Science.gov

Sample records for alkaline soil ph

  1. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W. T.; Nelson, P. N.; Li, M.-H.; Cai, J. P.; Zhang, Y. Y.; Zhang, Y. G.; Yang, S.; Wang, R. Z.; Wang, Z. W.; Wu, Y. N.; Han, X. G.; Jiang, Y.

    2015-12-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate-containing soils and 1700 km sub-transect with non-carbonate-containing soils) across northern China. Soil pHBC was greater in the carbonate-containing soils than in the non-carbonate-containing soils. Acid addition decreased soil pH in the non-carbonate-containing soils more markedly than in the carbonate-containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate-containing soils and CEC was the main determinant of buffering capacity in the non-carbonate-containing soils. Along the transect, soil pHBC was different in regions with different aridity index. Soil pHBC was positively related to aridity index and carbonate content across the carbonate-containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate- and non-carbonate-containing soils. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  2. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W.; Nelson, P. N.; Li, M.-H.; Cai, J.; Zhang, Y.; Zhang, Y.; Shan, Y.; Wang, R.; Han, X.; Jiang, Y.

    2015-08-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate containing soils and 1700 km sub-transect with non-carbonate containing soils) across northern China. Soil pHBC was greater in the carbonate containing soils than in the non-carbonate containing soils. Acid addition decreased soil pH in the non-carbonate containing soils more markedly than in the carbonate containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate containing soils and CEC was the main determinant of buffering capacity in the non-carbonate containing soils. Soil pHBC was positively related to aridity index and carbonate content across the carbonate containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate and non-carbonate containing soils, leading to different rates, risks, and impacts of acidification. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  3. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems. PMID:24996531

  4. Field screening of cowpea cultivars for alkaline soil tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  5. Yield performance of cowpea genotypes grown in alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  6. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  7. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  8. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  9. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  10. Alkaline pH Homeostasis in Bacteria: New Insights

    PubMed Central

    Padan, Etana; Bibi, Eitan; Ito, Masahiro; Krulwich, Terry A.

    2011-01-01

    The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g. the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologes from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na+/H+ antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure

  11. In vitro alkaline pH resistance of Enterococcus faecalis.

    PubMed

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed. PMID:24474287

  12. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased. PMID:24846742

  13. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  14. Soil carbon cycle of different saline and alkaline soils under cotton fields in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Zhao, Chengyi; Stahr, Karl; Kuzyakov, Yakov

    2015-04-01

    Calcium carbonate is the most common form of carbon (C) in semiarid and arid soils. Depending on pH and salinity changes, soils can act as sink or source of atmospheric CO2 as well as contribute to C exchange between CO2 and CaCO3 leading to formation of pedogenic carbonates. However, the rates of these processes and the effects of environmental factors remains unknown. 14CO2 was used to assess carbonate recrystallization in 4 saline and alkaline soils (Aksu alkaline, Aksu saline, Yingbazar alkaline, Yingbazar saline) (EC = 0.32, 1.35, 1.72, 3.67 (1:20) mS cm-1, pH = 8.5, 8.2, 8.9, 7.9 respectively) and to trace the C exchange in the soils of the Tarim River basin depending on CO2 concentrations in soils (0.02%, 0.04%, 0.2%, 0.4% and 4%). 14C was traced in soil water and air as well as in carbonates. The highest 14C in 14CO2 (95% of the 14C input) was observed in Aksu alkaline soil and the highest 14C incorporation in CaCO3 (54%) was observed in Yingbazar saline soil. There were close negative linear relationships between initial CO2 concentrations (0.04%, 0.4% and 4%) and the 14C in Ca14CO3 and in 14CO2. The carbonate recrystallization rate increased with the CO2 concentration and were depended on the recrystalliztion period. The average carbonate recrystallization rate was highest at 4% CO2 concentration for Yingbazar saline soil (6.59×10-4 % per day) and the lowest at 0.04% CO2 concentration for Aksu alkaline soil (0.03×10-4 % per day). The carbonate recrystallization rate linearly increased with the soil EC and with 0.04% and 0.4% CO2 concentration , whereas the carbonate recrystallization rate decreased with pH. The highest CO2 concentration of 4% can 10 to 100 times shorten the full carbonate recrystallization of the remaining primary carbonates compared to lower CO2 concentrations 0.4% and 0.04% for complete (95%) recrystallization of soil carbonate. We conclude that microbial and root respiration affecting CO2 concentration in soil is the most important

  15. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  16. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  17. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  18. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    PubMed Central

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  19. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation].

    PubMed

    Jia, Ke-Li; Zhang, Jun-Hua

    2014-03-01

    The relationship between alkalinity and pH of the soil, reflectance spectra and red-edge parameters of the sunflower canopy in different growth periods under different alkalinity soil were analyzed, respectively. The results showed that the spectral reflectance of the sunflower canopy in different stage under different alkalinity soil is the same as the spectral reflectance characters of the other greenery canopy. Along with the advancement of the sunflower growth period, sunflower canopy spectral reflectance increases gradually at different stages, the spectral reflectance is higher at flowering stage than 7-leaf stage and budding stage, and there exists a high reflection peak at 809nm at flowering period. At the same time, the spectral reflectance is affected by salinity-alkalinity stress at different stages, in the near infrared shortwave band, the spectral reflectance of the sunflower canopy in different stage increases with the decreases in soil alkalinity. When the derivatives are applied to determine the wavelength of the red-edge, there is a shift phenomenon of the red edge. The red edges were at 702-720 nm during every growth period of the sunflower. The "blue shift" phenomenon is also emerged for red edge position and red edge sloped with the increase in the soil alkalinity. Conversely, at the same growth periods, the red edge positions and red edge slope move to longer wave bands with the decrease in soil alkalinity. There is a "red shift" phenomenon before flowering period and "blue shift" phenomenon after flowering period for the red edge position and red edge slope of canopy spectrum at the same soil alkalinity. Respectively. The red edges at different growth stages of the sunflower show very significant positive correlation and quadratic polynomial to alkalinity and pH of the soil. Therefore, we thought used the red edge features of greenery could indicate the soil alkalization degree, it providing scientific basis for monitoring soil alkalization

  20. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  1. Decision making in C. elegans chemotaxis to alkaline pH

    PubMed Central

    Murayama, Takashi; Maruyama, Ichi N

    2013-01-01

    Monitoring of environmental and tissue pH is critical for animal survival. The nematode, Caenorhabditis elegans (C. elegans), is attracted to mildly alkaline pH, but avoids strongly alkaline pH. However, little is known about how the behavioral switching or decision making occurs. Genetic dissection and Ca2+ imaging have previously demonstrated that ASEL and ASH are the major sensory neurons responsible for attraction and repulsion, respectively. Here we report that unlike C. elegans wild type, mutants deficient in ASEL or ASH were repelled by mildly alkaline pH, or were attracted to strongly alkaline pH, respectively. These results suggest that signals through ASEL and ASH compete to determine the animal’s alkaline-pH chemotaxis. Furthermore, mutants with 2 ASEL neurons were more efficiently attracted to mildly alkaline pH than the wild type with a single ASEL neuron, indicating that higher activity of ASEL induces stronger attraction to mildly alkaline pH. This stronger attraction was overridden by normal activity of ASH, suggesting that ASH-mediated avoidance dominates ASEL-mediated attraction. Thus, C. elegans chemotactic behaviors to alkaline pH seems to be determined by signal strengths from the sensory neurons ASEL and ASH, and the behavior decision making seems to be the result of competition between the 2 sensory neurons. PMID:24563708

  2. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  3. Ammonia volatilization from soils amended with biochars of different pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant amount of nitrogen fertilizer applied to agricultural land is in the form of ammonium. Ammonium nitrogen can be lost through volatilization if applied under certain conditions, mainly to soils with a pH greater than 8. The pH of biochar varies from slightly acidic to highly alkaline ...

  4. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  5. Uranium(VI) Diffusion in Sodium-Montmorillonite at Alkaline pH Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.; Tournassat, C.; Birkholzer, J. T.

    2015-12-01

    Diffusive transport of uranium(VI) in montmorillonite clay and bentonite has important implications for uranium(VI) mobility in engineered barrier systems or host rocks in high level radioactive waste repositories, and clay-rich soils and sediments in the environment. The prediction of uranium(VI) adsorption and diffusion in clay-rich media, however, is complicated by (1) the complexity of the mineralogical structure of montmorillonite, in terms of its pore-size distributions and available surface site types, and (2) the complex uranium(VI) solution speciation, which can include cationic, uncharged, and anionic complexes, depending on solution conditions. For instance, a partial or full exclusion of anions from negatively charged clay interlayer spaces could change the effective 'anion-accessible' porosity and decrease the diffusive flux of these solutes under steady state conditions. In contrast, weak cation exchange reactions can result in 'surface diffusion' of adsorbed cations, such as UO2OH+, in addition to diffusion in the liquid phase, resulting in greater diffusive fluxes at steady state. In order to investigate these complex interactions, we performed two, lab-scale uranium(VI) through-diffusion experiments in lightly compacted Na-montmorillonite at slightly different, alkaline pH conditions (average pH values of 8.69 and 8.87). Observed uranium(VI) diffusive fluxes were decreased by approximately an order of magnitude in comparison to a tritium tracer. This indicates a relevance of 'anion exclusion' effects, the full or partial exclusion of anionic U(VI)-carbonato species from clay interlayer spaces. In addition, uranium(VI) sorption reactions were shown to be relevant in the diffusion experiments, even at alkaline pH values of around 8.7 and 8.9, where uranium(VI) sorption is low compared to other pH conditions. Despite the similarity of pH conditions, different degrees of uranium(VI) retardation were determined for the two systems. Additionally, we

  6. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  7. Influence of soil pH on properties of the soil-water interface

    NASA Astrophysics Data System (ADS)

    Diehl, Doerte

    2010-05-01

    Surface characteristics of soils are one of the main factors controlling processes at the soil-water interface like wetting, sorption or dissolution processes and, thereby, have a high impact on natural soil functions like habitat, filter, buffer, storage and transformation functions. Since surface characteristics, like wettability or repellency, are not static soil properties but continuously changing, the relevant processes and mechanisms are in the focus of the presented study. These mechanisms help to gain further insight into the behaviour of soil and its dynamics under changing environmental conditions. The influence of water content, relative air humidity and drying temperature on soil water repellency has been investigated in many studies. In contrast, few studies have systematically investigated the relationship between soil water repellency (SWR) and soil pH. Several studies found alkaline soils to be less prone to SWR compared to acidic soils (e.g., Cerdà, and Doerr 2007; Mataix-Solera et al. 2007). Furthermore, SWR has been successfully reduced in acidic soils by increasing soil pH via liming (e.g., Karnok et al. 1993; Roper 2005). However, SWR has also been reported in calcareous soils in the Netherlands (Dekker and Jungerius 1990), California, USA (Holzhey 1968) and Spain (Mataix-Solera and Doerr 2004). The hypothesis that the pH may control repellency via changes in the variable surface charge of soil material has not yet been tested. Previously it has been shown that it is necessary to eliminate the direct influence of changes in soil moisture content so that the unique relationship between pH and SWR can be isolated (Bayer and Schaumann 2007). A method has been developed which allows adjustment of the pH of soils with low moisture content via the gas phase with minimal change in moisture content. The method was applied to 14 soil samples from Germany, Netherlands, the UK and Australia, using the water drop penetration time (WDPT) as the indicator

  8. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  9. Does pH influence soil hydro-mechanical properties?

    NASA Astrophysics Data System (ADS)

    Chaplain, V.; Défossez, P.; Delarue, G.; Dexter, A. R.; Richard, G.; Tessier, D.

    2009-04-01

    Does pH influence soil hydro-mechanical properties ? V. Chaplain1, P. Défossez2, G. Delarue1, A.R. Dexter3, G. Richard3 and D. Tessier1. 1 UR INRA PESSAC RD 10, F-78026 Versailles cedex 2 UMR INRA/URCA FARE, 2 Esplanade Roland Garros, BP 224 F-51686 Reims cedex 2 3 UR INRA Sols 2163 Avenue de la Pomme de Pin - CS 40001 ARDON F-45075 Orléans Cedex 2 Corresponding author : chaplain@versailles.inra.fr Structure of soils and its dynamic, physico-chemistry of the interface are of a great importance in the fate of organic pollutants because it governs the accessibility of pollutants to micro-organisms. The soil structure of soils is related to physical parameters (texture, density, water content) but the physico-chemical properties of the interface is not considered. In this study we performed hydro-mechanical measurements on soil samples taken from the 42-plot long-term experiment in Versailles. Indeed six plots were selected to cover a large range of pH values from acid (3.5) to alkaline (8.2) due to the repeated application of fertilizers. Soils were taken in the 0-20 cm and in the 30-35 cm layer out of the ploughed zone. All soils had similar texture and composition with low organic carbon. Therefore pH changes the surface charges and hydrophobicity that are implied in aggregation process. The two layers had the same pH values. The precompression stress Pc and the compression index Cc were derived from confined compression tests performed on remoulded soil samples (density 1.45 g/cm3) at saturation. Results shows that the precompression stress increased at pH lower than 4. In acid case, precompression stress was higher in subsoil. This increase of Pc was attributed to the hydrophobicity due in part to the condensation of charges probably sensitive to the humectation/dessication processes.

  10. TOXICITY OF COPPER TO CUTTHROAT TROUT ('SALMO CLARKI') UNDER DIFFERENT CONDITIONS OF ALKALINITY, PH, AND HARDNESS

    EPA Science Inventory

    Median lethal concentration (96-h LC50) values for acute copper toxicity to 3-10 g cutthroat trout (Salmo clarki) have been determined for nine different combinations of alkalinity, hardness, and pH. Equilibrium calculations were performed on the copper LC50 values; seven differe...

  11. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils

    SciTech Connect

    Emmrich, M.

    1999-11-01

    During the two World Wars, large amounts of TNT were released into the environment. Until today, high concentrations of TNT can be found in the soil of former ammunition plants. To obtain basic data for a novel treatment process for highly contaminated soils, the homogeneous aqueous hydrolysis of TNT in the pH range from 10 to 12 and the alkaline treatment of two contaminated soils at pH 11 and pH 12 were investigated. The experimental data were described for their respective pH values using a pseudo-first-order model. In the homogeneous experiments, 95--97% of the TNT was hydrolyzed. During alkaline hydrolysis, up to two nitrogroups per TNT molecule were released, indicating the irreversible destruction of TNT. Except for the formation of small traces of amino dinitrotoluenes and trinitrobenzenes, no nitroaromatic benzenes or toluenes were detected during GC analysis. For the less contaminated soil, ELBP2, with an initial TNT concentration of 116 mg/kg, a destruction of 99% was achieved. The highly contaminated soil, HTNT2 (16.1 g of TNT/kg), showed a hydrolyzation level of 90-94%. The results show that the alkaline treatment of highly contaminated soils may prove to be effective as an alternative treatment technology.

  12. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  13. Detection of Baking Soda in Flat Bread by Direct pH Metery and Alkalinity Measurement

    NASA Astrophysics Data System (ADS)

    Jahed Khaniki, G. H. R.; Vaezi, F.; Yunesian, M.; Nabizadeh, R.; Paseban, G. H. A.

    The objective of this study is evaluation of direct pH metery and alkalinity measurement methods for determination of baking soda in lavash bread (a kind of flat bread) in order to introduce and recommend a good practice of control. For running the experiments, various samples of lavash bread having different concentrations of baking soda were prepared. Ten grams of each sample were mixed with distilled water and then the prepared solutions were filtrated. The filtrates were then analyzed for pH and total alkalinity according to the distractions described in Standard Methods. Results show a significant correlation between the pH values of bread samples and the amount of baking soda. Also, a positive correlation has been observed between the alkalinity of bread samples and used baking soda. By comparing the R2-values specified for these two methods it could be concluded that the direct pH metery method is more reasonable. Furthermore, by this simple method it is possible to accelerate the detection of minute amounts of this chemical in bread.

  14. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  15. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  16. Alkaline ameliorants increase nitrous oxide emission from acidified black soil in Northeastern China.

    PubMed

    Han, Zuoqiang; Zhang, Xilin; Qiao, Yanjiao; Wang, Lianfeng

    2011-06-01

    Lime and plant ash are common management used to achieve optimum pH for plant growth and improve soil properties in agricultural soils. Laboratory incubation was conducted to assess N20 emissions as influenced by different soil amendments (lime and plant ash) in a slightly acidic arable soil (pH 5.34). The experimental treatments consisted of CK, lime and plant ash fertilized with NH4(+)-N or N03(-)-N as nitrogen resource. The results show that lime and plant ash dramatically increases the soil pH and N20 emission. For N03(-)-N fertilization, the cumulative N20 emissions from CK, lime and ash are 421, 1669 and 921 μg N20-N/kg, respectively. For NH4(+)-N fertilization, the cumulative N20 emissions from CK, lime and ash are 361, 576 and 559 μg N20-N/kg, respectively. N03(-)-N addition leads to more N20 emission than that of NH4(+)-N addition, and lime increases more N20 emission than that of plant ash. After incubation, N03(-)-N content decreased largely. The findings suggested that alkaline ameliorants increase N20 emissions due to enhancement of soil denitrification. PMID:25084592

  17. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils.

    PubMed

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Cheng; Zhang, Shuang; Fu, Xiaowei; Jiang, Juquan

    2015-03-01

    Strain NEAU-ST5-21(T) was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow-orange colonies with a smooth surface, and grew in the presence of 0-5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20-40 °C (optimum 28 °C) and at pH 7-11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that strain NEAU-ST5-21(T) belongs to the genus Pseudomonas in the class Gammaproteobacteria. The most closely related species is Pseudomonas xanthomarina, whose type strain (KMM 1447(T)) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for gyrB and 85.0 % for rpoD with strain NEAU-ST5-21(T). DNA-DNA hybridization values between strain NEAU-ST5-21(T) and P. xanthomarina DSM 18231(T), Pseudomonas kunmingensis CGMCC 1.12273(T), Pseudomonas stutzeri DSM 5190(T), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T), Pseudomomas chengduensis CGMCC 2318(T), Pseudomonas alcaliphila DSM 17744(T) and Pseudomonas toyotomiensis DSM 26169(T) were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21(T) was 65 mol%. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 1ω7c and/or C16 : 1ω6c and C16 : 0, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is Pseudomonas zhaodongensis sp. nov., NEAU-ST5-21(T) ( = ACCC 06362(T) = DSM 27559(T)) being the type strain. PMID:25574037

  18. Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil.

    PubMed

    Kong, Delong; Wang, Yanwei; Zhao, Bingqiang; Li, Yanting; Song, Jinlong; Zhai, Yi; Zhang, Chi; Wang, Huimin; Chen, Xiaorong; Zhao, Bin; Ruan, Zhiyong

    2014-08-01

    A novel aerobic, halotolerant bacterium, designated strain LAM612(T), was isolated from saline-alkaline soil samples from Lingxian County, Shandong Province, China. Cells of strain LAM612(T) were Gram-reaction-positive, endospore-forming, motile and rod-shaped. The optimal temperature and pH for growth were 35 °C and pH 6.0, respectively. Strain LAM612(T) could grow in the presence of up to 10% (w/v) NaCl. The genomic DNA G+C conten was 36.4 mol% as detected by the T(m) method. Comparative analysis of 16S rRNA gene sequences revealed that LAM612(T) was closely related to Lysinibacillus sinduriensis KACC 16611(T) (98.0%), L. chungkukjangi KACC 16626(T) (97.5%), L. massiliensis KCTC 13178(T) (97.4%), L. xylanilyticus KACC 15113(T) (97.2%), L. macroides DSM 54(T) (97.0%) and L. manganicus DSM 26584(T) (96.5%). The DNA-DNA hybridization values between strain LAM612(T) and its closest relatives ranged from 20.6% to 41.9%. The major fatty acids of strain LAM612(T) were iso-C(15 : 0) (40.8%), iso-C(16 : 0) (15.2%) and anteiso-C(15 : 0) (10.8%). The cell-wall peptidoglycan content was A4α (L-Lys-D-Asp). The predominant menaquinone was MK-7 and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, five unknown glycolipids and an unknown lipid. Based on the DNA-DNA hybridization results and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM612(T) could be distinguished from the recognized species of the genus Lysinibacillus, and was suggested to represent a novel species of this genus, for which the name Lysinibacillus halotolerans sp. nov. is proposed. The type strain is LAM612(T) ( = ACCC 00718(T) = JCM 19611(T)). PMID:24814335

  19. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  20. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs

    PubMed Central

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-01-01

    Statement of the Problem Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Materials and Method Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). Conclusion An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH. PMID:26966703

  1. Silicon improves maize photosynthesis in saline-alkaline soils.

    PubMed

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  2. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    PubMed Central

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and intercellular CO2 concentration (Ci) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values of Pn, gs, and Ci of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  3. Predicting Phosphorus Release from Anaerobic, Alkaline, Flooded Soils.

    PubMed

    Amarawansha, Geethani; Kumaragamage, Darshani; Flaten, Don; Zvomuya, Francis; Tenuta, Mario

    2016-07-01

    Anaerobic conditions induced by prolonged flooding often lead to an enhanced release of phosphorus (P) to floodwater; however, this effect is not consistent across soils. This study aimed to develop an index to predict P release potential from alkaline soils under simulated flooded conditions. Twelve unamended or manure-amended surface soils from Manitoba were analyzed for basic soil properties, Olsen P (Ols-P), Mehlich-3 extractable total P (M3P), Mehlich-3 extractable molybdate-reactive P (M3P), water extractable P (WEP), soil P fractions, single-point P sorption capacity (P), and Mehlich-3 extractable Ca (M3Ca), and Mg (M3Mg). Degree of P saturation (DPS) was calculated using Ols-P, M3P or M3P as the intensity factor, and an estimated adsorption maximum based on either P or M3Ca + M3Mg as the capacity factor. To develop the model, we used the previously reported floodwater dissolved reactive P (DRP) concentration changes during 8 wk of flooding for the same unamended and manured soils. Relative changes in floodwater DRP concentration (DRP), calculated as the ratio of maximum to initial DRP concentration, ranged from 2 to 15 across ten of the soils, but were ≤1.5 in the two soils with the greatest clay content. Partial least squares analysis indicated that DPS3 calculated using M3P as the intensity factor and (2 × P) + M3P as the capacity factor with clay percentage can effectively predict DRP ( = 0.74). Results suggest that P release from a soil to floodwater may be predicted using simple and easily measurable soil properties measured before flooding, but validation with more soils is needed. PMID:27380097

  4. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  5. SOIL REDOX AND PH EFFECTS ON METHANE PRODUCTION IN A FLOODED RICE SOIL

    EPA Science Inventory

    Methane formation in soil is a microbiological process controlled by many factors. f them soil redox potential (Eh) and soil pH are considered as critical controls. aboratory incubation experiment was conducted to study the critical initiation soil Eh, the optimum soil pH and the...

  6. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils.

    PubMed

    Li, Yan; Li, Xiangyue; Liu, Yajing; Wang, En Tao; Ren, Chenggang; Liu, Wei; Xu, Hualing; Wu, Hailong; Jiang, Nan; Li, Yunzhao; Zhang, Xiaoli; Xie, Zhihong

    2016-05-01

    Sesbania cannabina is a plant that grows naturally along the seashores in Rudong County, China (RDC) and it has been introduced into the Yellow River Delta (YRD) as a pioneer plant to improve the saline-alkaline soils. In order to investigate the diversity of S. cannabina rhizobia in these soils, a total of 198 rhizobial isolates were characterized and phylogenetic trees were constructed based on data from multilocus sequence analysis (MLSA) of the housekeeping genes recA, atpD and glnII, as well as 16S rRNA. Symbiotic features were also studied by establishing the phylogeny of the symbiotic genes nodA and nifH, and by performing nodulation assays. The isolates had highly conserved symbiotic genes and were classified into nine genospecies belonging to the genera Ensifer, Agrobacterium, Neorhizobium and Rhizobium. A unique community structure was detected in the rhizobia associated with S. cannabina in the saline-alkaline soils that was characterized by five novel genospecies and four defined species. In addition, Ensifer sp. I was the predominant rhizobia in YRD, whereas Ensifer meliloti and Neorhizobium huautlense were the dominant species in RDC. Therefore, the study demonstrated for the first time that this plant strongly selected the symbiotic gene background but not the genomic background of its microsymbionts. In addition, biogeographic patterns existed in the rhizobial populations associated with S. cannabina, which were mainly correlated with pH and salinity, as well as the mineral nutrient contents. This study provided novel information concerning the interaction between soil conditions, host plant and rhizobia, in addition to revealing the diversity of S. cannabina rhizobia in saline-alkaline soils. PMID:27061259

  7. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    PubMed

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  8. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  9. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  10. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  11. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  12. Alkalinity, pH, and copper corrosion by-product release

    SciTech Connect

    Edwards, M.; Meyer, T.E.; Schock, M.R.

    1996-03-01

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water increases linearly with bicarbonate concentration at constant pH. This relationship implicates cupric hydroxide solubility in control of copper release from relatively new (less than a few years old) copper plumbing. Decision-marking guidance from a traditional Larson`s ratio or Langelier index approach can aggravate copper corrosion problems; consequently, their use should be discontinued for copper corrosion mitigation. In contrast, aeration-CO{sub 2} stripping is a particularly attractive strategy because benefits from higher pH are realized without adverse effects from higher alkalinity.

  13. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  14. Cyanide Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated from Contaminated Soils

    PubMed Central

    Dumestre, A.; Chone, T.; Portal, J.; Gerard, M.; Berthelin, J.

    1997-01-01

    Several cyanide-tolerant microorganisms have been selected from alkaline wastes and soils contaminated with cyanide. Among them, a fungus identified as Fusarium solani IHEM 8026 shows a good potential for cyanide biodegradation under alkaline conditions (pH 9.2 to 10.7). Results of K(sup14)CN biodegradation studies show that fungal metabolism seems to proceed by a two-step hydrolytic mechanism: (i) the first reaction involves the conversion of cyanide to formamide by a cyanide-hydrolyzing enzyme, cyanide hydratase (EC 4.2.1.66); and (ii) the second reaction consists of the conversion of formamide to formate, which is associated with fungal growth. No growth occurred during the first step of cyanide degradation, suggesting that cyanide is toxic to some degree even in cyanide-degrading microorganisms, such as F. solani. The presence of organic nutrients in the medium has a major influence on the occurrence of the second step. Addition of small amounts of yeast extract led to fungal growth, whereas no growth was observed in media containing cyanide as the sole source of carbon and nitrogen. The simple hydrolytic detoxification pathway identified in the present study could be used for the treatment of many industrial alkaline effluents and wastes containing free cyanide without a prior acidification step, thus limiting the risk of cyanhydric acid volatilization; this should be of great interest from an environmental and health point of view. PMID:16535647

  15. Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils

    NASA Astrophysics Data System (ADS)

    Devau, Nicolas; Hinsinger, Philippe; Le Cadre, Edith; Colomb, Bruno; Gérard, Frédéric

    2011-05-01

    We used of a set of mechanistic adsorption models (1-pK TPM, ion exchange and Nica-Donnan) within the framework of the component additive (CA) approach in an attempt to determine the effect of repeated massive application of inorganic P fertilizer on the processes and mechanisms controlling the concentration of dissolved inorganic phosphorus (DIP) in soils. We studied the surface layer of a Luvisol with markedly different total concentrations of inorganic P as the result of different P fertilizer history (i.e. massive or no application for 40 years). Soil pH was made to vary from acid to alkaline. Soil solutions were extracted with water and CaCl 2 (0.01 M). The occurrence of montmorillonite led us to determine the binding properties of P and Ca ions for this clay mineral. Satisfactory results were obtained using generic values for model parameters and soil-specific ones, which were either determined directly by measurements or estimated from the literature. We showed that adsorption largely controlled the variations of DIP concentration and that, because of kinetic constrains, only little Ca-phosphates may be precipitated under alkaline conditions, particularly in the P fertilized treatment. The mineral-P pool initially present in both P treatments did not dissolve significantly during the course of the experiments. The adsorption of Ca ions onto soil minerals also promoted adsorption of P ions through electrostatic interactions. The intensity of the mechanism was high under neutral to alkaline conditions. Changes in DIP concentration as a function of these environmental variables can be related to changes in the contribution of the various soil minerals to P adsorption. The extra P adsorbed in the fertilized treatment compared with the control treatment was mainly adsorbed onto illite. This clay mineral was the major P-fixing constituent from neutral to alkaline pH conditions, because the repulsion interactions between deprotonated hydroxyl surface sites and P

  16. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  17. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    SciTech Connect

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  18. Biochar contribution to soil pH buffer capacity

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  19. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. II. THE EFFECT OF TEMPERATURE, PH, ALKALINITY, AND DOM PROPERTIES

    EPA Science Inventory

    The influence of temperature, pH, alkalinity, and type and concentration of the dissolved organic matter (DOM) on the rate of ozone (O3) decomposition, O3-exposure, .OH-exposure and the ratio Rct of the concentrations of .OH and O3 has been studied. For a standardized single ozon...

  20. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  1. Extracellular Alkaline pH Leads to Increased Metastatic Potential of Estrogen Receptor Silenced Endocrine Resistant Breast Cancer Cells

    PubMed Central

    Khajah, Maitham A.; Almohri, Iman; Mathew, Princy M.; Luqmani, Yunus A.

    2013-01-01

    Introduction Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER) by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. Methods Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP) activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. Results Exposure of ER –ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation); this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na+/K+ and Na+/H+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER –ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. Conclusions Endocrine resistant breast cancer cells behave very differently to estrogen responsive cells in

  2. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].

    PubMed

    Liu, Zhao-Bing; Ji, Xiong-Hui; Tian, Fa-Xiang; Peng, Hua; Wu, Jia-Mei; Shi, Li-Hong

    2011-04-01

    The effects of paper mill sludge, red mud and zinc fertilizer addition on remediation of acid cadmium contaminated paddy soil were studied in a pot experiment, and their beneficial effects were verified in a field experiment, by using lime as comparison. The pot experiment results showed that a single application (2 g x kg(-1)) of lime, paper mill sludge or red mud increased soil pH significantly. Compared with no applying alkaline substances, the soil exchangeable Ca content was increased by 33.1%-76.0% at 7 days after applying alkaline substances and 31.0%-78.3% at 30 days after rice transplanting, respectively. The soil available Cd content was significantly decreased by 38.4%-45.0% at 7 days after the three alkaline substances applications, and was decreased by 37.4%-52.9% and 33.2%-38.7% at 30 days and 60 days after rice transplanting, respectively. The Cd content in rice root and brown rice was decreased by 24.0%-48.5% and 26.3%-44.7%, respectively. With equal applications of lime, paper mill sludge and red mud, the effects on increase of soil pH and decrease in Cd accumulation by rice was lime > red mud > paper mill sludge. Compared with a single application (2 g x kg(-1)) of paper mill sludge or red mud, Cd accumulation decreased significantly following the application of zinc fertilizer (0.2 g x kg(-1)) field experimental results were similar to the pot experiment that Cd accumulation apparently declined in the first and second crops (late rice and autumn rape) following the application of paper mill sludge, red mud and addition of zinc fertilizer. The Cd content in brown rice and rape seeds was decreased by 27.1-65.1% and 16.4%-41.6%, respectively, compared with no alkaline substances application. The Cd content in brown rice reached the National Hygienic Standard for Grains (GB 2715-2005). Therefore, combined application of paper mill sludge or red mud with zinc fertilizer was a feasible method to remediate acid cadmium contaminated paddy soil. Rice

  3. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  4. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  5. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  6. Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Flechoso, Fabio; Martín, Juan F

    2006-01-01

    Corynebacterium glutamicum, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7.0-9.0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9.0. Growth still occurred at pH 9.5 but at a reduced rate. The expression of the pH-regulated F0 F1 ATPase operon (containing the eight genes atpBEFHAGDC) was induced at alkaline pH. A 7.5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9.0. The same occurred with a 1.2 kb transcript corresponding to the atpB gene. RT-PCR studies confirmed the alkaline pH induction of the F0 F1 operon and the existence of the atpI gene. The atpI gene, located upstream of the F0 F1 operon, was expressed at a lower level than the polycistronic 7.5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the F0 F1 operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in C. glutamicum and Escherichia coli. Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative sigma factor of C. glutamicum, whereas the -35 and -10 boxes of P-atp2 fitted the consensus sequence for sigma(H)-recognized Mycobacterium tuberculosis promoters C(C)/(G)GG(A)/(G)AC 17-22 nt (C)/(G)GTT(C)/(G), known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the F0 F1 operon is highly expressed at alkaline pH, probably using a sigma (H) RNA polymerase. PMID:16385111

  7. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.

    PubMed

    Wong, Jonathan W C; Wong, Winnie W Y; Wei, Zhenggui; Jagadeesan, Hema

    2004-05-25

    A greenhouse experiment was conducted to investigate the growth of Brassica juncea and Cd phytoextraction in a mimicked Cd contaminated acidic loamy soil amended with alkaline biosolids, prepared from sewage sludge and coal fly ash, in the presence and absence of EDTA at 2 mmol kg(-1). The acidic loamy soil was spiked with 0, 5, 20, 50 and 100 mg Cd kg(-1) in the form of CdCO(3) and then amended with 4% alkaline biosolids (w/w). Alkaline biosolids and 0.12% CaCO(3) amendments resulted in a higher biomass than unamended soil spiked with 20 mg kg(-1) Cd where plants did not survive and of the two amendments, alkaline biosolids amendment had higher plant dry weight yield and phytoextraction of Cd. Adding 2 mmol kg(-1) EDTA to alkaline biosolids amended soil significantly increased the solubility of Cd ions by 9- to 29-fold, but plant Cd accumulation decreased by a factor of 24-48%. The results indicate that alkaline biosolids amendment is an effective approach for assisting growth of B. juncea and phytoextraction of Cd from the contaminated acidic loamy soil, but further application of chelating agents did not enhance the phytoextraction efficiency of Cd. PMID:15081709

  8. The effectiveness of ferrous iron and sodium dithionite for decreasing resin-extractable Cr(VI) in Cr(VI)-spiked alkaline soils.

    PubMed

    Cheng, Chia-Jung; Lin, Tzu-Huei; Chen, Chiou-Pin; Juang, Kai-Wei; Lee, Dar-Yuan

    2009-05-30

    Ferrous iron, Na(2)S(2)O(4), and a mixture of Fe(II) and Na(2)S(2)O(4) (4:1 mol/mol) were tested for their effectiveness for decreasing resin-extractable Cr(VI) in alkaline Cr(VI)-spiked soils. The results indicated that adding those reductants greatly decreased the amount of resin-extractable Cr(VI) when the application rate of reductants equaled the number of equivalents of dichromate added to the Cr(VI)-spiked soils. This was mainly as a result of the Cr(VI) reduction into Cr(III), as supported by the XANES spectra. Among the tested reductants, a mixture of Fe(II) and Na(2)S(2)O(4) was the most effective to decrease resin-extractable Cr(VI). The extent to which resin-extractable Cr(VI) and soil pH were decreased was affected by the pH of the reductants. Among the tested reductants at various pH, FeSO(4) at pH below 1 was the most effective in decreasing resin-extractable Cr(VI) in alkaline soils. However, the soil pH was the most decreased as well. On the other hand, the mixtures of ferrous iron and dithionite at a wide range of pH were all efficient (>70% efficiency) in decreasing resin-extractable Cr(VI). Moreover, the extent of the decrease in soil pH was much smaller than that by FeSO(4) (pH<1) alone, and thus the possibility of the Cr(III) hazard can be avoided. PMID:18824300

  9. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis.

