fold the k−1, (ii) it affects the acyl-enzyme accumulation with pronounced decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys25)-S−/(His163)-Im+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme. Conclusions/Significance Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface. PMID:24278253

  12. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity.

    PubMed

    Sastre, Diego E; Paggi, Roberto A; De Castro, Rosana E

    2011-05-20

    The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.

  13. Alkaline phosphatase isoenzyme activities in rheumatoid arthritis: hepatobiliary enzyme dissociation and relation to disease activity.

    PubMed Central

    Aida, S

    1993-01-01

    OBJECTIVES--Hyperphosphatasaemia has been observed occasionally in patients with rheumatoid arthritis (RA), and it has been suggested that the serum alkaline phosphatase (ALP) level is related to the activity of the disease. Therefore, the relationship between serum ALP and RA was studied. METHODS--The serum activities of hepatobiliary enzymes (ALP isoenzymes, gamma-glutamyltranspeptidase (GTP), leucine aminopeptidase (LAP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT)), immunoglobulins, RA haemagglutinin test (RAHA), C reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were observed in 288 patients with rheumatoid arthritis. RESULTS--Serum biliary ALP (ALP1) activity was detected in 31.6% of the patients. In patients positive for ALP1 the respective values of total ALP (ALPt) (p < 0.001), liver ALP (ALP2) (p < 0.001), bone ALP (ALP3) (p < 0.05), gamma-GTP (p < 0.001), LAP (p < 0.001), immunoglobulins IgG (p < 0.01), IgA (p < 0.01), and IgM (p < 0.01), RAHA (p < 0.001), CRP (p < 0.001), ESR (p < 0.001), and articular index (p < 0.001) were significantly higher than in patients who did not have ALP1. Significant Spearman's rank correlations (rs) were demonstrated between serum ALP2 level and the respective values of ALPt (rs = 0.9128, p < 0.001), ALP1 (rs = 0.4443, p < 0.001), ALP3 (rs = 0.5898, p < 0.001), gam