Sample records for alkaline substrate das

  1. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  2. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  3. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  4. Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus.

    PubMed

    Wan, Min-Yuan; Wang, Hai-Yan; Zhang, Yi-Zheng; Feng, Hong

    2009-11-01

    An alkaline protease (DHAP) from Bacillus pumilus has shown great potential in hide dehairing. To get better insights on its catalytic properties for application, the substrate specificity and thermostability were investigated using five natural proteins and nine synthetic peptides. The results showed that DHAP could hydrolyze five proteins tested here in different specificity. Collagen, a component of animal skin, was more resistant to hydrolysis than casein, fibrin, and gelatin. Among the synthetic peptides, the enzyme showed activity mainly with tetrapeptide substrates with the catalytic efficiency in order of Phe>Leu>Ala at P1 site, although k(m) value for AAVA-pN is much lower than that for AAPL-pN and AAPF-pN. With tripeptide substrates, smaller side-chain group (Gly) at P1 site was not hydrolyzed by DHAP. The enzyme showed good thermostability below 60 degrees C, and lost activity so quickly above 70 degrees C. The thermostability was largely dependent on metal ion, especially Ca(2+), although other ions, like Mg(2+), Mn(2+), and Co(2+), could sustain stability at certain extent within limited time. Cu(2+), Fe(2+), as well as Al(3+), did not support the enzyme to retain activity at 60 degrees C even in 5 min. In addition, the selected metal ions could coordinate calcium in improvement or destruction of thermostability for DHAP.

  5. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  6. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  7. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase*

    PubMed Central

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-01-01

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α)6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites −1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. PMID:27777307

  8. Structural Analysis of the Catalytic Mechanism and Substrate Specificity of Anabaena Alkaline Invertase InvA Reveals a Novel Glucosidase.

    PubMed

    Xie, Jin; Cai, Kun; Hu, Hai-Xi; Jiang, Yong-Liang; Yang, Feng; Hu, Peng-Fei; Cao, Dong-Dong; Li, Wei-Fang; Chen, Yuxing; Zhou, Cong-Zhao

    2016-12-02

    Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α) 6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites -1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  10. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.

    PubMed

    Polaske, Nathan W; Kelly, Brian D; Ashworth-Sharpe, Julia; Bieniarz, Christopher

    2016-03-16

    Diagnostic assays with the sensitivity required to improve cancer therapeutics depend on the development of new signal amplification technologies. Herein, we report the development and application of a novel amplification system which utilizes latent quinone methides (QMs) activated by alkaline phosphatase (AP) for signal amplification in solid-phase immunohistochemical (IHC) assays. Phosphate-protected QM precursor substrates were prepared and conjugated to either biotin or a fluorophore through an amine-functionalized linker group. Upon reaction with AP, the phosphate group is cleaved, followed by elimination of the leaving group and formation of the highly reactive and short-lived QM. The QMs either react with tissue nucleophiles in close proximity to their site of generation, or are quenched by nucleophiles in the reaction media. The reporter molecules that covalently bind to the tissue were then detected visually by fluorescence microscopy in the case of fluorophore reporters, or brightfield microscopy using diaminobenzidine (DAB) in the case of biotin reporters. With multiple reporters deposited per enzyme, significant signal amplification was observed utilizing QM precursor substrates containing either benzyl difluoro or benzyl monofluoro leaving group functionalities. However, the benzyl monofluoro leaving group gave superior results with respect to both signal intensity and discretion, the latter of which was found to be imperative for use in diagnostic IHC assays.

  11. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  12. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase.

    PubMed Central

    Ahlers, J

    1975-01-01

    1. To identify the functional groups that are involved in the conversion of beta-glycerophosphate by alkaline phosphatase (EC 3.1.3.1) from pig kidney, the kinetics of alkaline phosphatase were investigated in the pH range 6.6-10.3 at substrate concentrations of 3 muM-30 mM. From the plots of log VH+ against pH and log VH+/KH+m against pH one functional group with pK = 7.0 and two functional groups with pK = 9.1 were identified. These groups are involved in substrate binding. Another group with pK = 8.8 was found, which in its unprotonated form catalyses substrate conversion. 2. GSH inhibits the alkaline phosphatase reversibly and non-competitively by attacking the bound Zn(II). 3. The influence of the H+ concentration on the activation by Mg2+ ions of alkaline pig kidney phosphate was investigated between pH 8.4 and 10.0. The binding of substrate and activating Mg2+ ions occurs independently at all pH values between 8.4 and 10.0. The activation mechanism is not affected by the H+ concentration. The Mg2+ ions are bound by a functional group with a pK of 10.15. 4. A scheme is proposed for the reaction between enzyme, substrate, Mg2+ and H+ and the overall rate equation is derived. 5. The mechanism of substrate binding and splitting by the functional groups of the active centre is discussed on the basis of a model. Mg2+ seems to play a role as an autosteric effector. PMID:995

  14. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress

    PubMed Central

    Chandrashekarappa, Dakshayini G.; McCartney, Rhonda R.; O’Donnell, Allyson F.; Schmidt, Martin C.

    2016-01-01

    Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf 1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms. PMID:27592031

  15. An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates.

    PubMed

    Oliveira, G S; Ulhoa, C J; Silveira, M H L; Andreaus, J; Silva-Pereira, I; Poças-Fonseca, M J; Faria, F P

    2013-01-01

    Humicola grisea var. thermoidea is a deuteromycete which secretes a large spectrum of hydrolytic enzymes when grown on lignocellulosic residues. This study focused on the heterologous expression and recombinant enzyme analysis of the major secreted cellulase when the fungus is grown on sugarcane bagasse as the sole carbon source. Cellobiohydrolase 1.2 (CBH 1.2) cDNA was cloned in Pichia pastoris under control of the AOX1 promoter. Recombinant protein (rCBH1.2) was efficiently produced and secreted as a functional enzyme, presenting a molecular mass of 47 kDa. Maximum enzyme production was achieved at 96 h, in culture medium supplemented with 1.34 % urea and 1 % yeast extract and upon induction with 1 % methanol. Recombinant enzyme exhibited optimum activity at 60 °C and pH 8, and presented a remarkable thermostability, particularly at alkaline pH. Activity was evaluated on different cellulosic substrates (carboxymethyl cellulose, filter paper, microcrystalline cellulose and 4-para-nitrophenyl β-D-glucopyranoside). Interestingly, rCBH1.2 presented both exoglucanase and endoglucanase activities and mechanical agitation increased substrate hydrolysis. Results indicate that rCBH1.2 is a potential biocatalyst for applications in the textile industry or detergent formulation.

  16. The β subunit of yeast AMP-activated protein kinase directs substrate specificity in response to alkaline stress.

    PubMed

    Chandrashekarappa, Dakshayini G; McCartney, Rhonda R; O'Donnell, Allyson F; Schmidt, Martin C

    2016-12-01

    Saccharomyces cerevisiae express three isoforms of Snf1 kinase that differ by which β subunit is present, Gal83, Sip1 or Sip2. Here we investigate the abundance, activation, localization and signaling specificity of the three Snf1 isoforms. The relative abundance of these isoforms was assessed by quantitative immunoblotting using two different protein extraction methods and by fluorescence microscopy. The Gal83 containing isoform is the most abundant in all assays while the abundance of the Sip1 and Sip2 isoforms is typically underestimated especially in glass-bead extractions. Earlier studies to assess Snf1 isoform function utilized gene deletions as a means to inactivate specific isoforms. Here we use point mutations in Gal83 and Sip2 and a 17 amino acid C-terminal truncation of Sip1 to inactivate specific isoforms without affecting their abundance or association with the other subunits. The effect of low glucose and alkaline stresses was examined for two Snf1 phosphorylation substrates, the Mig1 and Mig2 proteins. Any of the three isoforms was capable of phosphorylating Mig1 in response to glucose stress. In contrast, the Gal83 isoform of Snf1 was both necessary and sufficient for the phosphorylation of the Mig2 protein in response to alkaline stress. Alkaline stress led to the activation of all three isoforms yet only the Gal83 isoform translocates to the nucleus and phosphorylates Mig2. Deletion of the SAK1 gene blocked nuclear translocation of Gal83 and signaling to Mig2. These data strongly support the idea that Snf1 signaling specificity is mediated by localization of the different Snf1 isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Wax removal for accelerated cotton scouring with alkaline pectinase.

    PubMed

    Agrawal, Pramod B; Nierstrasz, Vincent A; Klug-Santner, Barbara G; Gübitz, Georg M; Lenting, Herman B M; Warmoeskerken, Marijn M C G

    2007-03-01

    A rational approach has been applied to design a new environmentally acceptable and industrially viable enzymatic scouring process. Owing to the substrate specificity, the selection of enzymes depends on the structure and composition of the substrate, i.e. cotton fibre. The structure and composition of the outer layers of cotton fibre has been established on the basis of thorough literature study, which identifies wax and pectin removal to be the key steps for successful scouring process. Three main issues are discussed here, i.e. benchmarking of the existing alkaline scouring process, an evaluation of several selected acidic and alkaline pectinases for scouring, and the effect of wax removal treatment on pectinase performance. It has been found that the pectinolytic capability of alkaline pectinases on cotton pectin is nearly 75% higher than that of acidic pectinases. It is concluded that an efficient wax removal prior to pectinase treatment indeed results in improved performance in terms of hydrophilicity and pectin removal. To evaluate the hydrophilicity, the structural contact angle (theta) was measured using an auto-porosimeter.

  18. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    PubMed

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one

  19. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of trace alkaline phosphatase by solid-substrate room-temperature phosphorimetry based on Triticum vulgare lectin labeled with fullerenol.

    PubMed

    Liu, Jia-Ming; Gao, Fei; Huang, Hong-Hua; Zeng, Li-Qing; Huang, Xiao-Mei; Zhu, Guo-Hui; Li, Zhi-Ming

    2008-04-01

    Fullerenol (F) shows a strong and stable room-temperature phosphorescence (RTP) signal on the surface of nitrocellulose membrane (NCM) at lambda ex max/ lambda em max =542.0/709.4 nm. When modified by dodecylbenzenesulfonic acid sodium salt (DBS), fullerenol emits a stronger signal. It was also found that quantitative specific affinity-adsorption reaction can be carried out between Triticum vulgare lectin (WGA) labeled with DBS-F and alkaline phosphatase (ALP) on the surface of NCM, and the product obtained (WGA-ALP-WGA-F-DBS) emits a strong and stable RTP signal. Furthermore, the content of ALP was proportional to the DeltaI(p) value. Based on the facts above, a new method for the determination of trace amounts of ALP by affinity-adsorption solid-substrate room-temperature phosphorimetry (AA-SS-RTP) was established, using fullerenol modified with DBS to label WGA. The detection limit was 0.011 fg spot(-1) (corresponding concentration: 2.8x10(-14) g ml(-1), namely 2.8x10(-16) mol l(-1)). This method with high sensitivity, accuracy, and precision has been successfully applied to the determination of the content of ALP in human serum survey and forecast human disease, and the results are tallied with those using alkaline phosphatase kits. The mechanism for the determination of ALP using AA-SS-RTP was also discussed.

  2. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  3. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  4. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  5. Alkaline Activator Impact on the Geopolymer Binders

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2017-10-01

    Concrete structures are constantly moving in the direction of improving the durability. Durability depends on many factors, which are the composition of concrete mix, the usage of additives and admixtures and the place, where material will work and carry the load. The introduction of new geopolymer binders for geopolymer structures adds a new aspect that is type of used activator. This substance with strongly alkaline reaction is divided because of the physical state, the alkaline degree and above all the chemical composition. Taking into account, that at present the geopolymer binders are made essentially from waste materials or by-products from the combustion of coal or iron ore smelting, unambiguous determination of the effect of the activator on the properties of the geopolymer material requires a number of trials, researches and observation. This paper shows the influence of the most alkaline activators on the basic parameters of the durability of geopolymer binders. In this study there were used highly alkaline hydroxides, water glasses and granules, which are waste materials in a variety of processes taking place in chemical plants. As the substrate of geopolymer binders there were used fly ash which came from coal and high calcareous ash from the burning of lignite.

  6. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  7. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability.

    PubMed

    Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B

    2014-04-03

    A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for

  8. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  9. Hydrolysis of alkaline pretreated banana peel

    NASA Astrophysics Data System (ADS)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  10. The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released

    NASA Astrophysics Data System (ADS)

    Sangian, H. F.; Widjaja, A.

    2018-02-01

    This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).

  11. [Substrate specifity in Amoeba proteus].

    PubMed

    Sopina, V A

    2006-01-01

    Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.

  12. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  13. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    PubMed

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  14. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  15. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si.

    PubMed

    Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong

    2018-02-21

    The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.

  16. Microhardness of anodic aluminum oxide formed in an alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Kanygina, O. N.; Filyak, M. M.

    2017-04-01

    The microhardness of anodic aluminum oxide formed by anodizing of aluminum sheet in electrolyte on the basis of sodium hydroxide has been determined experimentally. The microhardness of the hard film/soft substrate system has been estimated by three approaches: indentation geometry (length of diagonals) in film surfaces, the sum of the hardnesses of the film and the surface with allowance for the indentation surface area and geometry, and with allowance for the indentation depth. It is demonstrated that the approach accounting for the indentation depth makes it possible to eliminate the influence of the substrate. It is established that the microhardness of the films formed in alkaline electrolytes is comparable with that formed in acid electrolytes.

  17. Production of Alkaline Cellulase by Fungi Isolated from an Undisturbed Rain Forest of Peru

    PubMed Central

    Vega, Karin; Villena, Gretty K.; Sarmiento, Victor H.; Ludeña, Yvette; Vera, Nadia; Gutiérrez-Correa, Marcel

    2012-01-01

    Alkaline cellulase producing fungi were isolated from soils of an undisturbed rain forest of Peru. The soil dilution plate method was used for the enumeration and isolation of fast growing cellulolytic fungi on an enriched selective medium. Eleven out of 50 different morphological colonies were finally selected by using the plate clearing assay with CMC as substrate at different pH values. All 11 strains produced cellulases in liquid culture with activities at alkaline pH values without an apparent decrease of them indicating that they are true alkaline cellulase producers. Aspergillus sp. LM-HP32, Penicillium sp. LM-HP33, and Penicillium sp. LM-HP37 were the best producers of FP cellulase (>3 U mL−1) with higher specific productivities (>30 U g−1 h−1). Three strains have been found suitable for developing processes for alkaline cellulase production. Soils from Amazonian rain forests are good sources of industrial fungi with particular characteristics. The results of the present study are of commercial and biological interest. Alkaline cellulases may be used in the polishing and washing of denim processing of the textile industry. PMID:23213539

  18. Water Quality Interaction with Alkaline Phosphatase in the Ganga River: Implications for River Health.

    PubMed

    Yadav, Amita; Pandey, Jitendra

    2017-07-01

    Carbon, nitrogen and phosphorus inputs through atmospheric deposition, surface runoff and point sources were measured in the Ganga River along a gradient of increasing human pressure. Productivity variables (chlorophyll a, gross primary productivity, biogenic silica and autotrophic index) and heterotrophy (respiration, substrate induced respiration, biological oxygen demand and fluorescein diacetate hydrolysis) showed positive relationships with these inputs. Alkaline phosphatase (AP), however, showed an opposite trend. Because AP is negatively influenced by available P, and eutrophy generates a feedback on P fertilization, the study implies that the alkaline phosphatase can be used as a high quality criterion for assessing river health.

  19. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    PubMed Central

    2011-01-01

    Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229) was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min), respectively. The effects of medium compositions (starch, peptone, and soybean meal) and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v), peptone concentration 1.45% (w/v), soybean meal concentration 1.3% (w/v), and temperature 37°C), the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis. PMID:21978209

  20. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  1. A Safety Evaluation of DAS181, a Sialidase Fusion Protein, in Rodents

    PubMed Central

    Larson, Jeffrey L.; Kang, Seong-Kwi; Choi, Bo In; Hedlund, Maria; Aschenbrenner, Laura M.; Cecil, Beth; Machado, GloriaMay; Nieder, Matthew; Fang, Fang

    2011-01-01

    DAS181 is a novel inhaled drug candidate blocking influenza virus (IFV) and parainfluenza virus (PIV) infections through removal of sialic acid receptors from epithelial surface of the respiratory tract. To support clinical development, a 28-day Good Laboratory Practices inhalation toxicology study was conducted in Sprague-Dawley rats. In this study, achieved average daily doses based on exposure concentrations were 0.47, 0.90, 1.55, and 3.00 mg/kg/day of DAS181 in a dry powder formulation. DAS181 was well tolerated at all dose levels, and there were no significant toxicological findings. DAS181 administration did not affect animal body weight, food consumption, clinical signs, ophthalmology, respiratory parameters, or organ weight. Gross pathology evaluations were unremarkable. Histological examination of the lungs was devoid of pulmonary tissue damage, and findings were limited to mild and transient changes indicative of exposure and clearance of a foreign protein. DAS181 did not show any cytotoxic effects on human and animal primary cells, including hepatocytes, skeletal muscle cells, osteoblasts, or respiratory epithelial cells. DAS181 did not cause direct or indirect hemolysis. A laboratory abnormality observed in the 28-day toxicology study was mild and transient anemia in male rats at the 3.00 mg/kg dose, which is an expected outcome of enhanced clearance of desialylated red blood cells resulting from systemic exposure with DAS181. Another laboratory observation was a transient dose-dependent elevation in alkaline phosphatase (ALP), which can be attributed to reduced ALP clearance resulting from increased protein desialylation due to DAS181 systemic exposure. These laboratory parameters returned to normal at the end of the recovery period. PMID:21572096

  2. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.

    PubMed

    Cross, Adam T; Lambers, Hans

    2017-12-31

    Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the

  3. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay

    NASA Astrophysics Data System (ADS)

    Koch, Marguerite S.; Kletou, Demetris C.; Tursi, Rosanna

    2009-08-01

    Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006-April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2-1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (˜2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic

  4. Pyrophosphate as substrate for alkaline phosphatase activity: A convenient flow-injection chemiluminescence assay.

    PubMed

    Zhang, Qingfeng; Zhang, Cuiyun; Yang, Meiding; Yu, Donghong; Yu, Cong

    2017-11-01

    A sensitive and convenient flow-injection chemiluminescence (FI-CL) turn-on assay for alkaline phosphatase (ALP) activity without any label and synthesis is developed. Cu 2+ can catalyze the luminol-H 2 O 2 CL reaction. Pyrophosphate (PPi) can chelate Cu 2+ and therefore the Cu 2+ -mediated luminol-H 2 O 2 CL reaction is inhibited. The addition of ALP can catalyze the hydrolysis of PPi into phosphate ions, Cu 2+ is released and the chemiluminescence recovers. A detection limit of 1 mU/mL ALP is obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  6. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  7. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment.

    PubMed

    Solé-Bundó, Maria; Eskicioglu, Cigdem; Garfí, Marianna; Carrère, Hélène; Ferrer, Ivet

    2017-08-01

    This study aimed at analyzing the anaerobic co-digestion of microalgal biomass grown in wastewater and wheat straw. To this end, Biochemical Methane Potential (BMP) tests were carried out testing different substrate proportions (20-80, 50-50 and 80-20%, on a volatile solid basis). In order to improve their biodegradability, the co-digestion of both substrates was also evaluated after applying a thermo-alkaline pretreatment (10% CaO at 75°C for 24h). The highest synergies in degradation rates were observed by adding at least 50% of wheat straw. Therefore, the co-digestion of 50% microalgae - 50% wheat straw was investigated in mesophilic lab-scale reactors. The results showed that the methane yield was increased by 77% with the co-digestion as compared to microalgae mono-digestion, while the pretreatment only increased the methane yield by 15% compared to the untreated mixture. Thus, the anaerobic co-digestion of microalgae and wheat straw was successful even without applying a thermo-alkaline pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  10. Distinct alkaline phosphatase in serum of patients with lymphatic leukemia and infectious mononucleosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, H.; Moran, E.M.; Russell, R.M.

    1974-10-11

    A distinct alkaline phosphatase (phosphatase N) was demonstrated in the serum of patients with acute lymphatic leukemia, chronic lymphatic leukemia, and infectious mononucleosis. This enzyme closely resembles that extracted from the thymus of mice with lymphoma or lymphatic leukemia, both in its electrophoretic mobility and its substrate specificity. The phosphatase N activity was related to the clinical state of patients with lymphatic leukemia and disappeared with recovery from infectious mononucleosis.

  11. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    PubMed

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Whole blood staining in suspension for nonspecific esterase and alkaline phosphatase analyzed with a Technicon H-1.

    PubMed

    Ross, D W; Bishop, C; Henderson, A; Kaplow, L

    1990-01-01

    We adapted previously published methods for nonspecific esterase and alkaline phosphatase staining of white blood cells in suspension for use on a Technicon H-1 hematology analyzer. The objective was to develop a semiautomated method using whole blood that could be employed on a large scale for hematology laboratory applications, including toxicology studies, measurement of neutrophil left shift, and cytochemical classification of myeloid leukemias. The nonspecific esterase method uses the pararosaniline stain, generating the unstable substrate from two stable precursors. Whole blood is added to the substrate plus dye mix. Next, acid lysis and fixation steps destroy red cells and stabilize the monocyte staining. The alkaline phosphatase stain employs a stable naphthyl phosphate substrate and fast blue B coupling dye. The red cells are lysed with a pH 10.3 propanediol buffer, and the white blood cells are then stabilized with formalin fixation. For both methods the staining is performed off-line, and the sample is then diluted with propanediol to match the refractive index of the sheath on the H-1 analyzer, before aspiration into the direct cytometry port. A cytogram of scattered versus absorbed light is obtained. The number of cells staining and the intensity of the stain can be quantified from the cytogram.

  14. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    NASA Astrophysics Data System (ADS)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  15. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  16. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    PubMed

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P < 0.05), while the growth rates on the different media identified CMM 2105, CMM 1091, and PEL as the fastest-growing isolates. The lipase activity of four isolates grown on olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  17. Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems.

    PubMed

    Sun, Shao-Long; Sun, Shao-Ni; Wen, Jia-Long; Zhang, Xue-Ming; Peng, Feng; Sun, Run-Cang

    2015-01-01

    In this study, sweet sorghum stem was subjected to hydrothermal pretreatment (HTP) and alkaline post-treatment to enhance its saccharification ratio by reducing its recalcitrance. The results showed that the HTP (110-210°C, 0.5-2.0h) significantly degraded hemicelluloses, and the pretreatment at the temperature higher than 190°C led to the partial degradation of the cellulose. As compared to the sole HTP, the integrated process removed most of lignin and hemicelluloses, which incurred a higher cellulose saccharification ratio. Under an optimum condition evaluated (HTP at 170°C for 0.5h and subsequent 2% NaOH treatment), 77.5% saccharification ratio was achieved, which was 1.8, 2.0 and 5.5 times as compared to the only HTP pretreated substrates, alkaline treated substrates alone and the raw material without pretreatment, respectively. Clearly, the integrated process can be considered as a promising approach to achieve an efficient conversion of lignocellulose to fermentable glucose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  19. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, R.; Gierlowski, P.; Kula, W.

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  20. easyDAS: Automatic creation of DAS servers

    PubMed Central

    2011-01-01

    Background The Distributed Annotation System (DAS) has proven to be a successful way to publish and share biological data. Although there are more than 750 active registered servers from around 50 organizations, setting up a DAS server comprises a fair amount of work, making it difficult for many research groups to share their biological annotations. Given the clear advantage that the generalized sharing of relevant biological data is for the research community it would be desirable to facilitate the sharing process. Results Here we present easyDAS, a web-based system enabling anyone to publish biological annotations with just some clicks. The system, available at http://www.ebi.ac.uk/panda-srv/easydas is capable of reading different standard data file formats, process the data and create a new publicly available DAS source in a completely automated way. The created sources are hosted on the EBI systems and can take advantage of its high storage capacity and network connection, freeing the data provider from any network management work. easyDAS is an open source project under the GNU LGPL license. Conclusions easyDAS is an automated DAS source creation system which can help many researchers in sharing their biological data, potentially increasing the amount of relevant biological data available to the scientific community. PMID:21244646

  1. Nucleoside pyrophosphatase activity associated with pig kidney alkaline phosphatase

    PubMed Central

    Wass, Milica; Butterworth, P. J.

    1971-01-01

    1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; Km values are 4×10−5m for ATP and 6.3×10−5m for ADP. Vmax. for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg2+ ions to form MgATP2− or MgADP− complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with Km values identical with those of the respective free nucleotides. 3. Mg2+ ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive–non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg2+ ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations. PMID:4331861

  2. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  4. Specifics of geological composition, geochemistry and geochronology of rocks from the Kresty alkaline-ultrabasic massif (Maimecha-Kotui province, Polar Siberia)

    NASA Astrophysics Data System (ADS)

    Sazonov, A. M.; Zvyagina, E. A.; Gertner, I. F.; Krasnova, T. S.; Lipenkov, G. P.

    2017-12-01

    In this work, we demonstrate new data that allows us to accurate geochronological ranges of formation of the Kresty alkaline-ultrabasic massif, which is considered to be a satellite of the Gulinian giant pluton. We also interpreted geological, geochemical and isotope-geochemical data obtained earlier for major varieties of this volcanic-plutonic association taking into account new geochronological results, as well as considered new aspects/information on matter source of alkaline-ultrabasic massifs from this province. One of the main aspects is interaction of Siberian super plume matter with hosting substrate of Siberian craton continental crust.

  5. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  6. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  7. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions.

    PubMed

    Moya, Raquel; Saastamoinen, Päivi; Hernández, Manuel; Suurnäkki, Anna; Arias, Enriqueta; Mattinen, Maija-Liisa

    2011-11-01

    The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30°C and 50°C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  10. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  11. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  13. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    PubMed

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  15. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A method for direct assessment of tissue-nonspecific alkaline phosphatase (TNAP) inhibitors in blood samples.

    PubMed

    Sergienko, Eduard A; Sun, Qing; Ma, Chen-Ting

    2013-01-01

    Tissue nonspecific alkaline phosphatase (TNAP) is one of four human alkaline phosphatases (AP), a family of exocytic enzymes that catalyze hydrolysis of phospho-monoesters in bone, liver, kidney, and various other tissues. Overexpression of TNAP gives rise to excessive bone and soft tissue mineralization, including blood vessel calcification. Our prior screening campaigns have found several leads against this attractive therapeutic target using in vitro assay with a recombinant enzyme; these compounds were further optimized using medicinal chemistry approaches. To prioritize compounds for their use in animal models, we have designed and developed a biomarker assay for in situ detection of TNAP activity within human and mouse blood samples at physiological pH. This assay is suitable for screening compounds in 1,536-well plates using blood plasma from different mammalian species. The user may choose from two different substrates based on the need for greater assay simplicity or sensitivity.