    PubMed

    Shanahan, John W; Semmens, Michael J

    2015-05-01

    A nitrifying biofilm was grown in a laboratory-scale membrane aerated bioreactor (MABR) to calibrate and test a one-dimensional biofilm model incorporating chemical equilibria to calculate local pH values. A previously developed model (Shanahan and Semmens, 2004) based upon AQUASIM was modified to incorporate the impact of local pH changes within the biofilm on the kinetics of nitrification. Shielded microelectrodes were used to measure the concentration profiles of dissolved oxygen, ammonium, nitrate, and pH within the biofilm and the overlying boundary layer under actual operating conditions. Operating conditions were varied to assess the impact of bicarbonate loading (alkalinity), ammonium loading, and intra-membrane oxygen partial pressure on biofilm performance. Nitrification performance improved with increased ammonium and bicarbonate loadings over the range of operating conditions tested, but declined when the intra-membrane oxygen partial pressure was increased. Minor discrepancies between the measured and predicted concentration profiles within the biofilm were attributed to changes in biofilm density and vertical heterogeneities in biofilm structure not accounted for by the model. Nevertheless, predicted concentration profiles within the biofilm agreed well with experimental results over the range of conditions studied and highlight the fact that pH changes in the biofilm are significant especially in low alkalinity waters. The influent pH and buffer capacity of a wastewater may therefore have a significant impact on the performance of a membrane-aerated bioreactor with respect to nitrification, and nitrogen removal. PMID:25703659

  10. Upper ocean carbon cycling inferred from direct pH observations made by profiling floats and estimated alkalinity

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.; Sakamoto, C.; Riser, S.

    2015-12-01

    The annual cycle of dissolved inorganic carbon (DIC) is a key tracer of net community production and carbon export in the upper ocean. In particular, the DIC concentration is much less sensitive to air-sea gas exchange, when compared to oxygen, another key tracer of upper ocean metabolism. However, the annual DIC cycle is observed with a seasonal resolution at only a few time-series stations in the open ocean. Here, we consider the annual carbon cycle that has been observed using profiling floats equipped with pH sensors. Deep-Sea DuraFET pH sensors have been deployed on profiling floats for over three years and they can provide temporal and spatial resolution of 5 to 10 days and 5 to 10 m in the upper ocean over multi-year periods. In addition to pH, a second carbon system parameter is required to compute DIC. Total alkalinity can be derived from the float observations of temperature, salinity and oxygen using equations in these variables that are fitted to shipboard observations of alkalinity obtained in the global repeat hydrography programs (e.g., Juranek et al., GRL, doi:10.1029/2011GL048580, 2011), as the relationships should be stable in time in the open ocean. Profiling floats with pH have been deployed from Hawaii Ocean Time-series (HOT) cruises since late 2012 and an array of floats with pH have been deployed since early 2014 in the Southern Ocean as part of the SOCCOM program. The SOCCOM array should grow to nearly 200 floats over the next 5 years. The sensor data was quality controlled and adjusted by comparing observations at 1500 m depth to the deep climatology of pH (derived from DIC and alkalinity) computed with the GLODAP data set. After adjustment, the surface DIC concentrations were calculated from pH and alkalinity. This yields a data set that is used to examine annual net community production in the oligotrophic North Pacific and in the South Pacific near 150 West from 40 South to 65 South.

  11. The immobilization of all spermatozoa in vitro by bitter lemon drink and the effect of alkaline pH.

    PubMed

    Nwoha, P U

    1992-12-01

    Researchers at Obafemi Awolowo University in Ile-Ife, Nigeria, collected semen samples from 7 healthy men 25-30 years old who had abstained from sex for at least 5 days in order to examine the spermicidal action of 4 soft drinks (Krest bitter lemon, Afri-Cola, Coca-Cola, and Pepsi-Cola), the effect of increased temperature of the drinks on spermicidal action, and the effect of changing the soft drinks from an acid, as it comes from the factory, (ph 2.4) to an alkaline (pH 7.5). Increasing the temperature of the soft drinks from room temperature (22 degrees Celsius) to body temperatures (37 degrees Celsius) did not significantly change the spermicidal action any of the soft drinks. All soft drinks with an acid pH, except Coca-Cola, had a significantly lower percent of sperm motility than those with an alkaline pH (0-42.3% vs. 20-52.1%; p .001). In fact, Krest bitter lemon in its factory form (acid pH) completely immobilized all spermatozoa within 1 minute after the researchers diluted the semen with the soft drink. Alkaline Coca-Cola had a significantly lower percent of sperm motility than did acid Coca-Cola (35.8% vs. 46.5%; p .001). Other than Krest bitter lemon, the significant decreases in sperm motility were not enough to prevent pregnancy. These findings indicated that researchers should test Krest bitter lemon for effectiveness as a postcoital contraceptive. If indeed it proves effective, it has great potential as such a contraceptive among the poor in the densely population developed countries since it is readily available and inexpensive. PMID:1493713

  12. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the

  13. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    PubMed Central

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the

  14. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    PubMed

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  15. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  16. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  17. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil.

    PubMed

    Yan, Yubo; Qi, Fangjie; Seshadri, Balaji; Xu, Yilu; Hou, Jiexi; Ok, Yong Sik; Dong, Xiaoli; Li, Qiao; Sun, Xiuyun; Wang, Lianjun; Bolan, Nanthi

    2016-11-01

    The alkaline residue generated from the production of soda ash using the ammonia-soda method has been successfully used in removing phosphorus (P) from aqueous solution. But the accumulation of P-containing solid after P removal is an undesirable menace to the environment. To achieve the goal of recycling, this study explored the feasibility of reusing the P loaded alkaline residue as an amendment for immobilization of lead (Pb) in a shooting range soil. The main crystalline phase and micromorphology of amendments were determined using X-ray diffraction (XRD) and scanning electron microscopy-electron dispersion spectroscopy (SEM-EDS) methods. The toxicity characteristic leaching procedure (TCLP), sequential extraction procedure, and physiologically based extraction test (PBET) were employed to evaluate the effectiveness of Pb immobilization in soil after 45 d incubation. Treatment with P loaded alkaline residue was significantly effective in reducing the TCLP and PBET extractable Pb concentrations in contrast to the untreated soil. Moreover, a positive change in the distribution of Pb fractions was observed in the treated soil, i.e., more than 60% of soil-Pb was transformed to the residual fraction compared to the original soil. On the other hand, P loaded amendments also resulted in a drastic reduction in phytoavailable Pb to the winter wheat and a mild release of P as a nutrient in treated soil, which also confirmed the improvement of soil quality. PMID:27513552

  18. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins. PMID:15982915

  19. Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea.

    PubMed

    Yoon, Jung-Hoon; Kang, So-Jung; Lee, Jung-Sook; Oh, Tae-Kwang

    2006-12-01

    A Gram-negative, rod-shaped, Brevundimonas-like bacterial strain, KSL-145(T), was isolated from an alkaline soil in Korea and subjected to a polyphasic taxonomic investigation. Strain KSL-145(T) grew optimally at pH 7.5-8.0 and 30 degrees C without NaCl. It was characterized chemotaxonomically as containing Q-10 as the predominant ubiquinone and C(18 : 1)omega7c and C(16 : 0) as the major fatty acids. The DNA G+C content was 61.8 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain KSL-145(T) fell within the radiation of the cluster comprising Brevundimonas species and Mycoplana bullata. The levels of 16S rRNA gene sequence similarity between strain KSL-145(T) and the type strains of Brevundimonas species and M. bullata ranged from 95.3 to 98.7 %. The mean DNA-DNA relatedness values between strain KSL-145(T) and the type strains of Brevundimonas diminuta and M. bullata, the closest phylogenetic relatives, were 26 and 15 %, respectively. Strain KSL-145(T) could be differentiated from Brevundimonas species and M. bullata by differences in several phenotypic characteristics. On the basis of the phenotypic, phylogenetic and genetic data, strain KSL-145(T) represents a novel species in the genus Brevundimonas, for which the name Brevundimonas terrae sp. nov. is proposed. The type strain is KSL-145(T) (=KCTC 12481(T)=JCM 13476(T)). PMID:17158998

  20. Fertigation with micronized sulfur rapidly reduces soil pH in highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry is adapted to low soil pH in the range of 4-5.5. At higher pH, soil is often modified with elemental sulfur (S) prior to planting. A 2-year study was conducted to determine the potential of applying micronized wettable S by fertigation through the drip system to reduce soil pH in highbush ...

  1. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    PubMed Central

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  2. Geochemical Modeling of pH Neutralization of High Alkaline-Saline Waste Fluids in Unsaturated Sediments

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, Z.

    2004-12-01

    Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.

  3. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed. PMID:19494466

  4. Soil calcium and pH monitoring sensor system.

    PubMed

    Lemos, Sherlan G; Nogueira, Ana Rita A; Torre-Neto, André; Parra, Aleix; Alonso, Julian

    2007-06-13

    An agrarian sensorial system based on temperature, moisture, and all solid-state ion-selective potentiometric sensors was developed with the objective of monitoring the behavior of H+ and Ca2+ ions in soil and in real conditions, contributing with a new tool that tries to complement the current precision agriculture technology. The evaluation of the sensorial system to pH monitoring presented a good correlation between the results obtained by the system and the standard methodology, allowing us to notice the soil buffer capacity at different soil depths. With regard to calcium, the sensor system also presented an agreement between its results and those obtained by flame atomic absorption spectrometry, using a calibration model based on multiple linear regressions that allows the correct determination of Ca2+ concentrations in soil depths where the relative moisture is different. In this way, using well-known potentiometric sensors in a complex, discontinued, and heterogeneous matrix, such as soil, the sensorial system proved to be a useful task for agrochemical field applications. PMID:17500528

  5. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils.

    PubMed

    Park, Jong Yol; Huwe, Bernd

    2016-06-01

    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. PMID:26995452

  6. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  7. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  8. Soil sorption of acidic pesticides: modeling pH effects.

    PubMed

    Spadotto, Claudio A; Hornsby, Arthur G

    2003-01-01

    A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model. PMID:12809295

  9. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  10. Effect of Soil pH on Nematicide Efficacy on Soybean

    PubMed Central

    Schmitt, D. P.

    1989-01-01

    To determine the efficacy of selected nematicides under different soil pH regimes in a sandy soil, soil pH ranges were achieved by adding lime or sulfur. Nematicides increased soybean yields, and their efficacy was generally not influenced by soil pH. Belonolaimus longicaudatus was negatively correlated (r = -0.58, P = 0.01) with yield in 1977. PMID:19287658

  11. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  12. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  13. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    PubMed

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time. PMID:12475278

  14. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  15. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  16. Kocuria dechangensis sp. nov., an actinobacterium isolated from saline and alkaline soils.

    PubMed

    Wang, Kaibiao; Zhang, Lei; Liu, Yanshuang; Pan, Yuanyuan; Meng, Lin; Xu, Tong; Zhang, Cheng; Liu, Henan; Hong, Shan; Huang, Haipeng; Jiang, Juquan

    2015-09-01

    A Gram-stain positive, strictly aerobic, non-motile and coccus-shaped actinobacterium, designated strain NEAU-ST5-33(T), was isolated from saline and alkaline soils in Dechang Township, Zhaodong City, PR China. It formed beige-yellow colonies and grew at NaCl concentrations of 0-5% (w/v) (optimum 0%), at pH 6.0-9.0 (optimum pH 7.0) and over a temperature range of 4-50 °C (optimum 35 °C). Based on 16S rRNA gene sequence analysis, strain NEAU-ST5-33(T) was phylogenetically closely related to the type strains of species of the genus Kocuria, Kocuria polaris CMS 76or(T), Kocuria rosea DSM 20447(T), Kocuria turfanensis HO-9042(T), Kocuria aegyptia YIM 70003(T), Kocuria himachalensis K07-05(T) and Kocuria flava HO-9041(T), with respective sequence similarities of 98.8%, 98.8%, 98.3%, 98.1%, 98.1% and 97.9%. DNA-DNA hybridization relatedness values of strain NEAU-ST5-33(T) with type strains of the closely related species ranged from 54 ± 1% to 34 ± 1%. The DNA G+C content was 61.2 mol%. The major fatty acids (>5%) were C15 : 0 anteiso, C15 : 0 iso and C16 : 1ω7c and/or C16 : 1ω6c. The major menaquinone detected was MK-8 (H2), and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unknown aminolipid and one unknown lipid. On the basis of the genotypic, chemotaxonomic and phenotypic data, we propose that strain NEAU-ST5-33(T) represents a novel species of the genus Kocuria, with the name Kocuria dechangensis sp. nov. The type strain is NEAU-ST5-33(T) ( = CGMCC 1.12187(T) = DSM 25872(T)). PMID:26048314

  17. Halomonas heilongjiangensis sp. nov., a novel moderately halophilic bacterium isolated from saline and alkaline soil.

    PubMed

    Dou, Guiming; He, Wei; Liu, Hongcan; Ma, Yuchao

    2015-08-01

    A moderately halophilic bacterium, designated strain 9-2(T), was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5-14 % (w/v) (optimum, 7-10 %, w/v), at temperatures of 10-45 °C (optimum 25-30 °C) and at pH 5.0-10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2(T) is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502(T) (96.68 %), Halomonas campaniensis DSM 1293(T) (96.46 %), Halomonas ventosae DSM 15911(T) (96.27 %) and Halomonas kenyensis DSM 17331(T) (96.27 %). The DNA-DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2(T) and H. desiderata DSM 9502(T). The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2(T) is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2(T) (=DSM 26881(T) = CGMCC 1.12467(T)). PMID:26036672

  18. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the chemical forms in which Cd is present in paddy soils is needed to develop efficient and cost-effective strategies to clean up the soils, and/or minimize Cd uptake by rice. This study aims to determine Cd speciation and release kinetics in an alkaline paddy soil, at various flooding...

  19. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.

    PubMed

    Datta, Rupali; Makris, Konstantinos C; Sarkar, Dibyendu

    2007-05-01

    Elevated arsenic (As) concentrations in urban soils with prolonged arsenical pesticide application history have increased the risk associated with accidental hand-to-mouth soil ingestion by children. Earlier work by the authors suggested that the conservative statement of 100% As bioaccessibility in soils was not valid for a set of acidic soils incubated with sodium arsenate. In this study, two alkaline Texas soils incubated with a commonly used As pesticide (sodium arsenate) were evaluated for their potential in reducing soil As bioaccessibility. The objective of this study was to evaluate the effects of incubation time and As load on soil As fractionation and bioaccessibility. Soils were subjected to a sequential As fractionation scheme, and bioaccessible As was quantified using an in vitro stomach phase test. Results showed a reduction in the water-soluble As fraction with incubation time (after 4 months), which remained unchanged after 12 months. This reduction with time was accompanied by an increase in the NaOH- and H(2)SO(4)-extractable As fractions, suggesting As sorption by amorphous Fe/Al hydroxides and/or Ca/Mg compounds, respectively. Organic/sulfides-bound As increased with incubation time after 12 months but not after 4 months of incubation. The aging effect was also observed with the amount of bioaccessible As at all As loads, showing significant positive correlations with the water-extractable and exchangeable As fractions. Bioaccessible As concentrations even after 12 months of incubation were not significantly reduced, suggesting that natural attenuation might prove inadequate to control As bioaccessibility in these alkaline soils. PMID:17387422

  20. Soil phosphorus and pH influence the growth of mycorrhizal sweetgum. [Liquidambar styraciflua; Gigaspora margarita

    SciTech Connect

    Yawney, W.J.; Schultz, R.C.; Kormanik, P.P.

    1982-01-01

    The response of sweetgum (Liquidambar styraciflua L.) seedlings grown either without or inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Gigaspora margarita to 25, 50, and 100 ppm soil phosphorus (P) and adjusted soil pHs of 4.5, 5.5, 6.5, and 7.8 was observed during the first growing seasons. The best seedling growth for both VAM and noninoculated seedlings occurred at soil pH 4.5 and 100 ppm of soil P where mean heights and top dry weights average > 28 cm and 8 g, respectively. As soil pH increased, seedling growth decreased significantly and at pH 7.8 the seedlings average < 4 cm in height regardless of the soil P level or mycorrhizal condition. Seedling growth at all pH levels, except pH 7.8, decreased with decreasing soil P. Inoculated seedlings were significantly larger than noninoculated seedlings at 25 ppm soil P and pHs 4.5 and 5.5. Soil P, soil pH, and mycorrhizal condition significantly influenced nutrient levels in plant parts. Soil nutrient levels varied significantly with soil pH. 26 references, 1 figure, 6 tables.

  1. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    PubMed

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation. PMID:26514796

  2. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    PubMed

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments. PMID:19515201

  3. pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils.

    PubMed

    Stempfhuber, Barbara; Engel, Marion; Fischer, Doreen; Neskovic-Prit, Ganna; Wubet, Tesfaye; Schöning, Ingo; Gubry-Rangin, Cécile; Kublik, Susanne; Schloter-Hai, Brigitte; Rattei, Thomas; Welzl, Gerhard; Nicol, Graeme W; Schrumpf, Marion; Buscot, Francois; Prosser, James I; Schloter, Michael

    2015-05-01

    In this study, we investigated the impact of soil pH on the diversity and abundance of archaeal ammonia oxidizers in 27 different forest soils across Germany. DNA was extracted from topsoil samples, the amoA gene, encoding ammonia monooxygenase, was amplified; and the amplicons were sequenced using a 454-based pyrosequencing approach. As expected, the ratio of archaeal (AOA) to bacterial (AOB) ammonia oxidizers' amoA genes increased sharply with decreasing soil pH. The diversity of AOA differed significantly between sites with ultra-acidic soil pH (<3.5) and sites with higher pH values. The major OTUs from soil samples with low pH could be detected at each site with a soil pH <3.5 but not at sites with pH >4.5, regardless of geographic position and vegetation. These OTUs could be related to the Nitrosotalea group 1.1 and the Nitrososphaera subcluster 7.2, respectively, and showed significant similarities to OTUs described from other acidic environments. Conversely, none of the major OTUs typical of sites with a soil pH >4.6 could be found in the ultra- and extreme acidic soils. Based on a comparison with the amoA gene sequence data from a previous study performed on agricultural soils, we could clearly show that the development of AOA communities in soils with ultra-acidic pH (<3.5) is mainly triggered by soil pH and is not influenced significantly by the type of land use, the soil type, or the geographic position of the site, which was observed for sites with acido-neutral soil pH. PMID:25501889

  4. Effect of oxygen amendments and soil pH on bioremediation of industrially contaminated soils

    SciTech Connect

    Joshi, M.M.; Lee, S.

    1996-04-01

    Polynuclear aromatic hydrocarbons (PAHs), by-products of coal conversion processes, have contaminated soils near coal plant sites either through accidental spills or systematic discharge. Because these compounds are carcinogenic, mutagenic, and teratogenic, remediation of such sites is a legitimate concern. For this study, contaminated soil samples were obtained from the Alberta Research Council (ARC) primary clean-up facility. Preliminary analysis of the soil was done for contaminant characterization and determination of initial contamination levels. Acinetobacter sp. was used for aerobic treatment of soil over a five-week period under optimum conditions. Because the rate of biodegradation is influenced by the pH, it is of interest to study the effect of pH on remediation efficiency in the physiological pH range of 5.0 to 9.0. Also, oxygen amendment via hydrogen peroxide solution was used to improve remediation in a packed bed, and the results were compared with those obtained under completely mixed conditions.

  5. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH.

    PubMed

    Keller, M; Braun, F J; Dirmeier, R; Hafenbradl, D; Burggraf, S; Rachel, R; Stetter, K O

    1995-12-01

    A novel coccoid-shaped, hyperthermophilic, heterotrophic member of the archaea was isolated from a shallow marine hydrothermal system at Vulcano Island, Italy. The isolate grew between 56 and 90 degrees C with an optimum around 85 degrees C. The pH range for growth was 6.5 to 10.5, with an optimum around 9.0. Polysulfide and elemental sulfur were reduced to H2S. Sulfur stimulated the growth rate. The isolate fermented yeast extract, peptone, meat extract, tryptone, and casein. Isovalerate, isobutyrate, propionate, acetate, CO2, NH3, and H2S (in the presence of S degrees ) were detected as end products. Growth was not inhibited by H2. Based on DNA-DNA hybridization and 16S rRNA partial sequences, the new isolate represents a new species of Thermococcus, which we named Thermococcus alcaliphilus. The type strain is isolate AEDII12 (DSM 10322). PMID:8588740

  6. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies.

    PubMed

    Piccirillo, Sarah; White, Melissa G; Murphy, Jeffrey C; Law, Douglas J; Honigberg, Saul M

    2010-03-01

    Multicellular organisms utilize cell-to-cell signals to build patterns of cell types within embryos, but the ability of fungi to form organized communities has been largely unexplored. Here we report that colonies of the yeast Saccharomyces cerevisiae formed sharply divided layers of sporulating and nonsporulating cells. Sporulation initiated in the colony's interior, and this region expanded upward as the colony matured. Two key activators of sporulation, IME1 and IME2, were initially transcribed in overlapping regions of the colony, and this overlap corresponded to the initial sporulation region. The development of colony sporulation patterns depended on cell-to-cell signals, as demonstrated by chimeric colonies, which contain a mixture of two strains. One such signal is alkaline pH, mediated through the Rim101p/PacC pathway. Meiotic-arrest mutants that increased alkali production stimulated expression of an early meiotic gene in neighboring cells, whereas a mutant that decreased alkali production (cit1Delta) decreased this expression. Addition of alkali to colonies accelerated the expansion of the interior region of sporulation, whereas inactivation of the Rim101p pathway inhibited this expansion. Thus, the Rim101 pathway mediates colony patterning by responding to cell-to-cell pH signals. Cell-to-cell signals coupled with nutrient gradients may allow efficient spore formation and spore dispersal in natural environments. PMID:20038633

  7. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  8. Biochar's effect on soil nitrous oxide emissions from a maize field with lime-adjusted pH treatment

    NASA Astrophysics Data System (ADS)

    Hüppi, R.; Felber, R.; Neftel, A.; Six, J.; Leifeld, J.

    2015-07-01

    Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesized mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize system, we set up a field trial with a 20 t ha-1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment, and a control treatment without any addition. An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg-N ha-1 in 3 applications of 40, 80 and 40 kg-N ha-1. Cumulative N2O emissions were 53 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.26) because of the large variability in the dataset. Limed soils emitted similar mean cumulative amounts of N2O as the control. This indicates that the observed N2O reduction effect of biochar was not caused by a pH effect.

  9. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  10. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  11. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  12. Soil pH determines microbial diversity and composition in the park grass experiment.

    PubMed

    Zhalnina, Kateryna; Dias, Raquel; de Quadros, Patricia Dörr; Davis-Richardson, Austin; Camargo, Flavio A O; Clark, Ian M; McGrath, Steve P; Hirsch, Penny R; Triplett, Eric W

    2015-02-01

    The Park Grass experiment (PGE) in the UK has been ongoing since 1856. Its purpose is to study the response of biological communities to the long-term treatments and associated changes in soil parameters, particularly soil pH. In this study, soil samples were collected across pH gradient (pH 3.6-7) and a range of fertilizers (nitrogen as ammonium sulfate, nitrogen as sodium nitrate, phosphorous) to evaluate the effects nutrients have on soil parameters and microbial community structure. Illumina 16S ribosomal RNA (rRNA) amplicon sequencing was used to determine the relative abundances and diversity of bacterial and archaeal taxa. Relationships between treatments, measured soil parameters, and microbial communities were evaluated. Clostridium, Bacteroides, Bradyrhizobium, Mycobacterium, Ruminococcus, Paenibacillus, and Rhodoplanes were the most abundant genera found at the PGE. The main soil parameter that determined microbial composition, diversity, and biomass in the PGE soil was pH. The most probable mechanism of the pH impact on microbial community may include mediation of nutrient availability in the soil. Addition of nitrogen to the PGE plots as ammonium sulfate decreases soil pH through increased nitrification, which causes buildup of soil carbon, and hence increases C/N ratio. Plant species richness and plant productivity did not reveal significant relationships with microbial diversity; however, plant species richness was positively correlated with soil microbial biomass. Plants responded to the nitrogen treatments with an increase in productivity and a decrease in the species richness. PMID:25395291

  13. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  14. Site-specific management of soil pH and nutrients in blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Site-specific management of soil pH and fertilizers is one of the most promising strategies in precision agriculture and is potentially applicable to many horticultural crops, including blueberry. Unlike most fruit crops, blueberry is adapted to low soil pH conditions in the range of 4-5.5 and has ...

  15. Teaching Plant-Soil Relationships with Color Images of Rhizosphere pH.

    ERIC Educational Resources Information Center

    Heckman, J. R.; Strick, J. E.

    1996-01-01

    Presents a laboratory exercise that uses a simple imaging technique to illustrate the profound effects that living roots exert on the pH of the surrounding soil environment. Achieves visually stimulating results that can be used to reinforce lectures on rhizosphere pH, nutrient availability, plant tolerance of soil acidity, microbial activity, and…

  16. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    PubMed

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  17. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  18. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  19. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  20. Testing CO2 Sequestration in an Alkaline Soil Treated with Flue Gas Desulfurization Gypsum (FGDG)

    NASA Astrophysics Data System (ADS)

    Han, Y.; Tokunaga, T. K.

    2012-12-01

    Identifying effective and economical methods for increasing carbon storage in soils is of interest for reducing soil CO2 fluxes to the atmosphere in order to partially offset anthropogenic CO2 contributions to climate change This study investigates an alternative strategy for increasing carbon retention in soils by accelerating calcite (CaCO3) precipitation and promoting soil organic carbon (SOC) complexation on mineral surfaces. The addition of calcium ion to soils with pH > 8, often found in arid and semi-arid regions, may accelerate the slow process of calcite precipitation. Increased ionic strength from addition of a soluble Ca source also suppresses microbial activity which oxidizes SOC to gaseous CO2. Through obtaining C mass balances in soil profiles, this study is quantifying the efficiency of gypsum amendments for mitigating C losses to the atmosphere. The objective of this study is to identify conditions in which inorganic and organic C sequestration is practical in semi-arid and arid soils by gypsum treatment. As an inexpensive calcium source, we proposed to use flue gas desulfurization gypsum (FGDG), a byproduct of fossil fuel burning electric power plants. To test the hypothesis, laboratory column experiments have been conducted in calcite-buffered soil with addition of gypsum and FGDG. The results of several months of column monitoring are demonstrating that gypsum-treated soil have lowered amounts of soil organic carbon loss and increased inorganic carbon (calcite) production. The excess generation of FGDG relative to industrial and agricultural needs, FGDG, is currently regarded as waste. Thus application of FGDG application in some soils may be an effective and economical means for fixing CO2 in soil organic and inorganic carbon forms.Soil carbon cycle, with proposed increased C retention by calcite precipitation and by SOC binding onto soil mineral surfaces, with both processes driven by calcium released from gypsum dissolution.

  1. Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium phosphates such as struvite (MgNH4PO4x6H2O) can be recovered from municipal, industrial and agricultural wastewaters. However, minimal research has been conducted on the beneficial reuse of these recovered products; conducted research has focused on low pH soils. This study determined wh...

  2. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  3. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang, China.

    PubMed

    Zhang, Xianjiao; Yao, Qing; Cai, Zhuoping; Xie, Xiaolin; Zhu, Honghui

    2013-01-01

    Fifty-eight terrestrial and salt-tolerant myxobacteria were isolated from the saline-alkaline soils collected from Xinjiang, China. Based on the morphologies and the 16S rRNA gene sequences, these isolates were assigned into 6 genera, Myxococcus, Cystobacter, Corallococcus, Sorangium, Nannocystis and Polyangium. All the strains grew better with 1% NaCl than without NaCl. Some Myxococcus strains were able to grow at 2% NaCl concentration, suggesting that these strains may be particular type of terrestrial myxobacteria. PMID:23936436

  4. Biochar's effect on soil nitrous oxide emissions from a maize field with lime adjusted pH treatment

    NASA Astrophysics Data System (ADS)

    Hüppi, Roman; Leifeld, Jens; Felber, Raphael; Neftel, Albrecht; Six, Johan

    2015-04-01

    Biochar is a carbon-rich, porous product from pyrolysis of organic residues. Especially tropical soils have shown positive response in yield to biochar addition. Its high stability in soil makes biochar a potent carbon sequestration option at the same time. A number of laboratory incubations have shown significantly reduced nitrous oxide (N2O) emissions from soil when mixed with biochar. Emission measurements from the field show the same trend but are much more scarce. One of the hypothesized mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH from the application of alkaline biochar. To test the effect of biochar on N2O emissions from a temperate maize system, we set up a field trial with a 20 t/ha biochar treatment, a limestone treatment adjusted to the same pH as with biochar and a control without addition. An automated static chamber greenhouse gas measurement system measured N2O emissions for each replicated (n=3) every 3.6 hours. The field was conventionally fertilised at a rate of 160 kg-N/ha in 3 doses of 40, 80 and 40 kg-N/ha. Cumulative emissions show a significant reduction for N2O in the biochar treatment by about 55 % relative to the control. The limed treatment shows similar emissions than control but with higher variability. This suggests that the N2O reduction effect of biochar is not mainly due to its liming effect. In conclusion, we confirm that biochar is a promising material to reduce N2O emissions from intensively managed agricultural soils.

  5. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries.

    PubMed

    Verma, Digvijay; Satyanarayana, T

    2011-09-01

    An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries. PMID:21519906

  6. Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Garratt, Eva J.; Laws, Andrew P.; Gunn, John; Humphreys, Paul N.

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  7. Evidence of the generation of isosaccharinic acids and their subsequent degradation by local microbial consortia within hyper-alkaline contaminated soils, with relevance to intermediate level radioactive waste disposal.

    PubMed

    Rout, Simon P; Charles, Christopher J; Garratt, Eva J; Laws, Andrew P; Gunn, John; Humphreys, Paul N

    2015-01-01

    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration. PMID:25748643

  8. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    PubMed

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P < 0.05) in the incubated soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was < 10.0 mg kg(-1) following by-product application, as compared to 24 mg kg(-1) for plants growing in unamended soil. PMID:23947715

  9. Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics.

    PubMed

    Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath

    2013-03-30

    Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. PMID:23083746

  10. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and

  11. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils.

    PubMed

    Zhang, Jun Jie; Yu, Tao; Lou, Kai; Mao, Pei Hong; Wang, En Tao; Chen, Wen Feng; Chen, Wen Xin

    2014-10-01

    Mesorhizobium muleiense, Mesorhizobium mediterraneum and Mesorhizobium ciceri are chickpea (Cicer arietinum L.) rhizobia that share a high similarity of the symbiotic genes nodC and nifH, but they have different geographic distributions. M. muleiense has been isolated and found only in alkaline soils of Xinjiang, China, whereas the other two strains have been found in the Mediterranean and India. To investigate the species stability of M. muleiense during natural evolution and its capability of competitive nodulation against the other two exotic species, re-sampling of nodules in the field and competition experiments between the three species were conducted. The results showed that the predominant microsymbiont associated with chickpea grown in Xinjiang was still M. muleiense, but the predominant genotypes of M. muleiense had changed significantly during the four years since a previous survey. The data also showed that M. mediterraneum and M. ciceri were more competitive than the residential strain of M. muleiense CCBAU 83963(T) in sterilized vermiculite or soils from Xinjiang. However, in non-sterilized soils, M. muleiense was the predominant nodule occupier. These results indicated that natural or adapting evolution of M. muleiense was occurring in fields subjected to changing environmental factors. In addition, the biogeography and symbiotic associations of rhizobia with their host legumes were also influenced by biological factors in the soil, such as indigenous rhizobia and other organisms. PMID:25123757

  12. Long-term changes in soil pH across major forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  13. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  14. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition. PMID:23711470

  15. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. PMID:26143606

  16. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  17. A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil.

    PubMed

    Sugimori, Daisuke; Utsue, Tomohiro

    2012-03-01

    High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8-9 and 25-40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200-4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH. PMID:22805803

  18. Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach

    PubMed Central

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5–8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0±0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars. PMID:25402470

  19. Influence of pH and electrolyte composition on adsorption of poliovirus by soils and minerals.

    PubMed Central

    Taylor, D H; Moore, R S; Sturman, L S

    1981-01-01

    The pH and the nature an concentration of simple electrolytes influenced the interaction of poliovirus type 2 with three soils, a sand, and a clay mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent mineral. In electrolytes above pH 9 the virus was not adsorbed extensively to the substrates, but below pH 7 almost all virus was bound. For each adsorbent there was a characteristic pH region of transition from strong to weak uptake. Differences between the soils in virus uptake were shown to parallel their pH-dependent charge properties, as determined by whole-particle microelectrophoresis. Only when the pH was close to or above the critical region was uptake increased with electrolyte concentration. The transition region for all substrates was above pH 7.5 the isoelectric point of the virus. Thus, it appears that when both the virus and substrate are highly negative charged, repulsive electrostatic effects may exceed inherent attractive interactions, thereby inhibiting adsorption. PMID:6274260

  20. Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi.

    PubMed

    Zhao, Yuechun; Yi, Xiaoyun

    2010-04-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5-4.5. PMID:20617049

  1. Effect of fertilizers on faba bean (V. faba) growth and soil pH

    NASA Astrophysics Data System (ADS)

    Angel, C.

    2013-12-01

    The purpose of this experiment was to see the effect of fertilizers on faba bean (V. faba) growth and soil pH. This experiment is important because of the agriculture here in California and the damage fertilizers are doing to the soil. Three Broad Fava Windsor beans (Vicia faba) were planted per pot, with at least three pots per treatment. There were four treatments: soil with phosphorus (P) fertilizer, soil with nitrogen (N) fertilizer, soil with both N and P fertilizer, and soil without any fertilizers (control). The soil pH was 7.7, and it had 26.6mg/kg Olsen-P, 2.2mg/kg ammonium-N and no nitrate-N (Data from UCD Horwath Lab). All pots were put in a greenhouse with a stable temperature of 80 degrees. I watered them 2-3 times a week. After two months I measured the soil pH using a calibrated pHep HI 98107 pocket-sized pH meter. After letting the plants dry I weighed the shoots and roots separately for dry biomass. From testing pH of the soil of the faba bean plants with and without fertilizer I found that only the nitrogen fertilizer made the soil more acidic than the other ones. The other ones became more basic. Also the N-fertilized plants weighed more than the other ones. This shows how the nitrogen fertilizer had a greater impact on the plants. I think the reason why the nitrogen and the phosphorus fertilizers didn't work as well is because there was an interaction between the fertilizers and the nitrogen one made the soil more acidic because of the way nitrogen is made.

  2. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  3. The essential role of coumarin secretion for Fe acquisition from alkaline soil

    PubMed Central

    Clemens, Stephan; Weber, Michael

    2016-01-01

    ABSTRACT Plant productivity is limited by the scarcity of the essential micronutrient iron particularly in alkaline soils. The root secretion of phenolics has long been recognized as a component of the acidification-reduction strategy to acquire iron (strategy I). However, very little molecular insight into this process was available until recently several research groups independently discovered the important role of coumarins for the growth of Arabidopsis thaliana under Fe-limited conditions. Genome-wide analyses of iron deficiency responses, mutant screening and metabolomics experiments all converged on the finding that the synthesis and root exudation of scopoletin, esculetin and other coumarins is essential for iron uptake from substrates with low iron availability. Here we describe the evidence supporting this conclusion and discuss important questions that now have to be addressed in order to better understand the mechanistic basis of coumarin-dependent iron uptake and its significance within the plant kingdom. PMID:26618918

  4. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    PubMed

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. PMID:21959092

  5. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  6. Effects of Soil pH on Reproduction of Pratylenchus penetrans and Forage Yield of Alfalfa

    PubMed Central

    Willis, C. B.

    1972-01-01

    'Vernal' alfalfa was grown for 30 weeks in nematode-free soil and in soil infested with Pratylenchus penetrans. Charlottetown fine sandy loam soil was used at its pH of 4.4 and at adjusted reactions of 5.2, 6.4 and 7.3. Nematode reproduction was significantly greater at pit 5.2 and 6.4 and was not related to alfalfa root production over the full pH range studied. A significant nematode infestation X soil pit interaction on forage yield was recorded. Nematode infestation significantly decreased forage yields at ptt 5.2 and 6.4 but not at pH 4.4 and 7.3. PMID:19319283

  7. Influence of soil pH in vegetative filter strips for reducing soluble nutrient transport.

    PubMed

    Rahmana, Atikur; Rahmana, Shafiqur; Cihacek, Larry

    2014-08-01

    Low efficacy of vegetative filter strips (VFS) in reducing soluble nutrients has been reported in research articles. Solubility of phosphorus and nitrogen compounds is largely affected by pH of soil. Changing soil pH may result in a decrease in soluble nutrient transportation through VFS. This study was conducted to evaluate the effect of pH levels of VFS soil on soluble nutrient transport reduction from manure-borne runoff. Soil (loamy sand texture; bulk density 1.3 g cm-3) was treated with calcium carbonate to change pH at different pH treatment levels (5.5-6.5, 6.5-7.5, and 7.5-8.5), soil was packed into galvanized metal boxes, and tall fescue grasses were established in the boxes to simulate VFS. Boxes were placed in an open environment, tilted to a 3.0% slope, and 44.0 L manure-amended water was applied through the VFS by a pump at a rate of 1.45 L min-1. Water samples were collected at the inlet and outlet as well as from the leachate. Samples were analysed for ortho-phosphorus, ammonium nitrogen, nitrate nitrogen, and potassium. Highest transport reductions in ortho-phosphorus (42.4%) and potassium (20.5%) were observed at pH range 7.5-8.5. Ammonium nitrogen transport reduction was the highest at pH level of 6.5-7.5 and was 26.1%. Surface transport reduction in nitrate nitrogen was 100%, but leachate had the highest concentration of nitrate nitrogen. Mass transport reduction also suggested that higher pH in the VFS soil are effective in reducing some soluble nutrients transport. PMID:24956766

  8. Effect of redox potential and pH on TNT transformation in soil-water slurries

    SciTech Connect

    Price, C.B.; Brannon, J.M.; Hayes, C.A.

    1997-10-01

    The presence of 2,4,6-trinitrotoluene (TNT) and its transformation products in surface soil, the vadose zone, and ground water can present serious environmental problems. This situation is exacerbated because the processes that control the mobility and transformation of TNT are not well understood. The objective of this study was to determine the effects of redox potential (Eh) and pH on the fate and transformation of TNT in soil. An initial investigation of soil components responsible for the observed TNT transformation was also conducted. Laboratory investigations consisted of testing at four separate redox potentials and four pH levels. An 18:1 (water:soil) suspension spiked with 100 {micro}g/g TNT was used. Results indicated that TNT was unstable under all redox and pH conditions, and was least stable under highly reducing conditions at all four pH values. Greater amounts of TNT were incorporated into soil organic matter under anaerobic than under aerobic conditions. Results of the soil component study indicated that the presence of Fe{sup +2} sorbed to clay surfaces may account for the rapid disappearance of TNT at reduced redox potentials. TNT in ground water moving into areas of intense reduction would not persist for long, but would undergo transformation and binding by soil organic matter.

  9. High-quality permanent draft genome sequence of Ensifer medicae strain WSM244, a microsymbiont isolated from Medicago polymorpha growing in alkaline soil

    SciTech Connect

    Ardley, Julie; Tian, Rui; O’Hara, Graham; Seshadri, Rekha; Reddy, T. B. K.; Pati, Amrita; Woyke, Tanja; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Howieson, John; Reeve, Wayne

    2015-12-01

    We report that Ensifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.0) in Tel Afer, Iraq. WSM244 is the only acid-sensitive E. medicae strain that has been sequenced to date. It is effective at fixing nitrogen with M. polymorpha L., as well as with more alkaline-adapted Medicago spp. such as M. littoralis Loisel., M. scutellata (L.) Mill., M. tornata (L.) Mill. and M. truncatula Gaertn. This strain is also effective with the perennial M. sativa L. Here we describe the features of E. medicae WSM244, together with genome sequence information and its annotation. The 6,650,282 bp high-quality permanent draft genome is arranged into 91 scaffolds of 91 contigs containing 6,427 protein-coding genes and 68 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

  10. High-quality permanent draft genome sequence of Ensifer medicae strain WSM244, a microsymbiont isolated from Medicago polymorpha growing in alkaline soil

    DOE PAGESBeta

    Ardley, Julie; Tian, Rui; O’Hara, Graham; Seshadri, Rekha; Reddy, T. B. K.; Pati, Amrita; Woyke, Tanja; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; et al

    2015-12-01

    We report that Ensifer medicae WSM244 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago species. WSM244 was isolated in 1979 from a nodule recovered from the roots of the annual Medicago polymorpha L. growing in alkaline soil (pH 8.0) in Tel Afer, Iraq. WSM244 is the only acid-sensitive E. medicae strain that has been sequenced to date. It is effective at fixing nitrogen with M. polymorpha L., as well as with more alkaline-adapted Medicago spp. such as M. littoralis Loisel., M. scutellata (L.) Mill., M. tornata (L.)more » Mill. and M. truncatula Gaertn. This strain is also effective with the perennial M. sativa L. Here we describe the features of E. medicae WSM244, together with genome sequence information and its annotation. The 6,650,282 bp high-quality permanent draft genome is arranged into 91 scaffolds of 91 contigs containing 6,427 protein-coding genes and 68 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.« less

  11. Influence of Microsprinkler Irrigation Amount on Water, Soil, and pH Profiles in a Coastal Saline Soil

    PubMed Central

    Chu, Linlin; Kang, Yaohu; Wan, Shuqin

    2014-01-01

    Microsprinkler irrigation is a potential method to alleviate soil salinization. After conducting a homogeneous, highly saline, clayey, and coastal soil from the Bohai Gulf in northern China in a column experiment, the results show that the depth of the wetting front increased as the water amount applied increased, low-salinity and low-SAR enlarged after irrigation and water redistribution, and the soil pH increased with an increase in irrigation amount. We concluded that a water amount of 207 mm could be used to reclaim the coastal saline soil in northern China. PMID:25147843

  12. Fluctuations in Ammonia Oxidizing Communities Across Agricultural Soils are Driven by Soil Structure and pH

    PubMed Central

    Pereira e Silva, Michele C.; Poly, Franck; Guillaumaud, Nadine; van Elsas, Jan Dirk; Salles, Joana Falcão

    2012-01-01

    The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators) of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR) of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively), and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 μgN h−1 gdw−1 and 1.68 ± 0.11 μgN h−1 gdw−1, being higher in soils with higher clay content (1.09 ± 0.12 μgN h−1 gdw−1) and lower in soils with lower clay percentages (0.27 ± 0.04 μgN h−1 gdw−1). Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10%) the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%). Similar trends were observed for the sizes of these communities. The present work represents a first step toward defining a NOR for soil nitrification. The sensitivity of the process and organisms to impacts from the milieu support their use as proxies in the

  13. Bacterial Chitinolytic Communities Respond to Chitin and pH Alteration in Soil

    PubMed Central

    Kielak, Anna M.; Cretoiu, Mariana Silvia; Semenov, Alexander V.; Sørensen, Søren J.

    2013-01-01

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA and chiA genes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity of chiA gene types in soil is enormous and (i) that different chiA gene types are selected by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our understanding of the response of the soil bacterial communities to chitin and are of use for both the understanding of soil suppressiveness and the possible mining of soil for novel enzymes. PMID:23104407

  14. Bacterial chitinolytic communities respond to chitin and pH alteration in soil.

    PubMed

    Kielak, Anna M; Cretoiu, Mariana Silvia; Semenov, Alexander V; Sørensen, Søren J; van Elsas, Jan Dirk

    2013-01-01

    Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA and chiA genes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity of chiA gene types in soil is enormous and (i) that different chiA gene types are selected by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our understanding of the response of the soil bacterial communities to chitin and are of use for both the understanding of soil suppressiveness and the possible mining of soil for novel enzymes. PMID:23104407

  15. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  16. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    PubMed

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)). PMID:26604103

  17. Soil pH Mapping with an On-The-Go Sensor

    PubMed Central

    Schirrmann, Michael; Gebbers, Robin; Kramer, Eckart; Seidel, Jan

    2011-01-01

    Soil pH is a key parameter for crop productivity, therefore, its spatial variation should be adequately addressed to improve precision management decisions. Recently, the Veris pH Manager™, a sensor for high-resolution mapping of soil pH at the field scale, has been made commercially available in the US. While driving over the field, soil pH is measured on-the-go directly within the soil by ion selective antimony electrodes. The aim of this study was to evaluate the Veris pH Manager™ under farming conditions in Germany. Sensor readings were compared with data obtained by standard protocols of soil pH assessment. Experiments took place under different scenarios: (a) controlled tests in the lab, (b) semicontrolled test on transects in a stop-and-go mode, and (c) tests under practical conditions in the field with the sensor working in its typical on-the-go mode. Accuracy issues, problems, options, and potential benefits of the Veris pH Manager™ were addressed. The tests demonstrated a high degree of linearity between standard laboratory values and sensor readings. Under practical conditions in the field (scenario c), the measure of fit (r2) for the regression between the on-the-go measurements and the reference data was 0.71, 0.63, and 0.84, respectively. Field-specific calibration was necessary to reduce systematic errors. Accuracy of the on-the-go maps was considerably higher compared with the pH maps obtained by following the standard protocols, and the error in calculating lime requirements was reduced by about one half. However, the system showed some weaknesses due to blockage by residual straw and weed roots. If these problems were solved, the on-the-go sensor investigated here could be an efficient alternative to standard sampling protocols as a basis for liming in Germany. PMID:22346591

  18. The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Konstantinov, A. I.; Perminova, I. V.

    2009-11-01

    Preparations of humic acids (HAs) were isolated from a gray forest soil by sequential alkaline extraction. From a sample of 500 g, HA preparations of 2.24, 0.23, and 0.20 g were obtained from the first, second, and third alkaline extracts, respectively. The structure of the preparations was determined by 13C NMR spectroscopy. At each next extraction step, the portion of aliphatic fragments in the HA preparations increased and the content of aromatic structures decreased. The conclusion was drawn that a single extraction is sufficient for obtaining a representative HA sample.

  19. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions

    PubMed Central

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-01-01

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments. PMID:22829666

  20. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    NASA Astrophysics Data System (ADS)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  1. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection.

    PubMed

    Felle, Hubert H; Waller, Frank; Molitor, Alexandra; Kogel, Karl-Heinz

    2009-09-01

    We analyze here, by noninvasive electrophysiology, local and systemic plant responses in the interaction of barley (Hordeum vulgare L.) with the root-colonizing basidiomycete Piriformospora indica. In the short term (seconds, minutes), a constant flow of P. indica chlamydospores along primary roots altered surface pH characteristics; whereas the root-hair zone transiently alkalized-a typical elicitor response-the elongation zone acidified, indicative of enhanced H(+) extrusion and plasma membrane H(+) ATPase stimulation. Eight to 10 min after treating roots with chlamydospores, the apoplastic pH of leaves began to acidify, which contrasts with observations of an alkalinization response to various stressors and microbe-associated molecular patterns (MAMPs). In the long term (days), plants with P. indica-colonized roots responded to inoculation with the leaf-pathogenic powdery mildew fungus Blumeria graminis f. sp. hordei with a leaf apoplastic pH increase of about 2, while the leaf apoplast of noncolonized barley responded to B. graminis f. sp. hordei merely with a pH increase of 0.8. The strong apoplastic pH response is reminiscent of B. graminis f. sp. hordei-triggered pH shifts in resistance gene-mediated resistant barley leaves or upon treatment with a chemical resistance inducer. In contrast, the MAMP N-acetylchito-octaose did not induce resistance to B. graminis f. sp. hordei and did not trigger the primed apoplastic pH shift. We speculate that the primed pH increase is indicative of and supports the potentiated systemic response to B. graminis f. sp. hordei-induced by P. indica in barley. PMID:19656052

  2. Microbial colonisation of sterilised soils across a pH gradient in a full factorial re-inoculation experiment

    NASA Astrophysics Data System (ADS)

    Barcenas Moreno, Gema; Bååth, Erland; Rousk, Johannes

    2015-04-01

    We compared the influence of community and environmental conditions for the functioning (fungal and bacterial growth and respiration) and trait distribution (bacterial pH-tolerance) of soil microorganisms across a pH gradient. A reciprocal inoculation experiment, including pHs 4.1, 5.2, 6.7, and 8.3, was used. Sterilised soil microcosms with added plant material were inoculated with fresh soil (communities) and monitored for two months. Respiration was dominated by bacteria at high and by fungi at low pHs. The bacterial pH-tolerance of all inoculated communities (initial trait distribution) converged with the pH of the soil (environment). There were also differences between inocula, resulting in suboptimal pH-tolerance when the inoculum pH did not correspond to soil pH; low pH inocula had lower than optimal pH-tolerance in high pH soils and vice versa. Bacterial communities misaligned to their environment had impaired functioning (growth in all soils and respiration in high pH soils). The inoculum effect on bacterial pH tolerance and functioning could be detected within one week and remained for two months. Fungal communities emanating from low pH inocula consistently resulted in higher fungal growth and biomass (all soils) and respiration (low pH soils). This suggested that variation in fungal pH-tolerance did not influence their performance, in contrast with bacteria. It is likely that a larger fungal sample in low pH inocula explained these results. Consequently, respiration was characterised by the alignment of the bacterial trait distribution to the environment for high pH soils, while it was characterised by larger fungal inoculum for low pH soils.

  3. Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity ▿

    PubMed Central

    Čuhel, Jiří; Šimek, Miloslav; Laughlin, Ronnie J.; Bru, David; Chèneby, Dominique; Watson, Catherine J.; Philippot, Laurent

    2010-01-01

    The objective of this study was to investigate how changes in soil pH affect the N2O and N2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H2SO4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N2O and N2 emissions using the 15N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nirS, nirK, and nosZ denitrification genes. Overall, our results indicate that soil pH is of importance in determining the nature of denitrification end products. Thus, we found that the N2O/(N2O + N2) ratio increased with decreasing pH due to changes in the total denitrification activity, while no changes in N2O production were observed. Denitrification activity and N2O emissions measured under laboratory conditions were correlated with N fluxes in situ and therefore reflected treatment differences in the field. The size of the denitrifying community was uncoupled from in situ N fluxes, but potential denitrification was correlated with the count of NirS denitrifiers. Significant relationships were observed between nirS, napA, and narG gene copy numbers and the N2O/(N2O + N2) ratio, which are difficult to explain. However, this highlights the need for further studies combining analysis of denitrifier ecology and quantification of denitrification end products for a comprehensive understanding of the regulation of N fluxes by denitrification. PMID:20118356

  4. Effects of pH and manure on transport of sulfonamide antibiotics in soil.

    PubMed

    Strauss, Claudia; Harter, Thomas; Radke, Michael

    2011-01-01

    Sulfonamide antibiotics are a commonly used group of compounds in animal husbandry. They are excreted with manure, which is collected in a storage lagoon in certain types of confined animal feeding operations. Flood irrigation of forage fields with this liquid manure creates the potential risk of groundwater contamination in areas with shallow groundwater levels. We tested the hypothesis that-in addition to the soil characteristics-manure as cosolute and manure pH are two major parameters influencing sulfonamide transport in soils. Solute displacement experiments in repacked, saturated soil columns were performed with soil (loamy sand) and manure from a dairy farm in California. Breakthrough of nonreactive tracer and sulfadimethoxine, sulfamethazine, and sulfamethoxazole at different solution pH (5, 6.5, 8.5) with and without manure was modeled using Hydrus-1D to infer transport and reaction parameters. Tracer and sulfonamide breakthrough curves were well explained by a model concept based on physical nonequilibrium transport, equilibrium sorption, and first-order dissipation kinetics. Sorption of the antibiotics was low ( K₄ ≤ 0.7 L kg) and only weakly influenced by pH and manure. However, sulfonamide attenuation was significantly affected by both pH and manure. The mass recovery of sulfonamides decreased with decreasing pH, e.g., for sulfamethoxazole from 77 (pH 8.5) to 56% (pH 5). The sulfonamides were highly mobile under the studied conditions, but manure application increased their attenuation substantially. The observed attenuation was most likely caused by a combination of microbial transformation and irreversible sorption to the soil matrix. PMID:21869527

  5. Interactive Effects of Soil ph, Halosulfuron Rate, and Application Method on Carryover to Turnip Green and Cabbage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in 2006 and 2007 to evaluate the tolerance of autumn-planted cabbage and turnip green to halosulfuron applied the previous spring to cantaloupe. Main plots were three levels of soil pH; maintained at a natural pH level, pH raised with Ca(OH)2, and pH lowered with Al2(SO...

  6. Effect of Soil Temperature and pH on Resistance of Soybean to Heterodera glycines

    PubMed Central

    Anand, S. C.; Matson, K. W.; Sharma, S. B.

    1995-01-01

    Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH's 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable. PMID:19277315

  7. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  8. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity. PMID:25744648

  9. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  10. Effects of solution pH and complexing reagents on the desorption of radionuclides in soil

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    In contaminated soils, radionuclides such as uranium and/or thorium may be associated with different chemical species on soil surfaces or inside soil grains with consequent differences in leachability and mobility. Chemical species in contacting solutions can react with soil contaminants by dissolution, ion exchange, or complexation to release contaminants from the soil to the solution. It is important to understand the effect of chemical species in solution for investigating the distribution of uranium and thorium between the soil and the solution under desorption conditions. In this work, the effects of the solution pH and the complexing reagents on the desorption of uranium and thorium under saturated equilibrium conditions were investigated.

  11. Effects of solution pH and complexing reagents on the desorption of radionuclides in soil

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-05-01

    In contaminated soils, radionuclides such as uranium and/or thorium may be associated with different chemical species on soil surfaces or inside soil grains with consequent differences in leachability and mobility. Chemical species in contacting solutions can react with soil contaminants by dissolution, ion exchange, or complexation to release contaminants from the soil to the solution. It is important to understand the effect of chemical species in solution for investigating the distribution of uranium and thorium between the soil and the solution under desorption conditions. In this work, the effects of the solution pH and the complexing reagents on the desorption of uranium and thorium under saturated equilibrium conditions were investigated.

  12. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long; Alshawabkeh, Akram N

    2005-10-01

    Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards. PMID:16202805

  13. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils. PMID:18707610

  14. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands

    PubMed Central

    Jiao, Feng; Shi, Xin-Rong; Han, Feng-Peng; Yuan, Zhi-You

    2016-01-01

    Due to the different degrees of controls exerted by biological and geochemical processes, climate changes are suggested to uncouple biogeochemical C, N and P cycles, influencing biomass accumulation, decomposition and storage in terrestrial ecosystems. However, the possible extent of such disruption in grassland ecosystems remains unclear, especially in China’s steppes which have undergone rapid climate changes with increasing drought and warming predicted moving forward in these dryland ecosystems. Here, we assess how soil C-N-P stoichiometry is affected by climatic change along a 3500-km temperate climate transect in Inner Mongolia, China. Our results reveal that the soil from more arid and warmer sites are associated with lower soil organic C, total N and P. The ratios of both soil C:P and N:P decrease, but soil C:N increases with increasing aridity and temperature, indicating the predicted decreases in precipitation and warming for most of the temperate grassland region could lead to a soil C-N-P decoupling that may reduce plant growth and production in arid ecosystems. Soil pH, mainly reflecting long-term climate change in our sites, also contributes to the changing soil C-N-P stoichiometry, indicating the collective influences of climate and soil type on the shape of soil C-N-P balance. PMID:26792069

  15. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands.

    PubMed

    Jiao, Feng; Shi, Xin-Rong; Han, Feng-Peng; Yuan, Zhi-You

    2016-01-01

    Due to the different degrees of controls exerted by biological and geochemical processes, climate changes are suggested to uncouple biogeochemical C, N and P cycles, influencing biomass accumulation, decomposition and storage in terrestrial ecosystems. However, the possible extent of such disruption in grassland ecosystems remains unclear, especially in China's steppes which have undergone rapid climate changes with increasing drought and warming predicted moving forward in these dryland ecosystems. Here, we assess how soil C-N-P stoichiometry is affected by climatic change along a 3500-km temperate climate transect in Inner Mongolia, China. Our results reveal that the soil from more arid and warmer sites are associated with lower soil organic C, total N and P. The ratios of both soil C:P and N:P decrease, but soil C:N increases with increasing aridity and temperature, indicating the predicted decreases in precipitation and warming for most of the temperate grassland region could lead to a soil C-N-P decoupling that may reduce plant growth and production in arid ecosystems. Soil pH, mainly reflecting long-term climate change in our sites, also contributes to the changing soil C-N-P stoichiometry, indicating the collective influences of climate and soil type on the shape of soil C-N-P balance. PMID:26792069

  16. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed Central

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-01-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  17. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-09-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  18. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities. PMID:27374919

  19. Influence of pH on wetting kinetics of a pine forest soil

    NASA Astrophysics Data System (ADS)

    Amer, Ahmad; Schaumann, Gabriele; Diehl, Dörte

    2014-05-01

    Water repellent properties of organic matter significantly alter soil water dynamics. Various environmental factors control appearance and breakup of repellency in soil. Beside water content and temperature also pH exerts an influence on soil water repellency although investigations achieved partly ambiguous results; some found increasing repellency with increasing pH (Terashima et al. 2004; Duval et al. 2005), other with decreasing pH (Karnok et al. 1993; Roper 2005) and some found repellency maxima at intermediate pH and an increase with decreasing and with increasing pH (Bayer and Schaumann 2007; Diehl et al. 2010). The breakup of repellency may be observed via the time dependent sessile drop contact angle (TISED). With water contact time, soil-water contact angle decreases until complete wetting is reached. Diehl and Schaumann (2007) calculated the activation energy of the wetting process from the rate of sessile drop wetting obtained at different temperatures and draw conclusions on chemical or physical nature of repellency. The present study aims at the influence of pH on the wetting kinetics of soil. Therefore, TISED of soil was determined as a function of pH and temperature. We used upper soil samples (0 - 10 cm) from a pine forest in the southwest of Germany (Rheinland-Pfalz). Samples were air-dried, sieved < 1.0 mm and pH was modified by NH3 and HCl gas (Diehl et al. 2010) and measured electrometrically in 0.01 M CaCl2 solution. TISED measurements (2007)were conducted at 10, 20 and 30 oC using OCA 15 Contact Angle Meter (Dataphysics, Germany) on three replications for each soil sample. Apparent work of adhesion was calculated, plotted vs. time and mathematically fitted using double exponential function. Rate constants of wetting were used to determine the activation energy by Arrhenius equation. First results indicated that despite comparable initial contact angles, pH alteration strongly changed the wetting rate suggesting maximum wetting resistance at

  20. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt.

    PubMed

    Li, Wen-Jun; Zhang, Yu-Qin; Schumann, Peter; Chen, Hua-Hong; Hozzein, Wael N; Tian, Xin-Peng; Xu, Li-Hua; Jiang, Cheng-Lin

    2006-04-01

    A coccoid, non-motile actinobacterium, designated strain YIM 70003T, was isolated from a saline, alkaline, desert-soil sample from Egypt. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism formed a distinct phyletic line within the genus Kocuria and was most closely related to Kocuria polaris DSM 14382T (98.6 % sequence similarity) and Kocuria rosea DSM 20447T (98.2 %). Chemotaxonomic data, including the Lys-Ala3 peptidoglycan type, the presence of phosphatidylglycerol and diphosphatidylglycerol as the predominant phospholipids, the presence of MK-8(H2) and MK-9(H2) as the major menaquinones, the predominance of fatty acids ai-C(15 : 0) and i-C(15 : 0) and the DNA G+C content, also supported the affiliation of the isolate to the genus Kocuria. The low DNA-DNA relatedness with K. polaris DSM 14382T (56.6 %) and K. rosea DSM 20447T (15.5 %) in combination with phenotypic data show that strain YIM 70003T should be classified as a novel species of the genus Kocuria. The name Kocuria aegyptia sp. nov. is proposed, with strain YIM 70003T (=CCTCC AA203006T = CIP 107966T = KCTC 19010T = DSM 17006T) as the type strain. PMID:16585685

  1. Persistence of spiromesifen in soil: influence of moisture, light, pH and organic amendment.

    PubMed

    Mate, Ch Jamkhokai; Mukherjee, Irani; Das, Shaon Kumar

    2015-02-01

    Persistence of spiromesifen in soil as affected by varying moisture, light, compost amendment, soil sterilization and pH in aqueous medium were studied. Degradation of spiromesifen in soil followed the first-order reaction kinetics. Effect of different moisture regimes indicated that spiromesifen dissipated faster in submerged soil (t 1/2 14.3-16.7 days) followed by field capacity (t 1/2 18.7-20.0 days), and dry soil (t 1/2 21.9-22.9 days). Dissipation was faster in sterilized submerged (t 1/2 17.7 days) than in sterilized dry (t 1/2 35.8 days). Photo spiromesifen metabolite was not detected under different moisture regimes. After 30 days, enol spiromesifen metabolite was detected under submerged condition and was below detectable limit (<0.001 μg g(-1)) after 90 days. Soil amendment compost (2.5 %) at field capacity enhanced dissipation of the insecticide, and half-life value was 14.3 against 22.4 days without compost amendment. Under different pH condition, residues persisted in water with half-life values 5.7 to 12.5 days. Dissipation in water was faster at pH 9.0 (t 1/2 5.7 days), followed by pH 4.0 (t 1/2 9.7 days) and pH 7.2 (t 1/2 12.5 days). Exposure of spiromesifen to different light conditions indicated that it was more prone to degradation under UV light (t 1/2 3-4 days) than sunlight exposure (t 1/2 5.2-8.1 days). Under sunlight exposure, photo spiromesifen metabolite was detected after 10 and 15 days as compared to 3 and 5 days under UV light exposure. PMID:25616783

  2. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid.

    PubMed

    Song, Guixue; Hayes, Michael H B; Novotny, Etelvino H; Simpson, Andre J

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% (v/v) sulphuric acid (H(2)SO(4)) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state (13)C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H(2)SO(4) medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H(2)SO(4) medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H(2)SO(4) are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic

  3. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells.

    PubMed

    Pastor-Soler, Núria M; Hallows, Kenneth R; Smolak, Christy; Gong, Fan; Brown, Dennis; Breton, Sylvie

    2008-02-01

    In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H(+)-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N(6)-monobutyryl-3'-5'-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 microM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2-O-methyl-cAMP (8CPT-2-O-Me-cAMP; 10 microM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 microM), 8CPT-2-O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli. PMID:18160485

  4. Adsorption behavior of copper and zinc in soils: Influence of pH on adsorption characteristics

    SciTech Connect

    Msaky, J.J. ); Calvet, R. )

    1990-08-01

    The authors studied adsorption of copper and zinc on three different soils: a brown silty soil, an Oxisol, and a Podzol. They determined the amounts adsorbed and the shapes of adsorption isotherms as a function of the pH of the adsorbing medium at a constant ionic strength. The adsorbed amount-pH relationship depended strongly on the natures of the metallic cation and of the soil. The pH greatly influenced the characteristics of adsorption isotherms. They based interpretation on the variations with the pH of both adsorbent affinity for the metal in relation to the surface electric charge and chemical speciation in solution. The adsorption mechanism in the Oxisol probably involves monohydroxylated cations but is more determined by bivalent cations in the brown silty soil and the Podzol. From a general point of view, adsorption of copper and zinc cannot be represented with a single adsorption constant, but should be described by adsorption isotherms obtained at various pH values.

  5. EVALUATION OF CHEMICAL AMENDMENTS FOR PH AND REDOX STABILIZTION IN AQUEOUS SUSPENSIONS OF THREE CALIFORNIA SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many chemically and biologically important trace element, heavy metal, and organic contaminant reactions in soils are constrained by pH and redox conditions and changes in these conditions can significantly affect reaction rates. Although closed-system, batch methods have been used for many years to...

  6. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  7. Declines in Soil pH due to Anthropogenic Nitrogen Inputs Alter Buffering and Exchange Reactions in Tropical Forest Soils

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.

    2003-12-01

    Anthropogenic nitrogen (N) inputs may alter tropical soil buffering and exchange reactions that have important implications for nutrient cycling, forest productivity, and downstream ecosystems. In contrast to relatively young temperate soils that are typically buffered from N inputs by base cation reactions, aluminum reactions may serve to buffer highly weathered tropical soils and result in immediate increases in aluminum mobility and toxicity. Increased nitrate losses due to chronic N inputs may also deplete residual base cations in already weathered base cation-poor soils, further acidify soils, and thereby reduce nitrate mobility through pH-dependent anion exchange reactions. To test these hypotheses, I determined soil pH and cation and anion exchange capacity (CEC and AEC) and measured base cation and aluminum soil solution losses following first-time and long-term experimental N additions from two Hawaiian tropical forest soils, a 300 year old Andisol and a 4.1 million year old Oxisol. I found that elevated base cation losses accompanied increased nitrate losses after first time N additions to the young Andisol whereas immediate and large aluminum losses were associated with increased nitrate losses from the Oxisol. In the long-term, base cation and aluminum losses increased in proportion to nitrate losses. Long-term N additions at both sites resulted in significant declines in soil pH, decreased CEC and increased AEC. These results suggest that even chronic N inputs resulting in small but elevated nitrate losses may deplete residual base cations, increase mobility and toxicity of aluminum, and potentially lead to declines in forest productivity and acidification of downstream ecosystems. These findings also suggest that AEC may provide a long-term mechanism to delay nitrate losses in tropical forests with significant variable charge that are experiencing chronic anthropogenic N inputs.

  8. Observation of Soil Water Repellency and pH soil change under Tropical Pine Plantations Compared with Native Tropical Forest

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Lebron, I.; Oatham, M. P.; Wuddivira, M. N.

    2011-12-01

    In temperate climates, soil water repellency (SWR) has been documented to develop with land-use change from native forest to pine plantations. In the tropics a sparse evidence base has been documented for the observation of SWR, but no investigation has been conducted to determine the consequences of changing land-use from native forest to pine plantations with regard to SWR. In our research we broaden the evidence base for tropical SWR by comparing the SWR behavior of seven tropical pine plantations in Trinidad with co-located native forest. We found that SWR occurred under both pine and native forest, but was more persistent and less heterogeneous under pine. The SWR was water content dependent with a threshold ~0.2 m3m-3, it showed a linear dependence with litter depth, and it was also found to be pH dependent, being higher in more acidic soils. The forest floor pH, contrary to convention for temperate climates, was observed to increase under some pine plantations, as compared with native tropical forest. This only occurred in the very acidic tropical soils (pH<4), but may have important biogeochemical consequences with regard to soil and water quality.

  9. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2015-01-01

    Inland waters have been recognized as a significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Currently, direct measurements of water pCO2 remain scarce in freshwaters, and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14 200 μmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were >10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were >100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, which increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. No empirical relationship could be derived from our data set in order to correct calculated pCO2 for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we conclude that regional and global estimates of CO2 outgassing from freshwaters based on pH and TA data only are most likely overestimated, although the magnitude of the overestimation needs further quantitative analysis. Direct measurements of pCO2 are recommended in inland waters in general

  10. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  11. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. PMID:25592465

  12. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  13. Yield and composition of soybeans as influenced by soil pH, phosphorus, zinc, and copper

    SciTech Connect

    Payne, G.G.; Summer, M.E.; Plank, C.O.

    1986-01-01

    This field study was conducted to determine the response of soybean cultivars with different tolerance to P induced growth disorders to applied P, Zn, and Cu at different soil pH levels. Both Wright (tolerant) and Hutton (sensitive) soybean cultivars showed a significant response to applied Zn. The greatest response was observed for Hutton although Wright had seed yields as great or greater than those for Hutton. Yield of both cultivars was significantly correlated with leaf Zn concentration and the P/Zn ratio. The highest yields for both cultivars were associated with leaf Zn concentrations of approximately 26 ..mu..g/g and P/Zn ratios of 115. Applied P did not affect yield or P absorption of either cultivar. Copper fertilization increased Cu concentration in plant tissue by 38% to 58% but did not influence seed yields. Seed yield and Zn absorption of both cultivars was reduced by increased pH with yield decreasing at a faster rate when Zn was not applied than when plants received Zn fertilizer. Copper Concentrations in plant tissue were not affected by increased soil pH. Zinc concentration of leaf tissue was also affected by a P-Zn interaction. Wright contained much greater concentrations of leaf Zn, Fe, Cu, and several other nutrients than did Hutton indicating a greater ability to absorb these elements under conditions of high soil pH and P levels. This ability may account for the difference in tolerance to P induced growth disorders that has been observed between these cultivars. Within each pH treatment, Zn absorption was highly correlated to extractable soil Zn.

  14. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    PubMed

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed. PMID:26850158

  15. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    PubMed Central

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  16. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey.

    PubMed

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  17. Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels

    SciTech Connect

    Singh, B.R.; Almas, A.; Narwal, R.P.; Jeng, A.S.