  17. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  18. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  19. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  20. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. MyDas, an Extensible Java DAS Server

    PubMed Central

    Jimenez, Rafael C.; Quinn, Antony F.; Jenkinson, Andrew M.; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning

    2012-01-01

    A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users. We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details. PMID:23028496

  3. MyDas, an extensible Java DAS server.

    PubMed

    Salazar, Gustavo A; García, Leyla J; Jones, Philip; Jimenez, Rafael C; Quinn, Antony F; Jenkinson, Andrew M; Mulder, Nicola; Martin, Maria; Hunter, Sarah; Hermjakob, Henning

    2012-01-01

    A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients to retrieve data from a myriad of sources, thus offering centralised access to end-users.We introduce MyDas, a web server that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common functionality requirements of making data available, while also providing an extension mechanism in order to implement the specifics of data store interaction. MyDas allows the user to define where the required information is located along with its structure, and is then responsible for the communication protocol details.

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  5. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  6. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  7. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast,more » treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.« less

  8. Increased river alkalinization in the Eastern U.S.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  9. Spongy Raney nickel hydrogen electrodes for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tomida, Tahei; Nakabayashi, Ichiro

    1989-11-01

    Spongy Raney nickel catalysts for use as hydrogen electrodes of fuel cells were prepared by a new method. In this method molten aluminum was sprayed on both sides of a spongy plate of nickel as substrate with an acetylene-oxygen flame gun. Then, the spongy nickel electrodes were activated by alloying at a given temperature of from 550 to 750 C, and leaching the aluminum from the alloy in alkaline solution. This type of catalyst showed good thermal and electrical conductivity and also mechanical strength by itself. Its polarization resistance was very low, and the characteristics of the electrodes improved with increase in the temperature of heat-treatment for alloying. The finding that activity depended on the alloying temperature was consistent with observations by scanning electron microscope on the surface textures of catalysts alloyed at different temperatures.

  10. An enhanced chemoenzymatic method for loading substrates onto carrier protein domains.

    PubMed

    Kittilä, Tiia; Cryle, Max J

    2018-06-01

    Non-ribosomal peptide synthetase (NRPS) machineries produce many medically relevant peptides that cannot be easily accessed by chemical synthesis. Thus, understanding NRPS mechanism is of crucial importance to allow efficient redesign of these machineries to produce new compounds. During NRPS-mediated synthesis, substrates are covalently attached to peptidyl carrier proteins (PCPs), and studies of NRPSs are impeded by difficulties in producing PCPs loaded with substrates. Different approaches to load substrates onto PCP domains have been described, but all suffer from difficulties in either the complexity of chemical synthesis or low enzymatic efficiency. Here, we describe an enhanced chemoenzymatic loading method that combines 2 approaches into a single, highly efficient one-pot loading reaction. First, d-pantetheine and ATP are converted into dephospho-coenzyme A via the actions of 2 enzymes from coenzyme A (CoA) biosynthesis. Next, phosphoadenylates are dephosphorylated using alkaline phosphatase to allow linker attachment to PCP domain by Sfp mutant R4-4, which is inhibited by phosphoadenylates. This route does not depend on activity of the commonly problematic dephospho-CoA kinase and, therefore, offers an improved method for substrate loading onto PCP domains.

  11. A fluorescence-based alkaline phosphatase-coupled polymerase assay for identification of inhibitors of dengue virus RNA-dependent RNA polymerase.

    PubMed

    Niyomrattanakit, Pornwaratt; Abas, Siti Nurdiana; Lim, Chin Chin; Beer, David; Shi, Pei-Yong; Chen, Yen-Liang

    2011-02-01

    The flaviviral RNA-dependent RNA polymerase (RdRp) is an attractive drug target. To discover new inhibitors of dengue virus RdRp, the authors have developed a fluorescence-based alkaline phosphatase-coupled polymerase assay (FAPA) for high-throughput screening (HTS). A modified nucleotide analogue (2'-[2-benzothiazoyl]-6'-hydroxybenzothiazole) conjugated adenosine triphosphate (BBT-ATP) and 3'UTR-U(30) RNA were used as substrates. After the polymerase reaction, treatment with alkaline phosphatase liberates the BBT fluorophore from the polymerase reaction by-product, BBT(PPi), which can be detected at excitation and emission wavelengths of 422 and 566 nm, respectively. The assay was evaluated by examining the time dependency, assay reagent effects, reaction kinetics, and signal stability and was validated with 3'dATP and an adenosine-nucleotide triphosphate inhibitor, giving IC(50) values of 0.13 µM and 0.01 µM, respectively. A pilot screen of a diverse compound library of 40,572 compounds at 20 µM demonstrated good performance with an average Z factor of 0.81. The versatility and robustness of FAPA were evaluated with another substrate system, BBT-GTP paired with 3'UTR-C(30) RNA. The FAPA method presented here can be readily adapted for other nucleotide-dependent enzymes that generate PPi.

  12. Determination of alkaline phosphatase based on affinity adsorption solid-substrate room temperature phosphorimetry using rhodamine 6G-dibromoluciferin luminescent nanoparticle to label lectin and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Liu, Zhen-Bo; Hu, Li-Xiang; He, Hang-Xia; Yang, Min-Lan; Zhou, Ping; Chen, Xin-Hua; Zheng, Min-Min; Zeng, Xiao-Yi; Xu, Yue-Long

    2006-10-15

    In the presence of heavy atom perturber LiAc, the silicon dioxide nanoparticle containing rhodamine 6G (R) and dibromoluciferin (D) (R-D-SiO(2)) can emit strong and stable solid-substrate room temperature phosphorescence signal of R (lambda(ex)/lambda(em)=481/648 nm) and D (lambda(ex)/lambda(em)=457/622 nm) on the surface of acetyl cellulose membrane (ACM). R-D-SiO(2) is used to label triticum vulgare lectin (WGA). Then two types of affinity adsorption reactions, R-D-SiO(2)-WGA- alkaline phosphatase (ALP) (direct method) and WGA-ALP-WGA-R-D-SiO(2) (sandwich method), are carried out on ACM. The conditions and the analytical characteristics for the determination of ALP using affinity adsorption solid-substrate room temperature phosphorimetry (AA-SS-RTP) were studied. For a 0.40-microl drop of sample, results show that the detection limits of the sandwich method are 0.16 ag spot(-1)(457/622 nm) and 0.17 ag spot(-1)(481/648 nm), and the detection limits of the direct method are 0.41 ag spot(-1) (457/622 nm) and 0.44 ag spot(-1) (481/648 nm). The contents of ALP in human serum correlated well with those obtained by enzyme-linked immunoassay. This study shows that AA-SS-RTP whether by the sandwich method or the direct method, can combine very well the characteristics of both high sensitivity of SS-RTP and specificity of the immunoreaction. Simultaneously, whether the phosphorescence excitation/emission wavelength of either R or D in R-D-SiO(2) is chosen to determine ALP, this can promote the agility and widen the adaptability of AA-SS-RTP.

  13. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  14. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  15. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  16. Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids.

    PubMed

    Monte, Joseana R; Laurito-Friend, Debora F; Ferraz, André; Milagres, Adriane M F

    2018-04-26

    Sugarcane bagasses from three experimental sugarcane hybrids and a mill-reference sample were used to compare the efficiency and mode of action of acid and alkaline sulfite pretreatment processes. Varied chemical loads and reaction temperatures were used to prepare samples with distinguished characteristics regarding xylan and lignin removals, as well as sulfonation levels of residual lignins. The pretreatment with low sulfite loads (5%) under acidic conditions (pH 2) provided maximum glucose yield of 70% during enzymatic hydrolysis with cellulases (10 FPU/g) and β-glucosidases (20 UI/g bagasse). In this case, glucan enzymatic conversion from pretreated materials was mostly associated with extensive xylan removal (70-100%) and partial delignification occurred during the pretreatment. The use of low sulfite loads under acidic conditions required pretreatment temperatures of 160°C. In contrast, at a lower pretreatment temperature (120°C), alkaline sulfite process achieved similar glucan digestibility, but required a higher sulfite load (7.5%). Residual xylans from acid pretreated materials were almost completely hydrolysed by commercial enzymes, contrasting with relatively lower xylan to xylose conversions observed in alkaline pretreated samples. Efficient xylan removal during acid sulfite pretreatment and also during enzymatic digestion can be useful to enhance glucan accessibility and digestibility by cellulases. Alkaline sulfite process also provided substrates with high glucan digestibility, mainly associated with delignification and sulfonation of residual lignins. The results demonstrate that temperature, pH and sulfite can be combined for reducing lignocellulose recalcitrance and achieve similar glucan conversion rates in the alkaline and acid sulfite pretreated bagasses. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  17. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  18. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    PubMed Central

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  19. Francisella DnaK inhibits tissue-nonspecific alkaline phosphatase.

    PubMed

    Arulanandam, Bernard P; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J; Chambers, James P

    2012-10-26

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.

  20. Let's think in alkaline phosphatase at heart function.

    PubMed

    Martins, Maria João; Azevedo, Isabel

    2010-10-08

    In their recent paper, Cheung et al [B.M. Cheung, K.L. Ong, L.Y. Wong, Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999-2004. Int J Cardiol 2008 (Electronic publication ahead of print)] described a significant association between serum alkaline phosphatase levels and low ankle-brachial blood pressure index, a risk factor for cardiovascular pathology. We had verified that alkaline phosphatase is present at the rat heart, showing a distribution compatible with cardiomyocyte sarcoplasmic reticulum. Moreover, several drugs with cardiac effect were shown to interfere with heart alkaline phosphatase activity. We therefore propose that alkaline phosphatase may be a local regulator at heart function and a putative target for therapeutic interventions. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  2. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  3. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    PubMed

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  5. Alkaline Phosphatase: MedlinePlus Lab Test Information

    MedlinePlus

    ... Test Information → Alkaline Phosphatase URL of this page: https://medlineplus.gov/labtests/alkalinephosphatase.html Alkaline Phosphatase To ... 2017 Mar 13]; [about 3 screens]. Available from: http://www.liverfoundation.org/abouttheliver/info/liverfunctiontests/ Centers for ...

  6. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, nutrient concentrations, and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents in irrigation water, typically associated with carbonates and bicarbonates of calcium and magnesium, contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient availability imbalan...

  7. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  8. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  9. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  10. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  11. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  12. Preliminary plant design of Escherichia coli BPPTCC-EgRK2 cell culture for recombinant cellulase production using Oil Palm Empty Fruit Bunch (OPEFB) as substrate

    NASA Astrophysics Data System (ADS)

    Surya, E. A.; Rahman, S. F.; Zulamraini, S.; Gozan, M.

    2018-03-01

    An economic analysis of recombinant cellulase production from E. coli BPPTCC Eg-RK2 was conducted to support the fulfilling of Indonesia’s energy roadmap for ethanol production. The plant use oil palm empty fruit bunch (OPEFB) as primary substrate in cellulase production, with the expected lifetime of 12 years. The plant is assumed to be built in Indonesia and will fulfill 1% of total market demand. The effect of different pretreatment process (alkaline, steam explosion, and sequential acid-alkaline) on the economic value was also studied. A simulation using SuperPro Designer was used to calculate the mass and energy balance based on the kinetic parameter of E. coli BPPTCC-EgRK2. Technology evaluation show that alkaline pretreatment gave the highest yield with no known inhibitors formed. The steam explosion show the lowest lignin and hemicellulose removal and known to form known fermentation inhibitors. The net present value of alkaline, steam explosion, and sequential acid-alkaline pretreatment were USD 7,118,000; - USD 73,411,000 and USD -114,013,000 respectively, which mean alkaline pretreatment is the only economically feasible pretreatment method for recombinant cellulase production.

  13. Temperature Dependence of Mineral Solubility in Water. Part 3. Alkaline and Alkaline Earth Sulfates

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-06-01

    The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.

  14. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  15. Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.

    PubMed

    Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D

    1997-01-15

    Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.

  16. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  17. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  18. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  19. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  20. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  1. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  2. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  3. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  4. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  5. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  6. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  7. Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates.

    PubMed

    Cunha, Ana G; Freire, Carmen S R; Silvestre, Armando J D; Pascoal Neto, Carlos; Gandini, Alessandro; Orblin, Elina; Fardim, Pedro

    2007-04-01

    New highly hydrophobic/lipophobic biopolymers were prepared by the controlled heterogeneous pentafluorobenzoylation of cellulose substrates, i.e., plant and bacterial cellulose fibers. The characterization of the modified fibers was performed by elemental analysis, FTIR spectroscopy, X-ray diffraction, thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angle measurements). The degree of substitution of the ensuing pentafluorobenzoylated fibers ranged from 0.014 to 0.39. The hydrolytic stability of these perfluorinated cellulose derivatives was also evaluated and showed that they were quite water stable, although of course the fluorinated moieties could readily be removed by hydrolysis in an aqueous alkaline medium.

  8. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  9. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    PubMed

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Alkaline fermentation of waste activated sludge stimulated by saponin: volatile fatty acid production, mechanisms and pilot-scale application.

    PubMed

    Huang, Xiangfeng; Mu, Tianshuai; Shen, Changming; Lu, Lijun; Liu, Jia

    2016-12-01

    Volatile fatty acid (VFA) production stimulated by saponin (SP), an environmentally friendly bio-surfactant, was investigated during sludge alkaline fermentation in laboratory studies and pilot applications. The combined use of SP and pH 9 condition significantly enhanced VFA production to approximately 425 mg COD/g VSS, which was 4.7-fold of raw sludge and 1.5-fold of sole pH 10 adjustment (the optimum pH for alkaline fermentation). Further results indicated that SP & pH 9 condition provided sufficient substrates for acidification and decreased the consumption of VFAs through methanogenesis. Moreover, SP accompanied by moderate alkaline condition (i.e. pH 9) showed weaker inhibitory effects on key enzyme activities and metabolic potential of acidification microorganisms than sole pH 10 adjustment. On this basis, a pilot-scale system involving anaerobic fermentation and anaerobic-anoxic-aerobic step-feed bioreaction tanks was established to study the potential of VFAs as supplementary carbon sources for wastewater treatment. The influent of the pilot system was sanitary wastewater characterized by low C/N ratios from a scenic rural area. After flocculation and nutrient precipitation, the fermentation supernatant was mixed with the influent at a volume ratio of 1:30. With this approach, nitrogen and phosphorus concentrations in effluent fulfilled the first-A wastewater discharge standard in China.

  11. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    USDA-ARS?s Scientific Manuscript database

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  12. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  13. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  14. Immobilization of naringin onto chitosan substrates by using ozone activation.

    PubMed

    Li, Chung Hsing; Wang, Jing Wei; Ho, Ming Hua; Shih, Jia Lin; Hsiao, Sheng Wen; Thien, Doan Van Hong

    2014-03-01

    Ozone oxidation can easily produce peroxides containing active free radicals that can be used for the surface modification of biomaterials. This process is highly efficient and nontoxic. In this research, naringin, an HMG-CoA reductase inhibitor that can promote bone formation, was immobilized onto a chitosan film using ozone activation. First, a chitosan film was treated by ozone to produce peroxides; these peroxides were then quantified and their amount was optimized by an iodide assay. For the in vitro delivery of naringin, a chitosan-naringin substrate was immersed in phosphate-buffered saline to quantify the released amount of naringin. It was found that the immobilized naringin was slowly released over the course of two weeks, where its concentration in the medium was controlled by this delivery process. The results of cell culture showed that cell viability and early osteogenic differentiation, as measured by alkaline phosphatase expression, were promoted with the immobilized naringin on chitosan substrates. The expression of osteogenic proteins, including type-I collagen, bone siloprotein, and osteocalcin, were also enhanced. According to the results of Smad1 and Smad6 phosphorylation, immobilized naringin on ozonated chitosan substrates would be able to initiate bone morphogenetic protein-Smad signaling by activating receptor Smad and by suppressing inhibitory Smad. The results in this research demonstrated that the naringin-chitosan substrate produced by biocompatible ozone activation was highly osteoconductive without cytotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms

    PubMed Central

    Linder, Cecilia Halling; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-01-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD10, a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PPi), pyridoxal 5′-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The kcat/KM was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD10 was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin-binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP-flag and

  16. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    PubMed

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  17. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto

    2012-05-01

    The following article presents constraints of the stability of Mg-rich (Mg/(Mg + Fe2+) > 0.5) calcic amphibole in both calc-alkaline and alkaline magmas, testing of previous thermobarometers, and formulation of new empirical equations that take into consideration a large amount of literature data (e.g. more than one thousand amphibole compositions among experimental and natural crystals). Particular care has been taken in choosing a large number of natural amphiboles and selecting quality experimental data from literature. The final database of experimental data, composed of 61 amphiboles synthesized in the ranges of 800-1,130°C and 130-2,200 MPa, indicates that amphibole crystallization occurs in a horn-like P- T stability field limited by two increasing curves (i.e. the thermal stability and an upper limit), which should start to bend back to higher pressures. Among calcic amphiboles, magnesiohornblendes and tschermakitic pargasites are only found in equilibrium with calc-alkaline melts and crystallize at relatively shallow conditions ( P up to ~1 GPa). Kaersutite and pargasite are species almost exclusively found in alkaline igneous products, while magnesiohastingsite is equally distributed in calc-alkaline and alkaline rocks. The reliability of previous amphibole applications was checked using the selected experimental database. The results of this testing indicate that none of the previous thermobarometers can be successfully used to estimate the P, T and fO2 in a wide range of amphibole crystallization conditions. Multivariate least-square analyses of experimental amphibole compositions and physico-chemical parameters allowed us to achieve a new thermobarometric model that gives reasonably low uncertainties ( T ± 23.5°C, P ± 11.5%, H2Omelt ± 0.78wt%) for calc-alkaline and alkaline magmas in a wide range of P- T conditions (up to 1,130°C and 2,200 MPa) and ΔNNO values (±0.37 log units) up to 500 MPa. The AK-[4]Al relation in amphibole can be readily

  18. Discomfort from an Alkaline Formulation Delivered Subcutaneously in Humans

    PubMed Central

    Ward, W. Kenneth; Castle, Jessica R.; Branigan, Deborah L.; Massoud, Ryan G.; Youssef, Joseph El

    2013-01-01

    Background and Objective There is a paucity of data regarding tolerability of alkaline drugs administered subcutaneously. The aim of this study was to assess the tolerability of alkaline preparations of human albumin delivered subcutaneously to healthy humans. Methods We compared the tolerability of neutral versus alkaline (pH 10) formulations of human albumin in ten volunteers. With an intent to minimize the time required to reach physiological pH after injection, the alkaline formulation was buffered with a low concentration of glycine (20 mmol/L). Each formulation was given at two rates: over 5 seconds and over 60 seconds. A six-point scale was used to assess discomfort. Results For slow injections, there was a significant difference between pH 7.4 and pH 10 injections (0.4 ± 0.2 vs 1.1 ± 0.2, mean ± SEM; p = 0.025), though the degree of discomfort at pH 10 injections was only ‘mild or slight’. For fast injections, the difference between neutral and alkaline formulations was of borderline significance. Inflammation and oedema, as judged by a physician, were very minimal for all injections, irrespective of pH. Conclusion For subcutaneous drug administration (especially when delivered slowly), there was more discomfort associated with alkaline versus neutral formulations of albumin, though the discomfort was mild. This study suggests that there is little discomfort and inflammation resulting from subcutaneous administration of protein drugs formulated with weak buffers at alkaline pH. PMID:22568666

  19. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    PubMed

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  20. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons

    PubMed Central

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X.Z. Shawn

    2016-01-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation has been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins, whose functions are largely unknown. Here, we characterize C. elegans TMC-1 which was suggested to form a Na+-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9 which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  1. Enhancement of lateral flow immunoassay by alkaline phosphatase: a simple and highly sensitive test for potato virus X.

    PubMed

    Panferov, Vasily G; Safenkova, Irina V; Varitsev, Yury A; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-12-06

    Alkaline phosphatase (ALP) was used as an amplification tool in lateral flow immunoassay (LFIA). Potato virus Х (PVX) was selected as a target analyte because of its high economic importance. Two conjugates of gold nanoparticles were applied, one with mouse monoclonal antibody against PVX and one with ALP-labeled antibody against mouse IgG. They were immobilized to two fiberglass membranes on the test strip for use in LFIA. After exposure to the sample, a substrate for ALP (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) was dropped on the test strip. The insoluble dark-violet diformazan produced by ALP precipitated on the membrane and significantly increased the color intensity of the control and test zones. The limit of detection (0.3 ng mL -1 ) was 27 times lower than that of conventional LFIA for both buffer and potato leaf extracts. The ALP-enhanced LFIA does not require additional preparation procedures or washing steps and may be used by nontrained persons in resource-limited conditions. The new method of enhancement is highly promising and may lead to application for routine LFIA in different areas. Graphical abstract Two gold nanoparticles (GNP) conjugates were used - the first with monoclonal antibodies (mAb) (GNP-mAb); the second - alkaline phosphatase-labeled antibody against mAb (GNP-anti-mAb-ALP). The immuno complexes are captured by the polyclonal antibodies (pAb) in the test zone. Addition of the substrate solution (BCIP/NBT) results in the accumulation of the insoluble colored product and in a significance increase in color intensity.

  2. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  3. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  4. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  5. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  6. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  7. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  8. Alkaline β-fructofuranosidases of tuberous roots: Possible physiological function.

    PubMed

    Ricardo, C P

    1974-12-01

    Alkaline invertase of roots of carrot (Daucus carota L.) did not hydrolyze raffinose while the acid invertase from the same tissue showed with this sugar ca. 60% of the activity found with sucrose. The activity of the two invertases was inhibited by fructose to a different extent, the K i value being ca. 4×10(-2) M and 3×10(-1)M, respectively, for the alkaline and the acid invertases from the roots of both carrot and turnip (Brassica rapa L.). It is proposed that fructose inhibition of acid invertase is of no physiological significance but that, in contrast, hexoses might regulate the activity of alkaline invertase.Comparing several species and cultivars, it was found that the content of reducing sugars and the activity of alkaline invertase of mature tuberous roots showed a positive correlation. This indicates that alkaline invertase may participate in the regulation of the hexose level of the cell, as was previously suggested for sugar-cane. A scheme is presented which proposes a way of participation of alkaline invertase in such a regulation, assuming that this enzyme is located in the cytoplasm and acid invertase is membrane-bound and mainly located at the cell surface.

  9. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  10. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  11. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress.

    PubMed

    Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang

    2018-08-30

    Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.

  12. Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source

    NASA Astrophysics Data System (ADS)

    Carrasco-Núñez, Gerardo; Righter, Kevin; Chesley, John; Siebert, Lee; Aranda-Gómez, José Jorge

    2005-11-01

    Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67-72), plagioclase (An56-60) phenocrysts, have 4-5 wt% MgO and 49.6-50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64-72) and olivine phenocrysts (Fo81-84) with spinel inclusions, and have 8-9 wt% MgO and 48.4-49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and

  13. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  15. Alkaline twin-screw extrusion pretreatment for fermentable sugar production.

    PubMed

    Liu, Chao; van der Heide, Evert; Wang, Haisong; Li, Bin; Yu, Guang; Mu, Xindong

    2013-01-01

    The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction.

  16. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  17. Growth, extracellular alkaline phosphatase activity, and kinetic characteristic responses of the bloom-forming toxic cyanobacterium, Microcystis aeruginosa, to atmospheric particulate matter (PM2.5, PM2.5-10, and PM>10).

    PubMed

    Xu, Ziran; Wang, Shoubing; Wang, Yuanan; Zhang, Jie

    2018-03-01

    Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM 2.5 , PM 2.5-10 , and PM >10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM 2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (V max ). Moreover, the stimulations in extracellular APA and V max enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM 2.5-10 and PM >10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0 mg/L PM 2.5-10 and 8.0 mg/L PM >10 at 120 h. Furthermore, PM 2.5-10 and PM >10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the V max was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM 2.5-10 and PM >10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM 2.5-10 and PM >10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72 h APA of M. aeruginosa. These results in our study would be meaningful to further

  18. Allosteric response and substrate sensitivity in peptide binding of the signal recognition particle.

    PubMed

    Wang, Connie Y; Miller, Thomas F

    2014-10-31

    We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  20. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  1. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  2. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    PubMed

    Saggu, Sandeep Kaur; Mishra, Prakash Chandra

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  3. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil

    PubMed Central

    Saggu, Sandeep Kaur

    2017-01-01

    Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India) with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production. PMID:29190780

  4. Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    PubMed Central

    Zhao, Yueju; Zhang, Yunhua; Cao, Yang; Qi, Jianxun; Mao, Liangwei; Xue, Yanfen; Gao, Feng; Peng, Hao; Wang, Xiaowei; Gao, George F.; Ma, Yanhe

    2011-01-01

    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline

  5. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation.

    PubMed

    Soo, I; Madsen, K L; Tejpar, Q; Sydora, B C; Sherbaniuk, R; Cinque, B; Di Marzio, L; Cifone, M Grazia; Desimone, C; Fedorak, R N

    2008-03-01

    Alkaline sphingomyelinase, an enzyme found exclusively in bile and the intestinal brush border, hydrolyzes sphingomyelin into ceramide, sphingosine and sphingosine-1-phosphate, thereby inducing epithelial apoptosis. Reduced levels of alkaline sphingomyelinase have been found in premalignant and malignant intestinal epithelia and in ulcerative colitis tissue. Probiotic bacteria can be a source of sphingomyelinase. To determine the effect of VSL#3 probiotic therapy on mucosal levels of alkaline sphingomyelinase, both in a mouse model of colitis and in patients with ulcerative colitis. Interleukin-10 gene-deficient (IL10KO) and wild type control mice were treated with VSL#3 (10(9) colony-forming units per day) for three weeks, after which alkaline sphingomyelinase activity was measured in ileal and colonic tissue. As well, 15 patients with ulcerative colitis were treated with VSL#3 (900 billion bacteria two times per day for five weeks). Alkaline sphingomyelinase activity was measured through biopsies and comparison of ulcerative colitis disease activity index scores obtained before and after treatment. Lowered alkaline sphingomyelinase levels were seen in the colon (P=0.02) and ileum (P=0.04) of IL10KO mice, as compared with controls. Treatment of these mice with VSL#3 resulted in upregulation of mucosal alkaline sphingomyelinase activity in both the colon (P=0.04) and the ileum (P=0.01). VSL#3 treatment of human patients who had ulcerative colitis decreased mean (+/- SEM) ulcerative colitis disease activity index scores from 5.3+/-1.8946 to 0.70+/-0.34 (P=0.02) and increased mucosal alkaline sphingomyelinase activity. Mucosal alkaline sphingomyelinase activity is reduced in the intestine of IL10KO mice with colitis and in humans with ulcerative colitis. VSL#3 probiotic therapy upregulates mucosal alkaline sphingomyelinase activity.