    1995-12-01

    A greenhouse experiment was conducted for three years to study the effect of different pH levels on metal concentrations in plants and the cadmium (Cd) extractability by DTPA and NH{sub 4}NO{sub 3}. The soils used were an alum shale (clay loam) and a moraine (loam), which were adjusted to pH levels of 5.5, 6.5, 7.0, and 7.5. Wheat (Triticum aestivum), carrot (Daucus carota L.), and lettuce (Lactuca sativa) were grown as test crops. Crop yields were not consistently affected at increasing soil pH levels. The concentration of Cd in plant species decreased with increasing soil pH in both soils and in all three years. Significant concentration differences between soil pH levels were only seen in wheat and carrot crops. Increasing soil pH also decreased the nickel (Ni) and zinc (Zn) concentrations in plants in the first year crop but the copper (Cu) concentration was not consistently affected by soil pH. The effect of pH was more pronounced in the moraine then the alum shale soil. The DTPA-and NH{sub 4}NO{sub 3}-extractable Cd was decreased with the increasing soil pH and the pH effect was more pronounced with NH{sub 4}NO{sub 3} extractable Cd. Both extractants were found equally effective in relation to the Cd concentration in plants in this study. 33 refs., 2 figs., 7 tabs.

  18. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest

    NASA Astrophysics Data System (ADS)

    Lebron, Inma; Robinson, David A.; Oatham, Mike; Wuddivira, Mark N.

    2012-01-01

    SummaryIn temperate climates, soil water repellency (SWR) has been documented to develop with land-use change from native forest to pine plantations. In the tropics a sparse evidence base has been documented for the observation of SWR, but no investigation has been conducted to determine the consequences of changing land-use from native forest to pine plantations with regard to SWR. In our research we broaden the evidence base for tropical SWR by comparing the SWR behavior of seven tropical pine plantations in Trinidad with co-located native forest. We found that SWR occurred under both pine and native forest, but was more persistent and less heterogeneous under pine. The SWR was water content dependent with a threshold ˜0.2 m 3 m -3, it showed a linear dependence with litter depth, and it was also found to be higher in more acidic soils. The forest floor pH, contrary to convention for temperate climates, was observed to increase under some pine plantations, as compared with native tropical forest. This only occurred in the very acidic tropical soils (pH < 4), but may have important biogeochemical consequences with regard to soil and water quality.

  19. Integrating pH, substrate, and plant regrowth effects on soil nitrogen cycling after fire

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Schimel, J.; Tague, C.; D'Antonio, C. M.

    2014-12-01

    Mediterranean-type ecosystems are structured by fire. In California chaparral, fires uncouple N production and consumption by enhancing nitrification and reducing plant uptake. NO3- that accumulates after fire is vulnerable to leaching. However, the extent to which fires decouple N fluxes can vary spatially and with timing of fire, and the specific mechanisms controlling N metabolism in recovering chaparral are not well understood. We combined empirical analysis and modeling in two chaparral watersheds to better understand how these systems recover from fire, and to explore their sensitivity to changing climate and fire regimes. To evaluate how pH, charcoal, and NH4+ supply influence N cycling, we measured mineralization and nitrification rates in chaparral soils that burned 1, 4, 20 and 40 years prior to sampling. We then experimentally adjusted pH, charcoal, and NH4+ concentrations for all soils in a factorial design, and incubated them for 8 weeks. Each week, we measured respiration, exchangeable NH4+ and NO3- content, nitrification potential, microbial biomass, and pH. Then to project the effects of altered precipitation patterns and fire timing on nitrogen dynamics and recovery, we used the hydro-biogeochemical model RHESSys. Fires were imposed at the beginning and end of the growing season under various climates. NO3- production was highest in soils collected from the most recently burned sites. Also, NO3- concentrations increased over the course of incubation in soils from all sites, especially at high pH, and with NH4+ addition. Charcoal slightly augmented the effects of elevated pH and NH4+ on NO3- production iduring the early stages of incubation in 1 and 4-year old sites, while it slightly dampened their effects by week 8. However, in 20 and 40-year old sites, charcoal had no effect. Overall, nitrification was most powerfully constrained by NH4+ supply. However, increases in pH that occur after fire may enhance nitrification rates when substrate is

  20. Pseudomonas songnenensis sp. nov., isolated from saline and alkaline soils in Songnen Plain, China.

    PubMed

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Shuang; Fu, Xiaowei; Zhang, Cheng; Jiang, Juquan

    2015-03-01

    The strain NEAU-ST5-5(T) was isolated from the saline and alkaline soil in Songnen Plain, North East of China. The bacterium was found to be aerobic, Gram-stain negative, rod-shaped and motile by means of several polar flagella. It forms yellow-orange colonies with a radial wrinkled surface. Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that it belongs to the genus Pseudomonas in the class Gammaproteobacteria. Strain NEAU-ST5-5(T) shows gene sequence similarities of 98.8-97.1 % for 16S rRNA, 90.5-78.4 % for gyrB and 90.4-71.1 % for rpoD with type strains of the closely related species of the genus Pseudomonas, respectively. DNA-DNA hybridization relatedness between strain NEAU-ST5-5(T) and type strains of the most closely related species, Pseudomonas stutzeri DSM 5190(T), P. xanthomarina DSM 18231(T), P. kunmingensis CGMCC 1.12273(T), P. alcaliphila DSM 17744(T) and P. oleovorans subsp. lubricantis DSM 21016(T) were 43 ± 1 to 25 ± 2 %. The major fatty acids (>10 %) were determined to be C18:1 ω7c/C18:1 ω6c, C16:1 ω7c/C16:1 ω6c and C16:0, the predominant respiratory quinone was identified as ubiquinone 9 and polar lipids were found to consist of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phospholipid, one unidentified aminophospholipid and one unknown lipid. The genotypic, chemotaxonomic and phenotypic analysis indicated that strain NEAU-ST5-5(T) represents a novel species of the genus Pseudomonas, for which the name Pseudomonas songnenensis sp. nov. is proposed. The type strain is NEAU-ST5-5(T) (=ACCC 06361(T) = DSM 27560(T)). PMID:25550067

  1. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

    PubMed

    Hallows, Kenneth R; Alzamora, Rodrigo; Li, Hui; Gong, Fan; Smolak, Christy; Neumann, Dietbert; Pastor-Soler, Núria M

    2009-04-01

    Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK. PMID:19211918

  2. Estimation of soil pH at Mount Beigu Wetland based on visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Mao, Hanping; Chen, Bin; Wang, Xi

    2006-12-01

    pH of the wetland soil is one of the most important indicators for aquatic vegetation and water bodies. Mount Beigu Wetland, just near the Yangtse River, is under ecological recovery. Visible and near infrared reflectance spectroscopy was adopted to estimate soil pH of the wetland. The spectroradiometer, FieldSpec 3 (ASD) with a full spectral range (350-2500 nm), was used to acquire the reflectance spectra of wetland soil, and soil pH was measured with the pH meter of IQ150 (Spectrum) and InPro 3030 (Mettler Toledo). 146 soil samples were taken with soil sampler (Eijkelkamp) according to different position and depth, which covered the wider range of pH value from 7.1 to 8.39. 133 samples were used to establish the calibration model with the method of partial least square regression and principal component analysis regression. 13 soil samples were used to validate the model. The results show that the model is not good, but the mean error and root mean standard error of prediction are less (1.846% and 0.186 respectively). Spectral reflectancebased estimation of soil pH of the wetland is applicable and the calibration model needs to be improved.

  3. Speciation and Release Kinetics of Cadmium in an Alkaline Paddy Soil Under Various Flooding Periods and Draining Conditions

    SciTech Connect

    S Khaokaew; R Chaney; G Landrot; M Ginder-Vogel; D Sparks

    2011-12-31

    This study determined Cd speciation and release kinetics in a Cd-Zn cocontaminated alkaline paddy soil, under various flooding periods and draining conditions, by employing synchrotron-based techniques, and a stirred-flow kinetic method. Results revealed that varying flooding periods and draining conditions affected Cd speciation and its release kinetics. Linear least-squares fitting (LLSF) of bulk X-ray absorption fine structure (XAFS) spectra of the air-dried, and the 1 day-flooded soil samples, showed that at least 50% of Cd was bound to humic acid. Cadmium carbonates were found as the major species at most flooding periods, while a small amount of cadmium sulfide was found after the soils were flooded for longer periods. Under all flooding and draining conditions, at least 14 mg/kg Cd was desorbed from the soil after a 2-hour desorption experiment. The results obtained by micro X-ray fluorescence ({mu}-XRF) spectroscopy showed that Cd was less associated with Zn than Ca, in most soil samples. Therefore, it is more likely that Cd and Ca will be present in the same mineral phases rather than Cd and Zn, although the source of these two latter elements may originate from the same surrounding Zn mines in the Mae Sot district.

  4. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. PMID:24637445

  5. Comparing Soil Organic Carbon Dynamics in Perennial Grasses and Shrubs in a Saline-Alkaline Arid Region, Northwestern China

    PubMed Central

    Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Background Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. Methodology/Principal Findings A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr−1 for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m−2) than in the shrubs (1.12 Kg C m−2) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Conclusions/Significance Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition. PMID:22900067

  6. Effects of Temperature and pH on the Activities of Catechol 2,3-dioxygenase Obtained from Crude Oil Contaminated Soil in Ilaje, Ondo State, Nigeria.

    PubMed

    Olukunle, O F; Babajide, O; Boboye, B

    2015-01-01

    Enrichment technique was employed for the isolation of the crude oil degrading bacteria. The isolated bacteria were screened for their degradative ability and the best degrading bacteria were selected based on their growth. Specific activities of Catechol-2,3-dioxygenase and effects of temperature and pH and their stabilities on the enzyme relative activities were observed. Bacteria isolated from the soil sample include; Bacillus cereus, B. amyloliquficiens, B. firmus, Acinetobacter calcoaceticus, Pseudomonas sp. P. fluorescens, P.putida, P.aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. Screening of the degradative ability of the bacteria revealed P. aeruginosa, Bacillus cereus, Acinetobacter calcoaceticus and Achromobacter sp. to be the best degraders. The pH and temperature range with time for the enzyme activity were 6.0-8.0 and 30(o)C-50(o)C respectively. The enzyme exhibited activity that was slightly more tolerant to alkaline pH. Therefore, engineering of Catechol 2,3-dioxygenase may be employed for application on bioremediation of polluted sites. PMID:26464607

  7. Effects of Temperature and pH on the Activities of Catechol 2,3-dioxygenase Obtained from Crude Oil Contaminated Soil in Ilaje, Ondo State, Nigeria

    PubMed Central

    Olukunle, O.F.; Babajide, O.; Boboye, B.

    2015-01-01

    Enrichment technique was employed for the isolation of the crude oil degrading bacteria. The isolated bacteria were screened for their degradative ability and the best degrading bacteria were selected based on their growth. Specific activities of Catechol-2,3-dioxygenase and effects of temperature and pH and their stabilities on the enzyme relative activities were observed. Bacteria isolated from the soil sample include; Bacillus cereus, B. amyloliquficiens, B. firmus, Acinetobacter calcoaceticus, Pseudomonas sp. P. fluorescens, P.putida, P.aeruginosa, Achromobacter xylosoxidans and Achromobacter sp. Screening of the degradative ability of the bacteria revealed P. aeruginosa, Bacillus cereus, Acinetobacter calcoaceticus and Achromobacter sp. to be the best degraders. The pH and temperature range with time for the enzyme activity were 6.0-8.0 and 30oC-50oC respectively. The enzyme exhibited activity that was slightly more tolerant to alkaline pH. Therefore, engineering of Catechol 2,3-dioxygenase may be employed for application on bioremediation of polluted sites. PMID:26464607

  8. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control.

    PubMed

    Cang, Long; Fan, Guang-Ping; Zhou, Dong-Mei; Wang, Quan-Ying

    2013-02-01

    Electrokinetic (EK) remediation has potential to simultaneously remove heavy metals and organic compounds from soil, but the removal percent of these pollutants is very low in general if no enhancing treatment is applied. This study developed a new enhanced-EK remediation technology to decontaminate a heavy metal-organic compound co-contaminated soil by applying different oxidants and pH control. A red soil was used as a model clayed soil, and was spiked with pyrene and Cu at about 500 mg kg(-1) for both to simulate real situation. Bench-scale EK experiments were performed using four oxidants (H(2)O(2), NaClO, KMnO(4), and Na(2)S(2)O(8)) and controlling electrolyte pH at 3.5 or 10. After the treatments with 1.0 V cm(-1) of voltage gradient for 335 h, soil pH, electrical conductivity, and the concentrations and chemical fractionations of soil pyrene and Cu were analyzed. The results showed that there was significant migration of pyrene and Cu from the soil, and the removal percent of soil pyrene and Cu varied in the range of 30-52% and 8-94%, respectively. Low pH favoured the migration of soil Cu, while KMnO(4) was the best one for the degradation of pyrene among the tested oxidants, although it unfortunately prevented the migration of soil Cu by forming Cu oxide. Application of Na(2)S(2)O(8) and to control the catholyte pH at 3.5 were found to be the best operation conditions for decontaminating the Cu-pyrene co-contaminated soil. PMID:23177009

  9. Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil.

    PubMed

    Giri, Sib Sankar; Sukumaran, V; Sen, Shib Sankar; Oviya, M; Banu, B Nazeema; Jena, Prasant Kumar

    2011-06-01

    An extracellular detergent tolerant protease producing strain VSG-4 was isolated from tropical soil sample and identified as Bacillus subtilis based on morphological, biochemical characteristics as well as 16S-rRNA gene sequencing. The VSG-4 protease was purified to homogeneity using ammonium sulphate precipitation, dialysis and sephadex G-200 gel permeation chromatography with a 17.4 purification fold. The purified enzyme was active and stable over a broad range of pH (8.0-11.0, optimum at 9.0) and temperature (40°C to 60°C, optimum at 50°C). The thermostability of the enzyme was significantly increased by the addition CaCl(2). This enzyme was strongly inhibited by PMSF and DFP, suggesting that it belongs to the serine protease superfamily. The purified VSG-4 alkaline protease showed remarkable stability in anionic (5 mM SDS) and ionic (1% Trion X-100 and 1% Tween 80) detergents. It retained 97±2% and 83.6±1.1% of its initial activity after 1 h preincubation in the presence of 1 % H(2)O(2) and 1 % sodium perborate, respectively. Furthermore, the purified enzyme showed excellent stability and compatibility with some commercial laundry detergents besides its stain removal capacity. Considering these promising properties, VSG-4 protease may find tremendous application in laundry detergent formulations. PMID:21717332

  10. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  11. Potential of elemental sulfur fertigation to reduce high soil pH for production of highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry is adapted to acidic soil conditions but is often planted in high pH soils by adding elemental sulfur (S) prior to planting. Two pot experiments were carried out in a glasshouse to determine the potential of applying elemental S by fertigation through a drip irrigation system. In the first...

  12. FUNGUS INDEX AND RESIDUAL EFFECTS OF PESTICIDES IN ACID AND ALKALINE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil applied pesticides have profound effects on the population density and diversity of fungi, however, such information is lacking in tropical soils of the Amazon region. Field experiments were implemented at two experimental farms ("El Choclito", "Bello Horizonte”) of Tropical Crop Institute (ICT...

  13. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  14. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  15. Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms

    USGS Publications Warehouse

    Beyer, W.N.; Hensler, G.L.; Moore, J.

    1987-01-01

    Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.

  16. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    PubMed Central

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  17. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    PubMed

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  18. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides. PMID:17552202

  19. Influence of Environmental Factors on Antagonism of Fungi by Bacteria in Soil: Clay Minerals and pH

    PubMed Central

    Rosenzweig, William D.; Stotzky, G.

    1979-01-01

    The soil replica plating technique was used to evaluate the influence of clay minerals and pH on antagonistic interactions between fungi and bacteria in soil. In general, the antagonistic activity of bacteria towards filamentous fungi was greater in soil than on agar. The spread of Aspergillus niger through soil was inhibited by Serratia marcescens when the organisms were inoculated into separate sites in soil, and this antagonistic effect was maintained when the soil was amended with 3, 6, 9, or 12% (vol/vol) montmorillonite, whereas the addition of kaolinite at a concentration of 3% reduced the antagonism and at 6, 9, or 12% totally eliminated it. Similar results were obtained with the inhibition of A. niger by Agrobacterium radiobacter and of Penicillium vermiculatum by either S. marcescens or Nocardia paraffinae. When A. niger and S. marcescens were inoculated into the same soil site, A. niger was inhibited in all soils, regardless of clay content, although the extent of inhibition was greater as the concentration of montmorillonite, but not of kaolinite, increased. A. niger was inhibited more when inoculated as spores than as mycelial fragments and when inoculated 96 h after S. marcescens, but a 1% glucose solution reduced the amount of inhibition when the fungus was inoculated 96 h after the bacterium. When the pH of the soil-clay mixtures was altered, the amount of antagonism usually increased as the pH increased. Antagonism appeared to be related to the cation-exchange capacity and the pH of the soil-clay mixtures. Bacillus cereus and another species of Bacillus showed no activity in soil towards A. niger under any of the environmental conditions tested, even though the Bacillus sp. significantly inhibited A. niger and seven other fungi on agar. PMID:16345477

  20. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    PubMed

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. PMID:27179316

  1. The effect of soil pH on N2O/(N2O+N2) product ratio of denitrification depends on soil NO3- concentration

    NASA Astrophysics Data System (ADS)

    Senbayram, Mehmet; Dittert, Klaus; Well, Reinhard; Lewicka-Szczebak, Dominika; Lammel, Joachim; Bakken, Lars

    2015-04-01

    Globally, agricultural soils account for about 60% of the atmospheric N2O emissions and denitrification in soil is the major source of atmospheric N2O, which contributes to global warming and destruction of stratospheric ozone. Denitrification is the microbially mediated process of dissimilatory nitrate reduction that may produce not only N2O but also nitric oxide (NO), and molecular nitrogen (N2). The major controls on denitrification rates are soil NO3, O2, and labile C levels. Typically, when soils become more anoxic, larger proportions of N2O produced in denitrification are further reduced to N2 before leaving the soil. Microbial ecology may possibly find solutions to this major environmental problem of agricultural systems once mechanisms controlling the product ratio of denitrification (N2O/N2O+N2) are better understood. Recent investigations of these gaseous microbial products provided the evidence for a negative effect of soil acidity on the N2O/N2O+N2 product ratio. However, in an earlier study, we showed that, regardless of soil type, higher NO3- concentrations in soil may also retard the reduction of N2O to N2. In this context, the positive effect of higher soil pH on the N2O/(N2O+N2) product ratio in soils with high NO3- content is still poorly understood. Therefore, we set up a number of incubation experiments in order to test short-term and long-term effects of soil pH and NO3- concentration on denitrification rates and the product stoichiometry of denitrification. We measured N2O, NO as well as elemental N2 in soils with pH levels ranging 4.1 to pH 6.9 collected from a long-term liming experiment. In a continuous flow incubation system we evacuated and flushed all vessels with He. Then, fresh He was directed through an inlet in the lid at a flow rate of 15-30 ml min-1. Gas samples were analyzed twice a day for N2O by ECD and for N2 by TCD detectors. Denitrification rates increased significantly with increasing soil pH, however, during the initial

  2. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    PubMed

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations. PMID:25602653

  3. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.

    PubMed

    Conway, Jon R; Keller, Arturo A

    2016-07-01

    The gravity-driven transport of TiO2, CeO2, and Cu(OH)2 engineered nanomaterials (ENMs) and their effects on soil pH and nutrient release were measured in three unsaturated soils. ENM transport was found to be highly limited in natural soils collected from farmland and grasslands, with the majority of particles being retained in the upper 0-3 cm of the soil profile, while greater transport depth was seen in a commercial potting soil. Physical straining appeared to be the primary mechanism of retention in natural soils as ENMs immediately formed micron-scale aggregates, which was exacerbated by coating particles with Suwannee River natural organic matter (NOM) which promote steric hindrance. Small changes in soil pH were observed in natural soils contaminated with ENMs that were largely independent of ENM type and concentration, but differed from controls. These changes may have been due to enhanced release of naturally present pH-altering ions (Mg(2+), H(+)) in the soil via substitution processes. These results suggest ENMs introduced into soil will likely be highly retained near the source zone. PMID:27108211

  4. Soil lime level (pH) and VA-Mycorrhiza effects on growth responses of sweetgum seedlings

    SciTech Connect

    Davis, E.A.; Young, J.L.; Linderman, R.G.

    1983-01-01

    Sequential greenhouse experiments limed a strongly acid surface and subsurface horizons of phosphorus-deficient Jory clay loam with increments of calcium carbonate to attain a range in soil pH from 5.0 to 8.1. In the absence of vesicular-arbuscular mycorrhizae (VAM), neither the organic matter-rich surface nor the organic matter-poor subsurface horizon supported growth of sweetgum seedlings at any pH despite regular nutrient supplements. The effects of pH, VAM, and soil horizon on nutrient accumulation and plant nutrient concentrations were variable. Nitrogen and phosphorus concentrations were generally higher in the VAM than in control seedlings, which suggests that host plant should be matched with VAM species adapted to particular soil and climate conditions to obtain maximum benefit from a mycorrhizal association. 18 references, 2 figures, 3 tables.

  5. Removal of pollutants by enhanced coagulation combined PAC with variable charge soils: flocs' properties and effect of pH.

    PubMed

    Wang, Yu-Jie; Wu, Chun-De; Duan, Yan; Zhang, Zhi-Lin

    2016-09-01

    This study investigated the properties of flocs and effects of the solution pH on removal of representative pollutants by enhanced coagulation with variable charge soils of South China and polyaluminum chloride (PAC). The results demonstrated that the removal efficiency of turbidity was larger and the aggregated flocs had a faster growth rate, bigger size, denser structure and faster settling rate than those generated by PAC alone, when variable charge soil was used in conjunction with PAC. Additionally, initial solutions pH had meaningful effects on removal of pollutants. With the increase in the pH of the solution, the removal efficiencies of turbidity, algae and heavy metal ions significantly increased. Besides, charge neutralization together with physical entrapment of colloids was the dominant mechanism in enhanced coagulation, and variable charge soil displayed a great adsorption effect. PMID:26829123

  6. Draft Genome Sequence of Jeotgalibacillus soli DSM 23228, a Bacterium Isolated from Alkaline Sandy Soil

    PubMed Central

    Chan, Kok-Gan; Yaakop, Amira Suriaty; Chan, Chia Sing; Ee, Robson; Tan, Wen-Si; Gan, Han Ming

    2015-01-01

    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented. PMID:25999554

  7. ECOSYSTEM RESTORATION ON METAL-TOXIC SOILS USING BIOSOLIDS AND ALKALINE BYPRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils in many locations are mineralized or were contaminated by industry (e.g. mine wastes; smelter emissions). Zn-Pb-Ag-Cu ores often caused severe Zn phytotoxicity which killed vegetation and prevented normal colonization; severe N and P infertility also contributed to difficulty of remediation. A...

  8. ECOSYSTEM RESOTRATION ON METAL-TOXIC SOILS USING BIOSOLIDS AND ALKALINE BYPRODUCTS (ABSTRACT)

    EPA Science Inventory

    Soils in many locations are mineralized or were contaminated by industry (e.g. mine wastes; smelter emissions). Zn-Pb-Ag-Cu ores often caused severe Zn phytotoxicity which killed vegetation and prevented normal colonization; severe N and P infertility also contributed to difficul...

  9. ECOSYSTEM RESTORATION ON METAL-TOXIC SOILS USING BIOSOLIDS AND ALKALINE BYPRODUCTS

    EPA Science Inventory

    Soils in many locations are mineralized or were contaminated by industry (e.g. mine wastes; smelter emissions). Zn-Pb-Ag-Cu ores often caused severe Zn phytotoxicity which killed vegetation and prevented normal colonization; severe N and P infertility also contributed to difficul...

  10. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    PubMed

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped. PMID:25174422

  11. Organic and inorganic amendments affect soil concentration and accumulation of cadmium and lead in wheat in calcareous alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop w...

  12. Soil pH management by calcareous and siliceous minerals: effect on N2O yield in nitrification and denitrification

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Dörsch, Peter

    2016-04-01

    Amelioration of soil pH by liming is necessary and common practice in vast areas of crop production. It is well known that pH is one of the most pervasive factors controlling rates and product stoichiometries in microbially mediated N transformations, including N2O emissions. While liming of acid soils appears to increase N2O reductase activity in denitrification (resulting in less N2O relative to N2), sudden pH raise may boost nitrification and hence N2O emission from ammonia oxidation. Thus, the net effect of liming on N2O emissions is not straightforward, which probably explains why soil pH management has not been embraced as a strategy for mitigating N2O emissions so far. Here we report laboratory incubations in which we determined potential rates and N2O yields in soils from an ongoing field experiment, comparing traditional calcareous limes (calcite, dolomite) with mafic minerals (olivine, different types of plagioclase). The experiment is in its second year, and shows strong pH increase (0.7-1.5, units) in plots with calcareous limes, a weak pH increase (~ 0.2 unit) in the olivine treatment and no measurable pH increase with the plagioclases. Potential nitrification rates correlated positively with effective soil pH as did the N2O yield, measured as N2O accumulation rate over NO2- + NO3- accumulation rate. The N2O yield increased in the order, control < plagioclase < olivine < dolomite < calcite and was significant for calcite and dolomite treated soils. Overall, the N2O yield from nitrification was quite low (0.09 - 0.17%). Potential denitrifications rates showed little response to pH increase (no C source added) but significantly lower N2O product ratios (N2O/(N2O + N2) with increasing pH in the order, calcite < dolomite < olivine < plagioclase < control. Given the overall low N2O yield of nitrification as compared to that of denitrification (10 - 100%), the observed increases in N2O yields of nitrification are unlikely to override a significant reduction

  13. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    PubMed

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  14. Short-range variability of soil pH in a regional geochemical survey, communicating uncertainty to the data user

    NASA Astrophysics Data System (ADS)

    Ander, Louise; Knights, Kate; Lark, Murray

    2015-04-01

    The north of Ireland is well-furnished with geochemical data after completion of the Tellus survey of Northern Ireland and the Tellus Border survey of six northern counties of the Republic of Ireland. These data are of considerable interest to the agricultural sector, in particular the data on soil pH. However, a geochemical survey at regional scale cannot resolve significant variation of soil pH, in particular effects of soil management and fine-scale variation of superficial material. This leads to uncertainties in the mapped soil pH which must be accounted for when making decisions about management interventions, including more detailed local sampling. In this poster we show how uncertainty of predicted soil pH, relative to established threshold values, can be quantified by disjunctive kriging. The uncertainty is expressed in terms of probabilities. We show how this can be communicated to the data user by means of the calibrated phrases of the IPCC, using results from recent research on its efficacy to modify its presentation.

  15. Influence of phosphorus sources and rates on soil pH, extractable phosphorus, and DTPA-extractable micronutrients

    SciTech Connect

    Al-Showk, A.M.; Westerman, R.L.; Weeks, D.L.

    1987-07-01

    Two soils (McLain sicl-fine, mixed, thermic, Pachic Argiustoll and Quinlan cl-loamy, mixed, thermic, shallow Typic Ustocrept) that differed in micronutrient content and chemical characteristics were collected from western Oklahoma. Soils were passed through a 2-mm screen and placed in plastic Petri dishes, and five P levels (0, 20, 40, 60, and 80 kg ha/sup -1/) were applied using monocalcium phosphate (MCP), monoammonium phosphate (MAP), and ammonium polyphosphate (APP); the soils were then mixed uniformly. Soils were moistened to approximately 0.33 MPa and incubated for 2 mo at room temperature. Application of P decreased soil pH in both soils, and MAP and APP had a greater effect than MCP, which was attributed to the nitrification of the added ammonium. Bray and Kurtz no. 1 P increased with P application in both soils. Monocalcium phosphate and MAP decreased DTPA-Fe, -Mn, and -Cu in McLain soil. However, high levels of P applied as APP increased DTPA-Fe, -Mn, and -Cu. Phosphorus application, regardless of source, had no effect on DTPA-Zn in McLain soil. Monocalcium phosphate and MAP decreased DTPA-Mn in the Quinlan soil; however; high levels of P applied as APP increased DTPA-Fe. Phosphorus application, regardless of source, had no effect on DTPA-Zn and -Cu in Quinlan soil.

  16. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long

    2004-07-01

    The effect of enhancement reagents on the efficiency of electrokinetic remediation of Cu contaminated red soil is evaluated. The enhancement agents were a mix of organic acids, including lactic acid+NaOH, HAc-NaAc and HAc-NaAc+EDTA. The soil was prepared to an initial Cu concentration of 438 mgkg(-1) by incubating the soil with CuSO4 solution in a flooded condition for 1 month. Sequential extraction showed that Cu was partitioned in the soil as follows: 195 mgkg(-1) as water soluble and exchangeable, 71 mgkg(-1) as carbonate bound and 105 mgkg(-1) as Fe and Mn oxides. The results indicate that neutralizing the catholyte pH maintains a lower soil pH compared to that without electrokinetic treatment. The electric currents varied depending upon the conditioning solutions and increased with an increasing applied voltage potential. The electroosmotic flow rate changed significantly when different conditioning enhancing reagents were used. It was observed that lactic acid+NaOH treatments resulted in higher soil electric conductivities than HAc-NaAc and HAc-NaAc+EDTA treatments. Ultimately, enhancement by lactic acid+NaOH resulted in highest removal efficiency (81% Cu removal) from the red soil. The presence of EDTA did not enhance Cu removal efficiencies from the red soil, because EDTA complexed with Cu to form negatively charge complexes, which slowly migrated toward the anode chamber retarding Cu2+ transport towards the cathode. PMID:15172599

  17. The influence of soil pH and humus content on received by Mehlich 3 method nutrients analysis results

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    Soils provide vital ecosystem functions, playing an important role in our economy and in healthy living environment. However, soils are increasingly degrading in Europe and at the global level. Knowledge about the content of major plant available nutrients, i.e. calcium, magnesium, potassium and phosphorus, plays an important role in the sustainable soil management. Mobility of nutrients depends directly on the environmental conditions, two of the most important factors are the pH and organic matter content. Therefore it is essential to have correct information about the content and behaviour of the above named elements in soil, both from the environmental and agronomical viewpoint. During the last decades several extracting solutions which are suitable for the evaluation of nutrient status of soils have been developed for this purpose. One of them is called Mehlich 3 which is widely used in USA, Canada and some European countries (e.g. Estonia, Czech Republic) because of its suitability to extract several major plant nutrients from the soil simultaneously. There are several different instrumental methods used for the analysis of nutrient elements in the soil extract. Potassium, magnesium and calcium are widely analysed by the AAS (atomic absorption spectroscopic) method or by the ICP (inductively coupled plasma) spectroscopic methods. Molecular spectroscopy and ICP spectroscopy were used for the phosphorus determination. In 2011 a new multielemental instrumental method MP-AES (microwave plasma atomic emission spectroscopy) was added to them. Due to its lower detection limits and multielemental character, compared with AAS, and lower exploitation costs, compared with ICP, the MP-AES has a good potential to achieve a leading position in soil nutrient analysis in the future. The objective of this study was to investigate: (i) the impact of soil pH and humus content and (ii) applicability of MP-AES instrumental method for the determination of soil nutrients extracted

  18. Influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganisms

    SciTech Connect

    Beelen, P. van; Fleuren-Kemilae, A.K.

    1997-02-01

    In this study the effect of acidification of soil pore water on the uptake and toxicity of cationic and anionic pollutants was measured in an experimental model system. The influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol was studied in buffered suspensions of pure cultures of soil microorganisms. In this system the speciation of the toxicant, the pH, and the biomass are defined, constant, and thus easier to study than in a system with the solid soil matrix and pore water. The mineralization of [{sup 14}C]acetate to {sup 14}CO{sub 2} was used to measure the toxic effects of pollutants on a fungus (Aspergillus niger CBS 121.49), an actinomycete (Streptomyces lividans 66), two Gram-negative Pseudomonas putida strains (MT-2 and DSM 50026), and a gram-positive strain (Rhodococcus erythropolis A177). Large differences in sensitivity were observed between the species. For pentachlorophenol the highest EC50 was 81 mg/L for Pseudomonas putida at pH 8, whereas the lowest was 0.13 mg/L for Aspergillus niger at pH 6. Aspergillus niger was not sensitive to 1,000 mg Zn/L, whereas Pseudomonas putida at pH 7.8 showed the lowest EC50, 0.14 mg Zn/L. When pH was increased, pentachlorophenol became less toxic and showed less sorption to the biomass, whereas zinc and cadmium became more toxic and showed more sorption to the biomass. The results indicate that higher pore-water concentrations due to acidification of zinc- and cadmium-polluted soils may not be accompanied by increased toxic effects on microorganisms because of the relatively low toxicity of these metals in pore water at low pH.

  19. Interrelationships between mycorrhizal symbiosis, soil pH and plant sex modify the performance of Antennaria dioica

    NASA Astrophysics Data System (ADS)

    Varga, Sandra; Kytöviita, Minna-Maarit

    2010-05-01

    AM symbiosis is usually beneficial for plants, but the benefits gained may depend on the soil abiotic factors. In dioecious plants, female and male individuals have different resource demands and allocation patterns. As a consequence of these differences, it is logical to assume that female and male plants differ in their relationship with arbuscular mycorrhizal (AM) fungi, although this has rarely been examined. We used a factorial greenhouse experiment to investigate whether female and male plants in the dioecious model species Antennaria dioica have a different relationship with their AM symbionts under two soil pH levels. In particular, we asked: (1) Do the sexes in A. dioica have sex-specific benefits from AM symbiosis? (2) If so, which sex gains the highest benefit? (3) How does soil pH affect the sex - AM fungal relationship? Our results indicate that the sexes responded similarly to AM symbiosis and pH when mycorrhizal benefit was examined as growth and phosphorus accumulation. However, the sexes differed in response to AM symbiosis in terms of survival, as mortality was increased due to AM symbiosis in female plants whilst the opposite effect was detected in males. The plant-AM fungus relationship was significantly affected by soil pH as lowering the soil pH decreased the benefits gained by the plants from the mycorrhizal fungus. Taken together, our findings indicate that AM symbiosis is beneficial for plants depending on the life history trait considered. In addition, interactions between plants and their AM symbionts are modified by soil factors and the sex of the plant.

  20. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH.

    PubMed

    Tahervand, Samaneh; Jalali, Mohsen

    2016-06-01

    The sorption, desorption, and speciation of cadmium (Cd), nickel (Ni), and iron (Fe) in four calcareous soils were investigated at the pH range of 2-9. The results indicated that sorption of Fe by four soils was higher than 80 % at pH 2, while in the case of Cd and Ni was less than 30 %. The most common sequence of metal sorption at pH 2-9 for four soils was in the order of Fe ≫ Ni > Cd. Cadmium and Ni sorption as a function of pH showed the predictable trend of increasing metal sorption with increase in equilibrium pH, while the Fe sorption trend was different and characterized by three phases. With regard to the order of Cd, Ni, and Fe sorption on soils, Cd and Ni showed high affinity for organic matter (OM), whereas Fe had high tendency for calcium carbonate (CaCO3). Results of metal desorption using 0.01 M NaCl demonstrated that metal sorption on soils containing high amounts of CaCO3 was less reversible in comparison to soils containing high OM. In general, Cd and Ni desorption curves were characterized by three phases; (1) the greatest desorption at pH 2, (2) the low desorption at pH 3-7, and (3) the least desorption at pH > 7. The MINTEQ speciation solubility program showed that the percentage of free metals declined markedly with increase of pH, while the percentage of carbonate and hydroxyl species increased. Furthermore, MINTEQ predicted that saturation index (SI) of metals increased with increasing pH. PMID:27147235

  1. Influence of ph in the Uptake and Accumulation of Mineral Elements on Vine Leaf (Vitis vinifera L.) from Castilla-La Mancha (SPAIN.)