  6. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  7. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  8. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  9. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  10. [Advances in microbial production of alkaline polygalacturonate lyase and its application in clean production of textile industry].

    PubMed

    Liu, Long; Wang, Zhihao; Zhang, Dongxu; Li, Jianghua; Du, Guocheng; Chen, Jian

    2009-12-01

    We reviewed the microbial production of alkaline polygalacturonate lyase (PGL) and its application in the clean production of textile industry. Currently PGL is mainly produced by microbial fermentation and Bacillus sp. is an ideal wild strain for PGL production. Microbial PGL production was affected by many factors including the concentration and feeding mode of substrate, cell concentration, agitation speed, aeration rate, pH and temperature. Constructing the recombinant strain provided an effective alternative for PGL production, and the concentration of PGL produced by the recombinant Pichia pastoris reached 1305 U/mL in 10 m3 fermentor. The recombinant Pichia pastoris had the potential to reach the industrial production of PGL. PGL can be applied in bio-scouring process in the pre-treatment of cotton. Compared with the traditional alkaline cooking process, the application of PGL can protect fiber, improve the bio-scouring efficiency, decrease energy consumption and alleviate the environmental pollution. The future research focus will be the molecular directed evolution of PGL to make PGL more suitable for the application of PGL in bio-scouring process to realize the clean production of textile industry.

  11. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Ogbonnaya, Nwokoro; Odiase, Anthonia

    2012-01-01

    -amylase activity of 758 U/mL after 48 h. Peptone was the best nitrogen source for enzyme production with α-amylase activity of 680 U/mL after 48 h. Metal ions including Ca (2+), Mn(2+) and Mg(2+) stimulated enzyme production while Hg(2+) and Ag(+) repressed enzyme production. The best enzyme yields were observed in basal media containing agro-based substrates. This work reports the production of alkaline α-amylase by Bacillus subtlis CB-18 in different media. Enzyme production was highest when agro-based media were used to formulate the media.

  12. A macro-enzyme cause of an isolated increase of alkaline phosphatase.

    PubMed

    Cervinski, Mark A; Lee, Hong Kee; Martin, Isabella W; Gavrilov, Dimitar K

    2015-02-02

    Macroenzyme complexes of serum enzymes and antibody can increase the circulating enzymatic activity and may lead to unnecessary additional testing and procedures. Laboratory physicians and scientists need to be aware of techniques to identify macroenzyme complexes when suspected. To investigate the possibility of a macro-alkaline phosphatase in the serum of a 74 year old male with persistently increased alkaline phosphatase we coupled a protein A/G agarose affinity chromatography technique with isoenzyme electrophoresis to look for the presence of macro-alkaline phosphatase. The majority of the alkaline phosphatase activity in the patient's serum sample was bound to the column and only a minor fraction (25%) of alkaline phosphatase activity was present in the column flow-through. The alkaline phosphatase activity was also found to co-elute with the immunoglobulins in the patient sample. The alkaline phosphatase activity in a control serum sample concurrently treated in the same manner did not bind to the column and was found in the column flow-through. The use of protein A/G agarose affinity chromatography is a rapid and simple method that can be applied to the investigation of other macro-enzyme complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Alkalinity-salinity relationship in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Cintrón Del Valle, S. M.; Najjar, R.; Herrmann, M.; Goldberger, S.; Stets, E.

    2016-12-01

    Estuaries are a significant source of atmospheric CO2, a major greenhouse gas. However, it is not known whether the Chesapeake Bay, the largest estuary in the United States, is a source or sink of CO2. Extensive pH measurements in the Bay offer the possibility of estimating the air-water CO2 flux if robust relationships between alkalinity, the acid neutralizing capacity of a water body, and salinity can be established. Here we conduct a comprehensive analysis of the alkalinity-salinity relationship in the Chesapeake Bay based on more than 18,000 alkalinity measurements made between 1985 and 2015. It was found that seven segments of the Bay could be grouped into three different linear functions, suggesting that alkalinity is conserved in the Bay and has properties that change depending on the freshwater endmember (the riverine source). The highest freshwater endmember was 1.21 mol m-3 for the Potomac River, the lowest one was 0.41 mol m-3 for the York and Rappahannock Rivers, and an intermediate freshwater endmember was 0.79 mol m-3 for the remaining four segments. For some segments, most notably the Potomac River, the scatter of the data increases with decreasing salinity, which is due, in part, to seasonal and interannual variations in the freshwater endmember.

  14. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  15. Elevated serum level of human alkaline phosphatase in obesity.

    PubMed

    Khan, Abdul Rehman; Awan, Fazli Rabbi; Najam, Syeda Sadia; Islam, Mehboob; Siddique, Tehmina; Zain, Maryam

    2015-11-01

    To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass. normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Of the 197 subjects, 97(49%) were obese and 100(51%) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity.

  16. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  17. A sandwich-type optical immunosensor based on the alkaline phosphatase enzyme for Salmonella thypimurium detection

    NASA Astrophysics Data System (ADS)

    Widyastuti, E.; Puspitasari Schonherr, M. F.; Masruroh, A.; Anggraeni, R. A.; Nisak, Y. K.; Mursidah, S.

    2018-03-01

    Salmonella is pathogenic bacteria that caused foodborne diseases which being called Salmonellosis. Prevalence of Salmonellosis that being caused by Salmonella thypimurium in Indonesia is quite high. However, detection of Salmonella bacteria in food still limited, complicated, and required a lot time. Sensitive optical assay for Salmonella thypimurium paper based detection has been developed by integrating sandwich assay between antibody-antigen complex and alkaline phosphatase enzyme that produce visible bluish-purple colour with presence of NBT-BCIP substrate. The results showed that Limit of Quantitation of detection is 105 CFU mL-1 with detection time 15 minutes. Linearity test between Colour intensity that produced from Salmonella concentration presence on samples showed that detection has good linearity. Selectivity test exhibited excellent sensitivity with good discrimination against Escherichia coli.

  18. The essential role of coumarin secretion for Fe acquisition from alkaline soil

    PubMed Central

    Clemens, Stephan; Weber, Michael

    2016-01-01

    ABSTRACT Plant productivity is limited by the scarcity of the essential micronutrient iron particularly in alkaline soils. The root secretion of phenolics has long been recognized as a component of the acidification-reduction strategy to acquire iron (strategy I). However, very little molecular insight into this process was available until recently several research groups independently discovered the important role of coumarins for the growth of Arabidopsis thaliana under Fe-limited conditions. Genome-wide analyses of iron deficiency responses, mutant screening and metabolomics experiments all converged on the finding that the synthesis and root exudation of scopoletin, esculetin and other coumarins is essential for iron uptake from substrates with low iron availability. Here we describe the evidence supporting this conclusion and discuss important questions that now have to be addressed in order to better understand the mechanistic basis of coumarin-dependent iron uptake and its significance within the plant kingdom. PMID:26618918

  19. Interactions of N,N'-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions

    NASA Astrophysics Data System (ADS)

    Welle, A.; Liao, J. D.; Kaiser, K.; Grunze, M.; Mäder, U.; Blank, N.

    1997-10-01

    Formulations based on dilute aqueous solutions of N,N'-dimethylethanolamine (DMEA) are used to protect reinforcement steel bars ('rebar') in concrete from corrosion. In a previous paper we discussed the usefulness of X-ray photoelectron spectroscopy (XPS) to detect DMEA adsorbed from solution and the application of secondary neutral mass spectrometry (SNMS) to study migration of DMEA through a cement matrix. In this report we present XPS data of DMEA adsorbed on steel surfaces from alkaline and chlorine containing solutions of variable concentration range and discuss models for the interaction of DMEA with the oxidized steel surface and the mechanism of corrosion inhibition of DMEA. DMEA is strongly bonded to the steel surface and displaces ionic species from the substrate/solution interface hence protecting the ironoxide surface from ionic attack.

  20. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    DOEpatents

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  2. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.

    PubMed

    Sun, Shao-Long; Wen, Jia-Long; Ma, Ming-Guo; Sun, Run-Cang

    2014-08-13

    An integrated process based on hydrothermal pretreatment (HTP) (i.e., 110-230 °C, 0.5-2.0 h) and alkaline post-treatment (2% NaOH at 90 °C for 2.0 h) has been performed for the production of xylooligosaccharide, lignin, and digestible substrate from sweet sorghum stems. The yield, purity, dissociation mechanisms, structural features, and structural transformations of alkali lignins obtained from the integrated process were investigated. It was found that the HTP process facilitated the subsequent alkaline delignification, releasing lignin with the highest yield (79.3%) and purity from the HTP residue obtained at 190 °C for 0.5 h. All of the results indicated that the cleavage of the β-O-4 linkages and degradation of β-β and β-5 linkages occurred under the harsh HTP conditions. Depolymerization and condensation reactions simultaneously occurred at higher temperatures (≥ 170 °C). Moreover, the thermostability of lignin was positively related to its molecular weight, but was also affected by the inherent structures, such as β-O-4 linkages and condensed units. These findings will enhance the understanding of structural transformations of the lignins during the integrated process and maximize the potential utilizations of the lignins in a current biorefinery process.

  3. Effect of liposomes on the rate of alkaline hydrolysis of indomethacin and acemetacin.

    PubMed

    Matos, C; Chaimovich, H; Lima, J L; Cuccovia, I M; Reis, S

    2001-03-01

    The anti-inflammatory, analgesic, and antipyretic drugs indomethacin (INDO) and acemetacin (ACE), extensively used for the treatment of diseases of degenerative or inflammatory character, exhibit marked gastric irritant action, have low water solubility at neutral pH, and decompose in alkali. Alternative formulations are being investigated to obtain products with lower toxicity and higher stability. Here we examine the effect of liposome charge on the rate of alkaline decomposition of INDO and ACE using micelles as reference. Binding of ACE and INDO to zwitterionic hexadecylphosphocholine (HDPC) micelles and phosphatidylcholine (PC) liposomes was analyzed using a two-phase separation model to quantify the effect of these aggregates on the rate of alkaline degradation. The substrate association constants to HDPC micelles were 1335 and 2192 M(-1) for INDO and ACE, respectively, whereas the corresponding values for PC vesicles were 612 and 3050 M(-1). The difference was attributed to the additional hydrophobicity of ACE. The inhibitory effect of HDPC micelles and PC vesicles was quantified by calculating the ratio between the rate constants in water (k(w)) and in the aggregate (k(m)). The values of the k(w)/k(m) ratios for INDO and ACE in HDPC micelles were, respectively, 80 and 42, and in PC liposomes these ratios were 21 and 3.7, respectively. Positively charged micelles of hexadecyltrimethylammonium chloride (CTAC) and vesicles containing varying proportions of dioctadecyldimethylammonium chloride (DODAC) and PC increase the rate of INDO and ACE alkaline decomposition. Vesicle effects were very sensitive to the DODAC/PC ratio, with rates increasing with the proportion of DODAC. The data were analyzed quantitatively using a pseudophase model with explicit consideration of ion exchange. The calculated second-order rate constants in micelles and vesicles were lower than that in water. The charge density in the liposome necessary to increase the entrapment efficiency

  4. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  5. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  6. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  7. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are applicable to...

  9. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    NASA Astrophysics Data System (ADS)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  10. Alkaline flooding for enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less

  11. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post

  12. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to

  13. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  14. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  15. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  16. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods.

    PubMed

    Salim, Abdalla Ali; Grbavčić, Sanja; Šekuljica, Nataša; Stefanović, Andrea; Jakovetić Tanasković, Sonja; Luković, Nevena; Knežević-Jugović, Zorica

    2017-03-01

    Study on potential of different agro-industrial waste residues for supporting the growth of newly isolated Bacillus sp. TMF-1 strain under solid-state fermentation (SSF) was conducted aiming to produce several industrially valuable enzymes. Since the feasibility of the initial study was confirmed, further objectives included evaluation of several pretreatments of the studied agricultural by-products (soybean meal, sunflower meal, maize bran, maize pericarp, olive oil cake and wheat bran) on the microbial productivity as means of enhancing the yields of produced proteases, α-amylases, cellulases and pectinases. Among acid/alkaline treatment, ultrasound and microwave assisted methods, chemical treatments superiorly affected most of the studied substrates. Highest yields of produced proteases (50.5IUg -1 ) and α-amylases (50.75IUg -1 ) were achieved on alkaline treated corn pericarp. Alkaline treatment also promoted the secretion of cellulases on maize bran (1.19IUg -1 ). Highest yield of pectinases was obtained on untreated soybean meal (64.90IUg -1 ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Alkaline fuel cell: carbon nanobeads coated with metal catalyst over porous ceramic for hydrogen electrode

    NASA Astrophysics Data System (ADS)

    Chatterjee, A. K.; Sharon, Maheshwar; Banerjee, Rangan

    The development of a hydrogen electrode using a porous ceramic coated with carbon nanobeads for an alkaline fuel cell (AFC) is reported. This electrode can provide necessary strength and porosity to enable hydrogen to diffuse without allowing electrolyte to percolate inside the electrode. Various catalysts (Pt, Ni, Co and Fe) are electrochemically dispersed over the carbon nanobeads to examine their performance in the alkaline fuel cell. Turpentine oil has been used as a precursor for preparing the carbon nanobeads by a chemical vapour deposition technique. Scanning electron microscopic and transmission electron microscopic images show that the carbon nanobeads have sizes between 500 and 650 nm and are spread uniformly over the entire ceramic substrate. X-ray diffraction (XRD) patterns indicate that the nanobeads are graphitic in nature. Thus, the electrode is highly conductive. The current-voltage characteristics and chronopotentiometry of a half cell (i.e. hydrogen electrode coated with different electrocatalysts) and a full cell (using both hydrogen and oxygen electrodes) with 30% KOH solution are measured. About 93% of the theoretical hydrogen dissociation voltage is obtained with Ni and Pt catalyst. All other metals (Co and Fe) give a lower voltage. Ni-coated carbon nanobeads deposited over a ceramic oxide can be used in place of Raney nickel electrode as their characteristics are similar to those of a platinum electrode.

  18. Increasing Alkalinity Export from Large Russian Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Drake, T.; Zhulidov, A. V.; Gurtovaya, T. Y.; Spencer, R. G.

    2017-12-01

    Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering of minerals on land represents a significant sink for atmospheric CO2 over geologic timescales. The flux of alkalinity from rivers in the Arctic depends on precipitation, permafrost extent and thaw, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past four decades, the export of alkalinity from the Ob' and Yenisei Rivers has more than doubled. The increase is likely due to a combination of increasing precipitation and permafrost thaw in the watersheds, which lengthens hydrologic flow paths and increases residence time in soils. These trends have broad implications for the rate of carbon sequestration on land and the delivery of buffering capacity to the Arctic Ocean.

  19. Serum creatinine and alkaline phosphatase levels are associated with severe chronic periodontitis.

    PubMed

    Caúla, A L; Lira-Junior, R; Tinoco, E M B; Fischer, R G

    2015-12-01

    Periodontitis may alter systemic homeostasis and influence creatinine and alkaline phosphatase levels. Therefore, the aim of this study was to evaluate the relationship between severe chronic periodontitis and serum creatinine and alkaline phosphatase levels. One hundred patients were evaluated, 66 with severe chronic periodontitis (test group) and 34 periodontally healthy controls (control group). Medical, demographic and periodontal parameters were registered. Blood sample was collected after an overnight fast and serum creatinine and alkaline phosphatase levels were determined. There were significant differences between test and control groups in ethnicity, gender and educational level (p < 0.05). Patients with periodontitis showed a lower mean creatinine level (p < 0.05) and higher mean alkaline phosphatase level (p < 0.001) than the control group. There were significant correlations between periodontal parameters and serum creatinine and alkaline phosphatase levels. Severe chronic periodontitis was associated to lower creatinine and higher alkaline phosphatase levels. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    Gunshot M 40 179 150 16 13 0 Altered Mental Status M 39 1683 1650 0 33 0 Anemia, Chronic Dis. F 82 220 156 27 37 0 Arthritis , Rheumatoid M 70 79 26 0 53 0...34 5 Alkaline Phosphatase Isoenzyme Study on 210 Patients with Elevated Total Alkaline Phosphatase...46 6 Alkaline Phosphatase Isoenzyme Clinical Correlation Summary on 6 Distinct Disease Categories Containing 131 Patients

  1. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.

    PubMed

    Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam

    2015-04-01

    Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.

  2. Passive treatment of acid mine drainage using coal combustion by-products and spent mushroom substrate: Results of column study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crisp, T.E.; Nairn, R.W.; Strevett, K.A.

    1998-12-31

    A column study was conducted to evaluate the feasibility of using of coal combustion by-products (CCB) as alkaline materials in a field scale downflow constructed wetlands for acid mine drainage treatment. Five columns (15.24 cm in diameter and 91.44 cm high) were constructed and filled with a combination of spent mushroom substrate (SMS) and one of three alkaline materials (limestone, hydrated fly ash, or fluidized bed ash). The five mixtures utilized were 10% fluidized bed ash/40% limestone (FBA/LS), 10% fluidized bed ash (FBA), 50% limestone (LS), 50% hydrated fly ash (HFA),m and 50% sieved (>1.5 cm) hydrated fly ash (S.more » HFA) with the remainder as SMS on a w/w basis. Column received synthetic acid mine drainage containing: 400 mg/L iron, 59 mg/L aluminum, 11 mg/L manganese, 50% mg/L magnesium, 40 mg/L calcium, and 1200 mg/L sulfate for 5 months. Anoxic conditions in the influent reservoirs were maintained by a positive nitrogen pressure head. Flow rates of 2.0 mL/minute to each column were maintained by a multichannel peristaltic pump. For all columns, effluent acidity concentrations were less than influent acidity concentration (877{sup {minus}}30, n = 75f). Mean effluent acidity concentrations were 241 mg/L (FBA/LS), 186 mg/L (FBA), 419 mg/L (LS), {minus}28.5 mg/L (HFA), and 351 mg/L (S. HFA), respectively. While all column produced measurable alkalinity, only the HFA column produced a net alkaline discharge. The results of these column studies are applicable to the design and sizing of innovative field scale systems using alkaline-rich CCB`s.« less

  3. Evaluation of Various Depainting Processes on Mechanical Properties of 2024-T3 Aluminum Substrate

    NASA Technical Reports Server (NTRS)

    McGill, P.

    2001-01-01

    Alternate alkaline and neutral chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. These chemicals also, in general, meet corrosion acceptance criteria as specified in SAE MA 4872. Alternate acid chemical paint strippers have been identified that, with respect to corrosion requirements, perform as well as or better than a methylene chloride baseline. However, these chemicals do not generally meet corrosion acceptance criteria as specified in SAE MA 4872, especially in the areas of non-clad material performance and hydrogen embrittlement. Media blast methods reviewed in the study do not, in general, adversely affect fatigue performance or crack detectability of 2024-T3 substrate. Sodium bicarbonate stripping exhibited a tendency towards inhibiting crack detectability. These generalizations are based on a limited sample size and additional testing should be performed to characterize the response of specific substrates to specific processes.

  4. Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste.

    PubMed

    Pellera, Frantseska-Maria; Santori, Sofia; Pomi, Raffaella; Polettini, Alessandra; Gidarakos, Evangelos

    2016-12-01

    The present study evaluates the influence of alkaline (NaOH) pretreatment on anaerobic digestion of olive pomace. Batch hydrolysis experiments with different NaOH dosages, process durations and temperatures were conducted, in which the variation of olive pomace solubilization in the liquid phase was investigated. The effect of pretreatment on anaerobic digestion was studied through biochemical methane potential assays. The results demonstrated the effectiveness of the NaOH pretreatment in improving olive pomace solubilization as well as its biodegradability. Maximum specific methane yields were achieved at different NaOH dosages depending on the pretreatment temperature. Consequently, it was concluded that the two operating parameters of the pretreatment stage (NaOH dosage and temperature) may exert a joint effect on substrate biodegradability and methane yields. The highest methane yield (242NmLCH 4 /gVS) was obtained for the material pretreated at 90°C, at a dosage of 1mmol/gVS (4% of VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  6. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  7. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  8. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  9. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  10. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  11. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  12. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  13. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  14. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  15. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  16. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  17. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178.

    PubMed

    Lee, Geon-Ho; Bae, Jae-Han; Suh, Min-Jung; Kim, In-Hwan; Hou, Ching T; Kim, Hak-Ryul

    2007-06-01

    Lipases are industrially useful versatile enzymes that catalyze numerous different reactions including hydrolysis of triglycerides, transesterification, and chiral synthesis of esters under natural conditions. Although lipases from various sources have been widely used in industrial applications, such as in food, chemical, pharmaceutical, and detergent industries, there are still substantial current interests in developing new microbial lipases, specifically those functioning in abnormal conditions. We screened 17 lipase-producing yeast strains, which were prescreened for substrate specificity of lipase from more than 500 yeast strains from the Agricultural Research Service Culture Collection (Peoria, IL, U.S.A.), and selected Yarrowia lipolytica NRRL Y-2178 as a best lipase producer. This report presents new finding and optimal production of a novel extracellular alkaline lipase from Y. lipolytica NRRL Y-2178. Optimal c ulture conditions f orlipase production by Y. lipolytica NRRL Y-2178 were 72 h incubation time, 27.5 degrees C, pH 9.0. Glycerol and glucose were efficiently used as the most efficient carbon sources, and a combination of yeast extract and peptone was a good nitrogen source for lipase production by Y. lipolytica NRRL Y-2178. These results suggested that Y. lipolytica NRRL Y-2178 showsgood industrial potential as a new alkaline lipase producer.

  18. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    PubMed

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  19. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production.

    PubMed

    Zhu, Hong-Ji; Liu, Jia-Heng; Sun, Li-Fan; Hu, Zong-Fu; Qiao, Jian-Jun

    2013-05-01

    Spent mushroom substrate (SMS) was pretreated with alkaline reagents including potassium hydroxide, lime and ammonia to enhance enzymatic saccharification. Under the best pretreatment conditions (1M KOH, 80 °C, 90 min; 1M lime, 80 °C, 120 min; 10 M ammonia, 70 °C, 120 min), the total reducing sugar (TRS) yield reached 258.6, 204.2 and 251.2 mg/g raw SMS, which were respectively 6.15, 4.86, and 5.98 times of untreated SMS. The effects of pretreatment by above alkaline reagents and sulfuric acid on the composition and structure of SMS were evaluated to provide comparative performance data. A new process, combined alkali and acid (CAA) pretreatment followed by enzymatic hydrolysis, was innovatively proposed to improve the cost-effectiveness and avoid environmental problems. The SMS residue after CAA pretreatment-enzymatic hydrolysis process was converted to biofertilizer with Pichia farinose FL7 and a cell density of 3.0×10(8) cfu/g in biomass was attained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)

    NASA Astrophysics Data System (ADS)

    Thiéblemont, Denis; Bouton, Pascal; Préat, Alain; Goujou, Jean-Christian; Tegyey, Monique; Weber, Francis; Ebang Obiang, Michel; Joron, Jean Louis; Treuil, Michel

    2014-11-01

    We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.1-2 Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 10-20 m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200-400 m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.

  2. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  3. Purification and characterization of a novel alkaline β-1,3-1,4-glucanase (lichenase) from thermophilic fungus Malbranchea cinnamomea.

    PubMed

    Yang, Shaoqing; Xiong, Hao; Yan, Qiaojuan; Yang, Hongye; Jiang, Zhengqiang

    2014-10-01

    A novel alkaline β-1,3-1,4-glucanase (McLic1) from a thermophilic fungus, Malbranchea cinnamomea, was purified and biochemically characterized. McLic1 was purified to homogeneity with a purification fold of 3.1 and a recovery yield of 3.7 %. The purified enzyme was most active at pH 10.0 and 55 °C, and exhibited a wide range of pH stability (pH 4.0-10.0). McLic1 displayed strict substrate specificity for barley β-glucan, oat β-glucan and lichenan, but did not show activity towards other tested polysaccharides and synthetic p-nitrophenyl derivates, suggesting that it is a specific β-1,3-1,4-glucanase. The K m values for barley β-glucan, oat β-glucan and lichenan were determined to be 0.69, 1.11 and 0.63 mg mL(-1), respectively. Moreover, the enzyme was stable in various non ionic surfactants, oxidizing agents and several commercial detergents. Thus, the alkaline β-1,3-1,4-glucanase may have potential in industrial applications, such as detergent, paper and pulp industries.

  4. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  5. Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity

    USGS Publications Warehouse

    Rounds, Stewart A.; Wilde, Franceska D.

    2002-01-01

    Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.

  6. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  7. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  8. Extracellular Alkalinization as a Defense Response in Potato Cells.

    PubMed

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  9. "Das Konkrete ist das Abstrakte, an das man sich schließlich gewöhnt hat." (Laurent Schwartz) Über den Ablauf des mathematischen Verstehens

    NASA Astrophysics Data System (ADS)

    Lowsky, Martin

    Die im Titel genannte Aussage findet sich in den Lebenserinnerungen von Laurent Schwartz (1915-2002), einem der fruchtbarsten Mathematiker, Mitglied der Gruppe Bourbaki. Im Original lautet die Aussage: "un objet concret est un objet abstrait auquel on a fini par s'habituer." Schwartz erläutert sie am Beispiel des Integrals über {e^{-1/2{x^2}}} , das den Wert Wurzel aus 2π hat und in dem sich also die Zahlen e und π verknüpfen. Was Schwartz aber vor allem ausdrücken will, ist dies: Das mathematische Verständnisd geht langsam vor sich und es bedarf der Anstrengung. "Es ist eine Frage der Zeit und der Energie", sagt Schwartz, und gerade dies mache es so schwer, die höhere Mathematik unter das Volk zu bringen. Das Lernen und Lehren von Mathematik laufe eben mühevoll und langsam ab.