    NASA Astrophysics Data System (ADS)

    Bravo, Sandra; Amorós, José Angel; Pérez-de-los-Reyes, Caridad; García-Navarro, Francisco J.; Higueras, Pablo; Sanchez-Ormeño, Mónica

    2015-04-01

    Each soil-plant system has specific parameters on the uptake of different minerals in the soil, depending on several factors. One of these factors, perhaps the most important, is the pH. 101 Vineyard plots have been selected in Castilla-La Mancha (Spain) and have been analysed (pH among other parameters) by the methods described by FAO. Leaf samples have also been taken in each plot. We analysed the content of 25 mineral elements in both soil and leaf through FRX technique. In addition, we calculated the BAC (bioaccumulation coefficient, calculated as the ratio between the concentration of element in the plant and soil) to stablish if the soil pH influences the accumulation of mineral elements for the plant. As a result we have observed a different behavior of groups of elements for acids or alkaline soils. Thus, the alkaline elements (Na, K, Rb) have a higher BAC value in alkaline soils except cesium (Cs) that has a similar value; while the alkaline-earth elements (Ca, Mg, Sr) present lower BAC in alkaline soils except for barium (Ba) that shows similar value in both cases. Rare Earths (Y, La, Ce, Th and Nd) have very similar values in bioaccumulation for acidic and alkaline soils, while metals (Fe, Al, V, Cr, Co, Cu, Rb and Pb) show a higher bioaccumulation in alkaline soils. Instead Mn, Zn and Ga are preferently bioaccumulated in acid soils. The values obtained for the sulfur (S) are superior in acid soils. We conclude that certain mineral elements accumulate in the leaves of vines depending on the soil pH. The pH will influence the ionic form in which the element is present in the soil and plants preferentially uptake mineral elements in certain ionic forms.

  2. Effects of Soil pH on the Biodegradation of Chlorpyrifos and Isolation of a Chlorpyrifos-Degrading Bacterium

    PubMed Central

    Singh, Brajesh K.; Walker, Allan; Morgan, J. Alun W.; Wright, Denis J.

    2003-01-01

    We examined the role of microorganisms in the degradation of the organophosphate insecticide chlorpyrifos in soils from the United Kingdom and Australia. The kinetics of degradation in five United Kingdom soils varying in pH from 4.7 to 8.4 suggested that dissipation of chlorpyrifos was mediated by the cometabolic activities of the soil microorganisms. Repeated application of chlorpyrifos to these soils did not result in the development of a microbial population with an enhanced ability to degrade the pesticide. A robust bacterial population that utilized chlorpyrifos as a source of carbon was detected in an Australian soil. The enhanced ability to degrade chlorpyrifos in the Australian soil was successfully transferred to the five United Kingdom soils. Only soils with a pH of ≥6.7 were able to maintain this degrading ability 90 days after inoculation. Transfer and proliferation of degrading microorganisms from the Australian soil to the United Kingdom soils was monitored by molecular fingerprinting of bacterial 16S rRNA genes by PCR-denaturing gradient gel electrophoresis (DGGE). Two bands were found to be associated with enhanced degradation of chlorpyrifos. Band 1 had sequence similarity to enterics and their relatives, while band 2 had sequence similarity to strains of Pseudomonas. Liquid enrichment culture using the Australian soil as the source of the inoculum led to the isolation of a chlorpyrifos-degrading bacterium. This strain had a 16S rRNA gene with a sequence identical to that of band 1 in the DGGE profile of the Australian soil. DNA probing indicated that genes similar to known organophosphate-degrading (opd) genes were present in the United Kingdom soils. However, no DNA hybridization signal was detected for the Australian soil or the isolated degrader. This indicates that unrelated genes were present in both the Australian soil and the chlorpyrifos-degrading isolate. These results are consistent with our observations that degradation of

  3. Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant.

    PubMed

    Reynier, Nicolas; Blais, Jean-François; Mercier, Guy; Besner, Simon

    2014-01-01

    In this paper, flotation in acidic conditions and alkaline leaching soil washing processes were compared to decontaminate four soils with variable contamination with metals, pentachlorophenol (PCP), and polychlorodibenzo dioxins and furans (PCDD/F). The measured concentrations of the four soils prior treatment were between 50 and 250 mg/kg for As, 35 and 220mg/kg for Cr, 80 and 350mg/kg for Cu, and 2.5 and 30mg/kg for PCP. PCDD/F concentrations reached 1394, 1375, 3730, and 6289ng/kg for F1, S1, S2, and S3 soils, respectively. The tests were carried out with masses of 100g of soil (fraction 0-2 mm) in a 2 L beaker or in a 1 L flotation cell. Soil flotation in sulphuric acid for 1 h at 60 degreeC with three flotation cycles using the surfactant cocamidopropyl betaine (BW) at 1% allows the solubilization of metals and PCP with average removal yields of 85%, 51%, 90%, and 62% for As, Cr, Cu, and PCP, respectively. The alkaline leaching for 2 h at 80 degreeC solubilizes As, Cr, Cu, and PCP with average removal yields of 60%, 32%, 77%, and 87%, respectively. Tests on PCDD/F solubilization with different surfactants were carried out in combination with the alkaline leaching process. PCDD/F removal yields of 25%, 72%, 70%, and 74% for F1, S1, S2, and S3 soils, respectively, were obtained using the optimized conditions. PMID:24600855

  4. Activities of Cu/sup 2 +/ and Cd/sup 2 +/ in soil solutions as affected by pH

    SciTech Connect

    Cavallaro, N.; McBride, M.B.

    1980-07-01

    The concentrations of free copper and cadmium ions in soil suspensions were measured by an ion-selective electrode as a function of pH after equilibrating metal salt solutions with the soils. Similar experiments were done with water-extractable organic matter. Free (uncomplexed) Cu/sup 2 +/ concentrations were strongly pH-dependent in the soil systems, but well below the level where precipitation could have occurred. Free Cd/sup 2 +/ concentrations were much less affected by pH adjustment, and the nonacid soil systems approached saturation or oversaturation with respect to CdCO/sub 3/ precipitation at high pH. Similar dependence of the free metal ion concentration on pH was found in water extracted organic matter solutions. Precipitation of CdCO/sub 3/ in oversaturated solutions containing the extracted organic matter was slow, while none of the copper-organic matter solutions attained oversaturation with respect to Cu(OH)/sub 2/ or Cu/sub 2/(OH)/sub 2/CO/sub 3/.

  5. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.

    PubMed

    Yamaguchi, N; Nakamura, T; Dong, D; Takahashi, Y; Amachi, S; Makino, T

    2011-05-01

    Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (R(L/S)) increased with pH due to the flooded incubation. The R(L/S) for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles. PMID

  6. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH.

    PubMed

    Komonweeraket, Kanokwan; Cetin, Bora; Benson, Craig H; Aydilek, Ahmet H; Edil, Tuncer B

    2015-04-01

    Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2-14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into. PMID:25555664

  7. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  8. The Molecular Composition of Dissolved Organic Matter in Forest Soils as a Function of pH and Temperature

    PubMed Central

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2015-01-01

    We examined the molecular composition of forest soil water during three different seasons at three different sites, using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). We examined oxic soils and tested the hypothesis that pH and season correlate with the molecular composition of dissolved organic matter (DOM). We used molecular formulae and their relative intensity from ESI-FT-ICR-MS for statistical analysis. Applying unconstrained and constrained ordination methods, we observed that pH, dissolved organic carbon (DOC) concentration and season were the main factors correlating with DOM molecular composition. This result is consistent with a previous study where pH was a main driver of the molecular differences between DOM from oxic rivers and anoxic bog systems in the Yenisei River catchment. At a higher pH, the molecular formulae had a lower degree of unsaturation and oxygenation, lower molecular size and a higher abundance of nitrogen-containing compounds. These characteristics suggest a higher abundance of tannin connected to lower pH that possibly inhibited biological decomposition. Higher biological activity at a higher pH might also be related to the higher abundance of nitrogen-containing compounds. Comparing the seasons, we observed a decrease in unsaturation, molecular diversity and the number of nitrogen-containing compounds in the course of the year from March to November. Temperature possibly inhibited biological degradation during winter, which could cause the accumulation of a more diverse compound spectrum until the temperature increased again. Our findings suggest that the molecular composition of DOM in soil pore waters is dynamic and a function of ecosystem activity, pH and temperature. PMID:25793306

  9. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils

    NASA Astrophysics Data System (ADS)

    Beazley, Melanie J.; Martinez, Robert J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2011-10-01

    The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d -1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d -1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.

  10. Effects of Method and Level of Nitrogen Fertilizer Application on Soil pH, Electrical Conductivity, and Availability of Ammonium and Nitrate in Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (Vaccinium spp.) require low soil pH and prefer N primarily as ammonium for optimum production. Nitrogen fertilizer methods and rates were evaluated in a new field of ‘Bluecrop’ blueberry (Vaccinium corymbosum L.) to determine their effects on soil pH and availability of ammonium and nit...

  11. Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans

    PubMed Central

    Cornet, Muriel; Bidard, Frédérique; Schwarz, Patrick; Da Costa, Grégory; Blanchin-Roland, Sylvie; Dromer, Françoise; Gaillardin, Claude

    2005-01-01

    Ambient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C. albicans and show that Vps28p (ESCRT-I) and Vps32p/Snf7p (ESCRT-III) are required for the transcriptional regulation of known targets of the Rim pathway, such as the PHR1 and PHR2 genes encoding cell surface proteins, which are expressed at alkaline and acidic pH, respectively. We additionally show that deletion of these two VPS genes, particularly VPS32, has a more drastic effect than a RIM101 deletion on growth at alkaline pH and that this effect is only partially suppressed by expression of a constitutively active form of Rim101p. Finally, in an in vivo mouse model, both vps null mutants were significantly less virulent than a rim101 mutant, suggesting that VPS28 and VPS32 gene products affect virulence both through Rim-dependent and Rim-independent pathways. PMID:16299290

  12. Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil.

    PubMed

    Zhang, Yong-Guang; Lu, Xin-Hua; Ding, Yan-Bo; Zhou, Xing-Kui; Li, Li; Guo, Jian-Wei; Wang, Hong-Fei; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    An alkaliphilic, filamentous actinomycete, designated EGI 80629T, was isolated from a soil sample of Xinjiang, north-west China. Strain EGI 80629T grew at pH 6.0-11.0 (optimum pH 9.0-10.0) and in the presence of 0-13.0 % NaCl (optimum 3.0-5.0 %). The isolate formed fragmented substrate mycelia, and aerial hyphae with short spore chains with rod-like spores. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 0. The predominant menaquinone was MK-9(H4), while the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two phosphatidylinositol mannosides, five unknown phospholipids, three unknown phosphoglycolipids, one unknown glycolipid, four unknown polar lipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 67.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80629T clustered with the genus Phytoactinopolyspora. The 16S rRNA gene sequence similarity between strain EGI 80629T and Phytoactinopolyspora endophytica EGI 60009T was 96.8 %. Based on morphological, chemotaxonomic and phylogenetic characteristics, strain EGI 80629T represents a novel species of the genus Phytoactinopolyspora, for which the name Phytoactinopolyspora alkaliphila sp. nov. is proposed. The type strain is EGI 80629T ( = CGMCC 4.7225T = KCTC 39701T). PMID:26920762

  13. Urea Hydrolysis Rate in Soil Toposequences as Influenced by pH, Carbon, Nitrogen, and Soluble Metals.

    PubMed

    Fisher, Kristin A; Meisinger, John J; James, Bruce R

    2016-01-01

    A simultaneous increase in the use of urea fertilizer and the incidence of harmful algal blooms worldwide has generated interest in potential loss pathways of urea from agricultural areas. The objective of this research was to study the rate of urea hydrolysis in soil profile toposequences sampled from the Coastal Plain (CP) and Piedmont (PM) regions of Maryland to understand native urea hydrolysis rates (UHRs) as well as the controls governing urea hydrolysis both across a landscape and with depth in the soil profile. A pH-adjustment experiment was conducted to explore the relationship between pH and urea hydrolysis because of the importance of pH to both agronomic productivity and microbial communities. Soils were sampled from both A and B horizons along transects containing an agricultural field (AG), a grassed field border (GB), and a perennially vegetated zone adjacent to surface water. On average, the A-horizon UHRs were eight times greater than corresponding B-horizon rates, and within the CP, the riparian zone (RZ) soils hydrolyzed urea faster than the agricultural soils. The pH adjustment of these soils indicated the importance of organic-matter-related factors (C, N, extractable metals) in determining UHR. These results suggest that organic-matter-rich RZ soils may be valuable in mitigating losses of urea from neighboring fields. Additional field-scale urea hydrolysis studies would be valuable to corroborate the mechanisms described herein and to explore the conditions affecting the fate and transport of urea in agroecosystems. PMID:26828191

  14. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste.

    PubMed

    Walker, David J; Clemente, Rafael; Bernal, M Pilar

    2004-10-01

    Chenopodium album L. was found to be one of the initial plant species colonising a heavy metal-contaminated site, polluted by pyritic (sulphide-rich) waste from the Aznalcóllar mine spill (South-western Spain). This indicates its importance in the re-vegetation of this soil. In a pot experiment, C. album was sown in soil collected from the contaminated site, either non-amended or amended with cow manure or compost produced from olive leaves and olive mill wastewater, in order to study the effect on heavy metal bioavailability and soil pH. In non-amended and compost-amended soils, soil acidification, probably resulting from oxidation and hydrolysis of sulphide, led to increases in the concentrations of soluble sulphate and plant-available Cu, Zn and Mn in the soil (extractable with 0.1 M CaCl(2)). Under these conditions, shoot growth of C. album was negligible and shoot concentrations of Zn (2,420-5,585 microg g(-1)) and Mn (5,513-8,994 microg g(-1)) were phytotoxic. Manure application greatly increased shoot growth and reduced the shoot concentrations of Cu, Zn, and Mn, and their plant-available concentrations in the soil. These effects appeared to be related to an increase of soil pH, due to an inhibition of sulphide oxidation/hydrolysis, relative to the non-amended soil. For metal sulphides-contaminated soil, liable to acidification, manure application appears to be able to enhance the initial stages of re-vegetation, by species such as C. album. PMID:15312738

  15. Influence of soil pH and application rate on the oxidation of calcium sulfite derived from flue gas desulfurization

    SciTech Connect

    Lee, Y.B.; Bigham, J.M.; Dick, W.A.; Jones, E.S.; Ramsier, C.

    2007-01-15

    Calcium sulfite hemihydrate (CaSO{sub 3} {center_dot} 0.5H{sub 2}O), a common byproduct of coal-fired utilities, is fairly insoluble and can decompose to release toxic SO{sub 2} under highly acidic soil conditions; however, it can also oxidize to form gypsum. The objective of this study was to examine the effects of application rate and soil pH on the oxidation of calcium sulfite under laboratory conditions. Oxidation rates measured by release of SO{sub 4}-S to solution decreased with increasing application rate. Leachate SO{sub 4}-S from soils amended with 1.0 to 3.0 g kg{sup -1} CaSO{sub 3} increased over a 21 to 28 d period before reaching a plateau. At 4 g kg{sup -1}, maximum SO{sub 4}-S release was delayed until Week 7. Oxidation and release of SO{sub 4}-S from soil amended with 3.0 g kg{sup -1} calcium sulfite increased markedly with decreasing soil pH. After only 3 d incubation, the concentrations of SO{sub 4}-S in aqueous leachates were 77, 122, 1709 220, and 229 mg L{sup -1} for initial soil pH values of 7.8, 6.5, 5.5, 5.1, and 4.0, respectively. At an initial soil pH value of 4.0, oxidation/dissolution did not increase much after 3 d. At higher pH values, oxidation was maximized after 21 d. These results suggest that autumn surface applications of calcium sulfite in no-till systems should permit ample time for oxidation/dissolution reactions to occur without introducing biocidal effects related to oxygen scavenging. Soil and annual crops can thus benefit from additions of soluble Ca and SO{sub 4} if calcium sulfite is applied in advance of spring planting.

  16. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation.

    PubMed

    Berthrong, Sean T; Jobbágy, Esteban G; Jackson, Robert B

    2009-12-01

    Afforestation, the conversion of non-forested lands to forest plantations, can sequester atmospheric carbon dioxide, but the rapid growth and harvesting of biomass may deplete nutrients and degrade soils if managed improperly. The goal of this study is to evaluate how afforestation affects mineral soil quality, including pH, sodium, exchangeable cations, organic carbon, and nitrogen, and to examine the magnitude of these changes regionally where afforestation rates are high. We also examine potential mechanisms to reduce the impacts of afforestation on soils and to maintain long-term productivity. Across diverse plantation types (153 sites) to a depth of 30 cm of mineral soil, we observed significant decreases in nutrient cations (Ca, K, Mg), increases in sodium (Na), or both with afforestation. Across the data set, afforestation reduced soil concentrations of the macronutrient Ca by 29% on average (P < 0.05). Afforestation by Pinus alone decreased soil K by 23% (P < 0.05). Overall, plantations of all genera also led to a mean 71% increase of soil Na (P < 0.05). Mean pH decreased 0.3 units (P < 0.05) with afforestation. Afforestation caused a 6.7% and 15% (P < 0.05) decrease in soil C and N content respectively, though the effect was driven principally by Pinus plantations (15% and 20% decrease, P < 0.05). Carbon to nitrogen ratios in soils under plantations were 5.7-11.6% higher (P < 0.05). In several regions with high rates of afforestation, cumulative losses of N, Ca, and Mg are likely in the range of tens of millions of metric tons. The decreases indicate that trees take up considerable amounts of nutrients from soils; harvesting this biomass repeatedly could impair long-term soil fertility and productivity in some locations. Based on this study and a review of other literature, we suggest that proper site preparation and sustainable harvest practices, such as avoiding the removal or burning of harvest residue, could minimize the impact of afforestation on

  17. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH.

    PubMed

    Zhou, Ping; Gu, Baohua

    2005-06-15

    Uranium may present in soil as precipitated, sorbed, complexed, and reduced forms, which impact its mobility and fate in the subsurface soil environment. In this study, a uranium-contaminated soil was extracted with carbonate/ bicarbonate at varying concentrations (0-1 M), pHs, and redox conditions in an attempt to evaluate their effects on the extraction efficiency and selectivity for various forms of uranium in the soil. Results indicate that at least three differentforms of uranium existed in the contaminated soil: uranium(VI) phosphate minerals, reduced U(IV) phases, and U(VI) complexed with soil organic matter. A small fraction of U(VI) could be sorbed onto soil minerals. The mechanism involved in the leaching of U(VI) by carbonates appears to involve three processes which may act concurrently or independently: the dissolution of uranium(VI) phosphate and other mineral phases, the oxidation-complexation of U(IV) under oxic conditions, and the desorption of U(VI)-organic matter complexes at elevated pH conditions. This study suggests that, depending on site-specific geochemical conditions, the presence of small quantities of carbonate/bicarbonate could result in a rapid and greatly increased leaching and the mobilization of U(VI) from the contaminated soil. Even the reduced U(IV) phases (only sparingly soluble in water) are subjected to rapid oxidation and therefore potential leaching into the environment. PMID:16047778

  18. Influence of Soil and Irrigation Water pH on the Availability of Phosphorus in Struvite Derived from Urine through a Greenhouse Pot Experiment.

    PubMed

    Liu, Xiaoning; Tao, Yi; Wen, Guoqi; Kong, Fanxin; Zhang, Xihui; Hu, Zhengyi

    2016-05-01

    One greenhouse pot experiment was used to investigate the availability of phosphorus in struvite derived from urine affected by soil pH (cinnamon soil, pH 7.3; paddy soil, pH 5.3) and irrigation water (pH 6.0 and 7.5) with bird rapeseed (Brassica campestris L.). The biomass of applied struvite in paddy soil was significantly greater than that of applied calcium superphosphate. However, statistically significant differences were not observed in cinnamon soil. Soil-applied struvite had a higher Olsen P compared to soil-applied calcium superphosphate irrespective of soil type. The biomass of applied struvite and irrigation with pH 6.0 water was greater compared to that with irrigation with pH 7.3 water irrespective of soil type, accompanied with significantly higher leaf chlorophyll concentration. Therefore, struvite has the potential to be an effective P fertilizer, and acidic irrigation water has greater influence on the availability of phosphorus in struvite than does acidic soil. PMID:27078189

  19. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains.

    PubMed

    Honma, Toshimitsu; Ohba, Hirotomo; Kaneko-Kadokura, Ayako; Makino, Tomoyuki; Nakamura, Ken; Katou, Hidetaka

    2016-04-19

    Arsenic (As) and cadmium (Cd) concentrations in rice grains are a human health concern. We conducted field experiments to investigate optimal conditions of Eh and pH in soil for simultaneously decreasing As and Cd accumulation in rice. Water managements in the experiments, which included continuous flooding and intermittent irrigation with different intervals after midseason drainage, exerted striking effects on the dissolved As and Cd concentrations in soil through changes in Eh, pH, and dissolved Fe(II) concentrations in the soil. Intermittent irrigation with three-day flooding and five-day drainage was found to be effective for simultaneously decreasing the accumulation of As and Cd in grain. The grain As and Cd concentrations were, respectively, linearly related to the average dissolved As and Cd concentrations during the 3 weeks after heading. We propose a new indicator for expressing the degree to which a decrease in the dissolved As or Cd concentration is compromised by the increase in the other. For minimizing the trade-off relationship between As and Cd in rice grains in the field investigated, water management strategies should target the realization of optimal soil Eh of -73 mV and pH of 6.2 during the 3 weeks after heading. PMID:26999020

  20. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH

    SciTech Connect

    Komonweeraket, Kanokwan; Cetin, Bora; Benson, Craig H.; Aydilek, Ahmet H.; Edil, Tuncer B.

    2015-04-15

    Highlights: • The impact of pH on the leaching of elements and metals from fly ash mixed soils. • Generally Ca, Cd, Mg, and Sr follows a cationic leaching pattern. • The leaching of As and Se shows an oxyanionic leaching pattern. • The leaching behavior of elements does not change based on material type. • Different fly ash types show different abilities in immobilizing trace elements. - Abstract: Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2–14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.

  1. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm.

    PubMed

    Bartram, Andrea K; Jiang, Xingpeng; Lynch, Michael D J; Masella, Andre P; Nicol, Graeme W; Dushoff, Jonathan; Neufeld, Josh D

    2014-02-01

    Soil pH is an important determinant of microbial community composition and diversity, yet few studies have characterized the specific effects of pH on individual bacterial taxa within bacterial communities, both abundant and rare. We collected composite soil samples over 2 years from an experimentally maintained pH gradient ranging from 4.5 to 7.5 from the Craibstone Experimental Farm (Craibstone, Scotland). Extracted nucleic acids were characterized by bacterial and group-specific denaturing gradient gel electrophoresis and next-generation sequencing of bacterial 16S rRNA genes. Both methods demonstrated comparable and reproducible shifts within higher taxonomic bacterial groups (e.g. Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Gammaproteobacteria) across the pH gradient. In addition, we used non-negative matrix factorization (NMF) for the first time on 16S rRNA gene data to identify positively interacting (i.e. co-occurring) operational taxonomic unit (OTU) clusters (i.e. 'components'), with abundances that correlated strongly with pH, and sample year to a lesser extent. All OTUs identified by NMF were visualized within principle coordinate analyses of UNIFRAC distances and subjected to taxonomic network analysis (SSUnique), which plotted OTU abundance and similarity against established taxonomies. Most pH-dependent OTUs identified here would not have been identified by previous methodologies for microbial community profiling and were unrelated to known lineages. PMID:24117982

  2. A simple model for assessing ammonia emission from ammoniacal fertilisers as affected by pH and injection into soil

    NASA Astrophysics Data System (ADS)

    Nyord, T.; Schelde, K. M.; Søgaard, H. T.; Jensen, L. S.; Sommer, S. G.

    Ammonia (NH 3) volatilisation following the application of ammoniacal fertilisers and liquid manure to agricultural land is a significant source of atmospheric NH 3, which not only poses a risk to the environment, but may also result in a loss of plant available nitrogen (N). This study examined the potential for reducing NH 3 emission through acidifying an ammoniacal solution and by injecting the solution. The combination of the two technologies was studied and a model for predicting the most optimal treatment was developed. In the laboratory, ammonium (NH 4+) hydroxide (aqueous NH 3) was dissolved in water (pH 11) and injected into a loamy sand soil. The NH 3 emission was measured with a dynamic chamber technology. Injecting the solution to 10 mm below the soil surface reduced NH 3 emission by 10% compared to surface application, and injection to 30 mm reduced emission by 20% compared to surface application. Acidifying the ammoniacal solution by adding sulphuric acid and reducing pH to 10 reduced the emission by 60% at a 10 mm injection depth and 90% at 30 mm compared with non-acidified and surface-spread ammoniacal solution. The results show that there is an important interaction of pH and injection depth and that there is a need for models predicting a combined effect. This type of model could contribute to reduce cost and energy (traction force) by providing the optimal combination of acidifying and injection depth that gives a specific reduction in NH 3 emission, which in this study was reducing pH to 10 and inject the fertiliser to 30 mm below surface. This study showed that relatively simple models can predict the NH 3 emission from injected ammoniacal fertilisers, but that there is still a need for developing algorithms that predict the effect of pH, including the pH buffering capacity of the fertiliser and the soil.

  3. Biochar effects on soil-resident ligninolytic fungi: in vitro growth response and its pH dependence

    NASA Astrophysics Data System (ADS)

    Taskin, Eren; Loffredo, Elisabetta

    2016-04-01

    Ligninolytic fungi play an essential role on soil fertility because of their decomposing activity that allows nutrients inside biomasses to be released back into the soil. Their enzymes are able to degrade lignin which is otherwise recalcitrant to microbial and chemical degradation. Biochar (BC) has been recently proposed as a soil amendment that may contribute to climate change mitigation via carbon sequestration in soil. Pyrolysis conditions, feedstock and several other factors affect BC characteristics which in turn may influence BC impact on soil microorganisms and terrestrial ecosystems. However, limited information is available in the literature about BC's impact on ligninolytic fungi. The objective of this in vitro study was to assess the impact of BC and pH change caused by BC addition on three soil-resident ligninolytic fungi, Pleurotus ostreatus, Trametes versicolor and Bjerkandera adusta. The BC sample used in this study was obtained from 100% red spruce pellets pyrolysed at a temperature of 550 °C, and it was added to PDA medium directly as solid BC at the doses of 2 g L-1 (BC-LD) and 10 g L-1 (BC-HD). pH values were determined and the experiments were conducted either adjusting the pH of the controls either without pH adjustment. The fungi were inoculated separately in Petri dishes filled with the various media and the radial mycelial growth was measured at several sampling times. Results obtained showed a fungal growth response clearly dependent on the species and the BC dose. BC-LD stimulated the growth of P. ostreatus and T. versicolor, whereas it inhibited that of B. adusta. BC-HD stimulated the growth of P. ostreatus and inhibited that of T. versicolor and B. adusta. Similar responses were obtained with or without pH adjustment for P. ostreatus and T. versicolor, whereas a pH dependency was found for B. adusta. The effects of these and other pertinent treatments on fungal enzymes of the fungi are currently under investigation.

  4. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties. PMID:25986749

  5. Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter

    SciTech Connect

    Ma, W.; Edelman, T.; van Beersum, I.; Jans, T.

    1983-04-01

    Soil samples were taken from 31 sites near Eindhoven, The Netherlands, mainly along transects of 1 to 15 km from the nearest zinc smelter. Earthworms (Lumbricus rubellus) were taken from the upper 20 cm soil layer and analyzed from accumulation of Cd, Zn, Pb and Cu by atomic absorption spectrophotometry. Cd, Zn, and Pb appeared to be more strongly accumulated by L. rubellus when present in soil with a low pH value. Cu was the only exception in this regard; its uptake by L. rubellus was not significantly influenced by soil pH. The organic matter content of the soil played a significant role only in the worm uptake of Pb. Soil Pb content, soil pH, and soil organic matter content together accounted for almost 70% of the variance in worm Pb content. The results indicate that L. rubellus accumulates Pb more strongly in soil with a low pH and low organic matter content than in soil with higher values of these parameters. The demonstrated influence of pH and organic matter content on element concentration in earthworms emphasizes the importance of soil factors in governing the entrance of toxic metal elements into the food web. (JMT)

  6. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.

    PubMed

    Chen, Yinguang; Liu, Kun; Su, Yinglong; Zheng, Xiong; Wang, Qin

    2013-07-01

    This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis. PMID:23685363

  7. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. PMID:25912910

  8. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  9. Sulfamethazine sorption to soil: vegetative management, pH, and dissolved organic matter effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidating veterinary antibiotic (VA) interactions with soil is important for assessing and mitigating possible environmental hazards. Objectives of this study were to investigate the effects of vegetative management, soil physical and chemical properties, and manure-derived dissolved organic matte...

  10. Litter quality and pH are strong drivers of carbon turnover and distribution in alpine grassland soils

    NASA Astrophysics Data System (ADS)

    Budge, K.; Leifeld, J.; Hiltbrunner, E.; Fuhrer, J.

    2010-08-01

    Alpine soils are expected to contain large amounts of labile carbon (C) which may become a further source of atmospheric CO2 as a of global warming. However, there is little data available on these soils, and understanding of the influence of environmental factors on soil organic matter (SOM) turnover is limited. We extracted 30 cm deep cores from five grassland sites along a small elevation gradient from 2285 to 2653 m above sea level (a.s.l.) in the central Swiss Alps. Our aim was to determine the quantity, degree of stabilization and mean residence time (MRT) of SOM in relation to site factors such as temperature, soil pH, vegetation, and organic matter (OM) structure. Soil fractions obtained by size and density fractionation revealed a high proportion of labile particulate organic matter C (POM C %) mostly in the uppermost soil layers. POM C in the top 20 cm across the gradient ranged from 39.6-57.6% in comparison to 7.2-29.6% reported in previous studies for lower elevation soils (810-1960 m a.s.l.). At the highest elevation, MRTs measured by means of radiocarbon dating and turnover modelling, increased between fractions of growing stability from 90 years in free POM (fPOM) to 534 years in the mineral-associated fraction (mOM). Depending on elevation and pH, plant community data indicated considerable variation in the quantity and quality of litter input, and these patterns could be reflected in the dynamics of soil C. 13C NMR data confirmed the direct relationship of OM composition to MRT. While temperature is likely to be a major cause for the slow turnover rate observed, other factors such as litter quality and soil pH, as well as the combination of all factors, play an important role in causing small-scale variability of SOM turnover. Ignoring this interplay of controlling factors may impair the performance of models to project SOM responses to environmental change.

  11. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree

    PubMed Central

    Offord, Catherine A.; Meagher, Patricia F.; Zimmer, Heidi C.

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species. PMID:24790132

  12. Influence of Biochar on Soil pH, Water Holding Capacity, Nitrogen and Carbon Dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent focus of biochar as a soil amendment for improving soil physical-chemical properties and carbon sequestration has revealed knowledge gaps in the research covering different feedstocks in various soil types. Biochars made from four feedstocks (wood pellets [Pseudotsuga menziesii], softw...

  13. Behavior of Engineered Nanomaterials in Unsaturated Soil: Transport, Effects on pH, and Interactions with Phosphorous

    NASA Astrophysics Data System (ADS)

    Conway, J.; Keller, A. A.

    2013-12-01

    Recent life cycle assessments have predicted that soils will be the primary non-landfill sink for many engineered nanomaterials (ENMs), and as their production and use increases annually it becomes increasingly relevant to understand their behavior in the unsaturated surface layers of soil. In this series of experiments, the transport and interactions of three common ENMs, TiO2, CeO2, and CuOH, were measured in an unsaturated potting soil with and without humic acid as a stabilizing agent. Transport was measured in loosely packed soil columns at two concentrations (10 and 100 ppm) with three exposure methods: through the application of contaminated biosolids to the top of the column with subsequent irrigation, by watering with an ENM suspension, and by mixing ENMs homogeneously into the soil and irrigating. Transport was also measured in soil containing intact root structures for the latter two exposure methods at 10 ppm ENM concentration. Soil columns were dried and 3 cm segments were acid digested and measured with inductively coupled plasma atomic emission spectroscopy (ICS-AES). The effect of these ENMs on soil pH was tested after mixing ENM suspensions into soil at four concentrations (0, 1, 10, and 100 mg kg-1). The bioavailability of PO4 in the presence of ENMs was measured by quantifying the soluble, bioavailable (i.e., extractable by Bray No. 1 solution), and tightly bound fractions of P in 0, 1, 10, and 100 mg kg-1 spiked soils via ICP-AES. We found that these three ENMs exhibit limited transport in all exposure scenarios and so will likely remain near the source zone in an environmental exposure. Additionally, these ENMs were seen to decrease soil pH by up to 0.5 in the highest concentrations, which has consequences for plant growth and nutrient mobility. TiO2 and CeO2 also decreased the soluble and bioavailable fractions of P, and so could inhibit the uptake of this limiting nutrient by organisms.

  14. BEHAVIOR OF DDT, KEPONE, AND PERMETHRIN IN SEDIMENT-WATER SYSTEMS UNDER DIFFERENT OXIDATION-REDUCTION AND PH CONDITIONS

    EPA Science Inventory

    A study was conducted to determine the effects of pH and oxidation-reduction (redox) conditions of soil and sediment-water systems on the persistence of three insecticide compounds. Three pH levels, ranging from moderately acid to mildy alkaline, were studied for each compound. F...

  15. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    PubMed Central

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity. PMID:27170469

  16. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale.

    PubMed

    Cao, Haichuan; Chen, Ruirui; Wang, Libing; Jiang, Lanlan; Yang, Fen; Zheng, Shixue; Wang, Gejiao; Lin, Xiangui

    2016-01-01

    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity. PMID:27170469

  17. Metsulfuron-methyl sorption/desorption behavior on volcanic ash-derived soils. effect of phosphate and pH.

    PubMed

    Cáceres, Lizethly; Fuentes, Roxana; Escudey, Mauricio; Fuentes, Edwar; Báez, María E

    2010-06-01

    Metsulfuron-methyl sorption/desorption behavior was studied through batch sorption experiments in three typical volcanic ash-derived soils belonging to Andisol and Ultisol orders. Their distinctive physical and chemical properties are acidic pH and variable surface charge. Organic matter content and mineral composition affected in different ways sorption of metsulfuron-methyl (K(OC) ranging from 113 to 646 mL g(-1)): organic matter and iron and aluminum oxides mainly through hydrophilic rather than hydrophobic interactions in Andisols, and Kaolinite group minerals, as major constituents of Ultisols, and iron and aluminum oxides only through hydrophilic interactions. The Freundlich model described metsulfuron-methyl behavior in all cases (R(2) > 0.992). K(f) values (3.1-14.4 microg(1-1/n) mL(1/n) g(-1)) were higher than those reported for different class of soils including some with variable charge. Hysteresis was more significant in Ultisols. A strong influence of pH and phosphate was established for both kinds of soil, intensive soil fertilization and liming being the most probable scenario for leaching of metsulfuron-methyl, particularly in Ultisols. PMID:20455566

  18. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.