  10. Systematic review of the association between dietary acid load, alkaline water and cancer.

    PubMed

    Fenton, Tanis R; Huang, Tian

    2016-06-13

    To evaluate the evidence for a causal relationship between dietary acid/alkaline and alkaline water for the aetiology and treatment of cancer. A systematic review was conducted on published and grey literature separately for randomised intervention and observational studies with either varying acid-base dietary intakes and/or alkaline water with any cancer outcome or for cancer treatment. Incidence of cancer and outcomes of cancer treatment. 8278 citations were identified, and 252 abstracts were reviewed; 1 study met the inclusion criteria and was included in this systematic review. No randomised trials were located. No studies were located that examined dietary acid or alkaline or alkaline water for cancer treatment. The included study was a cohort study with a low risk of bias. This study revealed no association between the diet acid load with bladder cancer (OR=1.15: 95% CI 0.86 to 1.55, p=0.36). No association was found even among long-term smokers (OR=1.72: 95% CI 0.96 to 3.10, p=0.08). Despite the promotion of the alkaline diet and alkaline water by the media and salespeople, there is almost no actual research to either support or disprove these ideas. This systematic review of the literature revealed a lack of evidence for or against diet acid load and/or alkaline water for the initiation or treatment of cancer. Promotion of alkaline diet and alkaline water to the public for cancer prevention or treatment is not justified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Hydrothermal Alkalinity in Central Nepal Rivers

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Derry, L. A.

    2002-12-01

    Numerous hot springs flow along the base of the Himalayan front, at or near the Main Central Thrust, in the Narayani drainage of central Nepal. The springs are found in a narrow zone characterized by rapid uplift and high incision rates. In this zone, hot rocks are brought to the near-surface where they interact with meteoric waters to produce the hydrothermal system. Water-rock interaction produces springs with high solute loads (TDS up to 8000 mg/L.) The springs drive significant chemical anomalies (e.g. Cl, Na, K and Ge) in the rivers that flow through the hydrothermal zone In order to quantify the impact the springs have on the river chemistry, the spring discharge must be estimated. Direct measurement of the spring discharge is difficult, as the springs often flow within the stream bed itself or are inaccessible. We take advantage of the wide disparity in stream vs. hydrothermal [Ge] to calculate spring discharge by chemical mass balance. The hot springs have [Ge] up to 684 nmol/kg and Ge/Si ratios from 200 to 1000 μmol/mol while river waters have [Ge] near 0.15 nmol/kg and Ge/Si ratios near 0.5 μmol/mol, typical of non-polluted rivers. The discharge calculated from the Ge mass balance for individual springs ranges from 0.03 x 106 to 5.6 x 106 m3/yr, and accounts for a small percentage of the total river discharge (0.03% to 1.9%). The hot spring discharge for all of central Nepal is around 1.5x108 m3/yr, 0.5% of the Narayani river discharge. Distinguishing between silicate and carbonate sources is important to assessing the role of weathering on atmospheric CO2 levels and the relative contributions of silicate and carbonate alkalinity in central Nepal rivers are still not well resolved. The hot springs derive up to 100% of their alkalinity from silicate sources. Using the discharge estimates for the springs, we find that the sum of the silicate alkalinity fluxes from all the spring systems is 2.8 x 108 mol/yr. This implies that the hot springs deliver around

  12. Integrating sequence and structural biology with DAS

    PubMed Central

    Prlić, Andreas; Down, Thomas A; Kulesha, Eugene; Finn, Robert D; Kähäri, Andreas; Hubbard, Tim JP

    2007-01-01

    Background The Distributed Annotation System (DAS) is a network protocol for exchanging biological data. It is frequently used to share annotations of genomes and protein sequence. Results Here we present several extensions to the current DAS 1.5 protocol. These provide new commands to share alignments, three dimensional molecular structure data, add the possibility for registration and discovery of DAS servers, and provide a convention how to provide different types of data plots. We present examples of web sites and applications that use the new extensions. We operate a public registry of DAS sources, which now includes entries for more than 250 distinct sources. Conclusion Our DAS extensions are essential for the management of the growing number of services and exchange of diverse biological data sets. In addition the extensions allow new types of applications to be developed and scientific questions to be addressed. The registry of DAS sources is available at PMID:17850653

  13. Acidity and Alkalinity in mine drainage: Practical considerations

    USGS Publications Warehouse

    Cravotta, III, Charles A.; Kirby, Carl S.

    2004-01-01

    In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by

  14. Natronotalea proteinilytica gen. nov., sp. nov. and Longimonas haloalkaliphila sp. nov., extremely haloalkaliphilic members of the phylum Rhodothermaeota from hypersaline alkaline lakes.

    PubMed

    Sorokin, Dimitry Y; Khijniak, Tatiana V; Galinski, Erwin A; Kublanov, Ilya V

    2017-10-01

    Two proteolytic bacterial strains, BSker2 T and BSker3 T , were enriched from sediments of hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia) with chicken feathers as substrate, followed by pure culture isolation on hypersaline alkaline media with casein. The cells were non-motile, filamentous, flexible rods. The isolates were obligately aerobic heterotrophs utilizing proteins and peptides as growth substrates. Both were obligate alkaliphiles, but differed in their pH optimum for growth: pH 9.5-9.8 for Bsker2 T and pH 8.5-8.8 for BSker3 T . The salt range for growth of both isolates was between 2 and 4.5 M total Na + with an optimum at 2.5-3 M. No organic osmolytes were detected in cells of BSker2 T , but they accumulated high intracellular concentrations of K + . The polar lipid fatty acids were dominated by unsaturated C16 and C18 species. The 16S rRNA gene phylogeny indicated that both strains belong to the recently proposed phylum Rhodothermaeota. BSker2 T forms a novel genus-level branch, while BSker3 T represents a novel species-level member in the genus Longimonas. On the basis of distinct phenotypic and genotypic properties, strain BSker2 T (=JCM 31342 T =UNIQEM U1009 T ) is proposed to be classified as a representative of a novel genus and species, Natronotalea proteinilyticagen. nov., sp. nov., and strain BSker3 T (=JCM 31343 T =UNIQEM U1010 T ) as a representative of a novel species, Longimonas haloalkaliphila sp. nov.

  15. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  16. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99.

    PubMed

    Johnvesly, B; Manjunath, B R; Naik, G R

    2002-03-01

    Thermoalkaliphilic Bacillus sp. JB-99 was grown in a 250 ml Erlenmeyer flask containing 50 ml medium containing (g/l) Pigeon pea waste 10; NaNO3, 5.0; K2HPO4, 5.0; MgSO4 x 2H2O, 0.2 and Na2CO3, 10.0. Incubations were carried out at 50 degrees C on a rotary incubator shaker for 15 h. A high level of extra cellular thermostable protease activity was observed after 24 h incubation. The optimum temperature and pH for activity were 70 degrees C and 11, respectively, so this enzyme showed stable activity at high temperature and under alkaline conditions.

  17. Investigation of the Biochemical Mechanism for Cell-Substrate Mechanical Sensing

    NASA Astrophysics Data System (ADS)

    Ricotta, Vincent Anthony

    Advancements in stem cell biology and materials science have enabled the development of new treatments for tissue repair. Dental pulp stem cells (DPSCs), which are highly proliferative and can be induced to differentiate along several mesenchymal cell lineages, offer the possibility for pulpal regeneration and treatment of injured dentition. Polybutadiene (PB) may be used as a substrate for these cells. This elastomer can be spun casted into films of different thicknesses with different moduli. DPSCs grown on PB films, which are relatively hard (less than 1500 A thick), biomineralize depositing crystalline calcium phosphate without a requirement for the typical induction factor, dexamethasone (Dex). The moduli of cells track with the moduli of the surface suggesting that mechanics controls mineralization. The purpose of this study was to determine whether the major effect of Dex on biomineralization is the result of its ability to alter cell mechanics or its ability to induce osteogenesis/odontogenesis. DPSCs sense substrate mechanics through the focal adhesions, whose function is in part regulated by the Ras homolog gene (Rho) and its downstream effectors Rho associated kinases (ROCKs). ROCKs control actin filament polymerization and interactions with myosin light chain. Because cells sense substrate mechanics through focal adhesion proteins whose function is regulated by ROCKs, the impact of a ROCK inhibitor, Y-27632, was monitored. Blocking this pathway with Y-27632 suppressed the ability of DPSCs to sense the PB substrate. The cell modulus, plasma membrane stiffness, and cytosol stiffness were all lowered and biomineralization was suppressed in all cultures independent of substrate modulus or the presence of Dex. In other words, the inability of DPSCs to sense mechanical cues suppressed their ability to promote mineralization. On the other hand the expression of osteogenic/odontogenic markers (alkaline phosphatase and osteocalcin) was enhanced, perhaps due to Y

  18. DASMiner: discovering and integrating data from DAS sources

    PubMed Central

    2009-01-01

    Background DAS is a widely adopted protocol for providing syntactic interoperability among biological databases. The popularity of DAS is due to a simplified and elegant mechanism for data exchange that consists of sources exposing their RESTful interfaces for data access. As a growing number of DAS services are available for molecular biology resources, there is an incentive to explore this protocol in order to advance data discovery and integration among these resources. Results We developed DASMiner, a Matlab toolkit for querying DAS data sources that enables creation of integrated biological models using the information available in DAS-compliant repositories. DASMiner is composed by a browser application and an API that work together to facilitate gathering of data from different DAS sources, which can be used for creating enriched datasets from multiple sources. The browser is used to formulate queries and navigate data contained in DAS sources. Users can execute queries against these sources in an intuitive fashion, without the need of knowing the specific DAS syntax for the particular source. Using the source's metadata provided by the DAS Registry, the browser's layout adapts to expose only the set of commands and coordinate systems supported by the specific source. For this reason, the browser can interrogate any DAS source, independently of the type of data being served. The API component of DASMiner may be used for programmatic access of DAS sources by programs in Matlab. Once the desired data is found during navigation, the query is exported in the format of an API call to be used within any Matlab application. We illustrate the use of DASMiner by creating integrative models of histone modification maps and protein-protein interaction networks. These enriched datasets were built by retrieving and integrating distributed genomic and proteomic DAS sources using the API. Conclusion The support of the DAS protocol allows that hundreds of molecular biology

  19. Role of the Group 2 Mrp sodium/proton antiporter in rapid response to high alkaline shock in the alkaline- and salt-tolerant Dietzia sp. DQ12-45-1b.

    PubMed

    Fang, Hui; Qin, Xiao-Yu; Zhang, Kai-Duan; Nie, Yong; Wu, Xiao-Lei

    2018-04-01

    The six- and seven-subunit Na + /H + antiporters (Mrp) are widely distributed in bacteria. They are reported to be integral for pH homeostasis in alkaliphilic bacteria when adapting to high pH environments. In this study, operons encoding for the six-subunit Na + /H + antiporters were found in the genomes of all studied Dietzia strains, which have different alkaline-resistant abilities. Disruption of the operon in the strain Dietzia sp. DQ12-45-1b which leads to declined growth in presence of hypersaline and alkaline conditions suggested that the six-subunit Na + /H + antiporter played an important role in hypersaline and alkaline resistance. Although the complexes DqMrp from DQ12-45-1b (strain with high alkaline resistance) and DaMrp from D. alimentaria 72 T (strain with low alkaline resistance) displayed Na + (Li + )/H + antiport activities, they functioned optimally at different pH levels (9.0 for DQ12-45-1b and 8.0 for 72 T ). While both antiporters functioned properly to protect Escherichia coli cells from salt shock, only the DqMrp-containing strain survived the high alkaline shock. Furthermore, real-time PCR results showed that the expression of mrpA and mrpD induced only immediately after DQ12-45-1b cells were subjected to the alkaline shock. These results suggested that the expression of DqMrp might be induced by a pH gradient across the cell membrane, and DqMrp mainly functioned at an early stage to respond to the alkaline shock.

  20. Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5'-nucleotidase.

    PubMed

    Channar, Pervaiz Ali; Shah, Syed Jawad Ali; Hassan, Sidra; Nisa, Zaib Un; Lecka, Joanna; Sévigny, Jean; Bajorath, Jürgen; Saeed, Aamer; Iqbal, Jamshed

    2017-03-01

    A series of isonicotinohydrazide derivatives was synthesized and tested against recombinant human and rat ecto-5'-nucleotidases (h-e5'NT and r-e5'NT) and alkaline phosphatase isozymes including both bovine tissue-non-specific alkaline phosphatase (b-TNAP) and tissue-specific calf intestinal alkaline phosphatase (c-IAP). These enzymes are implicated in vascular calcifications, hypophosphatasia, solid tumors, and cancers, such as colon, lung, breast, pancreas, and ovary. All tested compounds were active against both enzymes. The most potent inhibitor of h-e5'NT was derivative (E)-N'-(1-(3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethylidene)isonicotinohydrazide (3j), whereas derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) exhibited significant inhibitory activity against r-e5'NT. In addition, the derivative (E)-N'-(4'-chlorobenzylidene)isonicotinohydrazide (3a) was most potent inhibitor against calf intestinal alkaline phosphatase and the derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) was found to be most potent inhibitor of bovine tissue-non-specific alkaline phosphatase. Furthermore, putative binding modes of potent compounds against e5'NT (human and rat e5'NT) and AP (including b-TNAP and c-IAP) were determined computationally. © 2016 John Wiley & Sons A/S.

  1. [Effects of alkaline fertilizer on cadmium content in rice and paddy soil.

    PubMed

    Zhang, Liang Liang; Fan, Xiao Lin; Zhang, Li Dan; Liu, Fang

    2016-03-01

    A field plot trial was conducted at Songbai Village, Chenzhou, Hunan Province to exa-mine the effects of alkaline fertilizer with and without combination application of bacterial regent on cadmium accumulation in rice and paddy soil. Compared with the conventional fertilizer, the alkaline fertilizer reduced the available cadmium content in soil at the tillering, filling and the harvest stages by 8.3%, 6.7% and 16.4% respectively. Compared with the Cd content in soil before transplanting, it was reduced by 7.2% at harvest time in alkaline fertilizer treatment, while increased by 11.0% in the conventional fertilizer treatment. The available cadmium content in soil was increased by 1.2% to 23.3% by bacterial regent. Compared with the conventional fertilizer, the cadmium content of root, stem sheath, leaf, grain and brown rice of the alkaline fertilizer treatment reduced by 54.9%, 56.6%, 41.8%, 62.7% and 67.6% respectively. The alkaline fertilizer treatment combined with bacterial regent increased the cadmium content of brown rice by 63.2%. It was concluded that the alkaline fertilizer could significantly reduce the available cadmium content in both soil and the different organs of the rice, however, when it was combined with bacterial regent together, the effect of alkaline fertilizer to reduce Cd content of brown rice would be declined.

  2. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    NASA Astrophysics Data System (ADS)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  3. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  4. Connecting the Dots in DAS

    ERIC Educational Resources Information Center

    Ford, Tracy

    2012-01-01

    Many institutions implement a distributed antenna system (DAS) as part of a holistic approach to providing better wireless coverage and capacity on campus. A DAS provides wireless service within a particular area or structure via a network of separate antenna nodes that are connected to a common source through fiber or coaxial cable. Because DAS…

  5. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    PubMed

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  6. Anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues for methane production.

    PubMed

    Li, Guixia; Zhong, Weizhang; Wang, Rui; Chen, Jiaqi; Li, Zaixing

    2017-08-01

    Optimum anaerobic conditions of cephalosporin bacterial residues after thermal-alkaline pretreatment were determined by orthogonal experiments. And through biochemical methane potential tests (BMPs) for cephalosporin bacterial residues, the ability for bacterial degradation of cephalosporin was also evaluated. The thermal-alkaline pretreatment with the optimum values of 6% NaOH at 105 °C for 15 min significantly improved digestion performance. With the thermal-alkaline pretreatment, the specific methane yield of the pretreated cephalosporin bacterial residue increased by 254.79% compared with that of the un-pretreated cephalosporin bacterial residue. The results showed that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment. This work investigates the thermal-alkaline pretreatment of cephalosporin bacterial residues, which can increase their methane yield by 254.79% compared with no pretreatment. The digestion performance is significantly improved under the condition of 6% NaOH at 105 °C for 15 min. The results show that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment.

  7. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis.

    PubMed

    Kumar, Deepak; Kumar, Aditya; Sondhi, Sonica; Sharma, Prince; Gupta, Naveen

    2018-03-01

    In the present study, an extracellular alkali stable laccase (Lac DS) from Bacillus subtilis DS which has pH optima at 8.5 using p -phenylenediamine (PPD) as substrate has been reported. Lac DS retained 70% activity for 4 h at pH 8.5 and 90% activity for 24 h at 55 °C. The enzyme yield was enhanced by optimization of fermentation conditions. A 746-fold increase in yield was observed under optimized conditions using 150 µM MgSO 4 , 1.2% yeast extract, 0.35% tryptone, and 150 µM vanillic acid. Lac DS was used to polymerize natural dye precursor catechol, pyrogallol, syringaldehyde, syringic acid, ferulic acid and gallic acid to develop a range of natural hair colors such as black, golden yellow, and reddish brown. The results indicate that alkaline Lac DS is a suitable candidate to develop a user-friendly and commercially applicable hair dyeing process in the area of cosmetic industry.

  9. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  10. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  11. Development of an alkaline/surfactant/polymer compositional reservoir simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, D.

    1989-01-01

    The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less

  12. Analysis of serum corticosteroid-induced alkaline phosphatase isoenzyme in dogs with hepatobiliary diseases.

    PubMed

    Kojima, K; Ohno, K; Kanemoto, H; Goto-Koshino, Y; Fukushima, K; Tsujimoto, H

    2017-05-01

    To reveal the relationship between canine corticosteroid-induced alkaline phosphatase isoenzyme activity and hepatobiliary diseases. Retrospective analysis of the relationship between serum corticosteroid-induced alkaline phosphatase activity and diagnosis, serum cortisol concentration and alanine transferase activity in dogs with hepatobiliary diseases. Dogs with a history of glucocorticoid administration were excluded. Seventy-two dogs with hepatobiliary diseases were analysed. The serum corticosteroid-induced alkaline phosphatase concentration was increased in dogs with hepatobiliary diseases. There was no correlation between serum cortisol concentration and serum corticosteroid-induced alkaline phosphatase percentage or activity. Dogs with hepatobiliary disease can exhibit high serum alkaline phosphatase activity even if the dogs have not been administrated glucocorticoids and the serum cortisol concentration is normal. © 2017 British Small Animal Veterinary Association.

  13. Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress.

    PubMed

    Liu, Jia; Wang, Yongqing; Li, Qingtian

    2017-01-01

    Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum ( Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba , a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure. To understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba . Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings. This represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results

  14. Proteomic analysis of enterotoxigenic Escherichia coli (ETEC) in neutral and alkaline conditions.

    PubMed

    Gonzales-Siles, Lucia; Karlsson, Roger; Kenny, Diarmuid; Karlsson, Anders; Sjöling, Åsa

    2017-01-07

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB 5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-regulated. ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.

  15. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  16. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  17. Effect of aluminum phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria.

    PubMed

    Ramalingam, N; Prasanna, B Gowtham

    2006-09-01

    The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h(-1) mg(-1) protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.

  18. Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Liao, W. -P.; Flicker Byers, M.

    2016-04-20

    Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21-30% decrease in the cost of uranium recovery.« less

  19. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions.

    PubMed

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing-Wen; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun

    2018-02-01

    Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state-of-the-art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active-sites with improved electrochemical efficiencies in future.

  20. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions

    PubMed Central

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing‐Wen; Pan, Lun; Zhang, Xiangwen

    2017-01-01

    Abstract Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state‐of‐the‐art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active‐sites with improved electrochemical efficiencies in future. PMID:29610722

  1. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  2. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  3. An enzyme-linked immuno-mass spectrometric assay with the substrate adenosine monophosphate.

    PubMed

    Florentinus-Mefailoski, Angelique; Soosaipillai, Antonius; Dufresne, Jaimie; Diamandis, Eleftherios P; Marshall, John G

    2015-02-01

    An enzyme-linked immuno-mass spectrometric assay (ELIMSA) with the specific detection probe streptavidin conjugated to alkaline phosphatase catalyzed the production of adenosine from the substrate adenosine monophosphate (AMP) for sensitive quantification of prostate-specific antigen (PSA) by mass spectrometry. Adenosine ionized efficiently and was measured to the femtomole range by dilution and direct analysis with micro-liquid chromatography, electrospray ionization, and mass spectrometry (LC-ESI-MS). The LC-ESI-MS assay for adenosine production was shown to be linear and accurate using internal (13)C(15)N adenosine isotope dilution, internal (13)C(15)N adenosine one-point calibration, and external adenosine standard curves with close agreement. The detection limits of LC-ESI-MS for alkaline phosphatase-streptavidin (AP-SA, ∼190,000 Da) was tested by injecting 0.1 μl of a 1 pg/ml solution, i.e., 100 attograms or 526 yoctomole (5.26E-22) of the alkaline-phosphatase labeled probe on column (about 315 AP-SA molecules). The ELIMSA for PSA was linear and showed strong signals across the picogram per milliliter range and could robustly detect PSA from all of the prostatectomy patients and all of the female plasma samples that ranged as low as 70 pg/ml with strong signals well separated from the background and well within the limit of quantification of the AP-SA probe. The results of the ELIMSA assay for PSA are normal and homogenous when independently replicated with a fresh standard over multiple days, and intra and inter diem assay variation was less than 10 % of the mean. In a blind comparison, ELIMSA showed excellent agreement with, but was more sensitive than, the present gold standard commercial fluorescent ELISA, or ECL-based detection, of PSA from normal and prostatectomy samples, respectively.

  4. Systemic and local effects of long-term exposure to alkaline drinking water in rats

    PubMed Central

    Merne, Marina ET; Syrjänen, Kari J; Syrjänen, Stina M

    2001-01-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined. PMID:11493345

  5. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    PubMed

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  6. Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Needham, A. J.; Lindsay, J. M.; Smith, I. E. M.; Augustinus, P.; Shane, P. A.

    2011-04-01

    Rangitoto Volcano is the youngest and largest eruptive centre in the monogenetic intraplate Auckland Volcanic Field (AVF). The stratigraphy of Rangitoto pyroclastic deposits that have been preserved in swamps on nearby Motutapu Island and in Lake Pupuke on the mainland reveals that the volcano erupted twice; radiocarbon dating of 10 samples from the two tephra units in the swamps indicates eruption ages of 553 ± 7 and 504 ± 5 Cal years BP, for the lower and upper tephra layers, respectively. Geochemistry of the lava field and various scoria cones on Rangitoto Island itself reveals two distinct compositional groups: an alkaline olivine basalt group (that correlates geochemically with the lower tephra layer) and a group that is sub-alkaline and transitional to tholeiite (that correlates geochemically with the upper tephra layer). Based on this data, we infer that, following a phreatomagmatic vent-clearing phase, the early magmatic eruption of Rangitoto Volcano was Strombolian in character and produced an alkaline olivine basalt scoria cone and an associated thick ash deposit on nearby Motutapu Island. This was followed by a time gap of up to several decades, after which a second eruptive phase built the current summit scoria cone together with an encircling lava field. We suggest this later, sub-alkaline eruptive period was associated with the deposition of the thin upper tephra layer on Motutapu Island. The two suites of Rangitoto samples are chemically quite distinct, and each is associated with a distinct parental composition. Trace element modelling indicates the alkaline and sub-alkaline parental melts could have been derived by ~ 1 and 6 wt.% partial melting of an anhydrous garnet peridotite source at ~ 80 and 65 km depth, respectively. The compositional range within each suite is similar, and can be explained by mainly olivine together with minor clinopyroxene fractionation within a relatively simple conduit system in which mixing and mingling were not

  7. Acute effect of tea, wine, beer, and polyphenols on ecto-alkaline phosphatase activity in human vascular smooth muscle cells.

    PubMed

    Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J

    2006-07-12

    Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.

  8. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  9. CARINA alkalinity data in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Velo, A.; Perez, F. F.; Brown, P.; Tanhua, T.; Schuster, U.; Key, R. M.

    2009-08-01

    Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values. Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg-1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  10. CARINA alkalinity data in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Velo, A.; Perez, F. F.; Brown, P.; Tanhua, T.; Schuster, U.; Key, R. M.

    2009-11-01

    Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these, 75 cruises report alkalinity values. Here we present details of the secondary QC on alkalinity for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the alkalinity values for 16 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s. Based on our analysis we estimate the internal accuracy of the CARINA-ATL alkalinity data to be 3.3 μmol kg-1. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  11. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  12. Combined acid/alkaline-peroxide pretreatment of olive tree biomass for bioethanol production.

    PubMed

    Martínez-Patiño, José Carlos; Ruiz, Encarnación; Romero, Inmaculada; Cara, Cristóbal; López-Linares, Juan Carlos; Castro, Eulogio

    2017-09-01

    Olive tree biomass (OTB) can be used for producing second generation bioethanol. In this work, extracted OTB was subjected to fractionation using a sequential acid/alkaline oxidative pretreatment. In the first acid stage, the effects of sulfuric acid concentration and reaction times at 130°C were investigated. Up to 71% solubilization of hemicellulosic sugars was achieved under optimized conditions (2.4% H 2 SO 4 , 84min). In the second stage, the influence of hydrogen peroxide concentration and process time were evaluated at 80°C. Approximately 80% delignification was achieved under the best operational conditions (7% H 2 O 2 , 90min) within the experimental range studied. This pretreatment produced a substrate with 72% cellulose that was highly accessible to enzymatic attack, yielding 82g glucose/100g glucose in delignified OTB. Ethanol production from both hemicellulosic sugars solubilized in the acid pretreatment and glucose from enzymatic hydrolysis of delignified OTB yielded 15g ethanol/100g OTB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Bozkurt, Akif Goktug; Buyukgoz, Guluzar Gorkem; Soforoglu, Mehmet; Tamer, Ugur; Suludere, Zekiye; Boyaci, Ismail Hakki

    2018-04-01

    In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2 = 0.992) was established between the specific SERS intensity of BCI at 600 cm- 1 and logarithmic E. coli concentration in the range of 1.7 × 101-1.7 × 106 cfu mL- 1. LOD and LOQ values were also calculated and found to be 10 cfu mL- 1 and 30 cfu mL- 1, respectively.

  14. Modeling of the interaction between osteoblasts and biocompatible substrates as a function of adhesion strength.

    PubMed

    Portan, D V; Deligianni, D D; Deligianni, K; Kroustalli, A A; Tyllianakis, M; Papanicolaou, G C

    2018-03-01

    A goal of current implantology research is to design devices that induce controlled, guided, and rapid healing. Nanoscale structured substrates [e.g., titania nanotubes (TNTs) or carbon nanotubes (CNTs)] dramatically improve the functions of conventional biomaterials. The present investigation evaluated the behavior of osteoblasts cells cultured on smooth and nanostructured substrates, by measuring osteoblasts specific biomarkers [alkaline phosphatase (AP) and total protein] and cells adhesion strength to substrates, followed by semi-empirical modeling to predict the experimental results. Findings were in total agreement with the current state of the art. The proliferation, as well as the AP and total protein levels were higher on the nanostructure phases (TNTs, CNTs) comparing to the smooth ones (plastic and pure titanium). Cells adhesion strength measured was found higher on the nanostructured materials. This coincided with a higher value of proteins which are directly implicated in the process of adherence. Results were accurately predicted through the Viscoelastic Hybrid Interphase Model. A gradual adherence of bone cells to implants using multilayered biomaterials that involve biodegradable polymeric films and a nanoscale modification of titanium surface is suggested to improve performance through an interphase-mediated osteointegration of orthopedic implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 621-628, 2018. © 2017 Wiley Periodicals, Inc.

  15. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.

    PubMed

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-25

    Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Survival and stress responses of E. coli exposed to alkaline cleaners

    USDA-ARS?s Scientific Manuscript database

    Studies were undertaken to evaluate the effects of alkaline cleaners commonly used in food processing environments on survival and stress responses of the foodborne pathogen Escherichia coli O157:H7. Alkaline cleaners containing either sodium hydroxide or potassium hydroxide and hypochlorite had gre...

  18. Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater

    DOE PAGES

    Das, Sadananda; Liao, Wei -Po; Byers, Maggie Flicker; ...

    2015-10-18

    Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Furthermore, the use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21–30% decrease in the cost of uranium recovery.« less

  19. Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sadananda; Liao, Wei -Po; Byers, Maggie Flicker

    Alkaline conditioning of the amidoxime based adsorbents is a significant step in the preparation of the adsorbent for uranium uptake from seawater. The effects of various alkaline conditioning parameters such as the type of alkaline reagent, reaction temperature, and reaction time were investigated with respect to uranium adsorption capacity from simulated seawater (spiked with 8 ppm uranium) and natural seawater (from Sequim Bay, WA). An adsorbent (AF1) was prepared at the Oak Ridge National Laboratory by radiation-induced graft polymerization (RIGP) with acrylonitrile and itaconic acid onto high-surface-area polyethylene fibers. For the AF1 adsorbent, sodium hydroxide emerged as a better reagentmore » for alkaline conditioning over potassium hydroxide, which has typically been used in previous studies, because of higher uranium uptake capacity and lower cost over the other candidate alkaline reagents investigated in this study. Furthermore, the use of sodium hydroxide in place of potassium hydroxide is shown to result in a 21–30% decrease in the cost of uranium recovery.« less

  20. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  1. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to

  2. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  5. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  6. Elucidating Performance Limitations in Alkaline-Exchange- Membrane Fuel Cells

    DOE PAGES

    Shiau, Huai-Suen; Zenyuk, Iryna V.; Weber, Adam Z.

    2017-07-15

    Water management is a serious concern for alkaline-exchange-membrane fuel cells (AEMFCs) because water is a reactant in the alkaline oxygen-reduction reaction and hydroxide conduction in alkaline-exchange membranes is highly hydration dependent. Here in this article, we develop and use a multiphysics, multiphase model to explore water management in AEMFCs. We demonstrate that the low performance is mostly caused by extremely non-uniform distribution of water in the ionomer phase. A sensitivity analysis of design parameters including humidification strategies, membrane properties, and water transport resistance was undertaken to explore possible optimization strategies. Furthermore, the strategy and issues of reducing bicarbonate/carbonate buildup inmore » the membrane-electrode assembly with CO 2 from air is demonstrated based on the model prediction. Overall, mathematical modeling is used to explore trends and strategies to overcome performance bottlenecks and help enable AEMFC commercialization.« less

  7. Bonding strength and durability of alkaline-treated titanium to veneering resin.

    PubMed

    Ban, Seiji; Kadokawa, Akihiko; Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Tanaka, Takuo

    2004-09-01

    The shear bonding strengths of a veneering resin to polished, sandblasted, and retention bead-cast commercially pure titanium (cpTi) plates with and without alkaline treatment were measured before and after thermal cycling. The bonding strengths to polished cpTi with and without alkaline treatment decreased remarkably with thermal cycling (p<0.01). The bonding strength to sandblasted cpTi with alkaline treatment at 5,000 thermal cycles showed no significant differences from those before thermal cycling (p>0.05), and those at 20,000 thermal cycles showed values which were quite small (p<0.01). On the other hand, there were no significant differences in the bonding strengths of veneering resin to retention bead-cast cpTi in all conditions (p>0.05). These results suggested that although alkaline treatment is a simple and effective surface modification technique for titanium improving adhesion to resin due to formation of tight-fine rutile particles, it does not provide sufficient bonding durability for long-period restorations.

  8. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  9. Response to alkaline stress by root canal bacteria in biofilms.

    PubMed

    Chávez de Paz, L E; Bergenholtz, G; Dahlén, G; Svensäter, G

    2007-05-01

    To determine whether bacteria isolated from infected root canals survive alkaline shifts better in biofilms than in planktonic cultures. Clinical isolates of Enterococcus faecalis, Lactobacillus paracasei, Olsenella uli, Streptococcus anginosus, S. gordonii, S. oralis and Fusobacterium nucleatum in biofilm and planktonic cultures were stressed at pH 10.5 for 4 h, and cell viability determined using the fluorescent staining LIVE/DEAD BacLight bacterial viability kit. In addition, proteins released into extracellular culture fluids were identified by Western blotting. Enterococcus faecalis, L. paracasei, O. uli and S. gordonii survived in high numbers in both planktonic cultures and in biofilms after alkaline challenge. S. anginosus, S. oralis and F. nucleatum showed increased viability in biofilms compared with planktonic cultures. Alkaline exposure caused all planktonic cultures to aggregate into clusters and resulted in a greater extrusion of cellular proteins compared with cells in biofilms. Increased levels of DnaK, HPr and fructose-1,6-bisphosphate aldolase were observed in culture fluids, especially amongst streptococci. In general, bacteria isolated from infected roots canals resisted alkaline stress better in biofilms than in planktonic cultures, however, planktonic cells appeared to use aggregation and the extracellular transport of specific proteins as survival mechanisms.

  10. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    PubMed

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches.

    PubMed

    Sporck, Daniele; Reinoso, Felipe A M; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, José C; Ferraz, André; Milagres, Adriane M F

    2017-01-01

    New biorefinery concepts are necessary to drive industrial use of lignocellulose biomass components. Xylan recovery before enzymatic hydrolysis of the glucan component is a way to add value to the hemicellulose fraction, which can be used in papermaking, pharmaceutical, and food industries. Hemicellulose removal can also facilitate subsequent cellulolytic glucan hydrolysis. Sugarcane bagasse was pretreated with an alkaline-sulfite chemithermomechanical process to facilitate subsequent extraction of xylan by enzymatic or alkaline procedures. Alkaline extraction methods yielded 53% (w/w) xylan recovery. The enzymatic approach provided a limited yield of 22% (w/w) but produced the xylan with the lowest contamination with lignin and glucan components. All extracted xylans presented arabinosyl side groups and absence of acetylation. 2D-NMR data suggested the presence of O -methyl-glucuronic acid and p -coumarates only in enzymatically extracted xylan. Xylans isolated using the enzymatic approach resulted in products with molecular weights (Mw) lower than 6 kDa. Higher Mw values were detected in the alkali-isolated xylans. Alkaline extraction of xylan provided a glucan-enriched solid readily hydrolysable with low cellulase loads, generating hydrolysates with a high glucose/xylose ratio. Hemicellulose removal before enzymatic hydrolysis of the cellulosic fraction proved to be an efficient manner to add value to sugarcane bagasse biorefining. Xylans with varied yield, purity, and structure can be obtained according to the extraction method. Enzymatic extraction procedures produce high-purity xylans at low yield, whereas alkaline extraction methods provided higher xylan yields with more lignin and glucan contamination. When xylan extraction is performed with alkaline methods, the residual glucan-enriched solid seems suitable for glucose production employing low cellulase loadings.

  12. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  13. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase.

    PubMed

    Morris, H; Schlesinger, M J; Bracha, M; Yagil, E

    1974-08-01

    Induction of alkaline phosphatase in wild-type Escherichia coli K-12 leads to the appearance of three new proteins in addition to alkaline phosphatase in the periplasmic space of the bacteria. These proteins are detected in autoradiograms of sodium dodecyl sulfate-acrylamide gel electropherograms of extracts from cells labeled with [(35)S]methionine. Studies with constitutive mutants defective in the three genes phoS, phoT, and phoR that have been shown to regulate alkaline phosphatase synthesis indicate that the three periplasmic proteins are coregulated with alkaline phosphatase. A mutant that has a deletion in the alkaline phosphatase structural gene phoA produces the three proteins, but a newly discovered mutant phoB that has a defect in the expression of alkaline phosphatase fails to produce the three proteins. phoB mutants are shown here to be unable to make detectable amounts of alkaline phosphatase polypeptides, as measured by immunoprecipitins or acrylamide gel electropherograms. On the basis of these results we suggest a new model for the regulation of alkaline phosphatase biosynthesis. In this model, a ternary complex composed of phoB(+) and phoR(+) gene products and an internal metabolite functions as a positive control element to regulate the transcription of several cistrons coding for periplasmic proteins.

  14. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.

    PubMed

    Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie

    2017-08-01

    In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams.

    PubMed

    Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J

    2016-11-01

    Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    DOE PAGES

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; ...

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  17. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46

  18. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and

  19. Processing Approaches for DAS-Enabled Continuous Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Dou, S.; Wood, T.; Freifeld, B. M.; Robertson, M.; McDonald, S.; Pevzner, R.; Lindsey, N.; Gelvin, A.; Saari, S.; Morales, A.; Ekblaw, I.; Wagner, A. M.; Ulrich, C.; Daley, T. M.; Ajo Franklin, J. B.

    2017-12-01

    Distributed Acoustic Sensing (DAS) is creating a "field as laboratory" capability for seismic monitoring of subsurface changes. By providing unprecedented spatial and temporal sampling at a relatively low cost, DAS enables field-scale seismic monitoring to have durations and temporal resolutions that are comparable to those of laboratory experiments. Here we report on seismic processing approaches developed during data analyses of three case studies all using DAS-enabled seismic monitoring with applications ranging from shallow permafrost to deep reservoirs: (1) 10-hour downhole monitoring of cement curing at Otway, Australia; (2) 2-month surface monitoring of controlled permafrost thaw at Fairbanks, Alaska; (3) multi-month downhole and surface monitoring of carbon sequestration at Decatur, Illinois. We emphasize the data management and processing components relevant to DAS-based seismic monitoring, which include scalable approaches to data management, pre-processing, denoising, filtering, and wavefield decomposition. DAS has dramatically increased the data volume to the extent that terabyte-per-day data loads are now typical, straining conventional approaches to data storage and processing. To achieve more efficient use of disk space and network bandwidth, we explore improved file structures and data compression schemes. Because noise floor of DAS measurements is higher than that of conventional sensors, optimal processing workflow involving advanced denoising, deconvolution (of the source signatures), and stacking approaches are being established to maximize signal content of DAS data. The resulting workflow of data management and processing could accelerate the broader adaption of DAS for continuous monitoring of critical processes.

  20. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  1. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.

  2. Miocene calc-alkaline heritage in the pliocene postcollisional volcanism of monte arci (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Cioni, Roberto; Clocchiatti, Robert; Di Paola, Giovanni M.; Santacroce, Roberto; Tonarini, Sonia

    1982-10-01

    At Monte Arci alkaline (hawaiites to trachytes), subalkaline with a marked calc-alkaline character (basalts to dacites) and rhyolitic lavas were erupted almost simultaneously in Late Pliocene time. Major- and trace-element chemistry, microprobe mineralogy and isotopic data suggest a partial melting origin for both rhyolites and subalkaline rocks. Different sources are however inferred for two rock series: homogeneous, calc-alkaline in nature for subalkaline rocks; unhomogeneous, richer in 87Sr, for rhyolitic ones. Crystal fractionation differentiation from subcrustal alkali-basalts should have been the main process in the genesis of alkaline rocks. Large-scale contaminations with rhyolitic and/or alkaline rocks are evident in many of these lavas. Such a complicated magmatic association characterizes an area where volcanism related to post-collisional tensional movements in Pliocene time superimposes to Middle Miocene calc-alkaline basic volcanism related to previous subduction processes. The Pliocene volcanic history of Monte Arci emphasizes the influence of the paleogeodynamic environment on the nature of magmas erupted in post-continental collision areas, that are frequently difficult to arrange in the usual schemas connecting magma composition with tectonic setting.

  3. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313?

    PubMed

    Yoav, Shahar; Barak, Yoav; Shamshoum, Melina; Borovok, Ilya; Lamed, Raphael; Dassa, Bareket; Hadar, Yitzhak; Morag, Ely; Bayer, Edward A

    2017-01-01

    Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium ( Ruminiclostridium ) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. The results reported here highlight the finding that cellulosomes derived from cells grown on glucose

  4. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  5. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients.

    PubMed

    Perticone, Francesco; Perticone, Maria; Maio, Raffaele; Sciacqua, Angela; Andreucci, Michele; Tripepi, Giovanni; Corrao, Salvatore; Mallamaci, Francesca; Sesti, Giorgio; Zoccali, Carmine

    2015-10-01

    Tissue nonspecific alkaline phosphatase, promoting arterial calcification in experimental models, is a powerful predictor of total and cardiovascular mortality in general population and in patients with renal or cardiovascular diseases. For this study, to evaluate a possible correlation between serum alkaline phosphatase levels and endothelial function, assessed by strain gauge plethysmography, we enrolled 500 naïve hypertensives divided into increasing tertiles of alkaline phosphatase. The maximal response to acetylcholine was inversely related to alkaline phosphatase (r=−0.55; P<0.001), and this association was independent (r=−0.61; P<0.001) of demographic and classical risk factors, body mass index, estimated glomerular filtration rate, serum phosphorus and calcium, C-reactive protein, and albuminuria. At multiple logistic regression analysis, the risk of endothelial dysfunction was ≈3-fold higher in patients in the third tertile than that of patients in the first tertile. We also tested the combined role of alkaline phosphatase and serum phosphorus on endothelial function. The steepness of the alkaline phosphatase/vasodilating response to acetylcholine relationship was substantially attenuated (P<0.001) in patients with serum phosphorus above the median value when compared with patients with serum phosphorus below the median (−5.0% versus −10.2% per alkaline phosphatase unit, respectively), and this interaction remained highly significant (P<0.001) after adjustment of all the previously mentioned risk factors. Our data support a strong and significant inverse relationship between alkaline phosphatase and endothelium-dependent vasodilation, which was attenuated by relatively higher serum phosphorus levels.

  6. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  7. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Importance of water quality in container plant production

    Treesearch

    John M. Ruter

    2013-01-01

    High substrate pH is a major problem for producers of container-grown plants and seedlings. The primary cause of high substrate pH is irrigation water with high alkalinity. Alkalinity is defined as the capacity of water to neutralize acids. Some alkalinity in irrigation water is beneficial as it serves as a buffer to large swings in pH levels, but high alkalinity in...

  9. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    NASA Astrophysics Data System (ADS)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  10. Alkaline phosphatase as a screening test for osteomalacia.

    PubMed

    Chinoy, Muhammad Amin; Javed, Muhammad Imran; Khan, Alamzeb; Sadruddin, Nooruddin

    2011-01-01

    Vitamin D deficiency remains common in children and adults in Pakistan despite adequate sunlight exposure. Diagnosis in adults is usually delayed and is made following pathological fractures that result in significant morbidity. The objective of this study was to see whether Serum Alkaline Phosphatase levels could be used as a screening test for osteomalacia. The Study was conducted at Fatima Hospital, Baqai Medical University, Gadap, Karachi, between July 2002 and June 2005. Serum calcium levels are commonly used to screen patients suspected of osteomalacia, and raised serum alkaline phosphatase (SALP) is considered a diagnostic finding. We used SALP to screen patients who presented with back or non-specific aches and pain of more than six months duration. Three hundred thirty-four (334) patients were screened of which 116 (35%) had raised SALP. Osteomalacia was diagnosed in 92 (79.3%) of these 116 either by plain radiographs, bone biopsy or isotope bone scan. Fifty-four (53.4%) of the 101 cases had a normal level of serum calcium. Osteomalacia is likely to be missed if only serum calcium is used to screen patients. Serum Alkaline Phosphate should be used as the preferred method for screening these patients.

  11. Data Acquisition System(DAS) Sustaining Engineering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This paper presents general information describing the Data Acquisition System contract, a summary of objectives, tasks performed and completed. The hardware deliverables which are comprised of: 1) Two ground DAS units; 2) Two flight DAS units; 3) Logistic spares; and 4) Shipping containers are described. Also included are the data requirements and scope of the contract.

  12. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  13. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    PubMed

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  15. Proposal for management and alkalinity transformation of bauxite residue in China.

    PubMed

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  16. Characterization of an alkaline protease associated with a granulosis virus of Plodia interpunctella.

    PubMed

    Tweeten, K A; Bulla, L A; Consigli, R A

    1978-06-01

    An alkaline protease was found to be associated with the granulosis virus of the Indian meal moth. Plodia interpunctella. The protease was located within the protein matrix of the occluded virus and hydrolyzed the major constituent of this matrix, a 28,000-dalton protein (granulin), to a mixture of polypeptides ranging in molecular weight from 10,000 to 27,000. A rapid, sensitive assay for the protease was developed using radioactively labeled granulosis virus as substrate. With this assay, the proteolytic activity could be detected by measuring the release of acid-soluble peptides from the labeled virus. The protease had a pH optimum of 10.5 and a temperature optimum of 40 degrees C and was inhibited by diisopropyl phosphorofluoridate, phenylmethylsulfonyl fluoride, and L-(1-tosylamido-2-phenyl) ethyl chloromethyl ketone. Purification of the protease from matrix protein was achieved by anion-exchange and gel permeation chromatography. The molecular weight of the isolated protease, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, was approximately 14,000.

  17. Alkaline precipitation in Bahia Blanca, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccolo, M.C.; Perillo, G.M.E.; Varela, P.

    1988-02-01

    The spatial, meteorological, and seasonal factors associated with precipitation pH in Bahia Blanca and its surroundings are presented. From April 1984 to April 1985, 85 rain events were studied from 12 sites that represent significant land-use sectors of the city. Mean pH for all sites ranged from 6.5 to 7.2. The area is characterized by alkaline precipitation since most stations reported maximum values in excess of 7.6. The highest values of pH were observed under the influence of continental air masses, which have traveled over the pampas soil, thus introducing large amounts of alkaline cations. The lowest pH values weremore » obtained during the winter season when marine advection introduces high concentrations of spray. Stations located close to the estuary and the industrial park present the larger effect of sea spray but also of the incidence of an incipient atmospheric contamination.« less

  18. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  19. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  20. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction.

    PubMed

    Batra, P; Kharbanda, Op; Duggal, R; Singh, N; Parkash, H

    2006-02-01

    The aim of the study was to investigate alkaline phosphatase activity in the gingival crevicular fluid (GCF) during orthodontic tooth movement in humans. Postgraduate orthodontic clinic. Ten female patients requiring all first premolar extractions were selected and treated with standard edgewise mechanotherapy. Canine retraction was done using 100 g sentalloy springs. Maxillary canine on one side acted as experimental site while the contralateral canine acted as control. Gingival crevicular fluid was collected from mesial and distal of canines before initiation of canine retraction (baseline), immediately after initiation of retraction, and on 1st, 7th, 14th and 21st day and the alkaline phosphatase activity was estimated. The results show significant (p < 0.05) changes in alkaline phosphatase activity on the 7th, 14th and 21st day on both mesial and distal aspects of the compared experimental and control sides. The peak in enzyme activity occurred on the 14th day of initiation of retraction followed by a significant fall in activity especially on the mesial aspect. The study showed that alkaline phosphatase activity could be successfully estimated in the GCF using calorimetric estimation assay kits. The enzyme activity showed variation according to the amount of tooth movement.

  1. Long-term evolution of highly alkaline steel slag drainage waters.

    PubMed

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  2. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    PubMed

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. © The Author(s) 2015.

  3. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Colorimetric determination of alkaline phosphatase as indicator of mammalian feces in corn meal: collaborative study.

    PubMed

    Gerber, H

    1986-01-01

    In the official method for rodent filth in corn meal, filth and corn meal are separated in organic solvents, and particles are identified by the presence of hair and a mucous coating. The solvents are toxic, poor separation yields low recoveries, and fecal characteristics are rarely present on all fragments, especially on small particles. The official AOAC alkaline phosphatase test for mammalian feces, 44.181-44.184, has therefore been adapted to determine the presence of mammalian feces in corn meal. The enzyme cleaves phosphate radicals from a test indicator/substrate, phenolphthalein diphosphate. As free phenolphthalein accumulates, a pink-to-red color develops in the gelled test agar medium. In a collaborative study conducted to compare the proposed method with the official method for corn meal, 44.049, the proposed method yielded 45.5% higher recoveries than the official method. Repeatability and reproducibility for the official method were roughly 1.8 times more variable than for the proposed method. The method has been adopted official first action.

  5. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Nwokoro, Ogbonnaya; Anthonia, Odiase

    2015-01-01

    various temperatures (25, 30, 35, 40, 45, 50, 55 and 60°C) in a thermo static water bath. The reactions were stopped by adding DNS reagent. The enzyme activity was therefore determined. Thermal stability was studied by incubating 0.5 ml of enzyme solution in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at various temperatures (20, 30, 40, 50, 60 and 70°C) for 60 min. The enzyme displayed optimal activity at pH 8.0 at which it produced maximum specific activity of 34.3 units/mg protein. Maximum stability was at pH 8.0 to 9.0. Maximum activity was observed at temperature of 50°C while thermo stability of the enzyme was observed at 40-50°C. The enzyme displayed a wide range of activities on starch and caused the release of 5.86, 4.75, 5.98, 3.44, 3.96, 8.84 mg/mL reducing sugar from cassava, potato, cocoyam, corn, rice and soluble starch respectively. This investigation reports some biochemical characterization of alkaline α-amylase from Bacillus subtilis CB-18. The substrate specificities of this enzyme on various starches suggested that the alkaline α-amylase enzyme had combined activities on raw and soluble starch.

  6. Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione, new competitive and non-competitive inhibitors, by capillary electrophoresis.

    PubMed

    Grodner, Błażej; Napiórkowska, Mariola

    2017-09-05

    The article describes the inhibitory effect of two new aminoalkanol derivatives on the enzymatic kinetic of tissue non-specific alkaline phosphatase with use of capillary zone electrophoresis to evaluate the inhibitory effect. This technique allows to investigate of the enzymatic kinetic by the measure of the amounts of the substrate and product in the presence of compound (I) or (II) in the reaction mixture. The separation process was conducted using an eCAP fused-silica capillary. The detector was set at 200nm. The best parameters for the analysis were: 25mM sodium dihydrogen phosphate adjusted to pH=2.5, temperature 25°C, and voltage -15kV. Lineweaver-Burk plots were constructed and determined by comparison of the Km, of alkaline phosphatase in the presence of inhibitor (I) or (II) with the Km in a solution without inhibitor. The influence of replacement the propylamine group by the dimethylamine group on tissue non-specific alkaline phosphatase inhibition activity of new derivatives (I) and (II) was investigated. The tested compounds (I) and (II) were found to be tissue non-specific alkaline phosphatase inhibitors. Detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase for compound (I) and non-competitive mode of inhibition for compound (II). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury.

    PubMed

    Peters, Esther; Masereeuw, Rosalinde; Pickkers, Peter

    2014-01-01

    Sepsis-associated acute kidney injury (AKI) is associated with a high attributable mortality and an increased risk of developing chronic kidney failure in survivors. As a successful therapy is, as yet, unavailable, a pharmacological treatment option is clearly warranted. Recently, two small phase II clinical trials demonstrated beneficial renal effects of bovine-derived alkaline phosphatase administration in critically ill patients with sepsis-associated AKI. The rationale behind the renal protective effects remains to be fully elucidated, but is likely to be related to dephosphorylation and thereby detoxification of detrimental molecules involved in the pathogenesis of sepsis-associated AKI. A potent candidate target molecule might be endotoxin (lipopolysaccharide) from the cell wall of Gram-negative bacteria, which is associated with the development of sepsis and becomes nontoxic after being dephosphorylated by alkaline phosphatase. Another target of alkaline phosphatase could be adenosine triphosphate, a proinflammatory mediator released during cellular stress, which can be converted by alkaline phosphatase into the tissue-protective and anti-inflammatory molecule adenosine. Human recombinant alkaline phosphatase, a recently developed replacement for bovine-derived alkaline phosphatase, has shown promising results in the preclinical phase. As its safety and tolerability were recently confirmed in a phase I clinical trial, the renal protective effect of human recombinant alkaline phosphatase in sepsis-associated AKI shall be investigated in a multicenter phase II clinical trial starting at the end of this year. 2014 S. Karger AG, Basel.

  8. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  9. Syntheses and structures of alkaline earth metal bis(diphenylamides).

    PubMed

    Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias

    2007-06-11

    Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.

  10. Solid-support substrates for plant growth at a lunar base

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Galindo, C.; Henninger, D. L.

    1990-01-01

    Zeoponics is only in its developmental stages at the Johnson Space Center and is defined as the cultivation of plants in zeolite substrates that contain several essential plant growth cations on their exchange sites, and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth anions. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations with the ability to exchange most of their constituent exchange cations as well as hydrate/dehydrate without change to their structural framework. Because zeolites have extremely high cation exchange capabilities, they are very attractive media for plant growth. It is possible to partially or fully saturate plant-essential cations on zeolites. Zeoponic systems will probably have their greatest applications at planetary bases (e.g., lunar bases). Lunar raw materials will have to be located that are suited for the synthesis of zeolites and other exchange resings. Lunar 'soil' simulants have been or are being prepared for zeolite/smectite synthesis and 'soil' dissolution studies.