    PubMed

    Zhu, Saiyong; Ma, Xinwang; Guo, Rui; Ai, Shiwei; Liu, Bailin; Zhang, Wenya; Zhang, Yingmei

    2016-10-01

    The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping. PMID:27159531

  19. Transcription of denitrification genes and kinetics of NO, N2O and N2 by soil bacteria as affected by pH

    NASA Astrophysics Data System (ADS)

    Liu, B.; Bakken, L. R.; Frostegard, A.

    2010-12-01

    Nitrous oxide (N2O), which is to a large part derived from denitrification in soil, is a major greenhouse gas and was also recently shown to be the single most important ozone-depleting substance. Previous studies demonstrate that the N2O/N2 product ratio of denitrification is strongly dependent on pH, increasing with decreasing soil pH. The mechanisms involved are, however, poorly understood. We here present an investigation of soils from a long-term liming experiment. Since it is difficult to control which pH is actually experienced by bacterial cells in intact soils, we extracted cells on a Nycodenz gradient and exposed them to different pH levels. Bacteria extracted from soils of 3 different pHs (4.0, 6.1 and 8.0) were incubated in minimal medium supplemented with nitrate (2mM) and glutamic acid (5 mM), buffered at three pH levels (5.7, 6.1 and 7.6). Both the pH of the medium and original soil pH showed profound effect on the denitrification activity in terms of gas emission kinetics. N2O reductase (N2OR) activity was only present when cells from the high pH soils (pH 6.1 and 8.0) were exposed to high pH medium (pH 7.6). Functional genes (nirS, nirK and nosZ) and their transcripts were quantified in the extracts from pH6.1-soil. A 10-25 fold higher expression of nosZ vs nirS was found when incubated at pH 7.6 compared to pH 6.1 and 5.7. The low but significant transcription of nosZ at pH 6.1 and 5.7 did not result in detectable N2O reduction however. Cells that had been allowed to assemble their proteome while growing in pH7 medium showed N2OR activity which was practically unaffected by pH within the range 5-7. On the contrary, no N2OR activity was detected if the proteome had been formed at pH 6. The cells extracted from acid soils (pH 5.8 and 6.1) showed very low nosZ transcritption and no N2OR activity if exposed to pH 7 during the transition from oxic to anoxic conditions, suggesting an adaptation to low pH in the sense that they do not transcribe the gene

  20. Measurement of secretory vesicle pH reveals intravesicular alkalinization by vesicular monoamine transporter type 2 resulting in inhibition of prohormone cleavage

    PubMed Central

    Blackmore, Colin G; Varro, Andrea; Dimaline, Rod; Bishop, Lisa; Gallacher, David V; Dockray, Graham J

    2001-01-01

    The acidic interior of neuroendocrine secretory vesicles provides both an energy gradient for amine-proton exchangers (VMATs) to concentrate small transmitter molecules, for example catecholamines, and an optimal pH for the prohormone convertases which cleave hormone precursors. There is evidence that VMAT activity modulates prohormone cleavage, but in the absence of measurements of pH in secretory vesicles in intact cells, it has not been possible to establish whether these effects are attributable to raised intravesicular pH due to proton transport through VMATs. Clones were generated of the hamster insulinoma cell line HIT-T15 expressing a pH-sensitive form of green fluorescent protein (GFP-F64L/S65T) targeted to secretory vesicles, with and without co-expression of VMAT2. In order to study prohormone cleavage, further clones were generated that expressed preprogastrin with and without co-expression of VMAT2. Confocal microscopy of GFP fluorescence indicated that the pH in the secretory vesicles was 5.6 in control cells, compared with 6.6 in cells expressing VMAT2; the latter was reduced to 5.8 by the VMAT inhibitor reserpine. Using a pulse-chase labelling protocol, cleavage of 34-residue gastrin (G34) was found to be inhibited by co-expression with VMAT2, and this was reversed by reserpine. Similar effects on vesicle pH and G34 cleavage were produced by ammonium chloride. We conclude that VMAT expression confers the linked abilities to store biogenic amines and modulate secretory vesicle pH over a range influencing prohormone cleavage and therefore determining the identity of regulatory peptide secretory products. PMID:11251044

  1. Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties.

    PubMed

    Yuan, Chaolei; Fitzpatrick, Rob; Mosley, Luke M; Marschner, Petra

    2015-11-15

    Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.5 (+pH), organic carbon addition with 2% w/w finely ground wheat straw (+C), and organic carbon addition and pH increase (+C+pH). After 36 weeks, in five of the ten soils, only treatment +C+pH significantly increased the concentration of reduced inorganic sulfur (RIS) compared to the control and increased the soil pore water pH compared to treatment+pH. In four other soils, pH increase or/and organic carbon addition had no significant effect on RIS concentration compared to the control. The RIS concentration in treatment +C+pH as percentage of the control was negatively correlated with soil clay content and initial nitrate concentration. The results suggest that organic carbon addition and pH increase can stimulate sulfate reduction after re-flooding, but the effectiveness of this treatment depends on soil properties. PMID:26024614

  2. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. PMID:26828188

  3. Human brains found in a fire-affected 4000-years old Bronze Age tumulus layer rich in soil alkalines and boron in Kutahya, Western Anatolia.

    PubMed

    Altinoz, M A; Ince, B; Sav, A; Dincer, A; Cengiz, S; Mercan, S; Yazici, Z; Bilgen, M N

    2014-02-01

    Undecomposed human bodies and organs always attracted interest in terms of understanding biological tissue stability and immortality. Amongst these, cases of natural mummification found in glaciers, bog sediments and deserts caused even more attention. In 2010, an archeological excavation of a Bronze Age layer in a tumulus near the Western Anatolia city Kütahya revealed fire affected regions with burnt human skeletons and charred wooden objects. Inside of the cracked skulls, undecomposed brains were discernible. To analyze the burial taphonomy of the rare phenomenon of brain preservation, we analyzed brains, bone, teeth and surrounding soils elements using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Adipocere formation or saponification of postmortem tissue fat requires high levels of alkalinity and especially potassium. Indeed, ICP-MS analysis of the brain, teeth and bone and also of the surrounding soil revealed high levels of potassium, magnesium, aluminum and boron, which are compatible with the famous role of Kütahya in tile production with its soil containing high level of alkalines and tile-glazing boron. Fatty acid chromatography revealed simultaneous saturation of fats and protection of fragile unsaturated fatty acids consistent with soil-presence of both pro-oxidant and anti-oxidant trace metals. Computerized tomography revealed protection of diencephalic, metencephalic and occipital tissue in one of the best-preserved specimens. Boron was previously found as an intentional preservative of Tutankhamen and Deir el Bahari mummies. Here, in natural soil with its insect-repellant, anti-bacterial and fire-resistance qualities it may be a factor to preserve heat-affected brains as almost bioporcellain specimens. PMID:24060546

  4. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    EPA Science Inventory

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  5. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2016-10-01

    In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)). PMID:27132820

  6. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa).

    PubMed

    Bhunia, Biswanath; Basak, Bikram; Mandal, Tamal; Bhattacharya, Pinaki; Dey, Apurba

    2013-03-01

    A novel extracellular serine protease (70 kDa by SDS-PAGE) was purified and characterized. This enzyme retained more than 93% of its initial activity after preincubation for 30 min at 37 °C in the presence of 25% (v/v) tested organic solvents and showed feather degradation activity. The purified enzyme was deactivated at various combinations of pH and temperature to examine the interactive effect of them on enzyme activity. The deactivation process was modeled as first-order kinetics and the deactivation rate constant (k(d)) was found to be minimum at pH 9 and 37 °C. The kinetic analysis of enzyme over a range of pH values indicated two pK values at 6.21 and at 10.92. The lower pK value was likely due to the catalytic histidine in the free enzyme and higher pK value likely reflected deprotonation of the proline moiety of the substrate but ionization of the active site serine is another possibility. Inhibition kinetic showed that enzyme is serine protease because enzyme was competitively inhibited by antipain and aprotinin as these compounds are known to be competitive inhibitors of serine protease. The organic solvent, thermal and pH tolerances of enzyme suggested that it may have potential for use as a biocatalyst in industry. PMID:23219732

  7. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  8. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. PMID:24841960

  9. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation.

    PubMed

    Lee, H H; Yang, J W

    2000-10-01

    To simultaneously avoid a decrease of electro-osmotic flow by hydrogen ions and to increase heavy metal precipitation due to hydroxide ions, simulated electrokinetic remediation was conducted in saturated kaolinite specimens loaded with lead(II) using an electrolyte circulation method to control electrolyte pH. At an electrolyte circulation rate of 1.1 ml/min, it was possible to increase the anolyte pH from 2 to 4 and decrease the catholyte pH from 12 to 8. Using electrolyte circulation, it was observed that the rate of decrease of clay pH due to the change of electrolyte pH was reduced. As a result, the operable period was extended and the removal efficiency for lead(II) was also increased. It was observed that most of the effluent lead(II) from the cathode compartment was electroplated onto the cathode and that residual effluent lead(II) did not precipitate onto, or adsorb to, the clay at the anode compartment during circulation. Therefore, there was no need to treat the electrolyte because there was virtually no effluent from the cathode compartment in the circulation system. It was also found that the electrolyte volume required to sustain the electrolytic reaction was sufficient for the whole electrokinetic remediation process. PMID:10946130

  10. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors

    PubMed Central

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75–1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray–Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors. PMID:26388866

  11. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors.

    PubMed

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors. PMID:26388866

  12. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested. PMID:26122565

  13. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints. PMID:27168329

  14. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    PubMed

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  15. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rootstocks are the foundation of a healthy and productive orchard. They are the interface between the scion and the soil, providing anchorage, water, nutrients, and disease protection that ultimately affect the productivity and sustainability of the orchard. Recent advances in the science of genet...

  16. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H/sup +/ pump activity

    SciTech Connect

    Arvan, P.; Castle, J.D.

    1986-10-01

    Secretion granules have been isolated from the parotid glands of rats that have been chronically stimulated with the ..beta..-adrenergic agonist, isoproterenol. These granules are of interest because they package a quantitatively different set of secretory proteins in comparison with granules from the normal gland. Polypeptides enriched in proline, glycine, and glutamine, which are known to have pI's >10, replace ..cap alpha..-amylase (pI's = 6.8) as the principal content species. The internal pH of granules from the treated rats changes from 7.8 in a potassium sulfate medium to 6.9 in a choline chloride medium. The increased pH over that of normal parotid granules (approx.6.8) appears to protect the change in composition of the secretory contents. Whereas normal mature parotide granules have practically negligible levels of H/sup +/ pumping ATPase activity, the isolated granules from isoproterenol-treated rats undergo a time-dependent internal acidification that requires the presence of ATP and is abolished by an H/sup +/ ionophore. Additionally, an inside-positive granule transmembrane potential develops after ATP addition that depends upon ATP hydrolysis. Two independent methods have been used that exclude the possibility that contaminating organelles are the source of the H/sup +/-ATPase activity. Together these data provide clear evidence for the presence of an H/sup +/ pump in the membranes of parotid granules from chronically stimulated rats. However, despite the presence of H/sup +/-pump activity, fluorescence microscopy with the weak base, acridine orange, reveals that the intragranular pH in live cells is greater than that of the cytoplasm.

  17. Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond.

    PubMed

    Rockne, Karl J

    2007-02-15

    To better understand the dynamics of Fe2 + oxidation in facultative wastewater stabilization ponds, water samples from a three-pond system were taken throughout the period of transition from anoxic conditions with high aqueous Fe2 + levels in the early spring to fully aerobic conditions in late spring. Fe2 + levels showed a highly significant correlation with pH but were not correlated with dissolved oxygen (DO). Water column Fe2 + levels were modeled using the kinetic rate law for Fe2 + oxidation of Sung and Morgan.[5] The fitted kinetic coefficients were 5 +/- 3 x 10(6) M(- 2) atm(-1) min(-1); more than six orders of magnitude lower than typically reported. Comparison of four potential Fe redox couples demonstrated that the rhoepsilon was at least 3-4 orders of magnitude higher than would be expected based on internal equilibrium. Surprisingly, measured nitrate and DO (when present) were typically consistent with both nitrate (from denitrification) and DO levels (from aerobic respiration) predicted from equilibrium. Although the hydrous Fe oxide/FeCO3 couple was closest to equilibrium and most consistent with the observed pH dependence (in contrast to predicted lepidocrocite), Fe2 + oxidation is kinetically hindered, resulting in up to 10(7)-fold higher levels than expected based on both kinetic and equilibrium analyses. PMID:17365293

  18. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    EPA Science Inventory

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  19. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  20. Characterization of two glycoside hydrolase family 36 α-galactosidases: novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity.

    PubMed

    Zhou, Junpei; Lu, Qian; Zhang, Rui; Wang, Yiyan; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-03-01

    Two α-galactosidases, AgaAJB07 from Mesorhizobium and AgaAHJG4 from Streptomyces, were expressed in Escherichia coli. Recombinant AgaAJB07 showed a 2.9-fold and 22.6-fold increase in kcat with a concomitant increase of 2.3-fold and 16.3-fold in Km in the presence of 0.5mM ZnSO4 and 30.0mM Pb(CH3COO)2, respectively. Recombinant AgaAHJG4 showed apparent optimal activity at pH 8.0 in McIlvaine or Tris-HCl buffer and 9.5 in glycine-NaOH or HCl-borax-NaOH buffer, retention of 23.6% and 43.2% activity when assayed at 10 and 20°C, respectively, and a half-life of approximately 2min at 50°C. The activation energies for p-nitrophenyl-α-d-galactopyranoside hydrolysis by AgaAJB07 and AgaAHJG4 were 71.9±0.8 and 48.2±2.0kJmol(-1), respectively. Both AgaAJB07 and AgaAHJG4 exhibited transglycosylation activity, but they required different acceptors and produced different compounds. Furthermore, potential factors for alkaline and multiple pH optima and low-temperature adaptations of AgaAHJG4 were presumed. PMID:26471539

  1. Cadmium Accumulation and Pathological Alterations in the Midgut Gland of Terrestrial Snail Helix pomatia L. from a Zinc Smelter Area: Role of Soil pH.

    PubMed

    Włostowski, Tadeusz; Kozłowski, Paweł; Łaszkiewicz-Tiszczenko, Barbara; Oleńska, Ewa

    2016-04-01

    The purpose of this study was to determine whether cadmium (Cd) accumulation and toxicity in the midgut gland of Helix pomatia snails living in a Cd-contaminated area were related to soil pH. Toxic responses in the midgut gland (i.e., increased vacuolization and lipid peroxidation) occurred in H. pomatia snails exhibiting the highest Cd levels in the gland (265-274 µg/g dry wt) and living on acidic soil (pH 5.3-5.5), while no toxicity was observed in snails accumulating less Cd (90 µg/g) and ranging on neutral soil (pH 7.0), despite the fact that total soil Cd was similar in the two cases. The accumulation of Cd in the gland was directly related to the water extractable Cd in soil, which in turn correlated inversely with soil pH, indicating that this factor had a significant effect on tissue Cd. It appeared further that the occurrence of Cd toxicity was associated with low levels of metallothionein in the gland of snails ranging on acidic soil. PMID:26868644

  2. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization

    PubMed Central

    Samad, Md Sainur; Bakken, Lars R.; Nadeem, Shahid; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial) were significantly associated with C mineralization (CO2 μmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions. PMID:26990862

  3. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization.

    PubMed

    Samad, Md Sainur; Bakken, Lars R; Nadeem, Shahid; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-01-01

    Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial) were significantly associated with C mineralization (CO2 μmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions. PMID:26990862

  4. An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments

    NASA Astrophysics Data System (ADS)

    Roelofsen, Hans D.; van Bodegom, Peter M.; Kooistra, Lammert; van Amerongen, Jorg J.; Witte, Jan-Philip M.

    2015-12-01

    Ecological assessments such as species distribution modelling and benchmarking site quality towards regulations often rely on full spatial coverage information of site factors such as soil acidity, moisture regime or nutrient availability. To determine if remote sensing (RS) is a viable alternative to traditional data sources of site factor estimates, we analysed the accuracy (using ground truth validation measurements) of traditional and RS sources of pH and mean spring groundwater level (MSL, in m) estimates. Traditional sources were a soil map and hydrological model. RS estimates were obtained using vegetation indicator values (IVs) from a Dutch national system as an intermediate between site factors and spectral response. IVs relate to those site factors that dictate vegetation occurrence, whilst also providing a robust link to canopy spectra. For pH, the soil map and the RS estimate were nearly as accurate. For MSL, the RS estimates were much closer to the observed groundwater levels than the hydrological model, but the error margin of the estimates still exceeded the tolerance range of moisture sensitive vegetation. The relatively high accuracy of the RS estimates was made possible by the availability of local calibration points and large environmental gradients in the study site. In addition, the error composition of the RS estimates could be analysed step-by-step, whereas the traditional sources had to be accepted 'as-is'. Also considering that RS offers high spatial and temporal resolution at low costs, RS offered advantages over traditional sources. This will likely hold true for any other situation where prerequisites of accurate RS estimates have been met.

  5. Yield performance of cowpea plant introductions grown in calcareous soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at a soil pH of 7.5 or higher, co...

  6. Characterization of Growing Soil Bacterial Communities across a pH gradient Using H218O DNA-Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Welty-Bernard, A. T.; Schwartz, E.

    2014-12-01

    Recent studies have established consistent relationships between pH and bacterial diversity and community structure in soils from site-specific to landscape scales. However, these studies rely on DNA or PLFA extraction techniques from bulk soils that encompass metabolically active and inactive, or dormant, communities, and loose DNA. Dormant cells may comprise up to 80% of total live cells. If dormant cells dominate a particular environment, it is possible that previous interpretations of the soil variables assumed to drive communities could be profoundly affected. We used H218O stable isotope probing and bar-coded illumina sequencing of 16S rRNA genes to monitor the response of actively growing communities to changes in soil pH in a soil microcosm over 14 days. This substrate-independent approach has several advantages over 13C or 15N-labelled molecules in that all growing bacteria should be able to make use of water, allowing characterization of whole communities. We hypothesized that Acidobacteria would increasingly dominate the growing community and that Actinobacteria and Bacteroidetes would decline, given previously established responses by these taxa to soil pH. Instead, we observed the reverse. Actinobacteria abundance increased three-fold from 26 to 76% of the overall community as soil pH fell from pH 5.6 to pH 4.6. Shifts in community structure and decreases in diversity with declining soil pH were essentially driven by two families, Streptomyceaca and Microbacteracea, which collectively increased from 2 to 40% of the entire community. In contrast, Acidobacteria as a whole declined although numbers of subdivision 1 remained stable across all soil pH levels. We suggest that the brief incubation period in this SIP study selected for growth of acid-tolerant Actinobacteria over Acidobacteria. Taxa within Actinomycetales have been readily cultured over short time frames, suggesting rapid growth patterns. Conversely, taxa within Acidobacteria have been

  7. Influence of indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study.

    PubMed

    Kim, Kwon-Rae; Owens, Gary; Kwon, Soon-lk

    2010-01-01

    This study investigated the influence of Indian mustard (Brassica juncea) root exudation on soil solution properties (pH, dissolved organic carbon (DOC), metal solubility) in the rhizosphere using a rhizobox. Measurement was conducted following the cultivation of Indian mustard in the rhizobox filled four different types of heavy metal contaminated soils (two alkaline soils and two acidic soils). The growth of Indian mustard resulted in a significant increase (by 0.6 pH units) in rhizosphere soil solution pH of acidic soils and only a slight increase (< 0.1 pH units) in alkaline soils. Furthermore, the DOC concentration increased by 17-156 mg/L in the rhizosphere regardless of soil type and the extent of contamination, demonstrating the exudation of DOC from root. Ion chromatographic determination showed a marked increase in the total dissolved organic acids (OAs) in rhizosphere. While root exudates were observed in all soils, the amount of DOC and OAs in soil solution varied considerably amongst different soils, resulting in significant changes to soil solution metals in the rhizosphere. For example, the soil solution Cd, Cu, Pb, and Zn concentrations increased in the rhizosphere of alkaline soils compared to bulk soil following plant cultivation. In contrast, the soluble concentrations of Cd, Pb, and Zn in acidic soils decreased in rhizosphere soil when compared to bulk soils. Besides the influence of pH and DOC on metal solubility, the increase of heavy metal concentration having high stability constant such as Cu and Pb resulted in a release of Cd and Zn from solid phase to liquid phase. PMID:20397393

  8. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.

    PubMed

    Hashimoto, Yohey; Taki, Tomohiro; Sato, Takeshi

    2009-04-01

    For immobilization technologies to be successful, the use of readily available and cost advantageous amendment is important when the remediation targets vast amounts of contaminated soils. The objectives of this study were to investigate whether the byproduct-synthesized hydroxyapatite can be used as an immobilizing amendment for dissolved Pb from a shooting range soil, and to model the kinetic data collected from dissolution experiments. A soil-solution kinetic experiment was conducted under fixed pH conditions as a function of time. A Pb-contaminated soil was reacted with various hydroxyapatite amendments to determine the dissolution rate and mineral products of soil Pb. Three types of amendments used were pure hydroxyapatite (HA), and poorly crystalline hydroxyapatites synthesized from gypsum waste (CHA), and synthesized from incinerated poultry litter (PHA). The dissolved Pb concentration decreased with the addition of amendments at pH 3-7. Both CHA and PHA were more effective than HA for attenuating Pb dissolution at pH 6 and above. According to the thermodynamic calculation at pH 6, the dissolved Pb concentration for CHA and PHA treatments was predicted to be 66% and 50% lower than that of HA treatment, respectively. A better Pb immobilization effect demonstrated by CHA and PHA resulted in their greater solubility at higher pH, which may promote the formation of chloropyromorphite precipitates. Dissolution kinetics of soil Pb was adequately explained by pseudo-first order and pseudo-second order equations in acid pH ranges. According to the ion exchange model, an adequate agreement between the experimental data and regression curves was shown in the initial 40 min of the reaction process, but the accuracy of model predictability decreased thereafter. According to kinetic models and dissolution phenomena, CHA and PHA amendments had better Pb sorption capacity with rapid kinetics than pure hydroxyapatite at weak acid to neutral pH. PMID:19111967

  9. Effect of Cadmium on Fungi and on Interactions Between Fungi and Bacteria in Soil: Influence of Clay Minerals and pH

    PubMed Central

    Babich, H.; Stotzky, G.

    1977-01-01

    Fungi (Rhizopus stolonifer, Trichoderma viride, Fusarium oxysporum f. sp. conglutinans, Cunninghamella echinulata, and several species of Aspergillus and Penicillium) tolerated higher concentrations of cadmium (Cd) when grown in soil than when grown on laboratory media, indicating that soil mitigated the toxic effects of Cd. In soil amended with clay minerals, montmorillonite provided partial or total protection against fungistatic effects of Cd, whereas additions of kaolinite provided little or no protection. Growth rates of Aspergillus niger were inhibited to a greater extent by 100 or 250 μg of Cd per g in soil adjusted to pH 7.2 than in the same soil at its natural pH of 5.1. However, there were no differences in the growth rates of Aspergillus fischeri with 100 or 250 μg of Cd per g in the same soil, whether at pH 5.1 or adjusted to pH 7.2. Growth of A. niger and A. fischeri in a soil contaminated with a low concentration of Cd (i.e., 28 μg/g), obtained from a site near a Japanese smelter, did not differ significantly from growth in a soil collected some distance away and containing 4 μg of Cd per g. Growth of A. niger in sterile soil amended with 100 μg of Cd per g and inoculated with Bacillus cereus or Agrobacterium tumefaciens was reduced to a greater extent than in the same soil containing 100 μg of Cd per g but no bacteria. The inhibitory effects of Agrobacterium radiobacter to A. niger were slightly reduced in the presence of 100 μg of Cd per g, whereas the inhibitory effects of Serratia marcescens were enhanced. PMID:18085

  10. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils.

    PubMed

    Chapman, E Emily V; Dave, Göran; Murimboh, John D

    2013-08-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. PMID:23688951

  11. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  12. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture.

    PubMed

    Romanowicz, Karl J; Freedman, Zachary B; Upchurch, Rima A; Argiroff, William A; Zak, Donald R

    2016-10-01

    Predicting the impact of environmental change on soil microbial functions requires an understanding of how environmental factors shape microbial composition. Here, we investigated the influence of environmental factors on bacterial and fungal communities across an expanse of northern hardwood forest in Michigan, USA, which spans a 500-km regional climate gradient. We quantified soil microbial community composition using high-throughput DNA sequencing on coextracted rDNA (i.e. total community) and rRNA (i.e. active community). Within both bacteria and fungi, total and active communities were compositionally distinct from one another across the regional gradient (bacteria P = 0.01; fungi P < 0.01). Taxonomically, the active community was a subset of the total community. Compositional differences between total and active communities reflected changes in the relative abundance of dominant taxa. The composition of both the total and active microbial communities varied by site across the gradient (P < 0.01) and was shaped by differences in soil moisture, pH, SOM carboxyl content, as well as C and N concentration. Our study highlights the importance of distinguishing between metabolically active microorganisms and the total community, and emphasizes that the same environmental factors shape the total and active communities of bacteria and fungi in this ecosystem. PMID:27387909

  13. Chemical Experiments Measuring ph and Gases on "Planetary" Soil by the HUSAR-5 NXT-based Rover Model

    NASA Astrophysics Data System (ADS)

    Lang, Agota; Bérczi, Szaniszló; Erdélyi, Soma; Nickl, Istvan; Kiss, Daniel; Erdősi, Ferenc; Panyi, Tamas; Szalay, Kristof

    2010-05-01

    program. II: For detecting the gases: We use CZGCO type gas-sensor for the detection of the liberated carbon monoxide or methane. This is a semiconductor based sensor which is heated up to working temperature (ca. 400 °C). The gas is measured as a resistance change signal lead into the NXT. The measured values are observed on the NXT as well as on the "terrestrial control" computer. Construction of the rover in the second mission: the skeleton of the rover was a field-rovering car model. We constructed two arms and a pump from LEGO elements. On the first arm we placed a wireless camera, which could rotate 360°, and also could bend down. The role of the second arm was to stretch and place the indicator ribbon to the surface and move it along a distance to contact with the wet soil. The role of the pump was to pour water on the soil surface. The main idea behind our solution is that water dissolves important chemical components from the soil and the indicator ribbon reports the main chemical characteristics of this chemistry, starting with the pH of the soil. Conclusion: Even the basic experiments can be interesting in the high school's chemistry teaching process if everyday materials are studied. It can be easily connected to planetary surface chemistry, where the soil, the rocks and the atmospheric gases form a common platform with their counterparts on the Earth. Both the experiment and the rover building was a big task for high school students, but they enjoyed the work and learned a lot.

  14. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  15. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    PubMed

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  16. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    PubMed

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem. PMID:24233773

  17. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  18. The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils.

    PubMed

    Bahmanyar, M A

    2007-09-01

    The effect of different rice cultivation periods on the properties of selected soils in alluvial plain were studied in Mazandaran province (north of Iran) in 2004. Soils were sampled form 0, 6, 16, 26 and over 40 years rice cultivation fields. In each treatment three soil profiles and six nearby auger holes were studied. The present study results indicated that continuous rice cultivation have changed soil moisture regime from xeric to aquic, soil color from brown to grayish, surface horizons from mollic to ochric epipedon and soil structure changed from granular or blocky to massive. Therefore, the soil order has changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of rice cultivation. X-ray diffraction analysis showed that clay minerals in non-rice cultivated field were illite, vermiculite, montmorillonite, kaolinite and chlorite, but in rice field were illite, montmorillonite, kaolinite and chlorite, respectively. In contrast of montmorillonite, the amount of illite and vermiculite have been decreased by increasing periods of rice cultivation. The pH values of the saturated soil surface in six weeks past plantation have shifted toward neutrality. While Eh value of non-paddy soils were about +90 mv, surface horizons of paddy soils at field conditions had Eh value about +40, -12, -84, -122 mv, respectively. The amounts of organic matter and available Fe, Mn, Zn and Cu were increased whereas available K was decreased in paddy soils. PMID:19090186

  19. Biogeochemical Influences on the Determination of Water Chemistry in a Temperate Forest Basin: Factors Determining the pH value

    NASA Astrophysics Data System (ADS)

    Ohte, Nobuhito; Tokuchi, Naoko; Suzuki, Masakazu

    1995-01-01

    In order to clarify the mechanism of pH determination in a temperate forest watershed in Japan, intensive hydrochemical observations that included in situ measurement of dissolved pCO2 were carried out in 1991 and 1992. From the variations of observed pCO2 and pH and estimated alkalinity associated with the hydrological process, the factors determining pH were described. There were two hydrological processes which have different determining hydrochemical processes: (1) rainfall and throughfall to infiltration in the soil layer to stable groundwater and (2) stable groundwater to spring water to stream water. In the first process, pH is influenced by infiltration from the low pCO2 layer to the high CO2 layer and by an increase of alkalinity, which is mainly caused by an exchange reaction and chemical weathering. In the shallow soil layer the protons for alkalinity generation are supplied by acid deposits from rainfall and throughfall, microbial acid production, and CO2 dissolution reaction. In the deeper layer an increase of alkalinity caused by Na+ generation becomes remarkable as depth increases. This process is strongly controlled by chemical weathering. In the second process, pH increases with CO2 degassing around the spring point. The alkalinity is kept at the same level as that of the stable groundwater. These results suggests that the biochemically supplied CO2 in soil not only directly controls the pH determination, but also has influences on the alkalinity generation as another determining factor of pH.

  20. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.

    PubMed

    Obeidy, Carole; Bravin, Matthieu N; Bouchardon, Jean-Luc; Conord, Cyrille; Moutte, Jacques; Guy, Bernard; Faure, Olivier

    2016-04-01

    We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching. PMID:26707185

  1. Acidic minespoil reclamation with alkaline biosolids

    SciTech Connect

    Drill, C.; Lindsay, B.J.; Logan, T.L.

    1998-12-31

    The effectiveness of an alkaline stabilized biosolids product, N-Viro Soil (NVS), was studied at a wild animal preserve in Cumberland, OH. The preserve occupies land that was strip mined for high-sulfur coal. While most of the land has been conventionally reclaimed, several highly acidic hot spots remain. Two of these hot spots were studied through concurrent field, greenhouse, and laboratory projects. In April 1995, NVS was applied at rates ranging from 0--960 mt/ha (wet wt.) to plots at the two sites. The plots were seeded using a standard reclamation mix and soil samples were analyzed for chemical characteristics before and after application and also in 1996 and 1997. Soil pH increased from 3.5 to about 11 in the amended plots and soil EC values increased from 21.0 mmho/cm to a maximum of 6.0 mmho/cm in the amended plots immediately after application. Soil Cu and Zn concentrations also increased in the NVS amended plots, but this did not affect plant germination or growth. By the summer of 1996, soil pH values had decreased to 7.3--8.7 and EC values decreased to 0.34--1.36 mmho/cm to the amended plots. Soil samples were collected in September 1995 for physical analyses. N-Viro Soil improved the moisture retention and water conductivity properties of the spoil. The plots were monitored for growth during the summer of 1995 and plant biomass and soil samples were taken in 1996 and 1997 for trace element and nutrient analysis. NVS did not significantly increase trace element concentrations in the biomass. The addition of NVS to acid mine spoil improves the chemical and physical properties of the spoil material thus aiding vegetative establishment and growth. NVS improves the chemical nature of the spoil by increasing pH and providing micro and macronutrients and improves the physical properties of the spoil with the addition of organic matter.

  2. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-01-01

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by 13C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition—results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities. PMID:26916902

  3. Eco-toxicological effects of two kinds of lead compounds on forest tree seed in alkaline soil.

    PubMed

    Yang, Nan; Zhou, Fu-Rong; Wang, Jin-Xin

    2016-03-01

    In order to compare the different eco-toxicological effects of lead nitrate and lead acetate on forest tree seed, a biological incubation experiment was conducted to testify the inhibition effects of two lead compounds on rates of seed germination, root and stem elongation, and seedling fresh weight for six plants (Amaorpha fruticosa L., Robinia psedoacacia L., Pinus tabuliformis Carr., Platycladus orientalis L., Koelreuteria paniculata Laxm., Hippophae rhamnoides L.) in soil. The results indicate that the inhibition effects of the two lead compounds on the rates of root elongation of plants were greater than other indices; root elongation can possibly be used as indices to investigate the relationship between lead toxicity and plant response. The response of trees to lead toxicity varied significantly, and the order of tolerance to lead pollution was as follows: Amaorpha fruticosa L. > Platycladus orientalis L. > Koelreuteria paniculata Laxm. > Robinia psedoacacia L. > Pinus tabuliformis Carr. > Hippophae rhamnoides L. Therefore, we suggest that Amaorpha fruticosa L. and Platycladus orientalis L. be used as tolerant plants for soil phytoremediation and Hippophae rhamnoides L. as an indicative plant to diagnose the toxicity of lead pollution on soil quality. Lead nitrate and lead acetate differentially restrain seeds, with seeds being more sensitive to lead nitrate than lead acetate in the soil. Thus, the characteristics of lead compounds should be taken into full consideration to appraise its impact on the environment. PMID:26927657

  4. A CHEMICAL EQUILIBRIA MODEL OF STRONTIUM-90 ADSORPTION AND TRANSPORT IN SOIL IN RESPONSE TO DYNAMIC ALKALINE CONDITIONS

    EPA Science Inventory

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge has been disposed in soil seepage pits, lagoons, or cribs often under highly pert...

  5. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  6. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  7. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  8. [Effects of soil pH value on the bioavailability and fractionation of rare earth elements in wheat seedling (Triticum aestivum L.)].

    PubMed

    Cao, Xinde; Ding, Zhuhong; Hu, Xin; Wang, Xiaorong

    2002-01-30

    The effect of soil pH value on the bioavailability and fractionation of rare earth elements (REEs) in wheat seedling (Triticum aestivum L.) were investigated. The results showed that the concentration of REEs in wheat decreased with increasing pH value, and their inter-relationship was best expressed as quadratic equation, with correlation coefficients from 0.6003 to 0.9572. The response of individual elements to pH value change tended to be Ce > La > Nd > Sm > Gd > Yb > Eu, with Ce most sensitive to changing pH conditions and Eu lest. Chemical fractionation indicated that the order of REEs concentration in three fractions could be as follows: B2(NH2OH.HCl extraction) > B3(H2O2-NH4Ac extract) > B1(HAc extract). The increase of pH value resulted in transformation from B1 to B2 and B3. Multiple regression analysis was utilized to obtain the regression equations for prediction plant uptake of REEs. B1 fraction was most available to wheat. Meanwhile, it was found that the fractionation factors of REEs in wheat were negatively correlated with the soil pH value. PMID:11987417

  9. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    PubMed Central

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%–386% higher and agricultural ecosystems exhibited lower CO2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions. PMID:23082234

  10. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. PMID:26629644

  11. Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment.