  11. Comparison of enteral and parenteral methods of urine alkalinization in patients receiving high-dose methotrexate.

    PubMed

    Rouch, Jamie A; Burton, Bradley; Dabb, Alix; Brown, Vicky; Seung, Amy H; Kinsman, Katharine; Holdhoff, Matthias

    2017-01-01

    Purpose Hyperhydration and urinary alkalinization is implemented with all high-dose (HD)-methotrexate infusions to promote excretion and prevent precipitation of methotrexate in the renal tubules. Our institution utilized enteral alkalinizing agents (sodium bicarbonate tablets and sodium citrate/citric acid solution) to alkalinize the urine of patients receiving HD-methotrexate during a parenteral sodium bicarbonate and sodium acetate shortage. The purpose of this study is to establish the safety and efficacy of the enteral route for urine alkalinization. Methods A single-center, retrospective, cohort study was conducted comparing cycles of HD-methotrexate using enteral alkalinizing agents to parenteral sodium bicarbonate. The primary objective was to compare the time, in hours, from administration of first inpatient administered dose of alkalinizing agent to time of achieving goal urine pH. Secondary objectives evaluated total dose of sodium bicarbonate required to achieve goal urine pH, time from start of urine alkalinizing agent until time of achieving methotrexate level safe for discharge, and toxicities associated with methotrexate and the alkalinizing agents. Results A total of 118 patients were included in this study, equally divided into two cohorts based on parenteral versus enteral routes of administration. No statistical difference was determined between the two cohorts regarding time to goal urine pH (6.5 h versus 7.9 h, P = 0.051) or regarding time to methotrexate level deemed safe for discharge (63.5 h versus 62.5 h, p = 0.835). There were no significant differences in methotrexate-induced toxicities. Conclusion Our study found enteral routes of urine alkalinization to be a viable alternative to the traditional parenteral sodium bicarbonate, especially during parenteral sodium bicarbonate and acetate shortages.

  12. Dissociation Energies of the Alkaline Earth Monofluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLUE, GARY D.; GREEN, JOHN W.; EHLERT, THOMAS C.

    1963-08-24

    New results and theoretical calculations are presented that indicate consistently high dissocintion energies for all the alkaline earth monofluorides. Experimental results were obtained by utilizing a mass spectrometer to analyze the vapors from a heated Ta Knudsen cell containing an alkaline earth fluoride salt with Al present as a reducing agent. Ionization efficiency curves were obtained and temperature dependence investigations were made to determine the molecular precursor of the ions observed. Values of the equilibrium constants at different temperatures were used together with the free-energy functions to calculate the third law heats of reaction at 298 deg K. Data aremore » tabulated for the heats of various reactions for Al--MF2 systems with M = Mg, Ca, Sr, and Ba, and dissociation energies of MF molecules by various methods for Be, Mg, Ca, Sr, and Ba. (C.H.)« less

  13. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    States, S.J.; Conley, L.F.; Towner, S.G.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospitalmore » cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.« less

  14. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  15. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  16. Alkaline phosphatase protein increases in response to prednisolone in HeLa cells.

    PubMed Central

    Hanford, W C; Kottel, R H; Fishman, W H

    1981-01-01

    Quantification of term-placental alkaline phosphatase isoenzyme protein in HeLa TCRC-1 cells grown in the presence and absence of prednisolone indicates that there is a net increase in amount of enzyme-specific protein in prednisolone-stimulated cells. In a similar analysis of HeLa D98AH2 cells, prednisolone treatment causes the appearance of term-placental alkaline phosphatase protein and the loss of the intestinal isoenzyme protein. These results support the interpretation that the response of these cells to corticosteroids is the net accumulation of alkaline phosphatase protein rather than the modification of pre-existing enzyme to a more active state. Images Fig. 1. Fig. 2. PMID:7340849

  17. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation.

    PubMed

    Mamo, Gashaw; Thunnissen, Marjolein; Hatti-Kaul, Rajni; Mattiasson, Bo

    2009-09-01

    The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P2(1)2(1)2(1) and the structure was determined at a resolution of 2.1 A. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9-9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.

  18. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    PubMed

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  19. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  20. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  1. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.

    PubMed

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng

    2017-01-01

    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (<8wt%) caused increased cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multiscale Alterations in Sugar Cane Bagasse and Straw Submitted to Alkaline Deacetylation

    DOE PAGES

    Lima, Cleilton S.; Rabelo, Sarita C.; Ciesielski, Peter N.; ...

    2018-01-31

    Alkaline deacetylation has emerged as a promising chemistry for pretreatments performed prior to enzymatic saccharification of lignocellulosic biomass. This process avoids complex pressurized reactors and opens new opportunities for lignin covalorization. In this work, we evaluate the chemical and morphological response of sugar cane bagasse and straw submitted to alkaline treatments. Alkaline solutions for deacetylation (0.4% w/w NaOH, 70 degrees C, 3 h) as well as proximal conditions (0.1-0.7% NaOH, 55-85 degrees C, 1-5 h) chosen by 23 experimental design were evaluated. The deacetylation treatment removes ~90% of the acetyl groups and 20-30% of the lignin from both bagasse andmore » straw, while removal of ~20% of the xylan and glucan is observed in straw, but not in bagasse. Considering nanoscale structural alterations, neither cellulose cocrystallization (evaluated by X-ray diffraction) nor formation of lignin aggregates (evaluated by thermoporometric signature) are observed after the alkaline conditions, in contrast to observations after hydrothermal treatments. Furthermore, calorimetric thermoporometry as well as scanning and transmission electron microscopies show substantial introduction of nanoscale porosity and loosening of the tissue and cell wall structures, indicating desirable mechanical weakening and gains in enzyme accessibility. These results provide fundamental and practical knowledge for biorefineries based on alkaline deacetylation of sugar cane bagasse and straw.« less

  3. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  4. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  5. Multiscale Alterations in Sugar Cane Bagasse and Straw Submitted to Alkaline Deacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Cleilton S.; Rabelo, Sarita C.; Ciesielski, Peter N.

    Alkaline deacetylation has emerged as a promising chemistry for pretreatments performed prior to enzymatic saccharification of lignocellulosic biomass. This process avoids complex pressurized reactors and opens new opportunities for lignin covalorization. In this work, we evaluate the chemical and morphological response of sugar cane bagasse and straw submitted to alkaline treatments. Alkaline solutions for deacetylation (0.4% w/w NaOH, 70 degrees C, 3 h) as well as proximal conditions (0.1-0.7% NaOH, 55-85 degrees C, 1-5 h) chosen by 23 experimental design were evaluated. The deacetylation treatment removes ~90% of the acetyl groups and 20-30% of the lignin from both bagasse andmore » straw, while removal of ~20% of the xylan and glucan is observed in straw, but not in bagasse. Considering nanoscale structural alterations, neither cellulose cocrystallization (evaluated by X-ray diffraction) nor formation of lignin aggregates (evaluated by thermoporometric signature) are observed after the alkaline conditions, in contrast to observations after hydrothermal treatments. Furthermore, calorimetric thermoporometry as well as scanning and transmission electron microscopies show substantial introduction of nanoscale porosity and loosening of the tissue and cell wall structures, indicating desirable mechanical weakening and gains in enzyme accessibility. These results provide fundamental and practical knowledge for biorefineries based on alkaline deacetylation of sugar cane bagasse and straw.« less

  6. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  8. Urbanization accelerates long-term salinization and alkalinization of fresh water

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  9. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGES

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH) 2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potentialmore » measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  10. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    PubMed

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  11. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  12. Electrochemical Behavior of Sulfur in Aqueous Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul; Mamitova, A. D.; Mamyrbekova, Aizhan

    2018-03-01

    The kinetics and mechanism of the electrode oxidation-reduction of sulfur on an electrically conductive sulfur-graphite electrode in an alkaline solution was studied by the potentiodynamic method. To examine the mechanism of electrode processes occurring during AC polarization on a sulfur-graphite electrode, the cyclic polarization in both directions and anodic polarization curves were recorded. The kinetic parameters: charge transfer coefficients (α), diffusion coefficients ( D), heterogeneous rate constants of electrode process ( k s), and effective activation energies of the process ( E a) were calculated from the results of polarization measurements. An analysis of the results and calculated kinetic parameters of electrode processes showed that discharge ionization of sulfur in alkaline solutions occurs as a sequence of two stages and is a quasireversible process.

  13. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields.

  14. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1.

    PubMed

    Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N

    2006-03-01

    The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.

  15. Characterization of alkaline hydroxide-preserved whole poultry as a dry byproduct meal.

    PubMed

    Shafer, D J; Burgess, R P; Conrad, K A; Prochaska, J F; Carey, J B

    2001-11-01

    Studies were conducted to examine the chemical preservation of whole broiler carcasses by using aqueous alkaline hydroxide solutions. Conversion of the preserved carcasses and solutions into an acceptable poultry byproduct meal was examined. Carcasses and alkaline solutions at a 1:1 ratio were blended and freeze-dried to produce a high fat whole poultry byproduct meal. The dry meal was analyzed for nutrient composition, true metabolizable energy, and amino acid content. Viable bacteria were not recovered after inoculation of the experimental meal with Salmonella enteritidis. The meal was incorporated at 5 and 10% of chick starter diets. Chicks found the meal-containing diets acceptable. Feed consumption, water consumption, BW, and mortality were not significantly different among the dietary treatments in either of the two feeding trials. Necropsy samples revealed no pathological or histological differences attributable to consumption of the alkaline poultry byproduct and blood serum evaluation found no variation in blood chemistry. Alkaline treatment of whole broiler carcasses was an effective preservation method and acceptable as a dry poultry byproduct meal.

  16. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  17. Relation of placental alkaline phosphatase expression in human term placenta with maternal and offspring fat mass.

    PubMed

    Hirschmugl, Birgit; Crozier, Sarah; Matthews, Nina; Kitzinger, Eva; Klymiuk, Ingeborg; Inskip, Hazel M; Harvey, Nicholas C; Cooper, Cyrus; Sibley, Colin P; Glazier, Jocelyn; Wadsack, Christian; Godfrey, Keith M; Desoye, Gernot; Lewis, Rohan M

    2018-06-13

    Alkaline phosphatase is implicated in intestinal lipid transport and in the development of obesity. Placental alkaline phosphatase is localised to the microvillous plasma membrane of the placental syncytiotrophoblast at the maternal-fetal interface, but its role is unclear. We investigated the relations of placental alkaline phosphatase activity and mRNA expression with maternal body composition and offspring fat mass in humans. Term human placentas from the UK Birthright cohort (n = 52) and the Southampton Women's Survey (SWS) (n = 95) were studied. In the Birthright cohort, alkaline phosphatase activity was measured in placental microvillous plasma membrane vesicles. In the SWS, alkaline phosphatase mRNA was measured using Nanostring. Alkaline phosphatase gene expression was compared to other lipid-related genes. In Birthright samples placental microvillous plasma membrane alkaline phosphatase activity was positively associated with maternal triceps skinfold thickness and BMI (β = 0.04 (95% CI: 0.01-0.06) and β = 0.02 (0.00-0.03) µmol/mg protein/min per SD, P = 0.002 and P = 0.05, respectively) after adjusting for potential confounders. In SWS samples placental alkaline phosphatase mRNA expression in term placenta was positively associated with maternal triceps skinfold (β = 0.24 (0.04, 0.44) SD/SD, P = 0.02), had no association with neonatal %fat mass (β = 0.01 (-0.20 to 0.21) SD/SD, P = 0.93) and was negatively correlated with %fat mass at ages 4 (β = -0.28 (-0.52 to -0.04) SD/SD, P = 0.02), 6-7 (β = -0.25 (-0.49 to -0.02) SD/SD, P = 0.03) years. When compared with placental expression of other genes, alkaline phosphatase expression was positively related to genes including the lysophosphatidylcholine transporter MFSD2A (major facilitator superfamily domain containing 2A, P < 0.001) and negatively related to genes including the fatty acid transport proteins 2 and 3 (P = 0.001, P < 0

  18. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  20. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells.

    PubMed

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C; Coffey, Erin E; Laties, Alan M; Rubenstein, Ronald C; Reenstra, William W; Mitchell, Claire H

    2012-07-15

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTR(inh)-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4(-/-) mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization.

  1. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells

    PubMed Central

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.

    2012-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847

  2.  Alkaline phosphatase normalization is a biomarker of improved survival in primary sclerosing cholangitis.

    PubMed

    Hilscher, Moira; Enders, Felicity B; Carey, Elizabeth J; Lindor, Keith D; Tabibian, James H

    2016-01-01

     Introduction. Recent studies suggest that serum alkaline phosphatase may represent a prognostic biomarker in patients with primary sclerosing cholangitis. However, this association remains poorly understood. Therefore, the aim of this study was to investigate the prognostic significance and clinical correlates of alkaline phosphatase normalization in primary sclerosing cholangitis. This was a retrospective cohort study of patients with a new diagnosis of primary sclerosing cholangitis made at an academic medical center. The primary endpoint was time to hepatobiliaryneoplasia, liver transplantation, or liver-related death. Secondary endpoints included occurrence of and time to alkaline phosphatase normalization. Patients who did and did not achieve normalization were compared with respect to clinical characteristics and endpoint-free survival, and the association between normalization and the primary endpoint was assessed with univariate and multivariate Cox proportional-hazards analyses. Eighty six patients were included in the study, with a total of 755 patient-years of follow-up. Thirty-eight patients (44%) experienced alkaline phosphatase normalization within 12 months of diagnosis. Alkaline phosphatase normalization was associated with longer primary endpoint-free survival (p = 0.0032) and decreased risk of requiring liver transplantation (p = 0.033). Persistent normalization was associated with even fewer adverse endpoints as well as longer survival. In multivariate analyses, alkaline phosphatase normalization (adjusted hazard ratio 0.21, p = 0.012) and baseline bilirubin (adjusted hazard ratio 4.87, p = 0.029) were the only significant predictors of primary endpoint-free survival. Alkaline phosphatase normalization, particularly if persistent, represents a robust biomarker of improved long-term survival and decreased risk of requiring liver transplantation in patients with primary sclerosing cholangitis.

  3. Nature of immobilization surface affects antibody specificity to placental alkaline phosphatase.

    PubMed

    Kumar, Mukesh; Khan, Imran; Sinha, Subrata

    2015-01-01

    Retention of native conformation of immobilized protein is essential for various applications including selection and detection of specific recombinant antibodies (scFvs). Placental alkaline phosphatase (PAP), an onco-fetal antigen expressed on the surface of several tumors, was immobilized on supermagnetic particles for selection of recombinant antibodies from a human phage display antibody library. The isolated antibodies were found to be cross-reactive to either of the isozymes of alkaline phosphatase, i.e., bone alkaline phosphatase (BAP) or intestinal alkaline phosphatase (IAP) and could not be used for tumor targeting. A specific anti-PAP monoclonal antibody H17E2 was tested for retention of specificity under these conditions. Binding of the antibody to magnetic beads conjugated IAP and BAP along with PAP and the ability of the two isozymes to inhibit its binding to PAP depicted the loss of isozyme specificity of the antibody. However, the antibody retained its specificity to PAP immobilized on polyvinyl chloride (PVC) surface. Enzyme activity was observed on both surfaces. This demonstrates that nature of immobilization may affect antigen-antibody binding in subtle ways, resulting in alteration of conformation of the epitopes. This may have consequences for determining the specificity of antibody binding for proteins that share a high degree of homology.

  4. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2015-01-25

    Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Investigating surface chemistry-controlled dolomite precipitation in saline, alkaline, and dilute waters

    NASA Astrophysics Data System (ADS)

    Yoerg, A.; Roberts, J. A.

    2017-12-01

    Previous experiments have shown carboxylated organic matter facilitates dolomite precipitation at low temperature (< 80°C) in both modern and ancient seawater geochemistries. The efficacy of this mechanism in alternative chemical environments, particularly those typical of modern dolomitic environments, remains unclear. We investigated this question using a series of batch laboratory experiments ranging in duration from hours to several months. Experiments were conducted using fluids representative of environments where dolomite is found/thought to form in the modern, such as evaporative, alkaline lakes, sabkhas, and dilute mixing zones. Results indicate that while carboxylated organic matter promotes mineral precipitation in a variety of chemistries, the resultant mineralogy is primarily a function solution chemistry (i.e. saturation state). Specifically, our results suggest elevated alkalinity may be required to produce a high-Mg phase. In solutions where alkalinity is scarce, only amorphous carbonate phases form in association with organic matter, contrasting the Mg-bearing crystalline phases that result from highly alkaline solutions. Results of high-alkalinity, short-term experiments suggest that initially amorphous material is rapidly transformed into high and low-Mg phases in the presence of carboxylated organic matter, but that within days this mineralogy evolves. Longer timescales or elevated temperature may be necessary to produce an ordered dolomite phase. Additional results from longer term, steady-state experiments and additional analyses (Raman spectroscopy and tender energy spectroscopy) will shed further light on resultant mineralogy and this mechanism of dolomite precipitation.

  6. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens.

    PubMed

    Zhang, Dianpeng; Spadaro, Davide; Valente, Silvia; Garibaldi, Angelo; Gullino, Maria Lodovica

    2012-02-15

    An alkaline protease gene was amplified from genomic DNA and cDNA of the antagonistic yeast-like fungus Aureobasidium pullulans PL5, a biocontrol agent effective against Monilinia laxa on stone fruit and Botrytis cinerea and Penicillium expansum on pome fruits. An open reading frame of 1248 bp encoding a 415-amino acid (aa) protein with a calculated molecular weight (M(r)) of 42.9 kDa and an isoelectric point (pI) of 4.5 was characterized. The cDNAALP5 gene had an 18-amino acid signal peptide, one N-gylcosylation, one histidine active site, and one serine active site. The ALP5 gene with a M(r) of 1351 bp contained two introns. One intron was of 54 bp, while the other was of 50 bp. Protein BLAST and phylogenetic tree analysis of the deduced amino sequences from the cDNAALP5 gene showed that the encoded protein had 100% homology to a protease enzyme (ALP2) of a sea strain of A. pullulans, suggesting that the protein ALP5 was an alkaline serine protease. Expression of ALP5 in Escherichia coli BL21 (DE3), followed by identification with Western-blotting, purification with Ni-NTA and analysis of enzymatic activity, yielded an homogeneous recombinant ALP5 which hydrolysed the substrate casein and inhibited the mycelial growth of the pathogens. At its optimal pH of 10.0 and reaction temperature of 50°C, the recombinant protease exhibited the highest activity towards the substrate casein, though the highest stability was at lower temperatures and pH between 7.0 and 9.0. This study provided the direct evidence that extracellular proteases secreted by the antagonist A. pullulans PL5 played a role in the biocontrol activities against some postharvest pathogens of apple and peach. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Aqueous solubility and alkaline hydrolysis of the novel high explosive hexanitrohexaazaisowurtzitane (CL-20).

    PubMed

    Karakaya, Pelin; Sidhoum, Mohammed; Christodoulatos, Christos; Nicolich, Steve; Balas, Wendy

    2005-04-11

    The recently developed polycyclic nitramine CL-20 is considered as a possible replacement for the monocyclic nitramines RDX and HMX. The present study reports aqueous solubility data for CL-20, as well as the kinetic parameters for its alkaline hydrolysis with sodium hydroxide below and above its solubility limits. Aqueous solubility of CL-20 was measured in the temperature range of 4-69 degrees C and the data were fitted to a generalized solubility model. Alkaline hydrolysis experiments were conducted at 15, 20, 30 and 40 degrees C, with hydroxide concentrations ranging from 0.25 to 300 mM. Like RDX and HMX, alkaline hydrolysis of CL-20 follows second-order kinetics. CL-20 alkaline hydrolysis was found to proceed at a significantly faster rate than RDX. The temperature dependency of the second-order rate constants was evaluated using the Arrhenius model. The activation energy for CL-20 was found to be within close range of the activation energies reported for RDX and HMX.

  8. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent.

    PubMed

    Kaboré, Donatien; Nielsen, Dennis Sandris; Sawadogo-Lingani, Hagrétou; Diawara, Bréhima; Dicko, Mamoudou Hama; Jakobsen, Mogens; Thorsen, Line

    2013-03-01

    Maari is a spontaneously alkaline fermented food condiment made from baobab tree seeds. Due to the spontaneous nature of maari fermentations growth of the opportunistic human pathogen Bacillus cereus is occasionally observed. Bacillus subtilis strains are important for alkaline seed fermentations because of their enzymatic activities contributing to desirable texture, flavor and pH development. Some B. subtilis strains have antimicrobial properties against B. cereus. In the present work, three bacteriocin producing B. subtilis strains (B3, B122 and B222) isolated from maari were tested. The production of antimicrobial activity by the three strains was found to be greatly influenced by the substrate. All three B. subtilis strains produced antimicrobial activity against B. cereus NVH391-98 in BHI broth as determined by the agar well diffusion assay, whereas no antimicrobial activity was detected in whole cooked baobab seeds and in 10% (w/v) grinded baobab seeds. Incorporation of BHI with up to 5% (w/w) grinded baobab seeds enhanced the antimicrobial activity of B. subtilis compared with pure BHI in a strain dependent manner. Incorporation of BHI with 50% (w/w) baobab grinded seeds decreased the antimicrobial activity. Addition of the inorganic salts FeCl₃, MgSO₄ and MnSO₄ has previously been reported to increase bacteriocin production of B. subtilis, but the addition of these salts to 10% (w/v) grinded baobab seed broth did not cause antimicrobial activity. Survival of B. cereus NVH391-98 in co-culture with B. subtilis was tested in BHI broth, 10% (w/v) grinded baobab seed based broth and during baobab seed fermentation to produce maari. B. cereus NVH391-98 grew well in all three substrates in mono-culture. All the 3 B. subtilis strains were able to decrease B. cereus NVH391-98 to levels below the detection limit (<10 CFU/ml) in BHI, but not in baobab seed based substrates, even though the outgrowth of B. cereus NVH391-98 was delayed by up to 40 h. In

  9. Interannual sedimentary effluxes of alkalinity in the southern North Sea: model results compared with summer observations

    NASA Astrophysics Data System (ADS)

    Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina

    2018-06-01

    For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.

  10. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  11. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  12. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  13. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min

    2018-03-01

    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  14. Elastase, alpha2-macroglobulin and alkaline phosphatase in crevicular fluid from implants with and without periimplantitis.

    PubMed

    Plagnat, Dominique; Giannopoulou, Catherine; Carrel, Anne; Bernard, Jean-Pierre; Mombelli, Andrea; Belser, Urs C

    2002-06-01

    The aim of this investigation was to determine the presence of selected enzymes and enzyme inhibitors in crevicular fluid collected from implants with and without clinical, radiographic and microbiological signs of periimplantitis. Eleven implants with symptoms of periimplantitis in eight patients (four men and four women) were compared to eleven implants in seven subjects (one man and six women) without periimplantitis. Periimplant crevicular fluid (PICF) was collected at the mesial and distal sites of each implant. Alkaline phosphatase activity (ALP) was measured by using p-nitrophenyl-phosphate as substrate, elastase activity (EA) by the use of a low molecular weight fluorogenic substrate, and the inhibitor alpha2-macroglobulin (alpha2M) by ELISA. ALP, EA and alpha2M were detected in the majority of samples in both groups. In comparison to the clinically healthy implants, total amounts of each of these substances were significantly higher in PICF collected around implants with periimplantitis. The mean total amounts of EA, alpha2M and ALP in the healthy group were: EA: 1.8 ng, alpha2M: 3.1 ng, ALP: 24.1 U, and in the periimplantitis group EA: 23.1 ng, alpha2M: 25.2 ng and ALP: 142.3 U. In addition, all three mediators were correlated with the clinical parameters. The results confirm the similarity of the inflammatory response of tissues surrounding implants and natural teeth, and suggest that ALP and EA could be promising markers of bone loss around dental implants.

  15. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato.

    PubMed

    Zhang, Yi; Zhang, Hao; Zou, Zhi-Rong; Liu, Yi; Hu, Xiao-Hui

    2015-02-01

    In this research, the protective effect of spermidine (Spd) in mitigating saline-alkaline stress in tomato (Solanum lycopersicum L.) at physiological and proteomic levels were examined. The results showed that saline-alkaline stress induced accumulation of H2O2 and O2(-*), and increased the activities of antioxidase (SOD, CAT, and POD). Spermidine efficiently alleviated the inhibitory role of saline-alkaline on plant growth and inhibited saline-alkaline stress-induced H2O2 and O2(-*) accumulation. Proteomics investigations of the leaves of tomato seedlings, responding to a 75 mM saline-alkaline solution and 0.25 mM Spd, were performed. Maps of the proteome of leaf extracts were obtained by two-dimensional gel electrophoresis. An average of 49, 47 and 34 spots, which appeared repeatedly and that significantly altered the relative amounts of polypeptides by more than twofold, were detected for seedlings treated with saline-alkaline solution (S) compared to normal solution (CK), saline-alkaline plus spermidine (MS) compared to CK, or S versus MS, respectively. Thirty-nine of these proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and were classified into five functional categories, including energy and metabolism, signal transduction, amino acid metabolism, protein metabolism, and stress-defense response. Proteomics analysis coupled with bioinformatics indicated that Spd treatment helps tomato seedlings combat saline-alkaline stress by modulating the defense mechanism of plants and activating cellular detoxification, which protect plants from oxidative damage induced by saline-alkaline stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  17. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress.

    PubMed

    Liu, Duo; Liu, Miao; Liu, Xiao-Long; Cheng, Xian-Guo; Liang, Zheng-Wei

    2018-01-01

    Alkaline stress as a result of higher pH usually triggers more severe physiological damage to plants than that of saline stress with a neutral pH. In the present study, we demonstrated that silicon (Si) priming of alfalfa ( Medicago sativa L.) seedlings increased their tolerance to high alkaline stress situations. Gongnong No. 1 seedlings were subjected to alkaline stress simulated by 25 mM Na 2 CO 3 (pH 11.2). Alkaline stress greatly decreased the biomass and caused severe lodging or wilting of alfalfa seedlings. In contrast, the application of Si to alfalfa seedlings 36 h prior to the alkaline treatment significantly alleviated the damage symptoms and greatly increased the biomass and chlorophyll content. Because of being concomitant with increasing photosynthesis and water use efficiency, decreasing membrane injury and malondialdehyde content, and increasing peroxidase and catalase ascorbate activities in alfalfa leaves, thereby alleviating the triggered oxidative damage by alkaline stress to the plant. Furthermore, Si priming significantly decreased the accumulation of protein and proline content in alfalfa, thus reducing photosynthetic feedback repression. Si priming significantly accumulated more Na in the roots, but led to a decrease of Na accumulation and an increase of K accumulation in the leaves under alkaline stress. Meanwhile, Si priming decreased the accumulation of metal ions such as Mg, Fe, Mn, and Zn in the roots of alfalfa seedlings under alkaline stress. Collectively, these results suggested that Si is involved in the metabolic or physiological changes and has a potent priming effect on the alkaline tolerance of alfalfa seedlings. The present study indicated that Si priming is a new approach to improve the alkaline tolerance in alfalfa and provides increasing information for further exploration of the alkaline stress response at the molecular level in alfalfa.

  18. Silicon Priming Created an Enhanced Tolerance in Alfalfa (Medicago sativa L.) Seedlings in Response to High Alkaline Stress

    PubMed Central

    Liu, Duo; Liu, Miao; Liu, Xiao-Long; Cheng, Xian-Guo; Liang, Zheng-Wei

    2018-01-01

    Alkaline stress as a result of higher pH usually triggers more severe physiological damage to plants than that of saline stress with a neutral pH. In the present study, we demonstrated that silicon (Si) priming of alfalfa (Medicago sativa L.) seedlings increased their tolerance to high alkaline stress situations. Gongnong No. 1 seedlings were subjected to alkaline stress simulated by 25 mM Na2CO3 (pH 11.2). Alkaline stress greatly decreased the biomass and caused severe lodging or wilting of alfalfa seedlings. In contrast, the application of Si to alfalfa seedlings 36 h prior to the alkaline treatment significantly alleviated the damage symptoms and greatly increased the biomass and chlorophyll content. Because of being concomitant with increasing photosynthesis and water use efficiency, decreasing membrane injury and malondialdehyde content, and increasing peroxidase and catalase ascorbate activities in alfalfa leaves, thereby alleviating the triggered oxidative damage by alkaline stress to the plant. Furthermore, Si priming significantly decreased the accumulation of protein and proline content in alfalfa, thus reducing photosynthetic feedback repression. Si priming significantly accumulated more Na in the roots, but led to a decrease of Na accumulation and an increase of K accumulation in the leaves under alkaline stress. Meanwhile, Si priming decreased the accumulation of metal ions such as Mg, Fe, Mn, and Zn in the roots of alfalfa seedlings under alkaline stress. Collectively, these results suggested that Si is involved in the metabolic or physiological changes and has a potent priming effect on the alkaline tolerance of alfalfa seedlings. The present study indicated that Si priming is a new approach to improve the alkaline tolerance in alfalfa and provides increasing information for further exploration of the alkaline stress response at the molecular level in alfalfa. PMID:29896213

  19. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-08-22

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases.

  20. Alkaline phosphatase levels in patients with coronary heart disease saliva and its relation with periodontal status

    NASA Astrophysics Data System (ADS)

    Yunita, Dina Suci; Masulili, Sri Lelyati C.; Tadjoedin, Fatimah M.; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is a disease that causes narrowing of the coronary arteries. Currently, there is a hypothesis regarding periodontal infection that increases risk for heart disease. Alkaline phosphatase (ALP) as a marker of inflammation will increase in atherosclerosis and periodontal disease. The objective of this research is analyzing the relationship between the levels of alkaline phosphatase in saliva with periodontal status in patients with CHD and non CHD. Here, saliva of 104 subjects were taken, each 1 ml, and levels of Alkaline Phosphatase was analyzed using Abbott ci4100 architect. We found that no significant difference of Alkaline Phosphatase levels in saliva between CHD patients and non CHD. Therefore, it can be concluded that Alkaline Phosphatase levels in patients with CHD saliva was higher than non CHD and no association between ALP levels with periodontal status.

  1. Coordinate responses to alkaline pH stress in budding yeast

    PubMed Central

    Serra-Cardona, Albert; Canadell, David; Ariño, Joaquín

    2015-01-01

    Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products. PMID:28357292

  2. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.

    PubMed

    Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M

    1989-10-15

    During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.

  3. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism

    NASA Astrophysics Data System (ADS)

    Owen-Smith, T. M.; Ashwal, L. D.; Torsvik, T. H.; Ganerød, M.; Nebel, O.; Webb, S. J.; Werner, S. C.

    2013-12-01

    Silhouette and North Islands in the Seychelles represent an alkaline plutonic-volcanic complex, dated at 63 to 63.5 Ma by U-Pb zircon and 40Ar/39Ar methods. This magmatism coincides with the final stages of the cataclysmic Deccan Traps continental flood volcanism in India (67 to 63 Ma), and thus a causal link has been suggested. Recent reconstructions have placed the Seychelles islands adjacent to the Laxmi Ridge and at the western margin of the Réunion mantle plume at the time of formation of the complex. Here we present geochemical evidence in support of the notion that the Seychelles alkaline magmatism was initiated by the peripheral activity of the Réunion mantle plume and is thus part of the Deccan magmatic event. Positive εNd (0.59 to 3.76) and εHf (0.82 to 6.79) and initial Sr of 0.703507 to 0.705643 at 65 Ma indicate derivation of the Seychelles alkaline magmas from a Réunion-like mantle source with an additional minor enriched component, suggesting entrainment of sub-continental lithospheric mantle. The similarity in trace element composition between the Seychelles suite and Deccan alkaline felsic and mafic rocks provides additional evidence for a common mantle source for the Seychelles and Deccan magmatism. Furthermore, we demonstrate the role of fractional crystallisation in the evolution of the alkaline suite. Modelling using major elements suggests that fractional crystallisation and varying degrees of accumulation of olivine, plagioclase, ilmenite, clinopyroxene, alkali feldspar and apatite can describe the spectrum of rock types, from gabbro, through syenite, to granite.

  4. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.

    PubMed

    Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel

    2015-11-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  6. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  8. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a

  11. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  12. Polished polymide substrate

    DOEpatents

    Farah, John; Sudarshanam, Venkatapuram S.

    2003-05-13

    Polymer substrates, in particular polyimide substrates, and polymer laminates for optical applications are described. Polyimide substrates are polished on one or both sides depending on their thickness, and single-layer or multi-layer waveguide structures are deposited on the polished polyimide substrates. Optical waveguide devices are machined by laser ablation using a combination of IR and UV lasers. A waveguide-fiber coupler with a laser-machined groove for retaining the fiber is also disclosed.

  13. Induction of alkaline phosphatase in the inflamed intestine: a novel pharmacological target for inflammatory bowel disease.

    PubMed

    Sánchez de Medina, Fermín; Martínez-Augustin, Olga; González, Raquel; Ballester, Isabel; Nieto, Ana; Gálvez, Julio; Zarzuelo, Antonio

    2004-12-15

    This study demonstrates the upregulation of alkaline phosphatase and the mechanisms involved in experimental colitis. All models of ileal and colonic inflammation examined, which were characterized by significant oxidative stress and neutrophil infiltration, resulted in an increase in alkaline phosphatase activity which was attributable to both epithelial cells and cells of the lamina propria, mainly leukocytes. The increase in alkaline phosphatase sensitivity to the inhibitors levamisole and homoarginine, together with changes in the apparent molecular size and in the sialization of the enzyme, indicated a change in the isoform expressed. An increase in tissue non-specific alkaline phosphatase expression was observed by Western blotting. Treatment with the bone/kidney alkaline phosphatase inhibitor levamisole or a monoclonal antibody resulted in significant protection from colonic inflammation. Taken together, these results indicate that the kidney isoform is a marker of intestinal inflammation and that it might even constitute a target for pharmacological intervention.

  14. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  15. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H 2O 2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H 2O 2 was added batch-wise overmore » the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H 2O 2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H 2O 2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  16. Rechargeable alkaline manganese dioxide cells. A test report

    NASA Astrophysics Data System (ADS)

    Farrington, Michael D.

    The rechargeable alkaline MnO 2 (RAM) system has now been commercially available for several years. The Canadian Department of National Defence is interested in determining if the low cost RAM system is technically capable of replacing existing cells and batteries now in use. A preliminary study identified sufficient candidate batteries in use within the Department whose performance requirements compared favourably with RAM manufacturers' claims. Further study was warranted. Replacement cost savings could be significant. A study is now in progress that is aimed at determining how well the RAM technology actually performs. This paper presents test results that illustrate how RAM cells compare to primary alkaline cells and nickel/cadmium. The majority of the work is focused on the 'AA' size products from Rayovac and Pure Energy: tests were also conducted on Rayovac 'D' cells.

  17. Detection of alkaline phosphatase in canine cells previously stained with Wright-Giemsa and its utility in differentiating osteosarcoma from other mesenchymal tumors.

    PubMed

    Ryseff, Julia K; Bohn, Andrea A

    2012-09-01

    Osteosarcoma (OSA) is a common primary bone tumor in dogs. Demonstration of alkaline phosphatase (ALP) reactivity by tumor cells on unstained slides is useful in differentiating osteosarcoma from other types of sarcoma. However, unstained slides are not always available. The objectives of this study were to evaluate the diagnostic utility of detecting ALP expression in differentiating osteosarcoma from other sarcomas in dogs using cytologic material previously stained with Wright-Giemsa stain and to assess the sensitivity and specificity of ALP expression for diagnosing osteosarcoma using a specific protocol. Archived aspirates of histologically confirmed sarcomas in dogs that had been previously stained with Wright-Giemsa stain were treated with 5-bromo, 4-chloro, 3-indolyl phosphate/nitroblue tetrazolium (BCIP/NBT) as a substrate for ALP. Cells were evaluated for expression of ALP after incubation with BCIP/NBT for 1 hour. Sensitivity and specificity of ALP expression for diagnosis of OSA were calculated. In samples from 83 dogs, cells from 15/17 OSAs and from 4/66 tumors other than OSA (amelanotic melanoma, gastrointestinal stromal tumor, collision tumor, and anaplastic sarcoma) expressed ALP. Sensitivity and specificity of ALP expression detected using BCIP/NBT substrate applied to cells previously stained with Wright-Giemsa stain for OSA were 88 and 94%, respectively. ALP expression detected using BCIP/NBT substrate applied to previously stained cells is useful in differentiating canine OSA from other mesenchymal neoplasms. © 2012 American Society for Veterinary Clinical Pathology.

  18. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. Copyright © 2015, Watts et al.

  19. Effects of Parameter Uncertainty on Long-Term Simulations of Lake Alkalinity

    NASA Astrophysics Data System (ADS)

    Lee, Sijin; Georgakakos, Konstantine P.; Schnoor, Jerald L.

    1990-03-01

    A first-order second-moment uncertainty analysis has been applied to two lakes in the Adirondack Park, New York, to assess the long-term response of lakes to acid deposition. Uncertainty due to parameter error and initial condition error was considered. Because the enhanced trickle-down (ETD) model is calibrated with only 3 years of field data and is used to simulate a 50-year period, the uncertainty in the lake alkalinity prediction is relatively large. When a best estimate of parameter uncertainty is used, the annual average alkalinity is predicted to be -11 ±28 μeq/L for Lake Woods and 142 ± 139 μeq/L for Lake Panther after 50 years. Hydrologic parameters and chemical weathering rate constants contributed most to the uncertainty of the simulations. Results indicate that the uncertainty in long-range predictions of lake alkalinity increased significantly over a 5- to 10-year period and then reached a steady state.

  20. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  1. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice.

    PubMed

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-10-01

    There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction.

  2. Pedagogical Basis of DAS Formalism in Engineering Education

    ERIC Educational Resources Information Center

    Hiltunen, J.; Heikkinen, E.-P.; Jaako, J.; Ahola, J.

    2011-01-01

    The paper presents a new approach for a bachelor-level curriculum structure in engineering. The approach is called DAS formalism according to its three phases: description, analysis and synthesis. Although developed specifically for process and environmental engineering, DAS formalism has a generic nature and it could also be used in other…

  3. Evaluation of non-specific binding suppression schemes for neutravidin and alkaline phosphatase at the surface of reticulated vitreous carbon electrodes.

    PubMed

    Shedge, Hemangi Y; Creager, Stephen E

    2010-01-11

    Non-specific binding (NSB) of high-molecular-weight proteins onto electrode surfaces can complicate the application of electroanalytical techniques to clinical and environmental research, particularly in biosensor applications. We present herein various strategies to modify the surface of reticulated vitreous carbon (RVC) electrodes to suppress non-specific binding of biomolecules onto its surface. Non-specific binding and specific binding (SB) of two enzyme conjugates, neutravidin-alkaline phosphatase (NA-ALP) and biotinylated alkaline phosphatase (B-ALP), and also neutravidin itself, were studied using hydroquinone diphosphate (HQDP) as an enzyme substrate for ALP inside the pores of RVC electrodes that had been subjected to various modification schemes. The extent of NSB and SB of these biomolecules inside RVC pores was assessed by measuring the initial rate of generation of an electroactive product, hydroquinone (HQ), of the enzyme-catalyzed reaction, using linear scan voltammetry (LSV) for HQ detection. Electrodes functionalized with phenylacetic acid and poly(ethylene glycol) (PEG) showed low NSB and high SB (when biotin capture ligands were included in the modification scheme) in comparison with unmodified electrodes and RVC electrodes modified in other ways. A simple sandwich bioassay for neutravidin was performed on the RVC electrode with the lowest NSB. A concentration detection limit of 52+/-2 ng mL(-1) and an absolute detection limit of 5.2+/-0.2 ng were achieved for neutravidin when this assay was performed using a 100 microL sample size.

  4. Influence of reagents reacting with metal, thiol and amino sites of catalytic activity and l-phenylalanine inhibition of rat intestinal alkaline phosphatase

    PubMed Central

    Fishman, William H.; Ghosh, Nimai K.

    1967-01-01

    1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542

  5. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    PubMed Central

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  6. Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity

    USGS Publications Warehouse

    Willey, L.M.; Kharaka, Y.K.; Presser, T.S.; Rapp, J.B.; Barnes, I.

    1975-01-01

    High alkalinity values found in some formation waters from Kettleman North Dome oil field are due chiefly to acetate and propionate ions, with some contribution from higher molecular weight organic acid ions. Some of these waters contain no detectable bicarbonate alkalinity. For waters such as these, high supersaturation with respect to calcite will be incorrectly indicated by thermodynamic calculations based upon carbonate concentrations inferred from traditional alkalinity measurements. ?? 1975.

  7. Modelling the anaerobic digestion of solid organic waste - Substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach.

    PubMed

    Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M

    2016-07-01

    This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  9. Is alkaline phosphatase the smoking gun for highly refractory primitive leukemic cells?

    PubMed Central

    Rico, Laura G.; Juncà, Jordi; Ward, Mike D.; Bradford, Jolene; Petriz, Jordi

    2016-01-01

    With the aim to detect candidate malignant primitive progenitor populations, we modified an original alkaline phosphatase (ALP) stem cell detection method based on the identification of alkaline phosphatase fluorescent cells in combination with flow cytometry immunophenotyping. Over a period of one year, we have been using this technique to study its activity in patients with leukemia and lymphoma, showing that changes in the alkaline phosphatase levels can be used to detect rare populations of highly refractory malignant cells. By screening different blood cancers, we have observed that this activity is not always restricted to CD34+ leukemic cells, and can be overexpressed in CD34 negative leukemia. We have verified that this method gives accurate and reproducible measurements and our preliminary results suggest that CD34+/ALPhigh cells appear to sustain leukemogenesis over time. PMID:27732563

  10. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    PubMed

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  11. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  12. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  13. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  14. The Hasan Dagi stratovolcano (Central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone

    NASA Astrophysics Data System (ADS)

    Deniel, Catherine; Aydar, Erkan; Gourgaud, Alain

    1998-12-01

    The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na 2O but enriched in K 2O compared to younger lavas. There is an evolution through time towards higher TiO 2, Fe 2O 3*, MgO, Na 2O and K 2O and lower Al 2O 3 and SiO 2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6-7 m

  15. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  16. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    NASA Astrophysics Data System (ADS)

    Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.

    2013-11-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.

  17. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure–Stability Relationships

    DOE PAGES

    Hugar, Kristina M.; Kostalik, IV, Henry A.; Coates, Geoffrey W.

    2015-06-11

    Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD 3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. In conclusion, we report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cationmore » remaining after 30 days in 5 M KOH/CD 3OH at 80 °C.« less

  18. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  19. Extracellular Ca2(+)-dependent inducible alkaline phosphatase from extremely halophilic archaebacterium Haloarcula marismortui.

    PubMed Central

    Goldman, S; Hecht, K; Eisenberg, H; Mevarech, M

    1990-01-01

    When starved of inorganic phosphate, the extremely halophilic archaebacterium Haloarcula marismortui produces the enzyme alkaline phosphatase and secretes it to the medium. This inducible extracellular enzyme is a glycoprotein whose subunit molecular mass is 160 kDa, as estimated by sodium dodecyl sulfate-gel electrophoresis. The native form of the enzyme is heterogeneous and composed of multiple oligomeric forms. The enzymatic activity of the halophilic alkaline phosphatase is maximal at pH 8.5, and the enzyme is inhibited by phosphate. Unlike most alkaline phosphatases, the halobacterial enzyme requires Ca2+ and not Zn2+ ions for its activity. Both calcium ions (in the millimolar range) and NaCl (in the molar range) are required for the stability of the enzyme. Images PMID:2123861

  20. M-DAS: System for multispectral data analysis. [in Saginaw Bay, Michigan

    NASA Technical Reports Server (NTRS)

    Johnson, R. H.

    1975-01-01

    M-DAS is a ground data processing system designed for analysis of multispectral data. M-DAS operates on multispectral data from LANDSAT, S-192, M2S and other sources in CCT form. Interactive training by operator-investigators using a variable cursor on a color display was used to derive optimum processing coefficients and data on cluster separability. An advanced multivariate normal-maximum likelihood processing algorithm was used to produce output in various formats: color-coded film images, geometrically corrected map overlays, moving displays of scene sections, coverage tabulations and categorized CCTs. The analysis procedure for M-DAS involves three phases: (1) screening and training, (2) analysis of training data to compute performance predictions and processing coefficients, and (3) processing of multichannel input data into categorized results. Typical M-DAS applications involve iteration between each of these phases. A series of photographs of the M-DAS display are used to illustrate M-DAS operation.

  1. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  2. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  3. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    PubMed

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.

  4. In vitro response to alkaline phosphatase coatings immobilized onto titanium implants using electrospray deposition or polydopamine-assisted deposition.

    PubMed

    Nijhuis, Arnold W G; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G

    2014-04-01

    Immobilization of biomolecules onto implant surfaces is one of the most straightforward strategies to control the interaction between an implant and its biological environment. Recently, it was shown that the enzyme alkaline phosphatase (ALP) could be efficiently immobilized onto titanium implants in a single step using polydopamine. We hypothesized that such polydopamine-ALP coatings can enhance the early attachment of cells and increase mineralization. Therefore, the current study aimed at immobilization of ALP onto titanium by means of either one- or two-step polydopamine-assisted immobilization or electrospray deposition, the comparative characterization of these experimental substrates and subsequent cell behavioral analysis using primary osteoblast-like cells. Uncoated titanium and ALP-free polydopamine coatings served as controls. Despite significant ALP surface activity and lower water contact for angles ALP-containing surface modifications, only marginal effects on early cell behavior (i.e., cell spreading) and osteogenic differentiation (i.e., proliferation, differentiation and mineralization) were observed in comparison to uncoated titanium. Copyright © 2013 Wiley Periodicals, Inc.

  5. The α-Arrestin Bul1p Mediates Lactate Transporter Endocytosis in Response to Alkalinization and Distinct Physiological Signals.

    PubMed

    Talaia, Gabriel; Gournas, Christos; Saliba, Elie; Barata-Antunes, Cláudia; Casal, Margarida; André, Bruno; Diallinas, George; Paiva, Sandra

    2017-11-24

    Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H + symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Coated substrates and process

    DOEpatents

    Chu, Wei-kan; Childs, Charles B.

    1991-01-01

    Disclosed herein is a coated substrate and a process for forming films on substrates and for providing a particularly smooth film on a substrate. The method of this invention involves subjecting a surface of a substrate to contact with a stream of ions of an inert gas having sufficient force and energy to substantially change the surface characteristics of said substrate, and then exposing a film-forming material to a stream of ions of an inert gas having sufficient energy to vaporize the atoms of said film-forming material and to transmit the vaporized atoms to the substrate surface with sufficient force to form a film bonded to the substrate. This process is particularly useful commercially because it forms strong bonds at room temperature. This invention is particularly useful for adhering a gold film to diamond and forming ohmic electrodes on diamond, but also can be used to bond other films to substrates.

  7. When VSEPR Fails: Experimental and Theoretical Investigations of the Behavior of Alkaline-Earth-Metal Acetylides

    PubMed Central

    Guino-o, Marites A.; Alexander, Jacob S.; McKee, Michael L.; Hope, Håkon; Englich, Ulrich B.

    2014-01-01

    The synthesis, structural, and spectral characterization as well as a theoretical study of a family of alkaline-earth-metal acetylides provides insights into synthetic access and the structural and bonding characteristics of this group of highly reactive compounds. Based on our earlier communication that reported unusual geometry for a family of triphenylsilyl-substituted alkaline-earth-metal acetylides, we herein present our studies on an expanded family of target derivatives, providing experimental and theoretical data to offer new insights into the intensively debated theme of structural chemistry in heavy alkaline-earth-metal chemistry. PMID:19844925

  8. Oxygen electrodes for rechargeable alkaline fuel cells. II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1990-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  9. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  10. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition.

    PubMed

    Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M

    2009-04-01

    The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.

  11. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.

    PubMed

    Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M

    2017-02-01

    The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights

  12. Substrate quality alters microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-03-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.

  13. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    DOE PAGES

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...

    2017-02-21

    Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway

  14. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao

    Background: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent abilitymore » to survive in extreme environments. Results: To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analyze was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis were carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least 2-fold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis and assembly, etc. Conclusions: GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the

  15. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao

    Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway

  16. Bovine Intestinal Alkaline Phosphatase Reduces Inflammation After Induction of Acute Myocardial Infarction in Mice

    PubMed Central

    Fiechter, Danielle; Kats, Suzanne; Brands, Ruud; van Middelaar, Ben; Pasterkamp, Gerard; de Kleijn, Dominique; Seinen, Willem

    2011-01-01

    Background There has been increasing evidence suggesting that lipopolysaccharide or endotoxin may be an important activator of the innate immune system after acute myocardial infarction. Bovine intestinal alkaline phosphatase reduces inflammation in several endotoxin mediated diseases by dephosphorylation of the lipid A moiety of lipopolysaccharide. The aim of this study was to investigate the effect of bovine intestinal alkaline phosphatase on reducing inflammation after acute myocardial infarction. Methods Just before permanent ligation of the left anterior descending coronary (LAD) artery to induce acute myocardial infarction in Balb/c mice, bovine intestinal alkaline phosphatase (bIAP) was administrated intravenously. After 4 hours, mice were sacrificed and the inflammatory response was assessed. Acute myocardial infarction induced the production of different cytokines, which were measured in blood. Results Treatment with bovine intestinal alkaline phosphatase resulted in a significant reduction of the pro-inflammatory cytokines IL-6, IL-1β and the chymase mouse mast cell protease-1. No difference in the production of the anti-inflammatory cytokine IL-10 was observed between the control group and the bovine intestinal alkaline phosphatase treated group. Conclusion In a mouse model of permanent LAD coronary artery ligation, bIAP diminishes the pro-inflammatory responses but does not have an effect on the anti-inflammatory response in the acute phase after acute myocardial infarction. PMID:28357012

  17. Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide

    NASA Astrophysics Data System (ADS)

    Gökçe, Aytaç Gürhan; Ersan, Fatih

    2017-01-01

    First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.

  18. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  19. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  20. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  1. Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers.

    PubMed

    Roadcap, George S; Kelly, Walton R; Bethke, Craig M

    2005-01-01

    Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.

  2. Does Cholecystectomy Increase the Esophageal Alkaline Reflux? Evaluation by Impedance-pH Technique.

    PubMed

    Uyanikoglu, Ahmet; Akyuz, Filiz; Ermis, Fatih; Arici, Serpil; Bas, Gurhan; Cakirca, Mustafa; Baran, Bulent; Mungan, Zeynel

    2012-04-01

    The aim of this study is to investigate the reflux patterns in patients with galbladder stone and the change of reflux patterns after cholecystectomy in such patients. Fourteen patients with cholecystolithiasis and a control group including 10 healthy control subjects were enrolled in this prospective study. Demographical findings, reflux symptom score scale and 24-hour impedance pH values of the 14 cholecystolithiasis cases and the control group were evaluated. The impedance pH study was repeated 3 months after cholecystectomy. Age, gender, and BMI were not different between the two groups. Total and supine weakly alkaline reflux time (%) (1.0 vs 22.5, P = 0.028; 201.85 vs 9.65, P = 0.012), the longest episodes of total, upright and supine weakly alkaline reflux mediums (11 vs 2, P = 0.025; 8.5 vs 1.0, P = 0.035; 3 vs 0, P = 0.027), total and supine weakly alkaline reflux time in minutes (287.35 vs 75.10, P = 0.022; 62.5 vs 1.4, P = 0.017), the number of alkaline reflux episodes (162.5 vs 72.5, P = 0.022) were decreased with statistical significance. No statistically significant difference was found in the comparison of symptoms between the subjects in the control group and the patients with cholecystolithiasis, in preoperative, postoperative and postcholecystectomy status. Significant reflux symptoms did not occur after cholecystectomy. Post cholecystectomy weakly alkaline reflux was decreased, but it was determined that acid reflux increased after cholecystectomy by impedance pH-metry in the study group.

  3. Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review

    USGS Publications Warehouse

    Spry, D.J.; Wiener, James G.

    1991-01-01

    Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  4. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  5. Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Gamby, Jean

    2015-01-01

    This paper presents the use of polymer coated microelectrodes for the realtime conductivity monitoring in a microchannel photoablated through the polymer without contact. Based on this strategy, a small conductometry sensor has been developed to record in time conductivity variation when an enzymatic reaction occurs through the channel. The rate constant determination, k2, for the dephosphorylation of organic phosphate-alkaline phosphatase-superparamagnetic beads complex using chemically different substrates such as adenosine monoesterphosphate, adenosine diphosphate and adenosine triphosphate was taken as an example to demonstrate selectivity and sensivity of the detection scheme. The k2 value measured for each adenosine phosphate decreases from 39 to 30 s(-1) in proportion with the number (3, 2 and 1) of attached phosphate moiety, thus emphasizing the steric hindrance effect on kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  7. In Situ Infrared Spectroscopy of Oligoaniline Intermediates Created under Alkaline Conditions.