    PubMed

    Reijonen, Inka; Metzler, Martina; Hartikainen, Helinä

    2016-03-01

    The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0-6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V. PMID:26807983

  12. Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration.

    PubMed

    Oste, L A; Temminghoff, E J M; van Riemsdijk, W H

    2002-01-15

    Organic matter is an important component of soil with regard to the binding of contaminants. Hence, the partitioning of organic matter influences the partitioning of soil contaminants. The partitioning of organic matter is, among other factors, influenced by the ionic composition and ionic strength of the soil solution. This study focuses on the behavior of organic matter after a change in the ionic composition of the soil solution, particularly in Ca concentration and pH. Different amounts of Ca(NO3)2 and NaOH were added to soil suspensions. The dissolved organic carbon (DOC) concentration increased with increasing pH (addition of NaOH), whereas an increase in Ca (addition of Ca(NO3)2) had the opposite effect. A stronger increase in DOC was observed if a single dose of NaOH was added, compared to a gradual addition of the same amount of NaOH. Cation binding by organic matter in the supernatant was calculated using the NICA-Donnan model. The log DOC concentration appeared to be correlated to the Donnan potential, calculated under the assumption that all DOC equals humic acid. This correlation was found for all eight neutral to acidic soils used in this study, although the slopes and elevations of the regression lines varied. The slope varied by a factor of 2 and the elevation appeared to be strongly influenced by the DOC concentration in the untreated soils, which is related to the total organic matter in the soil. Finally, we predicted the Donnan potential on the basis of an extraction of untreated soil with 0.03 M NaNO3, and the total additions of Ca(NO3)2 and NaOH. Comparison of these predictions with speciation calculations in solution showed a good correlation, indicating that a combination of one batch experiment and the presented calculation procedure can provide good estimations of DOC concentrations after addition of chemicals. PMID:11831217

  13. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  14. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  15. Growth and cadmium uptake of Swiss chard, Thlaspi caerulescens and corn in pH adjusted biosolids amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Before regulations were established, some biosolids applications added higher Cd levels than presently permitted. Cadmium phytoextraction from such soils would alleviate constraints on land use. Unamended farm soil, and biosolids amended farm soil and mine soil were obtained from Fulton County, Il...

  16. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand

    PubMed Central

    Goloran, Johnvie B.; Chen, Chengrong; Phillips, Ian R.; Elser, James J.

    2015-01-01

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance. PMID:26443331

  17. In situ production of bacterial branched tetraether lipids in the lower Yangtze River: Implications for soil-derived pH and temperature proxies

    NASA Astrophysics Data System (ADS)

    He, L.; Li, C.; Yang, S.; Zhang, C.

    2013-12-01

    Large rivers play a major role in transporting terrestrial material to the ocean and deposits on continental margins can serve as archives for paleo continental climate studies. Branched glycerol diakly glycerol tetraethers (bGDGTs) are predominantly found in soil, which can serve as proxies for paleo continental air temperature and paleo soil pH. Recently, however, in situ production of bGDGTs in aquatic systems has been observed. The goal of this study was to evaluate whether bGDGTs are produced in situ in the lower Yangtze River and how this in situ production might affect the temperature and pH proxies derived from the soil bGDGTs. Suspended particulate matter (SPM) was collected at three depth locations (left, central, right) of the river (<0.5 m depth) on a biweekly basis between December 2010 and July 2011 at the Datong hydrological station, which is about 600 km upstream of the Yangtze River mouth. Branched GDGTs from the SPM were extracted as core lipids (C-bGDGTs representing fossil lipids from soil)- and polar lipids (P-bGDGTs representing in situ production of lipids in the river water) using liquid chromatography-mass spectrometry. Our results showed that P-bGDGTs account for 4.2-10.6% of total bGDGTs. The flux of P-bGDGTs remained relatively constant in winter (December-January) and summer (June and July) (2.47-5.29 g/day) with higher values (12.39-14.67 g/day) occurred in April and May; whereas the flux of C-bGDGTs increased steady from January (19.21 g/day) to May (175 g/day) followed by an decrease to 122.15 g/day in July. The C- and P-bGDGT derived proxies showed large differences in mean annual air temperature (MAAT) and pH. Comparison with soil samples collected at the Datong station indicates that the C-bGDGTs in the river water reflected the MAAT and soil pH of the region whereas the P-bGDGT-derived values did not. These results suggest that there may be a constant portion of in situ production of bGDGTs in the lower Yangtze River. That

  18. Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors.

    PubMed

    Tong, Fei; Gu, Xueyuan; Gu, Cheng; Ji, Rong; Tan, Yinyue; Xie, Jinyu

    2015-12-01

    Concerns regarding tetrabromobisphenol A (TBBPA), the most widely utilized brominated flame retardant in the world, are growing because of the wide application and endocrine-disrupting potential of this compound. To properly assess its environmental impacts, it is important to understand the mobility and fate of TBBPA in soil environments. In this study, the effects of soil components, dissolved organic carbon (DOC) and heavy metal cations on TBBPA adsorption onto two Chinese soils (red soil and black soil) were investigated using batch sorption experiments. The desorption behavior of TBBPA when the two soils are irrigated with eutrophicated river water was also investigated. The results showed that pH greatly affects the adsorptive behavior of TBBPA in soils. Iron oxide minerals and phyllosilicate minerals are both active surfaces for TBBPA sorption, in addition to soil organic matter (SOM). DOC (50 mg OC L(-1)) exhibited a limited effect on TBBPA sorption only under neutral conditions. TBBPA sorption was only minimally affected by the heavy metals (Cu2+, Pb2+ and Cd2+) in the studied pH range. Eutrophicated river water significantly enhanced the desorption of TBBPA from red soil due to the change in soil solution pH. These findings indicate that mobility of TBBPA in soils is mainly associated with soil pH, organic matter and clay fractions: it will be retained by soils or sediments with high organic matter and clay fractions under acidic conditions but becomes mobile under alkaline conditions. PMID:26247687

  19. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule. PMID:11328588

  20. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  1. Influence of In Vitro Assay pH and Extractant Composition on As Bioaccessibility in Contaminated Soils

    EPA Science Inventory

    In vitro bioaccessibility assays are often utilised to determine the potential human exposure to soil contaminants through soil ingestion. Comparative studies have identified inconsistencies in the results obtained with different in vitro assays. In this study we investigated the...

  2. Coupled effect of pH and porous media type on transport and deposition of variably-charged soil colloids in saturated sands

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kawamoto, K.; Moldrup, P.; de Jonge, L. W.; Komatsu, T.

    2011-12-01

    Understanding colloid transport and deposition in subsurface is essential for predicting colloid-associated contaminant transport and developing effective remedial strategies. Compared to numerous studies using model colloids and model porous media, limited studies have been conducted with natural soil-colloids and porous media. This study investigated transport and deposition of suspended soil-colloids with diameter less than 1 μm extracted from a volcanic ash-soil (VAS colloids) from Nishi-Tokyo, Japan and a red-yellow soil (RYS colloids) from Okinawa, Japan. The extracted soil colloids were applied to 10-cm long saturated sand columns repacked with either Narita sand (mean diameter = 0.64 mm) or Toyoura sand (mean diameter = 0.21 mm) at different flow rates, input concentrations and pH conditions. The pH was adjusted using 0.1 M HCl and 0.01 M NaBr was used as a conservative tracer. Colloid transport and deposition were studied by analyzing colloid effluent concentration breakthrough curves, corresponding deposition profiles and particle size distributions. Based on zeta potential measurements, VAS colloids and Toyoura sand were characterized as pH-dependent surface charge dominant whereas, RYS colloids and Narita sand were categorized as less pH-dependent surface charge dominant colloids and porous media. The results of column studies indicated that decreasing pH decreased the colloid breakthrough curves and increased the deposition of colloids through both porous media. The effect of pH was more significant for VAS colloids than for RYS colloids and for Toyoura sand than for Narita sand, mainly attributed to the pH-dependent surface charge characteristics of VAS colloids and Toyoura sand. The results also demonstrated that if either a colloid or a porous medium is pH-dependent, a significant decrease in breakthrough curves is accompanied by depth-dependent deposition profiles. This study indicated that surface charge properties of colloids coupled with

  3. The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Johar, Saffuwan Mohamed; Embong, Zaidi; Tajudin, Saiful Azhar Ahmad

    2016-01-01

    An assessment of absorbed dose and radiation hazard index as well as its relationship with soil pH was performed in this study. The area was chosen due to its variety of soil types from the Alluvial and the Sedentary group. The radioactivity concentration levels and the soil acidity were measured using the Canberra GC3518 high pure germanium with a relative efficiency of 35% at 1.3 MeV and the Takemura Soil pH and Moisture Tester (DM15), respectively. Overall results show the Holyrood-Lunas soil of Alluvial group recorded the highest external terrestrial gamma radiation dose rate (TGRD) of 286.4±37.9 nGy h-1 and radioactivity concentrations of 78.1±8.9 Bq kg-1 (226Ra), 410.5±55.4 Bq kg-1 (232Th) and 56.4±8.8 Bq kg-1 (40K), respectively, while the Peat soil of Alluvial group recorded the lowest TGRD of 4.4±2.7 nGy h-1 and radioactivity concentrations of 4.8±1.7 Bq kg-1 (226Ra), 3.1±1.1 Bq kg-1 (232Th) and 6.1±2.0 Bq kg-1 (40K), respectively. The estimated mean outdoor annual effective dose, the mean radium equivalent activity (Req) and the mean external (Hext) and internal hazard index (Hint) associated with the alluvial and sedentary soil group were evaluated at 0.15 and 0.20 mSv, 280 and 364 Bq kg-1, Hext = 0.78 and 1.01, and Hint = 0.93 and 1.26, respectively. Correlation analysis between 238U, 232Th and 40K with soil pH level for alluvial group was r = +0.68, +0.48 and 0, respectively, while for sedentary soil, the Pearson's, r = -0.30, -0.90 and +0.14, respectively.

  4. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  5. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  6. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.

    PubMed

    Paz, R C; Reinoso, H; Espasandin, F D; González Antivilo, F A; Sansberro, P A; Rocco, R A; Ruiz, O A; Menéndez, A B

    2014-11-01

    Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3. PMID:24597843

  7. The effect of pH on the survival of leptospires in water*

    PubMed Central

    Smith, C. E. Gordon; Turner, L. H.

    1961-01-01

    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time. It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken. PMID:20604084

  8. Carbon Loss and Germinability, Viability, and Virulence of Chlamydospores of Fusarium solani f. sp. phaseoli After Exposure to Soil at Different pH Levels, Temperatures, and Matric Potentials.

    PubMed

    Mondal, S N; Hyakumachi, M

    1998-02-01

    ABSTRACT (14)C-labeled chlamydospores of Fusarium solani f. sp. phaseoli were exposed to soil at 5, 15, 25, or 30 degrees C at pH 5 or 8 and water potential of -1 kPa or to soil at 0, -1, or -10 kPa at 25 degrees C at pH 6.9. Total carbon loss was greatest at 25 or 30 degrees C at pH 8 and -1 kPa. (14)CO(2) from respiration of chlamydospores and from soil microbes utilizing chlamydospore exudates accounted for the largest share of total carbon loss under all conditions. (14)(CO)(2) from soil microbial metabolism of (14)CO(2) exudates of chlamydospores was greatest in soil at 15, 25, and 30 degrees C, pH 8, and at either -1 or -10 kPa. Chlamydospore germinability in the absence of a C source (nutrient independence), viability in potato-dextrose broth, and virulence to kidney bean declined rapidly after exposure to soil at high temperatures (25 and 30 degrees C), pH 8, and the higher matric potentials (0 to-1 kPa). By contrast, germinability remained high (>50%), as did virulence, in soil at 5 degrees C and -10 kPa even after 70 days of incubation. Carbon loss was inversely correlated with germinability, viability, and virulence after exposure to soil at different pH levels, temperatures, and matric potentials. PMID:18944984

  9. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  10. Soil acidification stimulates the emission of ethylene from temperate forest soils

    NASA Astrophysics Data System (ADS)

    Xu, Xingkai; Kazuyuki, Inubushi

    2009-11-01

    Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0-5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pH<4.0, and it increased with an increasing concentration of DOC released into the soils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.

  11. The Community Structures of Prokaryotes and Fungi in Mountain Pasture Soils are Highly Correlated and Primarily Influenced by pH.

    PubMed

    Lanzén, Anders; Epelde, Lur; Garbisu, Carlos; Anza, Mikel; Martín-Sánchez, Iker; Blanco, Fernando; Mijangos, Iker

    2015-01-01

    Traditionally, conservation and management of mountain pastures has been managed solely on the basis of visible biota. However, microorganisms play a vital role for the functioning of the soil ecosystem and, hence, pasture sustainability. Here, we studied the links between soil microbial (belowground) community structure (using amplicon sequencing of prokaryotes and fungi), other soil physicochemical and biological properties and, finally, a variety of pasture management practices. To this aim, during two consecutive years, we studied 104 environmental sites characterized by contrasting elevation, habitats, bedrock, and pasture management; located in or near Gorbeia Natural Park (Basque Country/Spain). Soil pH was found to be one of the most important factors in structuring soil microbial diversity. Interestingly, we observed a striking correlation between prokaryotic, fungal and macrofauna diversity, likely caused by interactions between these life forms. Further studies are needed to better understand such interactions and target the influence of different management practices on the soil microbial community, in face of the significant heterogeneity present. However, clearing of bushes altered microbial community structure, and in sites with calcareous bedrock also the use of herbicide vs. mechanical clearing of ferns. PMID:26640462

  12. The Community Structures of Prokaryotes and Fungi in Mountain Pasture Soils are Highly Correlated and Primarily Influenced by pH

    PubMed Central

    Lanzén, Anders; Epelde, Lur; Garbisu, Carlos; Anza, Mikel; Martín-Sánchez, Iker; Blanco, Fernando; Mijangos, Iker

    2015-01-01

    Traditionally, conservation and management of mountain pastures has been managed solely on the basis of visible biota. However, microorganisms play a vital role for the functioning of the soil ecosystem and, hence, pasture sustainability. Here, we studied the links between soil microbial (belowground) community structure (using amplicon sequencing of prokaryotes and fungi), other soil physicochemical and biological properties and, finally, a variety of pasture management practices. To this aim, during two consecutive years, we studied 104 environmental sites characterized by contrasting elevation, habitats, bedrock, and pasture management; located in or near Gorbeia Natural Park (Basque Country/Spain). Soil pH was found to be one of the most important factors in structuring soil microbial diversity. Interestingly, we observed a striking correlation between prokaryotic, fungal and macrofauna diversity, likely caused by interactions between these life forms. Further studies are needed to better understand such interactions and target the influence of different management practices on the soil microbial community, in face of the significant heterogeneity present. However, clearing of bushes altered microbial community structure, and in sites with calcareous bedrock also the use of herbicide vs. mechanical clearing of ferns. PMID:26640462

  13. Extraction of heavy metals from a contaminated soil using citrate-enhancing extraction by pH control and ultrasound application.

    PubMed

    Furukawa, Makoto; Tokunaga, Shuzo

    2004-01-01

    A novel extraction method has been developed for remediation of a heavy-metal contaminated soil. Citrate was used as environmentally-friendly extractant to remove Pb, Zn, Cd, and Cu. Heavy metals were extracted effectively at two different pH regions around 2 and 4-5. Kinetic study showed that heavy metal extraction by washing at pH around 2 reached equilibrium within 4h, while extraction by washing at pH 4-5 increased gradually by the end of 24 h washing. Washing extraction at pH 2 for 6 h which was followed by washing at pH 5 for 16 h increased the percentage extraction of Pb and Cu from 67.6 to 85.9% and from 77.5 to 83.4%, respectively. Ultrasound application has been also investigated to enhance extraction of heavy metals by using citrate. Only 30 min ultrasound application at 19.5 KHz attained higher extraction of heavy metals than those by washing for 24h, showing the enhancement of heavy-metal removal. Thus, the performance of citrate for removing heavy metals was improved. PMID:15055930

  14. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    NASA Astrophysics Data System (ADS)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed

  15. Cr(VI) adsorption/desorption on untreated and mussel shell-treated soil materials: fractionation and effects of pH and chromium concentration

    NASA Astrophysics Data System (ADS)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2014-12-01

    We used batch-type experiments to study Cr(VI) adsorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Adsorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was the dominant in mussel shell and in the un-amended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was characterized by not marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  16. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: fractionation and effects of pH and chromium concentration

    NASA Astrophysics Data System (ADS)

    Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J. C.; Arias-Estévez, M.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.

    2015-04-01

    We used batch-type experiments to study Cr(VI) sorption/desorption on granitic material, forest soil, pyritic material, mussel shell, and on forest soil and granitic material amended with 12 t ha-1 (1.2 kg m -2) shell, considering the effects of varying Cr(VI) concentration and pH. Sequential extractions were carried out to fractionate adsorbed Cr(VI) and to determine the stability of Cr(VI) retention. The pyritic material had the highest Cr(VI) retention capacity, whereas the granitic material showed the lowest retention potential. When high Cr concentrations were added, some saturation of the adsorbent surfaces became apparent, but Cr release remained low. The highest Cr retention was achieved at a very acid pH value, with release progressively increasing as a function of increasing pH. The amendment with 12 t ha-1 mussel shell did not cause marked changes in Cr(VI) retention. Sorption data were satisfactory adjusted to the Freundlich model. Regarding Cr(VI) fractionation, the soluble fraction (weakly bound) was dominant in mussel shell and in the unamended and amended granitic material, whereas more stable fractions dominated in the pyritic material (residual fraction) and in the forest soil (oxidizable fraction). In conclusion, the pyritic material presented the highest Cr(VI) retention capacity, while the retention was low and weak on the granitic material; mussel shell was not characterized by a marked Cr(VI) retention potential, and it did not cause remarkable increase in Cr(VI) retention when used to amend the granitic material or the forest soil.

  17. Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study.

    PubMed

    Madejón, E; Madejón, P; Burgos, P; Pérez de Mora, A; Cabrera, F

    2009-03-15

    A 4-year study was undertaken on the effect of three amendments (biosolid compost (BC), sugar beet lime (SL), and combination of leonardite plus sugar beet lime (LESL)) on reclamation of a moderately trace element-contaminated soil under field conditions. Results showed that organic C increased in BC and LESL treatments. BC and SL treatments increased soil pH and reduced CaCl(2)-extractable metal concentrations more efficiently. At the end of the experiment, CaCl(2)-extractable metal concentrations decreased and were similar in all treatments pointing out the importance of the natural remediation processes in contaminated soils. Addition of amendments showed no clear reduction in EDTA-extractable trace element concentrations, even, BC and LESL subplots showed some little increase of these elements with time. Amendments did not cause any change in total trace element concentration in soil. Addition of amendments could be a successful and reliable long term technique for stabilization of trace elements in contaminated soils at a field scale with minimum maintenance. PMID:18602216

  18. Effect of pH on transport of Pb2+, Mn2+, Zn2+ and Ni2+ through lateritic soil: column experiments and transport modeling.

    PubMed

    Chotpantarat, Srilert; Ong, Say Kee; Sutthirat, Chakkaphan; Osathaphan, Khemarath

    2011-01-01

    This study investigated the effects of pH on the transport of Pb2+, Mn2+, Zn2+ and Ni2+ through lateritic soil columns. Model results by fitting the symmetric breakthrough curves (BTCs) of bromide (Br-) with CXTFIT model suggested that physical non-equilibrium processes were absent in the columns. The heavy metal BTCs were, however, asymmetrical and exhibited a tailing phenomenon, indicating the presence of chemical non-equilibrium processes in the columns. The retardation factors of Pb2+ were the largest of the four metal ions at both pH 4.0 (33.3) and pH 5.0 (35.4). The use of Langmuir isotherm parameters from batch studies with HYDRUS-1D did not predict the BTCs well. Rather the two-site model (TSM) described the heavy metal BTCs better than the equilibrium linear/nonlinear Langmuir model. The fraction of instantaneous sorption sites (f) of all four metal ions on the lateritic soil was consistently about 30%-44% of the total sorption sites. PMID:21793407

  19. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  20. Microbial thiocyanate utilization under highly alkaline conditions.

    PubMed

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  1. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  2. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  3. The influence of redox chemistry and pH on chemically active forms of arsenic in sewage sludge-amended soil

    SciTech Connect

    Carbonell-Barrachina, A.; Jugsujinda, A.; DeLaune, R.D.; Patrick, W.H. Jr.; Burlo, F.; Sirisukhodom, S.; Anurakpongsatorn, P.

    1999-07-01

    Chemical fractionation procedures were used to quantify the effect of the sediment redox and pH conditions on the adsorption and solubility of arsenic (As) in municipal sewage sludge and sewage sludge-amended soil. Sludge and sludge-amended soil were incubated in microcosms in which Eh-pH conditions were controlled. Samples were sequentially extracted to determine As in various chemical forms (water soluble, exchangeable, bound to carbonates, bound to iron (Fe) and manganese (Mn) oxides, bound to insoluble organics and sulfides) and the chemically inactive fraction (mineral residues). In both sewage sludge and sludge-amended soil, As chemistry was governed by large molecular humic matter and sulfides and Fe and Mn-oxides. Solubility of As remained low and constant under both aerobic and anaerobic conditions in sludge-amended soil. After dissolution of Fe and Mn-oxides, As{sup 5+} was released into sludge solution, reduced to As{sup 3+} and likely precipitated as sulfide. Therefore, an organic amendment rich in sulfur compounds, such as sewage sludge, would drastically reduce the potential risks derived from As pollution under highly anoxic conditions by precipitation of this toxic metalloid as insoluble and immobile sulfides.

  4. Assessment of natural and calcined starfish for the amelioration of acidic soil.

    PubMed

    Moon, Deok Hyun; Yang, Jae E; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun; Lim, Kyoung Jae; Kim, Sung Chul; Kim, Rog-Young; Ok, Yong Sik

    2014-01-01

    Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth. PMID:24756689

  5. Evaluation of a commercial multi-sensor system for soil electrical conductivity, organic matter, and pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient and accurate spatial quantification of soil properties is recognized as an important aspect of precision agriculture. With the current standard practice of in-field sample collection and subsequent laboratory analysis it is often prohibitively expensive to obtain data at the spatial densit...

  6. Urea hydrolysis rates in soil toposequences as influenced by pH, carbon, nitrogen, and soluble metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simultaneous increase in the use of urea fertilizer and the incidence of harmful algal blooms worldwide has generated research on potential loss pathways of unhydrolyzed urea from agricultural areas. The objective of this research was to study the dynamics of urea hydrolysis in soil profile topos...

  7. Predicting where enhanced atrazine degradation will occur based on soil pH and herbicide use history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil bacteria on all continents except Antartica have developed the ability to rapidly degrade the herbicide atrazine, a phenomenon referred to as enhanced degradation. The agronomic significance of enhanced degradation is the potential for reduced residual weed control with atrazine in Corn, Sorgh...

  8. Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH and boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity is a major factor relating microbial communities to environmental stress in the microbial selection process as stress can reduce bacterial diversity. In the San Joaquin Valley (SJV) of California, the problem of increasing salinity and consequently, decreasing crop productivity, due to...

  9. Soil Ecology of Coccidioides immitis at Amerindian Middens in California

    PubMed Central

    Lacy, George H.; Swatek, Frank E.

    1974-01-01

    Outbreaks of coccidioidomycosis and isolation of Coccidioides immitis have been reported from Amerindian middens. This study was undertaken to determine the most important ecological component(s) for the occurrence of C. immitis at archeological sites. Soils from 10 former Indian villages with no prior history of coccidioidal infection were collected and cultured. The physicochemical properties of the midden soils were compared with nonmidden soils and positive soils. The following theories for the sporadic distribution of the pathogen in the soil of the Lower Sonoran Life Zone were considered: (i) the Larrea tridentata (creosote bush) association, (ii) the preference for saline soils, (iii) isolation near rodent burrows, and (iv) animals as possible agents of dispersal. Results showed that a high percentage of the midden soils contained C. immitis, whereas none of the adjacent, nonmidden soils yielded the fungus. Physicochemical analyses revealed that the dark color and alkaline pH of the midden soils were due to past organic contamination. Repeated isolations were made from soils with low to moderate alkalinity. Alkalinity and sandy texture were consistent features of all soils in this study. However, the lack of any reports of nonsandy infested soils possibly indicates that the sandy texture and alkalinity may be factors in the distribution of this fungus. The organic content, soil parent material, and color were not important in the soil ecology. L. tridentata was not significant in the macroflora at the infested sites surveyed. Samples collected without reference to rodent burrows yielded a high percentage of recoveries. Animals, although not the major natural reservoir, cannot be ignored as possible factors in the ecology of C. immitis. Images PMID:4856715

  10. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  11. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  12. Observation of pH Value in Electrokinetic Remediation using various electrolyte (MgSO4, KH2PO4 and Na(NO3)) for Barren Acidic Soil at Ayer Hitam, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Norashira, J.; Zaidi, E.; Aziman, M.; Saiful Azhar, A. T.

    2016-07-01

    Barren acidic soil collected at Ayer Hitam, Johor Malaysia was recorded at pH value of 2.36 with relative humidity of 86%. This pH value is not suitable for the growth of any plants especially for the soil stabilization purposes. Gradation weathering within the range of 4 to 6 indicates an incomplete/partial weathering process. The soil grade in this range is known as a black shale mudstone. Beside, this also influences to a factor of the high surface water runoff at this particular soil species. As the acidic pH become a major problem for soil fertilizing hence an appropriate technique was implemented known as using ‘Electrokinetic Remediation’, EKR. This technique has a great potential in changing the soil pH value from acidic to less acidic and also kept maintain the pH at the saturated rate of electrochemical process. This research study presents the monitoring data of pH value due to the effect of various electrolyte consist of 0.5M of MgSO4, KH2PO4, and Na(NO3). Here, the distilled water (DW) was used as reference solution. The electric field was provided by dipping two pieces of identical rectangular aluminum foil as anode and cathode. The EKR was conducted under a constant voltage gradient of 50 V/m across the sample bulk at 0.14 m length measured between both electrodes. The data collection was conducted during the total period of 7 days surveillance. The variation of pH values at the remediation area between anode and cathode for various type of electrolyte indicates that there are a significant saturated value as it reaches 7 days of treatment. During the analysis, it is found that the highest pH value at the remediation area after 7 days treatment using Na(NO3), KH2PO4 and MgSO4 was 3.93, 3.33 and 3.39 respectively. Hence from the last stage of pH value observation, it can be conclude that the best electrolyte for barren soil treatment is Na(NO3) whereby it contribute to highest pH value and turn the soil to be less acidic.

  13. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ application of heavy metal stabilizing agents has in some cases increased the mobility of target metal contaminants. Mechanistic understandings are necessary to better predict (1) the dynamic short- and long-term response to soil amendments, and (2) the utility of biochars in nonremoval and...

  14. Vertical structure and pH as factors for chitinolytic and pectinolytic microbial community of soils and terrestrial ecosystems of different climatic zones

    NASA Astrophysics Data System (ADS)

    Lukacheva, Evgeniya; Natalia, Manucharova

    2016-04-01

    Chitin is a naturally occurring fibre-forming polymer that plays a protective role in many lower animals similar to that of cellulose in plants. Also it's a compound of cell walls of fungi. Chemically it is a long-chain unbranched polysaccharide made of N-acetylglucosamine residues; it is the second most abundant organic compound in nature, after cellulose. Pectin is a structural heteropolysaccharide contained in the primary cell walls of terrestrial plants. Roots of the plants and root crops contain pectin. Chitin and pectin are widely distributed throughout the natural world. Structural and functional features of the complex microbial degradation of biopolymers one of the most important direction in microbial ecology. But there is no a lot of data concerns degradation in vertical structure of terrestrial ecosystems and detailed studies concerning certain abiotic features as pH. Microbial complexes of natural areas were analyzed only as humus horizons (A1) of the soil profile. Only small part of microbial community could be studied with this approach. It is known that ecosystems have their own structure. It is possible to allocate some vertical tiers: phylloplane, litter (soil covering), soil. We investigated chitinolytic and pectinolytic microbial communities dedicated to different layers of the ecosystems. Also it was described depending on pH dominated in certain ecosystem with certain conditions. Quantity of eukaryote and procaryote organisms increased in the test samples with chitin and pectin. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet's quantity in the samples with chitin in comparison with samples with pectin. The variety and abundance of bacteria in the litter samples increased an order of magnitude as compared to other probes. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic

  15. An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2010-11-01

    Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ⩽ I ⩽ 1 M), total dissolved carbonate concentration (10 -4 M < ΣCO 2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO 32- activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory ( Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r=k{>MgOH2+}41-exp (-4ART), where rd represents the BET surface area normalized dissolution rate, {>MgOH2+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO 2 stem from a corresponding decrease in {>MgOH2+}. This decrease in {>MgOH2+} results from the increasing stability of the >MgCO3- and >MgOH° surface species with increasing temperature, pH and CO 32- activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.

  16. Amelioration of an Ultisol profile acidity using crop straws combined with alkaline slag.

    PubMed

    Li, Jiu-yu; Masud, M M; Li, Zhong-yi; Xu, Ren-kou

    2015-07-01

    The acidity of Ultisols (pH <5) is detrimental to crop production. Technologies should be explored to promote base saturation and liming effect for amelioration of Ultisol pH. Column leaching experiments were conducted to investigate the amelioration effects of canola straw (CS) and peanut straw (PS) in single treatment and in combination whether with alkaline slag (AS) or with lime on Ultisol profile acidity. The treatment without liming materials was set as control, and the AS and lime in single treatment are set for comparison. Results indicated that all the liming materials increase soil profile pH and soil exchangeable base cations at the 0-40-cm depth, except that the lime had amelioration effect just on 0 to 15-cm profile. The amelioration effect of the liming materials on surface soil acidity was mainly dependent on the ash alkalinity in organic materials or acid neutralization capacity of inorganic materials. Specific adsorption of sulfate (SO4(2-)) or organic anions, decarboxylation of organic acids/anions, and the association of H(+) with organic anions induced a "liming effect" of crop residues and AS on subsoil acidity. Moreover, SO4(2-) and chloride (Cl(-)) in PS, CS, and AS primarily induced base cations to move downward to subsoil and exchange with exchangeable aluminum (Al(3+)) and protons (H(+)). These anions also promoted the exchangeable Al to leach out of the soil profile. The CS was more effective than PS in decreasing soil acidity in the subsoil, which mainly resulted from higher sulfur (S) and Cl content in CS compared to PS. The CS combined with AS was the better amendment choice in practical agricultural systems. PMID:25666472

  17. Stability and Mobility of CdSe/ZnS Quantum Dots in Soils: Effects of Organic Ligands, pH and Ionic Strength

    NASA Astrophysics Data System (ADS)

    Li, C.; Darnault, C. J. G.; Snee, P. T.

    2015-12-01

    Quantum dots (QDs) are the key enablers in the domain of nanoscience and have found many applications due to their physico-chemical and optical properties. For example, they are used in solar cells, lighting technologies, and biomedical imaging. Their presence in the environment following their application and life-cycle is inevitable. Therefore, it is critical to understand their behavior in the soil water system to assess the risks they may pose to natural systems and to public health. Assessing the factors that impact the stability and mobility of QDs in the soil water system is important. Natural organic ligands occur in subsurface environments and alter chemical processes in soils through complex reactions with metal ions in solution and ligand exchange reactions on soil surfaces. Consequently, the presence of ligands may alter the surface properties of QDs and impact their stability and mobility in saturated porous media. In this study, characteristics and stability of CdSe/ZnS QDs in water solutions are tested in batch experiments. The impacts of organic ligands (acetate, oxalate, and citrate) on the stability of QDs under various pH (5, 7 and 9) and ionic strength (0.05 and 0.1 M) conditions were investigated. The stability and aggregation kinetics of QDs were examined using UV-vis and DLS methods. Selected parameters from batch experiments were then used as study conditions to perform column transport experiments to generate breakthrough curves and retention profiles to assess the fate and transport of QDs in saturated porous media, which is the first phase in simulating their behavior in the subsurface.

  18. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated. PMID:27230149

  19. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  20. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  1. A fine fraction of soil used as an aerosol analogue during the DUNE experiment: sequential solubility in water, decreasing pH step-by-step

    NASA Astrophysics Data System (ADS)

    Aghnatios, C.; Losno, R.; Dulac, F.

    2014-09-01

    A soil sample collected in a desert aerosol source area near Douz (southern Tunisia) was dry-sieved at 20 μm in order to extract the fraction similar to a wind-generated aerosol, and was used to seed mesocosms during the DUNE experiment (a DUst experiment in a low Nutrient, low chlorophyll Ecosystem). In this work, said "aerosol-like" fine dust was sequentially leached by short contacts with water at initial pHs, decreasing from seven to one, representing various wet environmental conditions. For each step, the solubility of a given element is calculated as the amount of its dissolved fraction, relative to its total amount. The evolution of this fractional solubility from the highest to lowest pHs provides information on the chemical strength needed to solubilise a given element and its lability. The behaviour of the elemental solubility was sorted into two groups: (1) Ca, Sr, Ba, Mn, and P, with a solubility between 23% and 70%, and a maximum sequential solubility at pH 3; (2) Al and Fe, with a solubility of less than 2% and the highest release at pH 1. Similar solubility patterns in group 1 for Ca, P, and Mn suggest a possible association of the elements in the same minerals, most probably carbonates.

  2. A~fine fraction of soil used as an aerosol analogue during the DUNE experiment: sequential solubility in water with step-by-step decreasing pH

    NASA Astrophysics Data System (ADS)

    Aghnatios, C.; Losno, R.; Dulac, F.

    2014-02-01

    A soil sample collected in a desert aerosol source area near Douz (South Tunisia) was sieved at 20 μm in order to extract the fraction similar to an aerosol generated by wind and used to seed mesocosms during the DUNE experiment. In the present work, this "aerosol-like" fine dust was sequentially leached by short contacts with water at pHs decreasing from 7 to 1. These pHs are representative of various environmental wet conditions, the lowest of which could be reached during cloud conditions. The evolution of the solubility from the highest to the lowest pHs provides information on the necessary strength for the solubilisation of a given element and its lability. The behaviour of the elemental fractional solubility is sorted into two groups: (i) Ca, Sr, Ba, Mn, P constitute group 1, with a solubility between 23% and 70% and with a maximum solubility at pH 3; (ii) whereas in group 2 (Al, Fe), the solubility is less than 2% with the highest release at pH 1. Similar solubility patterns in group 1 for Ca, P and Mn suggest a~possible association of the elements in the same minerals, most probably carbonates, which gives phosphorus an unexpected high lability.

  3. An assessment of the long-term environmental impacts of reusing alkaline clay on coal refuse piles with a dynamic solute transport model at a watershed scale

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liang, X.; Davis, T. W.; Patterson, J.; Jaw, F. K.; Koranchie-Boah, P.

    2011-12-01

    Coal refuse piles play a significant role in producing acid mining drainage (AMD) that deteriorates water quality at a watershed scale. The waste produced from coal refuse piles results in a decrease of the pH value in soil water and river flow. Metal compounds, such as ferric and ferrous solutions, are also continuously released from the coal pile due to the extensive and complicated chemical reactions in the acidic environment. Alkaline clay, a byproduct of alumina refining process, has a high residual pH in the material. If the alkaline clay is used innovatively with the coal mine refuse, the problems associated with each (e.g., high and low pH values) are likely to be effectively resolved. In addition, the solubility of the sulfur and iron will be reduced significantly. This will effectively eliminate the AMD problem at the coal refuse pile and improve the water quality at the watershed scale. This study investigates the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment (e.g., in the soil column and in the river system) through systematic modeling simulations in a combination with field measurements. In particular, a dynamic solute transport model that accounts for processes of the pyrite oxidation, oxygen diffusion, absorption, desorption, and advection is developed and is coupled with the Distributed Hydrology Soil and Vegetation Model (DHSVM) to assess the environmental impacts at the watershed scale. The model-simulated sulfur and iron concentrations are compared with field observations and the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment are investigated. This study paves the way for monitoring and assessing the impacts of the reuse of the alkaline clay and refuse mixture on the environment at a watershed scale.

  4. Effect of acid rain on the growth and nutrient content of two species of hardwood tree seedlings, and on the pH, microflora and nutrient content of the soil

    SciTech Connect

    Patten, D.K.

    1983-01-01

    The purpose of this study was to determine the sensitivity of two hardwood tree species and three soils to simulated acid rain. The value of infecting tree seedlings with mycorrhizal fungi before transplanting into acid-leached soils was also examined. Dundas silt loam, Hayden loam and Luther loam supporting coleus and sorghum were leached three times each week for 20 weeks with a mixture of H/sub 2/SO/sub 4/ and HNO/sub 3/ adjusted by dilution to pH 5.5, 4.0 or 2.5 Ninety seedlings each of green ash (Fraxinus pennsylvanica Marsh.) and silver maple (Acer saccharinum L.) were transplanted into the soils and were misted twice weekly with the acid solutions. Ash seedlings misted with the pH 2.5 solution were shorter, had a smaller total leaf area and produced less leaf and stem material than ash seedlings misted wth pH 5.5 solution. In contrast, the growth and weight of the maple seedlings increased in response to the pH 2.5 treatments. Leaves of the ash exposed to the pH 2.5 treatment were covered with numerous small lesions, and the cuticular wax was partially worn away. Nitrogen concentrations in the leaves, stems and roots of both species increased with increasing acidity, while phosphorus concentration in the leaves decreased. Soils became increasingly acidic as the acid treatments continued.

  5. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished. PMID:24078235

  6. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    PubMed

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p < 9). Results demonstrate that significant reductions in solution pH can be achieved depending on the diluting water quality. Levels achieved may not always be suitable for direct discharge (i.e. pH ≤ 9), but further reductions occur with carbonation and soil contact. The extent of pH decrease and the timeframe required are influenced by soil quality, with greater efficiency observed in soils with higher organic matter content. Decrease in solution pH to discharge permit values are possible through a combination of the mechanisms occurring in a constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to <9 through mechanisms supporting the precipitation of sodium carbonate from solution. Further trials should investigate the activity under biological conditions representative of an operating constructed wetland. PMID:27048325

  7. Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis.

    PubMed

    Agasthya, Annapurna S; Sharma, Naresh; Mohan, Anand; Mahal, Prabhpreet

    2013-05-01

    Proteases are of particular interest because of their action on insoluble keratin substrates and generally on a broad range of protein substrates. Proteases are one of the most important groups of industrial enzymes used in detergent, protein, brewing, meat, photographic, leather, dairy, pharmaceutical and food industry. In the present study, the organism isolated from the protein rich soil sample was identified by biochemical and molecular characterisation as Bacillus thuringiensis and further optimum conditions for alkaline protease synthesis were determined. The growth conditions for B. thuringiensis was optimised by inoculating into yeast extract casein medium at different pH and incubating at different temperatures. The maximum protease production occurred at pH 8 and at 37 °C. B. thuringiensis showed proteolytic activity at various culture conditions. Optimum conditions for the protease activity were found to be 47 °C and pH 8. In the later stage, the blood removing action of crude and partially purified protease was found to be effective within 25 min in the presence of commercial detergents indicating the possible use of this enzyme in detergent industry. Enzyme also showed good activity against hair substrate keratin and can be used for dehairing. PMID:22826099

  8. Release of chromium from soils with persulfate chemical oxidation.

    PubMed

    Kaur, Kawalpreet; Crimi, Michelle

    2014-01-01

    An important part of the evaluation of the effectiveness of persulfate in situ chemical oxidation (ISCO) for treating organic contaminants is to identify and understand its potential impact on metal co-contaminants in the subsurface. Chromium is a redox-sensitive and toxic metal the release of which poses considerable risk to human health. The objective of this study was to investigate the impact of persulfate chemical oxidation on the release of chromium from three soils varying in physical-chemical properties. Soils were treated with unactivated and activated persulfate [activated with Fe(II), Fe(II)-EDTA, and alkaline pH] at two different concentrations (i.e., 41 mM and 2.1 mM persulfate) for 48 h and 6 months and were analyzed for release of chromium. Results show that release of chromium with persulfate chemical oxidation depends on the soil type and the activation method. Sandy soil with low oxidant demand released more chromium compared to soils with high oxidant demand. More chromium was released with alkaline pH activation. Alkaline pH and high Eh conditions favor oxidation of Cr(III) to Cr(VI), which is the main mechanism of release of chromium with persulfate chemical oxidation. Unactivated and Fe(II)-activated persulfate decreased pH and at low pH in absence of EDTA chromium release is not a concern. These results indicate that chromium release can be anticipated based on the given site and treatment conditions, and ISCO system can be designed to minimize potential chromium release when treating soils and groundwater contaminated with both organic and metal contaminants. PMID:24028318

  9. Terrestrial soil pH and MAAT records based on the MBT/CBT in the southern South China Sea: implications for the atmospheric CO2 evolution in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2013-12-01

    Liang Dong1, Li Li1, Qianyu Li1,2, Chuanlun L. Zhang1,3 1State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China 2School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia 3Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA The methylation index of branched tetraethers (MBT) and/or the cyclization ratio of branched tetraethers (CBT) are derived from the branched glycerol dialkyl Glycerol tetraethers (GDGTs) of bacterial origin and are widely used to reconstruct the terrestrial soil pH and mean annual air temperature (MAAT); however, these proxies are less frequently used in the oceanic settings. Here we provide the first high resolution records of soil pH and MAAT since the last glacial maximum based on the sedimentary core of MD05-2896 in the southern South China Sea. The MAAT record exhibited typical glacial and interglacial cycles and was consistent with the winter insolation variation. The pH values were lower (6.4-7) in the glacial time and higher (7-8.4) in the interglacial time. Changes in soil pH allowed the evaluation of changes in soil CO2 based on the atmosphere-soil CO2 balance. The results imply that the lower winter MAAT variation with a lower winter atmospheric CO2 concentration might have resulted in a higher pH in the interglacial period. Our records provide a new insight into the evolution of atmospheric CO2 between glacial and interglacial cycles in East Asia. Key words: South China Sea, MBT/CBT, b-GDGTs, MAAT, pH

  10. Diagnostics of soil compaction in steppe zone

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Kust, German

    2014-05-01

    Land degradation and desertification are among the major challenges in steppe zone, and leads the risks of food security in affected areas. Soil compaction is one of the basic reasons of degradation of arable land. The processes of soil compaction have different genesis. Knowledge of soil compaction mechanisms and their early diagnostics permit to accurately forecast velocity and degree of degradation processes as well as to undertake effective preventive measures and land reclamation activities. Manifestations of soil compaction and degradation of soil structure due to vertic, alkaline and and mechanical (agro-) compaction, as well as caused by combination of these processes in irrigated and rainfed conditions were studied in four model plots in Krasnodar and Saratov regions of Russia. Typic chernozems, solonetz and kashtanozem solonetz, south chernozem and dark-kashtanozem soils were under investigation. Morphological (mesomorphological, micromorphological and microtomographic) features, as well as number of physical (particle size analyses, water-peptizable clays content (WPC), swelling and shrinking, bulk density and moisture), chemical (humus, pH, CAC, EC), and mineralogical (clay fraction) properties were investigated. Method for grouping soil compaction types by morphological features was proposed. It was shown that: - overcompacted chernozems with vertic features has porosity close to natural chernozems (about 40%), but they had the least pore diameter (7-12 micron) among studied soils. Solonetzic soils had the least amount of "pore-opening" (9%). - irrigation did not lead to the degradation of soil structure on micro-level. - "mechanically" (agro-) compacted soils retained an intra-aggregate porosity. - studied soils are characterized by medium and heavy particle size content (silt [<0.1mm] of 30-60%). Subsoil horizons of chernozems with vertic and alkaline features were the heaviest by particle size content. - the share of WPC to clay ratio was 40% in

  11. Mycelial bacteria of saline soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  12. Alkaline Band Formation in Chara corallina

    PubMed Central

    Lucas, William J.

    1979-01-01

    The nature of the transport system responsible for the establishment of alkaline bands on cells of Chara corallina was investigated. The transport process was found to be insensitive to external pH, provided the value was above a certain threshold. At this threshold (pH 5.1 to 4.8) the transport process was inactivated. Transport function could be recovered by raising the pH value of the external solution. The fastest rate of recovery was always obtained in the presence of exogenous HCO3−. Experiments in which plasmalemma integrity was modified using 10 millimolar K+ treatment were also performed. Alkaline band transport was significantly reduced in the presence of 10 millimolar K+, but the system did not recover, following return to 0.2 millimolar K+ solutions, until the transport site was reexposed to exogenous HCO3−. The influence of presence and absence of various cations on both alkaline band transport and total H14CO3− assimilation was examined. No specific cation requirement (mono- or divalent) was found for either process, except the previously established role of Ca2+ at the HCO3− transport site. The alkaline band transport process exhibited a general requirement for cations. This transport system could be partially or completely stalled in low cation solutions, or glass-distilled water, respectively. The results indicate that no cationic flux occurs across the plasmalemma in direct association with either the alkaline band or HCO3− transport systems. It is felt that the present results offer support for the hypothesis that an OH− efflux transport system (rather than a H+ influx system) is responsible for alkaline band development in C. corallina. The results support the hypothesis that OH− efflux is an electrogenic process. This OH− transport system also appears to contain two allosteric effector sites, involving an acidic group and a HCO3− ion. PMID:16660706

  13. Production and estimation of alkaline protease by immobilized Bacillus licheniformis isolated from poultry farm soil of 24 Parganas and its reusability

    PubMed Central

    Chatterjee, Shamba

    2015-01-01

    Microbial alkaline protease has become an important industrial and commercial biotech product in the recent years and exerts major applications in food, textile, detergent, and pharmaceutical industries. By immobilization of microbes in different entrapment matrices, the enzyme produced can be more stable, pure, continuous, and can be reused which in turn modulates the enzyme production in an economical manner. There have been reports in support of calcium alginate and corn cab as excellent matrices for immobilization of Bacillus subtilis and Bacillus licheniformis, respectively. This study has been carried out using calcium alginate, κ-carrageenan, agar-agar, polyacrylamide gel, and gelatin which emphasizes not only on enzyme activity of immobilized whole cells by different entrapment matrices but also on their efficiency with respect to their reusability as first attempt. Gelatin was found to be the best matrix among all with highest enzyme activity (517 U/ml) at 24 h incubation point and also showed efficiency when reused. PMID:25709962

  14. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress

  15. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  16. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  17. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils.

    PubMed

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard; Marschner, Bernd; Itanna, Fisseha; Gebrekidan, Heluf

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields. PMID:27047723

  18. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance). PMID:26780356

  19. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  20. Surface Crack Growth Behavior of Pipeline Steel Under Disbonded Coating at Free Corrosion Potential in Near-Neutral pH Soil Environments

    NASA Astrophysics Data System (ADS)

    Egbewande, Afolabi; Chen, Weixing; Eadie, Reg; Kania, Richard; Van Boven, Greg; Worthingham, Robert; Been, Jenny

    2014-10-01

    Crack growth behavior of X65 pipeline steel at free corrosion potential in near-neutral pH soil environment under a CO2 concentration gradient inside a disbonded coating was studied. Growth rates were found to be highest at the open mouth of the simulated disbondment where CO2 concentrations, hence local hydrogen concentration in the local environment, was highest. Careful analysis of growth rate data using a corrosion-fatigue model of the form Δ K α / K {max/ β }/ f γ , where (1/ f γ ) models environmental contribution to growth, revealed that environmental contribution could vary by up to a factor of three. Such intense environmental contribution at the open mouth kept the crack tip atomically sharp despite the simultaneous occurrence of low-temperature creep and crack tip dissolution, which are the factors that blunt the crack tip. At other locations where environmental enhancement was lower, significant crack tip blunting attributed to both low-temperature creep and crack tip dissolution was observed. These factors both led to lower crack growth rates away from the open mouth.

  1. Suppression of N2O and NO from denitrification by biochar: the role of pH

    NASA Astrophysics Data System (ADS)

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-04-01

    Denitrification reduces NO3- to N2 and returns excess nitrogen to the atmosphere. NO and N2O are gaseous intermediates of denitrification which, once escaped to the atmosphere, have adverse effects on chemistry and radiative forcing in the atmosphere. We studied the effect of biochar on denitrification and its gaseous intermediates in two acidic soils and tried to distinguish between the alkalizing effect of biochars on soil pH, and other, unknown effects of biochar on denitrification. Anoxic soil slurries were incubated with untreated biochars or biochars from which part of the alkalinity had been removed by water- and acid leaching. Soils amended with NaOH and uncharred cacao shell were used as controls. Biochar addition stimulated overall denitrification depending on biochar and soil type. This stimulation was not strictly coupled to pH increase, suggesting that biochar fueled respiration processes by contributing microbially available C. High resolution gas kinetics of NO, N2O and N2 showed that biochar amended soils induced denitrification enzymes earlier and with higher activity, resulting in less NO and N2O accumulation relative to N2 production. The extent to which biochar suppressed NO and N2O was dose-dependent and clearly related to the effective pH increase during incubation. Acid leaching of BC reduced or eliminated its ability to suppress N2O and NO net production. Comparison of BC with NaOH-amended soils showed that the reduction of N2O and NO net production was mainly an effect of increase in soil pH. Even though other factors supporting N2O reductase activity could not be excluded, our results indicate that soil pH increase might be an important driver behind the often-reported suppression of N2O emissions after biochar addition.

  2. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation. PMID:22707204

  3. Sorption Behavior of Iodine on Allophane under Acid and Alkaline Conditions - 12203

    SciTech Connect

    Amemiya, Kiyoshi; Nakano, Masashi

    2012-07-01

    In the safety assessment of TRU geological disposal, Iodine-129 (I-129) is considered a key radionuclide. In Japan the reference buffer material within the repository is a bentonite based sand mixture, which is lacking in iodine adsorbent capacity. Additives or alternative buffer materials that can enhance iodine adsorption are desired. Allophane, a common soil material in Japan, is a potential candidate to aid in iodine retention. In order to assess the potential for improvement of buffer and backfill material to limit release of I-129, the sorption behavior of iodine (IO{sub 3}{sup -} and I{sup -}) on allophane was examined in this research. The sorption behavior of IO{sub 3}{sup -} by allophane is strong in acidic conditions, and markedly reduced in alkaline conditions. The K{sub d} values of IO{sub 3}{sup -} are approximately 0.4 m{sup 3}/kg (pH=5), 0.03 m{sup 3}/kg (pH=8), 0.011 m{sup 3}/kg (pH=9), 0.005 m{sup 3}/kg (pH=10). Conversely, the K{sub d} value of I{sup -} is as small as 0.01 m{sup 3}/kg in acidic conditions, and much smaller in alkaline conditions. The numerical analysis shows that a maximum release rate of I-129 from the engineered barrier in the geological disposal system decreased approximately one order of magnitude and the K{sub d} of the buffer increased up to 0.1 m{sup 3}/kg by applying allophane soils to engineered barriers. (authors)

  4. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200 °C as a function of pH, aqueous solution composition and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Gautier, Quentin; Oelkers, Eric H.

    2012-04-01

    Magnesite precipitation rates were measured at temperatures from 100 to 200 °C as a function of saturation state and reactive fluid composition in mixed flow reactors. Measured rates were found to increase systematically with increasing saturation state but to decrease with increasing reactive fluid aqueous CO32- activity and pH. Measured rates are interpreted through a combination of surface complexation models and transition state theory. In accord with this formalism, constant saturation state BET surface area normalized magnesite precipitation rates (rMg) are a function of the concentration of protonated Mg sites at the surface (>MgOH2+) and can be described using: rMg=kMg-Kn 1-ΩMgn where kMg- represents a rate constant, KOH and KCO3 stand for equilibrium constants, ai designates the activity of the subscripted aqueous species, n refers to a reaction order equal to 2, and ΩMg denotes the saturation state of the reactive solution with respect to magnesite. Retrieved values of n are consistent with magnesite precipitation control by a spiral growth mechanism. The temperature variation of the rate constant can be described using kMg-=Aaexp(-Ea/RT), where Aa represents a pre-exponential factor equal to 5.9 × 10-5 mol/cm2/s, Ea designates an activation energy equal to 80.2 kJ/mol, R denotes the gas constant, and T corresponds to the absolute temperature. Comparison of measured magnesite precipitation rates with corresponding forsterite dissolution rates suggest that the relatively slow rates of magnesite precipitation may be the rate limiting step in mineral carbonation efforts in ultramafic rocks.

  5. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties.

    PubMed

    Watson, Jean-Luc; Fang, Tommy; Dimkpa, Christian O; Britt, David W; McLean, Joan E; Jacobson, Astrid; Anderson, Anne J

    2015-02-01

    Zn is an essential element for plants yet some soils are Zn-deficient and/or have low Zn-bioavailability. This paper addresses the feasibility of using ZnO nanoparticles (NPs) as soil amendments to improve Zn levels in the plant. The effects of soil properties on phytotoxicity and Zn bioavailability from the NPs were studied by using an acidic and a calcareous alkaline soil. In the acid soil, the ZnO NPs caused dose-dependent phytotoxicity, observed as inhibition of elongation of roots of wheat, Triticum aestivum. Phytotoxicity was mitigated in the calcareous alkaline soil although uptake of Zn from the ZnO NPs occurred doubling the Zn level compared to control plants. This increase occurred with a low level of Zn in the soil solution as expected from the interactions of Zn with the soil components at the alkaline pH. Soluble Zn in the acid soil was 200-fold higher and shoot levels were tenfold higher than from the alkaline soil correlating with phytotoxicity. Mitigation of toxicity was not observed in plants grown in sand amended with a commercial preparation of humic acid: growth, shoot uptake and solubility of Zn from the NPs was not altered by the humic acid. Thus, variation in humic acid between soils may not be a major factor influencing plant responses to the NPs. These findings illustrate that formulations of ZnO NPs to be used as a soil amendment would need to be tuned to soil properties to avoid phytotoxicity yet provide increased Zn accumulations in the plant. PMID:25351960

  6. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  7. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  8. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  9. Effect of pH on the destruction of complexants with ozone in Hanford nuclear waste

    SciTech Connect

    Winters, W.I.

    1981-06-01

    Chemical processing of nuclear waste at Hanford has generated some waste solutions with high concentration (0.1 to 0.5M) of N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), and other organic complexing agents. These complexants must be destroyed bacause they affect radionuclide migration in soils, waste concentration, radionuclide removal, and other waste storage and processing considerations. Previous studies on actual waste solutions demonstrated that preozonation of the alkaline waste significantly improved radionuclide removal. A series of bench-scale experiments using synthetic waste has been performed to determine the optimum pH for most efficient ozone destruction of EDTA. Ozonation of EDTA in synthetic waste was carried out over the pH range of 1 to 14. Potential catalytic materials were examined at different pH levels. The EDTA-ozone reaction rates and stoichiometric requirements were compared and evaluated for the varying conditions.

  10. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  11. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  12. Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare).

    PubMed

    Felle, H H; Herrmann, A; Hückelhoven, R; Kogel, K-H

    2005-12-01

    We used a noninvasive microprobe technique to record in substomatal cavities of barley leaves the apoplastic pH response to different stress situations. When K+ (or Na+) activity at the roots of intact plants was increased from 1 to 50 mM, the leaf apoplastic pH increased by 0.4 to 0.6 units within 8 to 12 min when stomata were open, and within 15 to 20 min when stomata were closed. This reaction was accompanied by a correlative increase in K+ activity. Addition of 1 microM abscisic acid caused an apoplastic alkalinization of 0.5 to 0.8 units, and low temperatures (4 degrees C) increased pH by 0.2 to 0.3 units. Addition of 100 mM sorbitol or pH changes in the range 4.0 to 7.9 had no effect, ruling out that osmotic potential and/or pH is the carried signal. On detached leaves, the same treatments yielded qualitatively similar results, suggesting that the xylem is the most likely signal path. Following the attack of powdery mildew, the apoplastic pH of barley leaves substantially increases. We demonstrate that in susceptible barley, pretreatment (soil drench) with the resistance-inducing chemical benzo- (1,2,3)thiadiazole-7-carbothioic acid S-methyl ester markedly enhances this pH response. This is consistent with previous finding that apoplastic alkalinization is related to the degree of resistance towards this fungus. PMID:16389490

  13. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    NASA Astrophysics Data System (ADS)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  14. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  15. Purification and characterization of novel organic solvent tolerant 98kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK.

    PubMed

    Waghmare, Shailesh R; Gurav, Aparna A; Mali, Sonal A; Nadaf, Naiem H; Jadhav, Deepak B; Sonawane, Kailas D

    2015-03-01

    Ability of microorganisms to grow at alkaline pH makes them an attractive target for several industrial applications. Thus, search for new extremozyme producing microorganisms must be a continuous exercise. Hence, we isolated a potent alkaline protease producing bacteria from slaughter house soil. The morphological, biochemical and 16S rDNA gene sequencing studies revealed that the isolated bacteria is Stenotrophomonas maltophilia strain SK. Alkaline protease from S. maltophilia strain SK was purified by using ammonium sulphate precipitation and DEAE-cellulose ion exchange column chromatography. The purified enzyme was optimally active at pH 9.0 and temperature 40°C with broad substrate specificity. It was observed that the metal ions such as Ca(++), Mg(++) and Fe(+++) completely repressed the enzyme activity. The enzyme was stable in presence of various water miscible solvents like ethanol, methanol, isopropanol at 25% (v/v) concentration and less stable at 37.5% (v/v) concentration. These robust properties of enzyme might be applicable for various applications in detergent and pharmaceutical industries. PMID:25462807

  16. Analysis of the Dielectric constant of saline-alkali soils and the effect on radar backscattering coefficient: a case study of soda alkaline saline soils in Western Jilin Province using RADARSAT-2 data.

    PubMed

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered. PMID:25101317

  17. Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data

    PubMed Central

    Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li

    2014-01-01

    Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered. PMID:25101317

  18. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  19. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant.

    PubMed Central

    Becker, D; Braet, C; Brumer , H; Claeyssens, M; Divne, C; Fagerström, B R; Harris, M; Jones, T A; Kleywegt, G J; Koivula, A; Mahdi, S; Piens, K; Sinnott, M L; Ståhlberg, J; Teeri, T T; Underwood, M; Wohlfahrt, G

    2001-01-01

    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. PMID:11336632

  20. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils.

    PubMed

    Kumar, Mathava; Philip, Ligy

    2006-02-01

    Adsorption and desorption characteristics of endosulfan in four Indian soils were studied extensively. The soils used were clayey soil (CL--lean clay with sand), red soil (GM--silty gravel with sand), sandy soil (SM--silty sand with gravel) and composted soil (PT--peat) as per ASTM (American Society for Testing and Materials) standards. Adsorption and desorption rates were calculated from kinetic studies. These values varied for alpha and beta endosulfan depending on the soil type. Maximum specific adsorption capacities (qmax) for different soils were calculated by Langmuir model. The values varied from 0.1 to 0.45 mg g(-1) for alpha endosulfan and 0.0942-0.2722 mg g(-1) for beta endosulfan. Maximum adsorption took place in clay soil followed by composted soil and red soil. Adsorptions of alpha and beta endosulfan were negligible in sand. The binding characteristics of various functional groups were calculated using Scatchard plot. Effect of functional groups was more predominant in clayey soil. Organic matter also played a significant role in adsorption and desorption of endosulfan. Endosulfan adsorption decreased drastically in clay soil when the pH was reduced. Desorption was higher at both acidic and alkaline pH ranges compared to neutral pH. Results indicated that alpha endosulfan is more mobile compared to beta endosulfan and mobility of endosulfan is maximum in sandy soil followed by red soil. It can be inferred that crystal lattice of the clay soil plays a significant role in endosulfan adsorption and desorption. Immobilization of endosulfan is more advisable in clay soil whereas biological and or chemical process can be applied effectively for the remediation of other soil types. PMID:15990147

  1. Production of a Thermostable and Alkaline Chitinase by Bacillus thuringiensis subsp. kurstaki Strain HBK-51

    PubMed Central

    Kuzu, Secil Berna; Güvenmez, Hatice Korkmaz; Denizci, Aziz Akin

    2012-01-01

    This paper reports the isolation and identification of chitinase-producing Bacillus from chitin-containing wastes, production of a thermostable and alkaline chitinasese, and enzyme characterization. Bacillus thuringiensis subsp. kurstaki HBK-51 was isolated from soil and was identified. Chitinase was obtained from supernatant of B. thuringiensis HBK-51 strain and showed its optimum activity at 110°C and at pH 9.0. Following 3 hours of incubation period, the enzyme showed a high level of activity at 110°C (96% remaining activity) and between pH 9.0 and 12.0 (98% remaining activity). Considering these characteristics, the enzyme was described as hyperthermophile-thermostable and highly alkaline. Two bands of the enzyme weighing 50 and 125 kDa were obtained following 12% SDS-PAGE analyses. Among the metal ions and chemicals used, Ni2+ (32%), K+ (44%), and Cu2+ (56%) increased the enzyme activity while EDTA (7%), SDS (7%), Hg2+ (11%), and ethyl-acetimidate (20%) decreased the activity of the enzyme. Bacillus thuringiensis subsp. kurstaki HBK-51 is an important strain which can be used in several biotechnological applications as a chitinase producer. PMID:23304523

  2. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  3. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  4. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  5. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    SciTech Connect

    Zheng, Ji-Lu Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  6. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH.

    PubMed

    Köhler, Iris H; Macdonald, Andy J; Schnyder, Hans

    2016-02-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol(-1)). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. PMID:26620525

  7. Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition, Nutrient Inputs, and Soil pH1[OPEN

    PubMed Central

    Köhler, Iris H.; Macdonald, Andy J.; Schnyder, Hans

    2016-01-01

    Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol−1). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century. PMID:26620525

  8. Spatial variation in soil phosphomonoesterase in irrigated and dry farmlands

    NASA Astrophysics Data System (ADS)

    Sinegani, A. A. S.; Hossainpour, A.; Nazarizadeh, F.

    2006-05-01

    Spatial variation in the content of acid and alkaline phosphatase was surveyed on two farmlands. Two adjacent plots, one irrigated and cultivated and the other nonirrigated and cultivated, were marked on a 300-m-long transect with 10-m spacing. Soil samples were collected at the depths of 0-30 and 30-60 cm and were then analyzed for acid and alkaline phosphatase and other soil parameters. The analytical results were then subjected to classical statistical and geostatistical analysis. The results showed that the correlation coefficients of the phosphatase and clay, the silt, the sand, the mean weight diameter, the geometric mean diameter, the equivalent CaCO3, the pH, the electrical conductivity, the organic carbon, the respiration, the Olsen available phosphorus, and the vesicular arbuscular mycorrhizae (VAM) spore numbers of the soils in the transect studied were highly significant. In both layers of the irrigated farmland, the coefficients of the variation of the acid phosphatase were relatively high and the coefficients of the variation of the alkaline phosphatase were relatively low compared to those of the dry farmland. Although the acid and alkaline phosphatase in the topsoil and subsoil of the farmlands exhibited a spatial dependence at the sampled scale, the stability of the spatial structures were markedly low.

  9. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  10. Localized environmental control on the distribution of brGDGTs in Chinese soils: Implication for paleo-pH reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Chen, Y.; Li, F.; Ma, C.; Zhu, Y.; Zhang, C. L.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique bacterial lipids that commonly occur in soil and peat bog. The methylation and cyclization degrees of brGDGTs, expressed as MBT and CBT, respectively, are mainly controlled by mean annual air temperature (MAAT) and soil pH. However, the brGDGT-derived temperatures scatter widely compared to actual MAATs in both regional and global calibrations. In this study, we collected 297 soil samples from diverse regions of China (Lanzhou, Guangzhou, Shanghai, Yunnan, Dongying and Tibetan Plateau) in order to identify environmental variables that control the distribution of brGDGTs locally. The results show that MBT correlated positively with MAAT under the global calibration framework; however, large variation in MBT occurred for a given MAAT for individual regions. When confined within a specific region, MBT index positively correlated with conductivity in Dongying soils and negatively with pH in Yunnan and Guangzhou soils. Removing GDGT-II from CBT calculation resulted in a revised CBT index that provides more accurate estimation of pH (R2=0.79 vs 0.67), especially in alkaline soils. In addition, the combination of MBT and revised CBT also improves the estimation of soil pH (R2 =0.79) than the original CBT index alone (R2=0.67). Our results demonstrate that brGDGTs-derived proxies may be more reliable for estimating paleo-soil pH than paleo-continental temperature.

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  12. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.

    PubMed

    Mamindy-Pajany, Yannick; Sayen, Stéphanie; Mosselmans, J Frederick W; Guillon, Emmanuel

    2014-07-01

    Metal solid phase speciation plays an important role in the control of the long-term stability of metals in biosolid-amended soils. The present work used pH-adsorption edge experiments and synchrotron-based spectroscopy techniques to understand the solid phase speciation of copper, nickel and zinc in a biosolid-amended soil. Comparison of metal adsorption edges on the biosolid-amended soil and the soil sample showed that Cu, Ni, and Zn can be retained by both soil and biosolid components such as amorphous iron phases, organic matter and clay minerals. These data are combined with microscopic results to obtain structural information about the surface complexes formed. Linear combination fitting of K-edge XANES spectra of metal hot-spots indicated consistent differences in metal speciation between metals. While organic matter plays a dominant role in Ni binding in the biosolid-amended soil, it was of lesser importance for Cu and Zn. This study suggests that even if the metals can be associated with soil components (clay minerals and organic matter), biosolid application will increase metals retention in the biosolid-amended soil by providing reactive organic matter and iron oxide fractions. Among the studied metals, the long-term mobility of Ni could be affected by organic matter degradation while Cu and Zn are strongly associated with iron oxides. PMID:24899255

  13. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and β-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  14. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils.

    PubMed

    Lee, Hyup; Ha, Ho Sung; Lee, Chang Hoon; Lee, Yong Bok; Kim, Pil Joo

    2006-09-01

    Paddy soils in Korea generally require the addition of Si to enhance rice productivity. Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of Si in this study. Two field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam and loamy sand soils to which 0, 40, 80, and 120 Mg ha(-1) of fly ash were added with 2 Mg ha(-1) Si as a control. Fly ash increased the soil pH and available Si and P contents of both soils. The amount of available B increased to a maximum of 2.57 mg kg(-1), and the B content of the rice plants increased to a maximum of 52-53 mg kg(-1) following the addition of 120 Mg ha(-1) fly ash. The rice plants did not show toxicity effects. The highest rice yields were achieved following the addition of around 90 Mg ha(-1) fly ash. The application of fly ash increased Si, P and K uptake by the rice plants, but did not result in an excessive uptake of heavy metals in the submerged paddy soil. In conclusion, fly ash could be a good supplement to other inorganic soil amendments to improve the nutrient balance in paddy soils. PMID:16153826

  15. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    PubMed

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  16. Chemostat Culture of Escherichia coli K-12 Limited by the Activity of Alkaline Phosphatase

    PubMed Central

    King, Stagg L.; Francis, J. C.

    1975-01-01

    The growth-limiting reaction of a chemostat culture of Escherichia coli K-12 was the hydrolysis of β-glycerophosphate by alkaline phosphatase. The culture was buffered at pH 5.2 where alkaline phosphatase was unable to supply phosphate to the cell at a rate sufficient to sustain the maximum rate of growth. Alkaline phosphatase activity in this system is discussed in terms of the so-called Flip-Flop mechanism. PMID:240310

  17. Fly Ash Amendments Catalyze Soil Carbon Sequestration

    SciTech Connect

    Amonette, James E.; Kim, Jungbae; Russell, Colleen K.; Palumbo, A. V.; Daniels, William L.

    2003-09-15

    We tested the effects of four alkaline fly ashes {Class C (sub-bituminous), Class F (bituminous), Class F [bituminous with flue-gas desulfurization (FGD) products], and Class F (lignitic)} on a reaction that simulates the enzyme-mediated formation of humic materials in soils. The presence of FGD products completely halted the reaction, and the bituminous ash showed no benefit over an ash-free control. The sub-bituminous and lignitic fly ashes, however, increased the amount of polymer formed by several-fold. The strong synergetic effect of these ashes when enzyme is present apparently arises from the combined effects of metal oxide co-oxidation (Fe and Mn oxides), alkaline pH, and physical stabilization of the enzyme (porous silica cenospheres).

  18. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  19. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  20. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  1. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity.

    PubMed

    Lombi, E; Stevens, D P; McLaughlin, M J

    2010-06-01

    Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil. PMID:20378219

  2. Qualitative aspects of the degradation of mitomycins in alkaline solution.

    PubMed

    Beijnen, J H; den Hartigh, J; Underberg, W J

    1985-01-01

    The major degradation product in alkaline solution of mitomycin A, mitomycin C and porfiromycin is the corresponding 7-hydroxymitosane. The isolation and the physico-chemical and analytical properties of these compounds and their derivatized analogues are discussed. Data are presented on the degradation of mitomycin C at extremely high pH values. PMID:16867711

  3. Derivation of Soil Ecological Criteria for Copper in Chinese Soils

    PubMed Central

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J.

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82–0.91. The three-factor predictive models – that took into account the effect of soil organic carbon – were more accurate than two-factor models, with R2 of 0.85–0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic

  4. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    PubMed

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  5. The fate of added alkalinity in model scenarios of ocean alkalinization