    PubMed

    Šeděnková, Ivana; Stejskal, Jaroslav; Trchová, Miroslava

    2014-12-26

    The progress of the oxidation of aniline with ammonium peroxydisulfate in an alkaline aqueous medium has been monitored in situ by attenuated total reflection (ATR) Fourier transform infrared spectroscopy. The growth of the microspheres and of the film at the ATR crystal surface, as well as the changes proceeding in the surrounding aqueous medium, are reflected in the spectra. The evolution of the spectra and the changes in the molecular structure occurring during aniline oxidation in alkaline medium are discussed with the help of differential spectra. Several processes connected with the various stages of aniline oxidation were distinguished. The progress of hydrolysis of the aniline in water and further an oxidation of aminophenol to benzoquinone imines in the presence of peroxydisulfate in alkaline medium have been detected in the spectra in real time. The precipitated solid oxidation product was analyzed by mass spectrometry. It is composed of oligomers, mainly trimers to octamers, of various molecular structures incorporating in addition to aniline constitutional units also p-benzoquinone or p-benzoquinoneimine moieties.

  8. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedalkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  9. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters

  10. How to specify and measure sensitivity in Distributed Acoustic Sensing (DAS)?

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2017-04-01

    In Rayleigh-scattering-based Distributed Acoustic Sensing (DAS) an optical fiber is transformed into an array of thousands of 'virtual microphones'. This approach has gained tremendous popularity in recent years and is one of the most successful examples of a fiber-optic sensing method which made its way from the academia to the market. Despite the great amount of work done in this field, sensitivity, which is ones of the most critical parameters of any sensing technique, was rarely investigated in this context. In particular, little attention was given to its random characteristics. Without careful consideration of the random aspects of DAS, any attempt to specify its sensitivity or to compare between different DAS modalities is of limited value. Recently we introduced a new statistical parameter which defines DAS sensitivity and enables comparison between the performances of different DAS systems. In this paper we generalize the previous parameter and give a broader, simple and intuitive definition to DAS sensitivity. An important attribute of these parameters is that they can be easily extracted from the static backscatter profile of the sensing fiber. In the paper we derive the relation between DAS sensitivity and the static backscatter profile and present an experimental verification of this relation.

  11. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  12. PREFACE: Cell-substrate interactions Cell-substrate interactions

    NASA Astrophysics Data System (ADS)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  13. State-of-the-art of alkaline rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Morioka, Y.; Narukawa, S.; Itou, T.

    Alkaline rechargeable batteries represented by Ni-Cd and Ni-MH batteries are expanding their market, continuously meeting an increasing demand. Approximately 30 years have elapsed since the first sealed Ni-Cd battery was commercialized for consumer use, and the production of these alkaline batteries is still expanding. The high power performance and good cost performance of these batteries are the outstanding features, which are leading to new battery applications. Continuous R&D of many researchers and engineers has improved these features. Since first coming to the market in 1990, Ni-MH batteries have been extending their application as power sources for portable advanced information and communication equipment. Improvements in electrode materials and other components have increased the energy density of current Ni-MH batteries to values of 91 Wh/kg and 340 Wh/l. Recently, novel metallic alloys for hydrogen storage have been proposed to increase their capacity further, and further improvement in the performance of these batteries is expected.

  14. Effect of modified alkaline supplementation on bone metabolic turnover in rats.

    PubMed

    Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S

    2008-01-01

    This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.

  15. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    PubMed

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10 -3  1/h for the non-treated material over 2.3 × 10 -3  1/h for the alkaline-soaked material to 26.9 × 10 -3  1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  16. Pre-operative serum alkaline phosphatase as a predictive indicator of post-operative hypocalcaemia in patients undergoing total thyroidectomy.

    PubMed

    Miah, M S; Mahendran, S; Mak, C; Leese, G; Smith, D

    2015-11-01

    This study aimed to evaluate whether a pre-operative elevated serum alkaline phosphatase level is a potential predictor of post-operative hypocalcaemia after total thyroidectomy. Data was retrospectively collected from the case notes of patients who had undergone total thyroidectomy. Patients were divided into Graves' disease and non-Graves' groups. Pre-operative and post-operative biochemical markers, including serum calcium, alkaline phosphatase and parathyroid hormone levels, were reviewed. A total of 225 patients met the inclusion criteria. Graves' disease was the most common indication (n = 134; 59.5 per cent) for thyroidectomy. Post-operative hypocalcaemia developed in 48 patients (21.3 per cent) and raised pre-operative serum alkaline phosphatase was noted in 94 patients (41.8 per cent). Raised pre-operative serum alkaline phosphatase was significantly associated with post-operative hypocalcaemia, particularly in Graves' disease patients (p < 0.05). Pre-operative serum alkaline phosphatase measurements help to predict post-thyroidectomy hypocalcaemia, especially in patients who do not develop hypoparathyroidism. Ascertaining the pre-operative serum alkaline phosphatase level in patients undergoing total thyroidectomy may help surgeons to identify at-risk patients.

  17. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  18. An experimental parametric study of VOC from flooring systems exposed to alkaline solutions.

    PubMed

    Sjöberg, A; Ramnäs, O

    2007-12-01

    This study outlined the influence of a number of parameters affecting the emission rate from one of the largest sources of VOC in the building stock in the Nordic countries. This source is flooring systems of polyvinyl chloride or linoleum attached to a substrate of moisture damaged or insufficiently dried concrete. The secondary emission rate of degradation products was measured, with the Field and Laboratory Emission Cell, on different flooring systems consisting of three different floorings and three adhesives, exposed to three different aqueous solutions in the range of 11-13.1 pH. The conclusion drawn in this study is that the great majority of the secondary emission originates from the floor adhesive. The occurrence of adhesive and the amount of adhesive used have a significant influence on the emission rate. A critical pH value for degradation of the adhesive seems to lie somewhere between 11 and 13 pH. When designing a floor system or a renovation of a damaged flooring system, it is important to bear in mind the influence of parameters that may drastically shorten the service life. Flooring adhesive may decompose in a moist alkaline environment and give rise to unacceptable secondary emission rates.

  19. Exploring surface characterization and electrostatic property of Hybrid Pennisetum during alkaline sulfite pretreatment for enhanced enzymatic hydrolysability.

    PubMed

    Yang, Ming; Wang, Jingfeng; Hou, Xincun; Wu, Juying; Fan, Xifeng; Jiang, Fan; Tao, Pan; Wang, Fan; Peng, Pai; Yang, Fangxia; Zhang, Junhua

    2017-11-01

    The surface characterization and electrostatic property of Hybrid Pennisetum (HP) after alkaline sulfite pretreatment were explored for enhanced enzymatic hydrolysability. The O/C ratio in HP increased from 0.34 to 0.60, and C1 concentration decreased from 62.5% to 31.6%, indicating that alkaline sulfite pretreatment caused poorer lignin but richer carbohydrate on HP surface. Zeta potential and sulfur element analysis indicated that more enzymes would preferably adsorb on the carbohydrate surface of alkaline sulfite pretreated HP because the lignin was sulfonated, which facilitated the decrease of non-productive adsorption. Glucose yield of alkaline sulfite pretreated HP reached to 100% by synergistic action of cellulase and xylanase in the hydrolysis, which was significantly higher than that of NaOH pretreated, and the concentration of glucose released was 1.52times higher. The results suggested that alkaline sulfite pretreatment had potential for improving the HP hydrolysability, and the surface characterization and electrostatic property facilitated the enzymatic digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The Effects of an Alkaline Treatment on the Ferroelectric Properties of Poly(vinylidene fluoride trifluoroethylene) Films

    DOE PAGES

    Kim, Yeontae; Hong, Seungbum; Oh, Sehoon; ...

    2015-06-30

    The effects of an alkaline treatment on the ferroelectric properties of poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated. The alkaline treatment resulted in a small change in the surface roughness but no significant change in the grain shape or size of P(VDF-TrFE) copolymer films, as evidenced by both scanning electron microscopy and atomic force microscopy images. However, x-ray photoelectron spectroscopy results indicated that the alkaline etchant of a KOH solution reacted with P(VDF-TrFE) films to decrease the number of C-F bonds while creating new carbon conjugated double bonds, which decreased the remanent polarization of the P(VDF-TrFE) films. These resultsmore » can improve our understanding of the degradation mechanism of an alkaline treatment.« less

  1. Anorthosites and alkaline rocks from the deep crust of peninsular India

    NASA Technical Reports Server (NTRS)

    Leelanandam, C.; Ratnakar, J.; Reddy, M. Narsimha

    1988-01-01

    The anorthosite and alkaline rock localities in the Precambrian Shield of Peninsular India were reviewed. There are approximately 50 localities of such rocks, generally restricted to the Eastern Ghats mobile belt. The alkaline plutons are typically confined to the margin of the Eastern Ghats. The anorthosites are all greater than 500 sq km, but many exhibit similarities to one another. It was suggested that the anorthosites are associated with cryptic sutures, and are thought to have originated as a result of ponding of basaltic magmas. An analogy was drawn between the Eastern Ghats belt and the Grenville Province of the Canadian Shield.

  2. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients.

    PubMed

    Peters, Esther; Heemskerk, Suzanne; Masereeuw, Rosalinde; Pickkers, Peter

    2014-06-01

    Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis*

    PubMed Central

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; Cohen, Itay; Henin, Rachel D.; Hockla, Alexandra; Soares, Alexei S.; Papo, Niv; Caulfield, Thomas R.; Radisky, Evette S.

    2016-01-01

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. PMID:27810896

  4. Using DAS for reflection seismology - lessons learned from three field studies

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.; Dou, S.; Ajo Franklin, J. B.; Robertson, M.; Wood, T.; Daley, T. M.; White, D. J.; Worth, K.; Pevzner, R.; Yavuz, S.; dos Santos Maia Correa, J.; McDonald, S.

    2017-12-01

    Distributed acoustic sensing (DAS) has rapidly gained recognition for its potential for seismic imaging. For surface reflection seismology, the wide spatial aperture afforded by DAS is a primary motivation for its application, however the lower SNR of DAS has proven to be a significant impediment to acquiring data that can replace conventional receiver arrays. A further limitation of DAS cables is that the strain-dependent response is insensitive to acoustic energy which arrives orthogonal to the cable axis, reducing its effectiveness at seeing energy reflected from the deep subsurface. To enhance the sensitivity of DAS cables for reflection seismology, we have trialed at three field sites DAS cables with helical construction in which there is a significant component of optical fiber that is coincident with arriving broadside energy. We have installed helically wound DAS cables at the PTRC Aquistore Project in Saskatchewan, Canada and the CO2CRC Otway Project in Nirranda South, Victoria, Australia in shallow trenches. For the ADM Intelligent Monitoring Systems Project in Decatur, Illinois, USA we used a horizontal directional drilling method to install DAS cables at a depth that is greater than can be achieved using trenched installation. At the Otway and ADM sites we operated surface orbital vibrators (SOVs) at fixed locations to enhance sensitivity by stacking large numbers of sweeps. We present survey results from the three sites. Analysis of both vibroseis survey and SOV results show that the helical cable design achieves its primary objective of improving sensitivity to reflected energy, with further gains needed to achieve the sensitivity of conventional geophones.

  5. Study of morphometry to debit drainage basin (DAS) arau Padang city

    NASA Astrophysics Data System (ADS)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  6. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential ( Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO 2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A)more » to –48.02 ± 1.85 kJ/mol per TO 2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO 2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  7. Genotyping by alkaline dehybridization using graphically encoded particles.

    PubMed

    Zhang, Huaibin; DeConinck, Adam J; Slimmer, Scott C; Doyle, Patrick S; Lewis, Jennifer A; Nuzzo, Ralph G

    2011-03-01

    This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs.

    PubMed

    Schubotz, Florence; Hays, Lindsay E; Meyer-Dombard, D'Arcy R; Gillespie, Aimee; Shock, Everett L; Summons, Roger E

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by

  9. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  10. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Increase in serum alkaline phosphatase due to fatty meal in undergraduate students of Khyber Medical University, Khyber Pakhtunkhwa.

    PubMed

    Khan, Muhammad Jaseem; Ahmed, Basir; Ahmed, Saeed; Khan, Momin

    2016-04-01

    To evaluate the effect of fatty meal on intestinal alkaline phosphatase. The cross-sectional study was conducted at Khyber Medical University, Peshawar, Pakistan from March to April 2014 and comprised young healthy individuals 18-25 years of age. Whole blood samples were collected from the subjects in ethylenediaminetetraacetic acid anti-coagulated and plane serum tubes. For blood group analysis, blood group anti sera were used, while for serum alkaline phosphatase, a chemistry analyser was used. Alkaline phosphatase levels in the blood before and after breakfast were compared. Of the 177 subjects, there were 139(78.5%) men and 38(21.4%) women. Mean fasting alkaline phosphatise level was 144.22+/-75.57, while mean random value was 174.15+/-96.70 (p=0.001). Serum alkaline phosphatise must be analysed in fasting state early in the morning.

  12. Effects of ultrasound and ultrasound assisted alkaline pretreatments on the enzymolysis and structural characteristics of rice protein.

    PubMed

    Li, Suyun; Yang, Xue; Zhang, Yanyan; Ma, Haile; Liang, Qiufang; Qu, Wenjuan; He, Ronghai; Zhou, Cunshan; Mahunu, Gustav Komla

    2016-07-01

    The objectives of this study were to investigate the effects of multi-frequency energy-gathered ultrasound (MFEGU) and MFEGU assisted alkaline pretreatments on the enzymolysis and the mechanism of two pretreatments accelerating the rice protein (RP) proteolysis process. The results showed that MFEGU and MFEGU assisted alkaline pretreatments improved significantly (P<0.05) the degree of hydrolysis (DH) and the protein elution amount of RP. Furthermore under the same DH conditions, ultrasound and ultrasound assisted alkaline pretreatments were more save the enzymolysis time than the unpretreatment. The changes in UV-vis spectra, fluorescence emission spectra indicated unfolding and destruction of RP by MFEGU and MFEGU assisted alkaline pretreatments. The circular dichroism analysis showed that both pretreatments decreased α-helix but increased β-sheet and random coil of RP. Amino acid composition revealed that MFEGU and MFEGU assisted alkaline pretreatments could increase the protein elution amount and the ratio of hydrophobic amino acids. Atomic force microscopy (AFM) indicated that both pretreatments destroyed the microstructures and reduced the particle size of RP. Therefore, MFEGU and MFEGU assisted alkaline pretreatments are beneficial to improving the degree of hydrolysis due to its sonochemistry effect on the molecular conformation as well as on the microstructure of protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    PubMed

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: in vitro and docking studies.

    PubMed

    Iqbal, Jamshed; El-Gamal, Mohammed I; Ejaz, Syeda Abida; Lecka, Joanna; Sévigny, Jean; Oh, Chang-Hyun

    2018-12-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an important isozyme of alkaline phosphatases, which plays different pivotal roles within the human body. Most importantly, it is responsible for maintaining the balanced ratio of phosphate and inorganic pyrophosphate, thus regulates the extracellular matrix calcification during bone formation and growth. The elevated level of TNAP has been linked to vascular calcification and end-stage renal diseases. Consequently, there is a need to search for highly potent and selective inhibitors of alkaline phosphatases (APs) for treatment of disorders associated with the over-expression of APs. Herein, a series of tricyclic coumarin sulphonate 1a-za with known antiproliferative activity, was evaluated for AP inhibition against human tissue nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline phosphatase (h-IAP). The methylbenzenesulphonate derivative 1f (IC 50  = 0.38 ± 0.01 μM) was found to be the most active h-TNAP inhibitor. Another 4-fluorobenzenesulphonate derivative 1i (IC 50  = 0.45 ± 0.02 μM) was found as the strongest inhibitor of h-IAP. Some of the derivatives were also identified as highly selective inhibitors of APs. Detailed structure-activity relationship (SAR) was investigated to identify the functional groups responsible for the effective inhibition of AP isozymes. The study was also supported by the docking studies to rationalise the most possible binding site interactions of the identified inhibitors with the targeted enzymes.

  15. Ground Motion Analysis of Co-Located DAS and Seismometer Sensors

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Fratta, D.; Lord, N. E.; Lancelle, C.; Thurber, C. H.; Zeng, X.; Parker, L.; Chalari, A.; Miller, D.; Feigl, K. L.; Team, P.

    2016-12-01

    The PoroTomo research team deployed 8700-meters of Distributed Acoustic Sensing (DAS) cable in a shallow trench and 400-meters in a borehole at Brady Hot Springs, Nevada in March 2016 together with an array of 246, three-component geophones. The seismic sensors occupied a natural laboratory 1500 x 500 x 400 meters overlying the Brady geothermal field. The DAS cable was laid out in three parallel zig-zag lines with line segments approximately 100-meters in length and geophones were spaced at approximately 50-m intervals. In several line segments, geophones were co-located within one meter of the DAS cable. Both DAS and the conventional geophones recorded continuously over 15 days. A large Vibroseis truck (T-Rex) provided the seismic source at approximately 250 locations outside and within the array. The Vibroseis protocol called for excitation in one vertical and two orthogonal horizontal directions at each location. For each mode, three, 5-to-80-Hz upsweeps were made over 20 seconds. In addition, a moderate-sized earthquake with a local magnitude of 4.3 was recorded on March 21, 2016. Its epicenter was approximately 150-km away. Several DAS line segments with co-located geophone stations were used to test relationships between the strain rate recorded by DAS and ground velocity recorded by the geophones.

  16. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  17. Imaging of Alkaline Phosphatase Activity in Bone Tissue

    PubMed Central

    Gade, Terence P.; Motley, Matthew W.; Beattie, Bradley J.; Bhakta, Roshni; Boskey, Adele L.; Koutcher, Jason A.; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  18. Clinical utility of a wheat-germ precipitation assay for determination of bone alkaline phosphatase concentrations in patients with different metabolic bone diseases.

    PubMed

    Braga, V; Dorizzi, R; Brocco, G; Rossini, M; Zamberlan, N; Gatti, D; Adami, S

    1995-07-01

    Bone alkaline phosphatase was evaluated by wheat-germ lectin precipitation in several clinical conditions. The study included 33 premenopausal healthy women, 46 postmenopausal apparently healthy women, 19 growing children, 24 patients with Paget's disease, 31 patients with primary hyperparathyroidism and 66 patients with hepatobiliary diseases. In postmenopausal women the mean T score (i.e.: the number of SD below or above the mean for premenopausal women) was 2.6 +/- 1.3 (SD) for bone alkaline phosphatase and 1.61 +/- 1.21 for total alkaline phosphatase (p < 0.001). The T score for bone alkaline phosphatase provided a better discrimination from normals for both Paget's disease (22.1 +/- 27.8 versus 12.8 +/- 16 p < 0.001) and primary hyperparathyroidism (8.2 +/- 4.3 versus 4.6 +/- 3.7 p < 0.005 for bone alkaline phosphatase and total alkaline phosphatase respectively). After treatment with intravenous bisphosphonate the percent decrease of bone alkaline phosphatase was larger than that of total alkaline phosphatase both in patients with Paget's disease (-46% versus -72% p < 0.01) and in patients with primary hyperparathyroidism (-21% versus -47% p < 0.02) and an estimate of the precision (delta mean/SD of the delta mean) for bone alkaline phosphatase was 1.9-3.7 times higher than that of total alkaline phosphatase. In twelve osteoporotic patients treated for six months with oral alendronate the decrease in bone turnover was detected with significantly higher precision with bone alkaline phosphatase than with total alkaline phosphatase (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. A novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase.

    PubMed

    Shibata, Nozomu; Suetsugu, Mari; Kakeshita, Hiroshi; Igarashi, Kazuaki; Hagihara, Hiroshi; Takimura, Yasushi

    2017-01-01

    Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pretreated bagasse to sugars, we conducted screening of biomass-degrading enzymes that showed synergistic effects with enzyme preparations produced by recombinant T. reesei . Penicillium sp. strain KSM-F532 produced the most effective enzyme to promote the saccharification of alkaline-pretreated bagasse. Biomass-degrading enzymes from strain KSM-F532 were fractionated and analyzed, and a xylanase, named PspXyn10, was identified. The amino acid sequence of PspXyn10 was determined by cDNA analysis: the enzyme shows a modular structure consisting of glycoside hydrolase family 10 (GH10) and carbohydrate-binding module family 1 (CBM1) domains. Purified PspXyn10 was prepared from the supernatant of a recombinant T. reesei strain. The molecular weight of PspXyn10 was estimated to be 55 kDa, and its optimal temperature and pH for xylanase activity were 75 °C and pH 4.5, respectively. More than 80% of the xylanase activity was maintained at 65 °C for 10 min. With beechwood xylan as the substrate, the enzyme had a K m of 2.2 mg/mL and a V max of 332 μmol/min/mg. PspXyn10ΔCBM, which lacked the CBM1 domain, was prepared by limited proteolysis. PspXyn10ΔCBM showed increased activity against soluble xylan, but decreased saccharification efficiency of alkaline-pretreated bagasse. This result indicated that the CBM1 domain of PspXyn10 contributes to the enhancement of the saccharification efficiency of alkaline-pretreated bagasse. A recombinant T. reesei strain, named X2PX10, was constructed from strain X3AB1. X3AB1 is an Aspergillus aculeatus β-glucosidase-expressing T. reesei PC-3-7. X2PX10

  20. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    PubMed

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  1. Elucidating the alkaline oxygen evolution reaction mechanism on platinum

    DOE PAGES

    Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...

    2017-03-07

    Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less

  2. DAS: A Data Management System for Instrument Tests and Operations

    NASA Astrophysics Data System (ADS)

    Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.

    2014-05-01

    The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.

  3. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry.

    PubMed

    Wang, Yuzhou; Ma, Rui; Li, Shigui; Gong, Mingbo; Yao, Bin; Bai, Yingguo; Gu, Jingang

    2018-06-05

    Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0-10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.

  4. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  5. Antimicrobial and other properties of a new stabilized alkaline glutaraldehyde disinfectant/sterilizer.

    PubMed

    Miner, N A; McDowell, J W; Willcockson, G W; Bruckner, N I; Stark, R L; Whitmore, E J

    1977-04-01

    The properties of stabilized alkaline 2% glutaraldehyde solution (SGS) are discussed. SGS is discussed with regard to its chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability heretofore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaraldehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.

  6. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes

    PubMed Central

    Winship, Lawrence J.; Rounds, Caleb; Hepler, Peter K.

    2016-01-01

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily (Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth. PMID:28042810

  7. Perturbation Analysis of Calcium, Alkalinity and Secretion during Growth of Lily Pollen Tubes.

    PubMed

    Winship, Lawrence J; Rounds, Caleb; Hepler, Peter K

    2016-12-30

    Pollen tubes grow by spatially and temporally regulated expansion of new material secreted into the cell wall at the tip of the tube. A complex web of interactions among cellular components, ions and small molecule provides dynamic control of localized expansion and secretion. Cross-correlation studies on oscillating lily ( Lilium formosanum Wallace) pollen tubes showed that an increase in intracellular calcium follows an increase in growth, whereas the increase in the alkaline band and in secretion both anticipate the increase in growth rate. Calcium, as a follower, is unlikely to be a stimulator of growth, whereas the alkaline band, as a leader, may be an activator. To gain further insight herein we reversibly inhibited growth with potassium cyanide (KCN) and followed the re-establishment of calcium, pH and secretion patterns as growth resumed. While KCN markedly slows growth and causes the associated gradients of calcium and pH to sharply decline, its removal allows growth and vital processes to fully recover. The calcium gradient reappears before growth restarts; however, it is preceded by both the alkaline band and secretion, in which the alkaline band is slightly advanced over secretion. Thus the pH gradient, rather than the tip-focused calcium gradient, may regulate pollen tube growth.

  8. Alkalinity Analysis. Training Module 5.220.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the acid-base titrimetric procedure for determining the hydroxide, carbonate and bicarbonate alkalinity of a water sample. Included are objectives, an instructor guide, student handouts and transparency masters. A video tape is also…

  9. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis.

    PubMed

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F; Cohen, Itay; Henin, Rachel D; Hockla, Alexandra; Soares, Alexei S; Papo, Niv; Caulfield, Thomas R; Radisky, Evette S

    2016-12-16

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. Although considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here, we examine the importance of substrate dynamics in the cleavage of Kunitz-bovine pancreatic trypsin inhibitor protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4-Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. By using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning 3 orders of magnitude, we identify global and local dynamic features of substrates on the nanosecond-microsecond time scale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the nanosecond-microsecond time scale with large collective substrate motions on the much slower time scale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.)

    PubMed Central

    Li, Qian; Yang, An; Zhang, Wen-Hao

    2016-01-01

    To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na+/K+ ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H+-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress. PMID:27811002

  11. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  12. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.

    PubMed

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin

    2017-12-01

    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn 2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn 2+ concentrations were higher than that of without soaking. However, the leachability of Zn 2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn 2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  13. Diel changes in stream periphyton extracellular enzyme activity throughout community development on inert and organic substrates

    NASA Astrophysics Data System (ADS)

    Rier, S. T.; Francoeur, S. N.; Kuehn, K. A.

    2005-05-01

    We tested the hypothesis that algal photosynthesis in stream periphyton communities would influence the activities of extracellular enzymes produced by associated heterotrophic bacteria and fungi to acquire organic compounds and inorganic nutrients. We approached this question by looking for diurnal variation in activities of four extracellular enzymes in periphyton communities that were grown on either inert (glass fiber filters) or organic (leaves) substrata that there were incubated in stream-side channels that were either open to full sun or shaded. Substrata were subsampled for β-glucosidase, alkaline phosphotase, leucine-aminopeptidase, and phenol oxidase activities at 3-5 hr. intervals over two consecutive diurnal cycles that were repeated at an early and later stage of periphyton community development. Activities of all enzymes displayed diurnal periodicity but the strength of the diurnal effects depended largely on the substrate type and stage of community development. The most consistent diurnal change was observed with phenol oxidase activity with significantly greater (p<0.05) activities being observed in during the day for both stages of community development and for both substrate types. It is likely that oxygen produced by algal photosynthesis is driving the activity of this oxidative enzyme and that algae might indirectly influence the decomposition of phenolic compounds.

  14. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  15. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  16. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  17. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-09-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.

  18. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis

    DOE PAGES

    Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; ...

    2016-11-03

    The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less

  19. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  20. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated