Science.gov

Sample records for alkaline thermal spring

  1. Formation of Multilayered Photosynthetic Biofilms in an Alkaline Thermal Spring in Yellowstone National Park, Wyoming▿

    PubMed Central

    Boomer, Sarah M.; Noll, Katherine L.; Geesey, Gill G.; Dutton, Bryan E.

    2009-01-01

    In this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park. Initial (1-month) biofilms were localized below the air-water interface (60 to 70°C), and the majority of retrieved bacterial sequence types were similar to Synechococcus and Thermus isolates. Biofilms then shifted, becoming established at and above the air-water interface after 3 months. During winter sampling (6 to 8 months), distinct reddish orange microcolonies were observed, consistent with the appearance of Roseiflexus-like sequences and bacteriochlorophyll a pigment signatures. Additionally, populations of Cyanobacteria diversified to include both unicellular and filamentous cell and sequence types. Distinct green and red layers were observed at 13 months. Planctomycetes-like sequences were also retrieved in high abundance from final biofilm layers and winter samples. Finally, biomass associated with geyser vent water contained Roseiflexus-like sequence types, in addition to other high-abundance sequence types retrieved from biofilm samples, supporting the idea that geothermal water serves as an inoculum for these habitats. PMID:19218404

  2. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming.

    PubMed

    Boomer, Sarah M; Noll, Katherine L; Geesey, Gill G; Dutton, Bryan E

    2009-04-01

    In this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park. Initial (1-month) biofilms were localized below the air-water interface (60 to 70 degrees C), and the majority of retrieved bacterial sequence types were similar to Synechococcus and Thermus isolates. Biofilms then shifted, becoming established at and above the air-water interface after 3 months. During winter sampling (6 to 8 months), distinct reddish orange microcolonies were observed, consistent with the appearance of Roseiflexus-like sequences and bacteriochlorophyll a pigment signatures. Additionally, populations of Cyanobacteria diversified to include both unicellular and filamentous cell and sequence types. Distinct green and red layers were observed at 13 months. Planctomycetes-like sequences were also retrieved in high abundance from final biofilm layers and winter samples. Finally, biomass associated with geyser vent water contained Roseiflexus-like sequence types, in addition to other high-abundance sequence types retrieved from biofilm samples, supporting the idea that geothermal water serves as an inoculum for these habitats.

  3. Major thermal springs of Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1970-01-01

    As part of a study of the springs of Utah, reconnaissance data were obtained on the thermal, chemical, and geologic characteristics of the major thermal springs or Utah. Only three of the springs have temperatures near the boiling point of water; the maximum recorded temperatures of these springs range from 185° to 189° F. All three springs are in or near areas of late Tertiary or Quaternary volcanism.Temperatures of the thermal springs studied ranged from 68° to 189° F. Nearly all thermal springs in Utah are in or near fault zones. Very few of these springs issue from volcanic rocks, but several springs are close to areas of late Tertiary or Quaternary volcanic rocks.

  4. Fossilization Processes in Thermal Springs

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Cady, Sherry; Desmarais, David J.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    To create a comparative framework for the study of ancient examples, we have been carrying out parallel studies of the microbial biosedimentology, taphonomy and geochemistry of modem and sub-Recent thermal spring deposits. One goal of the research is the development of integrated litho- and taphofacies models for siliceous and travertline sinters. Thermal springs are regarded as important environments for the origin and early evolution of life on Earth, and we seek to utilize information from the fossil record to reconstruct the evolution of high temperature ecosystems. Microbial contributions to the fabric of thermal spring sinters occur when population growth rates keep pace with, or exceed rates of inorganic precipitation, allowing for the development of continuous biofilms or mats. In siliceous thermal springs, microorganisms are typically entombed while viable. Modes of preservation reflect the balance between rates of organic matter degradation, silica precipitation and secondary infilling. Subaerial sinters are initially quite porous and permeable and at temperatures higher than about 20 C, organic materials are usually degraded prior to secondary infilling of sinter frameworks. Thus, organically-preserved microfossils are rare and fossil information consists of characteristic biofabrics formed by the encrustation and underplating of microbial mat surfaces. This probably accounts for the typically low total organic carbon values observed in thermal spring deposits. In mid-temperature, (approx. 35 - 59 C) ponds and outflows, the surface morphology of tufted Phormidium mats is preserved through mat underplating by thin siliceous: crusts. Microbial taxes lead to clumping of ceils and/or preferred filament orientations that together define higher order composite fabrics in thermal spring stromatolites (e.g. network, coniform, and palisade). At lower temperatures (less than 35 C), Calothrix mats cover shallow terracette pools forming flat carpets or pustular

  5. Fossilization Processes in Thermal Springs

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.; Cady, Sherry; Desmarais, David J.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    To create a comparative framework for the study of ancient examples, we have been carrying out parallel studies of the microbial biosedimentology, taphonomy and geochemistry of modem and sub-Recent thermal spring deposits. One goal of the research is the development of integrated litho- and taphofacies models for siliceous and travertline sinters. Thermal springs are regarded as important environments for the origin and early evolution of life on Earth, and we seek to utilize information from the fossil record to reconstruct the evolution of high temperature ecosystems. Microbial contributions to the fabric of thermal spring sinters occur when population growth rates keep pace with, or exceed rates of inorganic precipitation, allowing for the development of continuous biofilms or mats. In siliceous thermal springs, microorganisms are typically entombed while viable. Modes of preservation reflect the balance between rates of organic matter degradation, silica precipitation and secondary infilling. Subaerial sinters are initially quite porous and permeable and at temperatures higher than about 20 C, organic materials are usually degraded prior to secondary infilling of sinter frameworks. Thus, organically-preserved microfossils are rare and fossil information consists of characteristic biofabrics formed by the encrustation and underplating of microbial mat surfaces. This probably accounts for the typically low total organic carbon values observed in thermal spring deposits. In mid-temperature, (approx. 35 - 59 C) ponds and outflows, the surface morphology of tufted Phormidium mats is preserved through mat underplating by thin siliceous: crusts. Microbial taxes lead to clumping of ceils and/or preferred filament orientations that together define higher order composite fabrics in thermal spring stromatolites (e.g. network, coniform, and palisade). At lower temperatures (less than 35 C), Calothrix mats cover shallow terracette pools forming flat carpets or pustular

  6. Thermal springs in Lake Baikal

    USGS Publications Warehouse

    Shanks, Wayne C.; Callender, E.

    1992-01-01

    The ??18O values of pore wqters range from -15.2??? to -16.7???, and ??D values range from -119??? to -126??? (both isotopes determined relative to standard mean ocean water [SMOW]). Bottom water in Lake Baikal has a ??18O value of -5.6??? and a ??D value of -120???. Pore waters in the vent area are significantly enriched in Mg, K, Ca, and especially Na and have the lowest ??D and ??18O values; these pore waters are isotopically and chemically distinct from pore waters in other, more typical parts of the lake. The pore-water isotopic data fall on a local meteoric water line, and covariations in water isotopes and chemistry are not consistent with evaporation or hydrothermal water-rock interaction. The thermal springs represent discharging meteoric waters that have been gently heated during subsurface circulation and are largely unaltered isotopically. Chemical variations are most likely due to dissolution of subsurface evaporites. -from Authors

  7. Thermal springs in the United States

    USGS Publications Warehouse

    Stearns, Norah D.; Stearns, Harold T.; Waring, Gerald A.

    1937-01-01

    The earliest extensive studies of thermal springs in the United States were made by physicians. In 1831 Dr. John Bell issued a book entitled "Baths and Mineral Waters" in which he listed 21 spring localities. In the edition of his work published in 1855 the number was increased to 181. The earliest report on a geologic study of thermal springs was that of W. B, Rogers in 1840 on the thermal springs of Virginia. In 1875 G. K. Gilbert published a map and table showing thermal springs in the United States and pointed out that they are present chiefly in the mountainous areas of folded and faulted rocks. Early geologic study of them was principally inspired by the information which they afford at a few places on the deposition of minerals. The relation of hot springs to volcanic action has been studied in the Yellowstone National Park and near Lassen Peak in California. Studies in recent years have been concerned with the source of the water as well as of its heat.All the notable thermal springs in the eastern United States are in the Appalachian Highlands, principally in the region of folded rocks. The Atlantic Coastal Plain contains no appreciably warm springs. In Florida there are large springs whose water rises from a depth of a few hundred feet and is about 5° above the mean annual temperature, but they are not usually classed as thermal.The only warm springs in the great Interior Plains region are at and near Hot Springs, S. Dak., in the vicinity of the Black Hills uplift of crystalline rocks. In the Interior Highlands thermal springs occur only in the Ozark region, the largest group being at Hot Springs, Ark.The Rocky Mountain System includes the Yellowstone National Park, with its world-famous hot springs and geysers (see pis. 7,12), and there are many other hot springs within this great mountainous region. In the Intermontane areas of great lava plains and faulted lava mountains in Utah, Nevada, southern Idaho, and eastern Oregon there are many hot springs

  8. Slightly thermal springs and non-thermal springs at Mount Shasta, California: Chemistry and recharge elevations

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Thompson, J. M.; White, L. D.

    2003-02-01

    Temperature measurements, isotopic contents, and dissolved constituents are presented for springs at Mount Shasta to understand slightly thermal springs in the Shasta Valley based on the characteristics of non-thermal springs. Non-thermal springs on Mount Shasta are generally cooler than mean annual air temperatures for their elevation. The specific conductance of non-thermal springs increases linearly with discharge temperature. Springs at higher and intermediate elevations on Mount Shasta have fairly limited circulation paths, whereas low-elevation springs have longer paths because of their higher-elevation recharge. Springs in the Shasta Valley are warmer than air temperatures for their elevation and contain significant amounts of chloride and sulfate, constituents often associated with volcanic hydrothermal systems. Data for the Shasta Valley springs generally define mixing trends for dissolved constituents and temperature. The isotopic composition of the Shasta Valley springs indicates that water fell as precipitation at a higher elevation than any of the non-thermal springs. It is possible that the Shasta Valley springs include a component of the outflow from a proposed 210°C hydrothermal system that boils to supply steam for the summit acid-sulfate spring. In order to categorize springs such as those in the Shasta Valley, we introduce the term slightly thermal springs for springs that do not meet the numerical criterion of 10°C above air temperature for thermal springs but have temperatures greater than non-thermal springs in the area and usually also have dissolved constituents normally found in thermal waters.

  9. Slightly thermal springs and non-thermal springs at Mount Shasta, California: Chemistry and recharge elevations

    USGS Publications Warehouse

    Nathenson, M.; Thompson, J.M.; White, L.D.

    2003-01-01

    Temperature measurements, isotopic contents, and dissolved constituents are presented for springs at Mount Shasta to understand slightly thermal springs in the Shasta Valley based on the characteristics of non-thermal springs. Non-thermal springs on Mount Shasta are generally cooler than mean annual air temperatures for their elevation. The specific conductance of non-thermal springs increases linearly with discharge temperature. Springs at higher and intermediate elevations on Mount Shasta have fairly limited circulation paths, whereas low-elevation springs have longer paths because of their higher-elevation recharge. Springs in the Shasta Valley are warmer than air temperatures for their elevation and contain significant amounts of chloride and sulfate, constituents often associated with volcanic hydrothermal systems. Data for the Shasta Valley springs generally define mixing trends for dissolved constituents and temperature. The isotopic composition of the Shasta Valley springs indicates that water fell as precipitation at a higher elevation than any of the non-thermal springs. It is possible that the Shasta Valley springs include a component of the outflow from a proposed 210??C hydrothermal system that boils to supply steam for the summit acid-sulfate spring. In order to categorize springs such as those in the Shasta Valley, we introduce the term slightly thermal springs for springs that do not meet the numerical criterion of 10??C above air temperature for thermal springs but have temperatures greater than non-thermal springs in the area and usually also have dissolved constituents normally found in thermal waters. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Chemical, isotopic, and gas compositions of selected thermal springs in Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Twenty-seven thermal springs in Arizona, New Mexico, and Utah were sampled for detailed chemical and isotopic analysis. The springs issue sodium chloride, sodium bicarbonate, or sodium mixed-anion waters of near neutral (6.2) to alkaline (9.2) pH. High concentrations of fluoride, more than 8 milligrams per liter, occur in Arizona in waters from Gillard Hot Springs, Castle Hot Springs, and the unnamed spring of Eagle Creek, and in New Mexico from springs along the Gila River. Deuterium compositions of the thermal waters cover the same range as those expected for meteoric waters in the respective areas. The chemical compositions of the thermal waters indicate that Thermo Hot Springs in Utah and Gillard Hot Springs in Arizona represent hydrothermal systems which are at temperatures higher than 125 deg C. Estimates of subsurface temperature based on the quartz and Na-K-Ca geothermometer differ by up to 60 deg C for Monroe, Joseph, Red Hill, and Crater hot springs in Utah. Similar conflicting estimates of aquifer temperature occur for Verde Hot Springs, the springs near Clifton and Coolidge Dam, in Arizona; and the warm springs near San Ysidro, Radium Hot Springs, and San Francisco Hot Springs, in New Mexico. Such disparities could result from mixing, precipitation of calcium carbonate, or perhaps appreciable concentrations of magnesium. (Woodard-USGS)

  11. Thermal springs in the Salmon River basin, central Idaho

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1982-02-01

    The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

  12. Thermal springs in the Salmon River basin, central Idaho

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.

    1982-01-01

    The Salmon River basin drains approximately 13,000 square miles in central Idaho underlain by the Idaho batholith. Geologic units in the basin include igneous, sedimentary, and metamorphic rocks and granitic rocks predominate. Water from thermal springs ranges in temperature from 20.5 degrees to 94.0 degrees Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30 degrees to 184 degrees Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old and may be considerably older. Stable-isotope data indicate it is unlikely that a single area of recharge or a single hot-water reservoir supplies all hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 27 million calories per second. (USGS)

  13. The Characteristic and Classification of Thermal Spring in Ramsar area, North of Iran

    NASA Astrophysics Data System (ADS)

    Abedsoltan, Farnaz; Ansari, Mohammad Reza; Gafari, Mohammad Reza

    2010-05-01

    Ramsar area is located across and between Alborze Mountain and Caspine Sea in North of Iran. About 30 spas are located south of the Ramsar and Sadatshar town. They are almost in between 20 to 70 m elevation. Paleozoic, Mesozoic and Tertiary rocks and alluvial deposit are exposed around the Ramsar area. In tertiary, acidic Plutonism was active and intrusion into the Paleozoic and Mesozoic formations. Quaternary and Alluvium deposits are exposed and extending on the Jurassic formations in Ramsar plain and have thickness lower than 10 m in show springs. The annual precipitation in the Ramsar region is 976 mm. There has not any proper Thermal spring management in Ramsar area yet. This could post some serious problem on improper management of Thermal spring sites, where its environment has been put into jeopardy. This study aims to provide a way to classify the Thermal springs in Ramsar area. The result of this study help in the classification of Thermal spring sites for official planning improvement of administration and sustainable development of natural resources of the area. The study makes use of the Department Applied Geosciences in Islamic Azad University and GIS data of a total of 9 Thermal springs in the attempt to set up a classification system of Thermal springs in Ramsar area. These data include surface temperature, conductivity, alkalinity, acidity, TDS, pH values, Ca, Cl, Fe, K, Mg, Mn, Na, SiO2, SO4 contents, their locations, usages and other relevant information. The surface temperature of Thermal springs are between 19oC - 65oC and SiO2 geothermometer shows estimated reservoir temperature range from 86 o C - 96 o C. Most of the water from these Thermal springs is relatively turbidness and their composition is sodium choloride. The Thermal springs in this area generally exhibit high SiO2 and Na content; strong smell of sulfur. In addition, there are 30 Thermal springs located in Ramsar area and that show high concentration of Cl, Ca, Na, K and Mg. There

  14. Integrated Field Analyses of Thermal Springs

    NASA Astrophysics Data System (ADS)

    Shervais, K.; Young, B.; Ponce-Zepeda, M. M.; Rosove, S.

    2011-12-01

    A group of undergraduate researchers through the SURE internship offered by the Southern California Earthquake Center (SCEC) have examined thermal springs in southern Idaho, northern Utah as well as mud volcanoes in the Salton Sea, California. We used an integrated approach to estimate the setting and maximum temperature, including water chemistry, Ipad-based image and data-base management, microbiology, and gas analyses with a modified Giggenbach sampler.All springs were characterized using GISRoam (tmCogent3D). We are performing geothermometry calculations as well as comparisons with temperature gradient data on the results while also analyzing biological samples. Analyses include water temperature, pH, electrical conductivity, and TDS measured in the field. Each sample is sealed and chilled and delivered to a water lab within 12 hours.Temperatures are continuously monitored with the use of Solinst Levelogger Juniors. Through partnership with a local community college geology club, we receive results on a monthly basis and are able to process initial data earlier in order to evaluate data over a longer time span. The springs and mudpots contained microbial organisms which were analyzed using methods of single colony isolation, polymerase chain reaction, and DNA sequencing showing the impact of the organisms on the springs or vice versa. Soon we we will collect gas samples at sites that show signs of gas. This will be taken using a hybrid of the Giggenbach method and our own methods. Drawing gas samples has proven a challenge, however we devised a method to draw out gas samples utilizing the Giggenbach flask, transferring samples to glass blood sample tubes, replacing NaOH in the Giggenbach flask, and evacuating it in the field for multiple samples using a vacuum pump. We also use a floating platform devised to carry and lower a levelogger, to using an in-line fuel filter from a tractor in order to keep mud from contaminating the equipment.The use of raster

  15. Submarine thermal springs on the Galapagos Rift

    USGS Publications Warehouse

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  16. Microbial Biosignatures in High Iron Thermal Springs

    NASA Astrophysics Data System (ADS)

    Parenteau, M. N.; Embaye, T.; Jahnke, L. L.; Cady, S. L.

    2003-12-01

    The emerging anoxic source waters at Chocolate Pots hot springs in Yellowstone National Park contain 2.6 to 11.2 mg/L Fe(II) and are 51-54° C and pH 5.5-6.0. These waters flow down the accumulating iron deposits and over three major phototrophic mat communities: Synechococcus/Chloroflexus at 51-54° C, Pseudanabaena at 51-54° C, and a narrow Oscillatoria at 36-45° C. We are assessing the contribution of the phototrophs to biosignature formation in this high iron system. These biosignatures can be used to assess the biological contribution to ancient iron deposits on Earth (e.g. Precambrian Banded Iron Formations) and, potentially, to those found on Mars. Most studies to date have focused on chemotrophic iron-oxidizing communities; however, recent research has demonstrated that phototrophs have a significant physiological impact on these iron thermal springs (Pierson et al. 1999, Pierson and Parenteau 2000, and Trouwborst et al., 2003). We completed a survey of the microfossils, biominerals, biofabrics, and lipid biomarkers in the phototrophic mats and stromatolitic iron deposits using scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), powder X-ray diffraction (XRD), and gas chromatography-mass spectroscopy (GC-MS). The Synechococcus/Chloroflexus mat was heavily encrusted with iron silicates while the narrow Oscillatoria mat was encrusted primarily with iron oxides. Encrustation of the cells increased with depth in the mats. Amorphous 2-line ferrihydrite is the primary precipitate in the spring and the only iron oxide mineral associated with the mats. Goethite, hematite, and siderite were detected in dry sediment samples on the face of the main iron deposit. Analysis of polar lipid fatty acid methyl esters (FAME) generated a suite of lipid biomarkers. The Synechococcus/Chloroflexus mat contained two mono-unsaturated isomers of n-C18:1 with smaller amounts of polyunsaturated n-C18:2, characteristic of cyanobacteria

  17. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    NASA Astrophysics Data System (ADS)

    Jiang, Zhou; Li, Ping; van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59-0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  18. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    PubMed Central

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-01-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs. PMID:27126380

  19. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    PubMed

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Thermal springs of Malaysia and their potentialdevelopment

    NASA Astrophysics Data System (ADS)

    Rahim Samsudin, Abdul; Hamzah, Umar; Rahman, Rakmi Ab.; Siwar, Chamhuri; Fauzi Mohd. Jani, Mohd; Othman, Redzuan

    The study on the potential development of hot springs for the tourism industry in Malaysiawas conducted. Out of the 40 hot springs covered, the study identified 9 hot springs having a high potential for development, 14 having medium potential and the remaining 17 having low or least potential for development. This conclusion was arrived at after considering the technical and economic feasibility of the various hot springs. Technical feasibility criteria includes geological factors, water quality, temperature and flow rate. The economic feasibility criteria considers measures such as accessibility, current and market potentials in terms of visitors, surrounding attractions and existing inventory and facilities available. A geological input indicates that high potential hot springs are located close to or within the granite body and associated with major permeable fault zones. They normally occur at low elevation adjacent to topographic highs. High potential hot springs are also characterised by high water temperature, substantial flowrate and very good water quality which is important for water-body contact activities such as soaking. Economic criteria for high potential hot springs are associated with good accessibility, good market, good surrounding attractions like rural and village setting and well developed facilities and infrastructures.

  1. An alkaline spring system within the Del Puerto ophiolite (California USA): A Mars analog site

    SciTech Connect

    Blank, J.G.; Green, S.; Blake, D.; Valley, J.; Kita, N.; Treiman, A.; Dobson, P.F.

    2008-10-01

    Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals such as olivine and pyroxene, yields fluids with unusual chemistry (Mg-OH and Ca-OH waters with pH values up to {approx}12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rockhosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg-Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars.

  2. Thermal Springs and the Search for Past Life on Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.; Farmer, J. D.; Walter, M. R.

    1995-01-01

    Ancient thermal spring sites have several features which make them significant targets in a search for past life. Chemical (including redox) reactions in hydrothermal systems possibly played a role in the origin of life on Earth and elsewhere. Spring waters frequently contain reduced species (sulfur compounds, Fe(sup +2), etc.) which can provide chemical energy for organic synthesis. Relatively cool hydrothermal systems can sustain abundant microbial life (on Earth, at temperatures greater than 110 C). A spring site on Mars perhaps might even have maintained liquid water for periods sufficiently long to sustain surface-dwelling biota had they existed. On Earth, a variety of microbial mat communities can be sampled along the wide range of temperatures surrounding the spring, thus offering an opportunity to sample a broad biological diversity. Thermal spring waters frequently deposit minerals (carbonates, silica, etc.) which can entomb and preserve both fluid inclusions and microbial communities. These deposits can be highly fossiliferous and preserve biological inclusions for geologically long periods of time. Such deposits can cover several square km on Earth, and their distinctive mineralogy (e.g., silica- and/or carbonate-rich) can contrast sharply with that of the surrounding region. As with Martian volcanoes, Martian thermal spring complexes and their deposits might typically be much larger than their counterparts on Earth. Thus Martian spring deposits are perhaps readily detectable and even accessible. Elysium Planitia is an example of a promising region where hydrothermal activity very likely remobilized ground ice and sustained springs.

  3. Thermal springs in the Boise River basin, south-central Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1982-01-01

    The Boise River Basin, characterized by steep, rugged mountains and narrow river valleys, drains an area of about 2,680 square miles in south-central Idaho. Granitic rocks of the Idaho batholith predominate in the basin. Temperature of waters from thermal springs in the basin range from 33 degrees to 87 degrees Celsius, are sodium carbonate type and are slightly alkaline. Dissolved-solids concentrations are less than 280 milligrams per liter. Estimated reservoir temperatures determined by the silica and sodium-potassium-calcium geothermometers range from 50 degrees to 98 degrees Celsius. Tritium concentrations in sampled thermal springs are near zero and indicate these waters were recharged prior to 1954. Stable-isotope data are not conclusive insofar as indicating a source area of recharge for the thermal springs in the basin. Thermal springs discharged at least 4,900 acre-feet of water in 1981, and the associated convective heat flux is 11,000,000 calories per second. (USGS)

  4. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  5. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters

  6. Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea.

    PubMed

    Meyer-Dombard, D'Arcy R; Amend, Jan P

    2014-07-01

    The availability of microbiological and geochemical data from island-based and high-arsenic hydrothermal systems is limited. Here, the microbial diversity in island-based hot springs on Ambitle Island (Papua New Guinea) was investigated using culture-dependent and -independent methods. Waramung and Kapkai are alkaline springs high in sulfide and arsenic, related hydrologically to previously described hydrothermal vents in nearby Tutum Bay. Enrichments were carried out at 24 conditions with varying temperature (45, 80 °C), pH (6.5, 8.5), terminal electron acceptors (O2, SO4 (2-), S(0), NO3 (-)), and electron donors (organic carbon, H2, As(III)). Growth was observed in 20 of 72 tubes, with media targeting heterotrophic metabolisms the most successful. 16S ribosomal RNA gene surveys of environmental samples revealed representatives in 15 bacterial phyla and 8 archaeal orders. While the Kapkai 4 bacterial clone library is primarily made up of Thermodesulfobacteria (74%), no bacterial taxon represents a majority in the Kapkai 3 and Waramung samples (40% Proteobacteria and 39% Aquificae, respectively). Deinococcus/Thermus and Thermotogae are observed in all samples. The Thermococcales dominate the archaeal clone libraries (65-85%). Thermoproteales, Desulfurococcales, and uncultured Eury- and Crenarchaeota make up the remaining archaeal taxonomic diversity. The culturing and phylogenetic results are consistent with the geochemistry of the alkaline, saline, and sulfide-rich fluids. When compared to other alkaline, island-based, high-arsenic, or shallow-sea hydrothermal communities, the Ambitle Island archaeal communities are unique in geochemical conditions, and in taxonomic diversity, richness, and evenness.

  7. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    PubMed Central

    Schubotz, Florence; Hays, Lindsay E.; Meyer-Dombard, D'Arcy R.; Gillespie, Aimee; Shock, Everett L.; Summons, Roger E.

    2015-01-01

    Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained

  8. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  9. Load relaxation of helical extension springs in transient thermal environments.

    SciTech Connect

    Dykhuizen, Ronald C.; Robino, Charles Victor

    2003-06-01

    The load relaxation behavior of small Elgiloy helical extension springs has been evaluated by a combined experimental and modeling approach. Isothermal, continuous heating, and interrupted heating relaxation tests of a specific spring design were conducted. Spring constants also were measured and compared with predictions using common spring formulas. For the constant heating rate relaxation tests, it was found that the springs retained their strength to higher temperatures at higher heating rates. A model, which describes the relaxation behavior, was developed and calibrated with the isothermal load relaxation tests. The model incorporates both time-independent deformation mechanisms, such as thermal expansion and shear modulus changes, as well as time-dependent mechanisms such as primary and steady state creep. The model was shown to accurately predict the load relaxation behavior for the continuous heating tests, as well as for a complex stepwise heating thermal cycle. The model can be used to determine the relaxation behavior for any arbitrary thermal cycle. An extension of the model to other spring designs is discussed.

  10. [DNA degradation during standard alkaline of thermal denaturation].

    PubMed

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  11. Thermal springs in the Payette River basin, west-central Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    The Payette River basin, characterized by steep, rugged mountains and narrow river valleys, occupies an area of about 3 ,300 square miles in west-central Idaho. Predominant rock types in the basin include granitic rocks of the Idaho batholith and basalt flows of the Columbia River Basalt Group. Waters from thermal springs in the basin, temperatures of which range from 34 to 86 degrees Celsius, are sodium bicarbonate types and are slightly alkaline. Dissolved-solids concentrations range from 173 to 470 milligrams per liter. Reservoir temperatures determined from the sodium-potassium-calcium and silicic acid-corrected silica geothermometers range from 53 to 143 degrees Celsius. Tritium, present in concentrations between 0 and 2 tritium units, indicate sampled thermal waters are at least 100 years old and possibly more than 1,000 years old. Stable isotope data indicate it is unlikely any of the nonthermal waters sampled are representative of precipitation that recharges the thermal springs in the basin. Thermal springs discharged about 5,700 acre-feet of water in 1979. Associated convective heat flux is 1.1x10 to the 7th power calories per second. (USGS)

  12. Composition, structure and properties of sediment thermal springs of Kamchatka

    NASA Astrophysics Data System (ADS)

    Shanina, Violetta; Smolyakov, Pavel; Parfenov, Oleg

    2016-04-01

    The paper deals with the physical and mechanical properties sediment thermal fields Mutnovsky, Lower Koshelevo and Bannyh (Kamchatka). This multi-component soils, mineral and chemical composition of which depends on the formation factors (pH, temperature, salinity of water, composition and structure of the host volcanic rocks). Samples Lower Koshelevo sediment thermal sources differ in the following composition: smectite, kaolinite, kaolinite-smectite mixed-mineral. Samples of sediment thermal springs Mutnovsky volcano in accordance with the X-ray analysis has the following composition: volcanic glass, crystalline sulfur, plagioclase, smectite, illite-smectite mixed, illite, chlorite, quartz, cristobalite, pyrite, melanterite, kaolinite. Natural moisture content samples of sediment thermal springs from 45 to 121%, hygroscopic moisture content of 1.3 to 3.7%. A large amount of native sulfur (up to 92%) and the presence of amorphous material gives low values of density of solid particles (up to 2.1 g/cm3) samples Mutnovskii thermal field. The values of the density of solids sediment Koshelevo and Bannyh hot springs close to those of the main components of mineral densities (up to 2.6-3.0 g/cm3). The results of the particle size distribution and microaggregate analysis of sediment thermal springs Lower Koshelevo field shows that the predominance observed of particles with a diameter from 0.05 mm to 0.25 mm, the coefficient of soil heterogeneity heterogeneous. In the bottom sediments of the thermal springs of the volcano Mutnovsky poorly traced predominance of one faction. Most prevalent fraction with particle size 0.01 - 0.05 mm. When analyzing the content in the soil microaggregates their content is shifted towards particles with a diameter of 0.25 mm. The contents of a large number of large (1-10 mm), porous rock fragments, due to the deposition of pyroclastic material from the eruptions of the last century. Present in large amounts rounded crystals of native sulfur

  13. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients

    NASA Technical Reports Server (NTRS)

    Cady, S. L.; Farmer, J. D.

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  14. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients.

    PubMed

    Cady, S L; Farmer, J D

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  15. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients

    NASA Technical Reports Server (NTRS)

    Cady, S. L.; Farmer, J. D.

    1996-01-01

    To enhance our ability to extract palaeobiological and palaeoenvironmental information from ancient thermal spring deposits, we have studied the processes responsible for the development and preservation of stromatolites in modern subaerial thermal spring systems in Yellowstone National Park (USA). We investigated specimens collected from silica-depositing thermal springs along the thermal gradient using petrographic techniques and scanning electron microscopy. Although it is known that thermophilic cyanobacteria control the morphogenesis of thermal spring stromatolites below 73 degrees C, we have found that biofilms which contain filamentous thermophiles contribute to the microstructural development of subaerial geyserites that occur along the inner rims of thermal spring pools and geyser effluents. Biofilms intermittently colonize the surfaces of subaerial geyserites and provide a favoured substrate for opaline silica precipitation. We have also found that the preservation of biotically produced microfabrics of thermal spring sinters reflects dynamic balances between rates of population growth, decomposition of organic matter, silica deposition and early diagenesis. Major trends in preservation of thermophilic organisms along the thermal gradient are defined by differences in the mode of fossilization, including replacement, encrustation and permineralization.

  16. Clumped isotope disequilibrium during rapid CO2 uptake and carbonate precipitation in subaerial alkaline springs associated with ongoing serpentinization

    NASA Astrophysics Data System (ADS)

    Falk, E. S.; Guo, W.; Kelemen, P. B.

    2014-12-01

    Ongoing serpentinization in tectonically exposed ultramafic bodies is manifested at the surface in alkaline springs (pH >11). Where these high-pH waters come in contact with CO2 at the surface, rapid calcite precipitation forms extensive travertines. We study natural travertine samples from Oman and synthetic witherite (BaCO3) from high-pH experiments to identify disequilibrium signals in δ18O, δ13C and clumped isotopes (measured as Δ47) that characterize rapid uptake of atmospheric CO2 and carbonate precipitation from high pH fluids. Kinetic effects preclude the use of clumped or oxygen isotopes for carbonate thermometry in these environments, but trends in δ18O, δ13C and Δ47 could help identify extinct alkaline systems or distinguish CO2 sources. Oman travertines formed at peridotite-hosted alkaline springs have long been known to exhibit a large range of kinetically depleted δ18O and δ13C values. We find fresh carbonate precipitated at these alkaline springs also exhibit large enrichments in Δ47 that covary with the depletions in δ18O and δ13C, thought to arise during hydroxylation of CO2 in high-pH fluids. Witherite precipitated during rapid CO2 uptake and carbonate precipitation in high pH experiments also exhibits disequilibrium values in δ18O, δ13C and Δ47, with the Δ47 of carbonate precipitates strongly affected by the Δ47 the reactant CO2. δ18O, δ13C and Δ47 trends could serve as a marker for carbonates formed in subaerial alkaline environments and track carbon sources in these systems. For example, the δ18O-δ13C slope in carbonates from Martian meteorites is similar to that observed in carbonates from terrestrial alkaline springs, so if corresponding enrichments in Δ47 could be identified in Martian carbonates, it could suggest that alkaline springs were present on the surface of Mars. Clumped isotope signals could also help distinguish carbon sources: kinetic enrichments in Δ47 would be absent or diminished in high-pH carbonates

  17. Classification of Thermal Patterns at Karst Springs and Cave Streams

    USGS Publications Warehouse

    Luhmann, A.J.; Covington, M.D.; Peters, Albert J.; Alexander, S.C.; Anger, C.T.; Green, J.A.; Runkel, Anthony C.; Alexander, E.C.

    2011-01-01

    Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event-scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase-shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  18. Detecting small groundwater discharge springs using handheld thermal infrared imagery.

    PubMed

    Röper, Tania; Greskowiak, Janek; Massmann, Gudrun

    2014-01-01

    Ground-based handheld thermal infrared imagery was used for the detection of small-scale groundwater springs at the northwestern beach of Spiekeroog Island (northwest Germany). The surveys and in situ measurements of electric conductivity were carried out from shortly before to shortly after low tide along the low water line. Several brackish groundwater discharge springs with a diameter of 1-2 cm were observed along the beach at a distance of 2-3 m above the low water line. The high fresh water portion in the discharging water derives from the fresh water lens in the center of the island. During cold weather, the springs were identified by a significantly increased temperature (3-5 °C higher) and a lower electric conductivity (<10 mS/cm) in contrast to the surrounding sea water (1-2 °C, >30 mS/cm). During warmer weather conditions, an inverse temperature contrast was observed. The measurements confirm the applicability of thermal imagery for the detection of small-scale groundwater discharge locations as an extension to the established method of aerial thermal scans and prove the existence of submarine groundwater seeps in porous systems. A ground-based handheld thermal infrared imagery survey enables a precise installation of sampling devices as, for example, seepage meters. © 2013, National Ground Water Association.

  19. Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring.

    PubMed

    Chen, Tien-Lai; Chou, Yi-Ju; Chen, Wen-Ming; Arun, Bhagwath; Young, Chiu-Chung

    2006-02-01

    The bacterial strain designated I1-1(T) was isolated from a hot spring located in the Pingtung area, southern Taiwan. Cells of this organism were Gram reaction negative rods, motile by a single polar flagellum. Optimum conditions for growth were 55 degrees C and pH 7. Strain I1-1(T) grew well in lower nutrient media such as 5-10% Luria-Bertani broth, and its extracellular products expressed alkaline protease activity. The 16S rRNA gene sequence analysis indicates that strain I1-1(T) is a member of beta-Proteobacteria. On the basis of a phylogenetic analysis of 16S rDNA sequences, DNA-DNA similarity data, whole-cell protein analysis, physiological and biochemical characteristics, as well as fatty acid compositions, the organism belonged to the genus Tepidimonas and represented a novel species within this genus. The predominant cellular fatty acids of strain I1-1(T) were 16:0 (about 41%), 18:1 omega7c (about 13%), and summed feature 3 [16:1 omega7c or 15:0 iso 2OH or both (about 26%)]. Its DNA base ratio was 68.1 mol%. We propose to classify strain I1-1(T) (=BCRC 17406(T)=LMG 22826(T)) as Tepidimonas taiwanensis sp. nov.

  20. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USDA-ARS?s Scientific Manuscript database

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels that lie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone's (...

  1. Hydrogeochemical characterization of the thermal springs in northeastern of Los Cabos Block, Baja California Sur, México.

    PubMed

    Hernández-Morales, Pablo; Wurl, Jobst

    2016-11-19

    The existence of hot springs in the northeastern part of Los Cabos Baja California Sur (BCS), is known from pre-Hispanic times, but their hydrochemical composition had not been previously described. Several springs are located within the watershed of Santiago, and the objective of this study was to define the hydrogeochemical composition of the thermal springs and to characterize the geothermal reservoir. A total of 16 water samples were taken in 11 geothermal manifestations under dry (June 2014) and humid (March 2015) conditions. A geothermal system of low enthalpy and low mineralization was found along the San José del Cabo Fault (FSJC), with an average salinity (TDS) of 261 mg/L and an alkaline pH (8.5-9.5). The hydrogeochemical composition corresponds to the sodium-bicarbonate type, and geothermometers (silica and Na-K) indicate temperatures ranging from 70 to 115 °C for the deep thermal reservoir in conditions of equilibrium. The thermal springs with these hydrogeochemical characteristics differ in respect to the hydrochemical composition of the springs, formally described on several sites of BCS. Br/Cl and B/Cl ratios as well as the enrichment factor (EF) indicate that rainwater with a seawater component represents the source of the thermal spring water. In the springs, a mixture between thermal water and surface water is observed, combined with a relatively deep water circulation, allowing a calcium-sodium exchange, according to the host rock geochemistry. The higher temperatures found at some hot springs are related to the main trace of the San José del Cabo Fault.

  2. Biomarkers in Carbonate Thermal Springs: Implications for Mars

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Kivett, S. J.; McKay, D. S.

    1998-01-01

    Evidence of possible relict biogenic activity has been reported in carbonate inclusions within martian meteorite ALH 84001. The initial evidence included ovoid and elongated forms 50 - 500 nanometers in length, morphologically similar to but significantly smaller than many terrestrial microbes. More recently, thin structures resembling the remains of organic biofilms have been reported in the same meteorite. Carbonates have also been discussed in the context of Mars sample return missions. Thermal spring deposits have often been cited as prime locations for exobiological exploration. By analogy to Earth, specialized microbes may have existed in the heated, mineralized waters, and precipitates of carbonate and/or silica from these waters may have trapped and preserved evidence of life. Since the geological interactions that produce thermal springs can be recognized in orbital imagery, directed searches for microfossils in such deposits are deemed possible. We are engaged in a study of the signatures produced by contemporary biogenic activity (biomarkers) in carbonate thermal springs. We are examining the microbes that live in such environments and the preservation of microbial forms, biofilms, and petrographic fabrics indicative of life in thermal spring mineral deposits. This work is part of a much more extensive study to refine the appropriate tools, techniques, and approaches to seek evidence of life in a range of planetary samples. A deeper understanding of biological signatures will prepare us for the detailed search for life on Mars and eventually on other planets. Overall. the study of biomarkers in rocks and soils will provide insight into the evolution of life because such signatures are a record of how life interacts with its environment, how it adapts to changing conditions, and how life can influence geology and climate.

  3. Why and How Life is Driven into Being at Ancient Submarine Alkaline Springs

    NASA Astrophysics Data System (ADS)

    Russell, Michael

    2016-07-01

    The disequilibria between volcanic CO2 plus NO dissolved in acidulous oceans, as against the H2 plus CH4 exhaling through hot alkaline springs on the ocean floors of young wet rocky worlds, cannot be relaxed, much less put to useful biological work, through mere geochemical reactions. Instead their dissipation must be coupled to the production of essential thermodynamically 'up-hill' products. A metabolic pathway, involving disequilibria converting nano-engines, is the only way to achieve such tasks as fixing the otherwise intractable CO2. Indeed, hydrogenating CO2 is life's contribution to entropy generation in the Universe. Long-lived alkaline springs could have supplied the low entropy nourishment in the form of H2 as electrons and CH4 as a carbon source, while the CO2, nitrate, photolytic Fe3+ and Mn4+ in the earliest ocean could have accepted the waste electrons, i.e., the 'breathing' [1]. But what of life's first boundaries? These could be generated spontaneously at the vent, where natural precipitates of iron oxyhydroxides and sulfides would have acted as precipitate membranes, separating the reduced alkaline hydrothermal fluid from the acidulous carbonic ocean, thus imposing steep redox and protonic (ambient pmf) gradients with the potential to drive otherwise endergonic reactions such as the reduction of CO2 to formate or CO, and the oxidation of CH4 to methyl and formyl entities. In turn, the CO and the methyl group reacted to form acetate. Acetate was then hydrogenated and carbonated to pyruvate. However, these endergonic reactions could not progress by catalysis or mass action chemistry as often assumed. They would have required natural processors acting as nanoengines to couple the endergonic driven processes to appropriate exergonic driving reactions. This is what the nano-engines do in life. These mechanochemical 'engines' are protein complexes that are each precisely tuned to the specific driving and driven disequilibria pairs being converted. They

  4. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)].

    PubMed

    Kalashnikov, A M; Gaĭsin, V A; Sukhacheva, M V; Namsaraeva, B B; Panteleeva, A N; Nuianzina-Boldareva, E N; Kuznetsov, B B; Gorlenko, V M

    2014-01-01

    Species composition of anoxygenic phototrophic bacteria in microbial mats of the Goryachinsk thermal spring was investigated along the temperature gradient. The spring belonging to nitrogenous alkaline hydrotherms is located at the shore of Lake Baikal 188 km north-east from Ulan-Ude. The water is of the sulfate-sodium type, contains trace amounts of sulfide, salinity does not exceed 0.64 g/L, pH 9.5. The temperature at the outlet of the spring may reach 54 degrees C. The cultures of filamentous anoxygenic phototrophic bacteria, nonsulfur and sulfur purple bacteria, and aerobic anoxygenic phototrophic bacteria were identified using the pufLM molecular marker. The fmoA marker was used for identification of green sulfur bacteria. Filamentous cyanobacteria predominated in the mats, with anoxygenic phototrophs comprising a minor component of the phototrophic communities. Thermophilic bacteria Chloroflexus aurantiacus were detected irn the samples from both the thermophilic and mesophilic mats. Cultures ofnonsulfur purple bacteria similar to Blastochloris sulfoviridis and Rhodomicrobium vannielii were isolatd from the mats developing at high (50.6-49.4 degrees C) and low temperatures (45-20 degrees C). Purple sulfur bacteria Allochromatium sp. and Thiocapsa sp., as well as green sulfur bacteria Chlorobium sp., were revealedin low-temperature mats. Truly thermophilic purple and gree sulfur bacteria were not found in the spring. Anoxygenic phototrophic bacteria found in the spring were typical of the sulfuret communities, for which the sulfur cycle is mandatory. The presence of aerobic bacteriochlorophylla-containing bacteria identified as Agrobacterium (Rhizobium) tumifaciens in the mesophilic (20 degrees C) mat is of interest.

  5. Small Scale Biodiversity of an Alkaline Hot Spring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Walther, K.; Oiler, J.; Meyer-Dombard, D. R.

    2012-12-01

    To date, many phylogenetic diversity studies have been conducted in Yellowstone National Park (YNP) [1-7] focusing on the amplification of the 16S rRNA gene and "metagenomic" datasets. However, few reports focus on diversity at small scales. Here, we report on a small scale biodiversity study of sediment and biofilm communities within a confined area of a YNP hot spring, compare and contrast these communities to other sediment and biofilm communities from previous studies [1-7], and with other sediment and biofilm communities in the same system. Sediment and biofilm samples were collected, using a 30 x 50 cm sampling grid divided in 5 x 5 cm squares, which was placed in the outflow channel of "Bat Pool", an alkaline (pH 7.9) hot spring in YNP. Accompanying geochemical data included a full range of spectrophotometry measurements along with major ions, trace elements, and DIC/DOC. In addition, in situ temperature and conductivity arrays were placed within the grid location. The temperature array closest to the source varied between 83-88°C, while the temperature array 40 cm downstream varied between ~83.5-86.5°C. The two conductivity arrays yielded measurements of 5632 μS and 5710 μS showing little variation within the sampling area. Within the grid space, DO ranged from 0.5-1.33 mg/L, with relatively similar, but slightly lower values down the outflow channel. Sulfide values within the grid ranged from 1020-1671 μg/L, while sulfide values outside of the grid region fluctuated, but generally followed the trend of decreasing from source down the outflow. Despite the relative heterogeneity of chemical and physical parameters in the grid space, there was biological diversity in sediments and biofilms at the 5 cm scale. Small scale biodiversity was analyzed by selecting a representative number of samples from within the grid. DNA was extracted and variable regions V3 and V6 (Archaea and Bacteria, respectively) were sequenced with 454 pyrosequencing. The datasets

  6. Thermal waters as cosmeceuticals: La Roche-Posay thermal spring water example

    PubMed Central

    Seite, Sophie

    2013-01-01

    The curative use of thermal spring water is well known, but further investigation of its biological properties and therapeutic benefits is necessary. This present article reports all available scientific data concerning La Roche-Posay Thermal Spring Water and provides a better understanding of the biological mechanism of action of this water in regard to its composition and physicochemical properties and its clinical benefits for patients. These data justify the use of this selenium-rich water as an active or “cosmeceutical” ingredient in topical formulations to increase quality of life and compliance in patients with chronic disease. PMID:23345985

  7. Anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues for methane production.

    PubMed

    Li, Guixia; Zhong, Weizhang; Wang, Rui; Chen, Jiaqi; Li, Zaixing

    2017-08-01

    Optimum anaerobic conditions of cephalosporin bacterial residues after thermal-alkaline pretreatment were determined by orthogonal experiments. And through biochemical methane potential tests (BMPs) for cephalosporin bacterial residues, the ability for bacterial degradation of cephalosporin was also evaluated. The thermal-alkaline pretreatment with the optimum values of 6% NaOH at 105 °C for 15 min significantly improved digestion performance. With the thermal-alkaline pretreatment, the specific methane yield of the pretreated cephalosporin bacterial residue increased by 254.79% compared with that of the un-pretreated cephalosporin bacterial residue. The results showed that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment. This work investigates the thermal-alkaline pretreatment of cephalosporin bacterial residues, which can increase their methane yield by 254.79% compared with no pretreatment. The digestion performance is significantly improved under the condition of 6% NaOH at 105 °C for 15 min. The results show that anaerobic digestion of thermal-alkaline-pretreated cephalosporin bacterial residues could be one of the options for efficient methane production and waste treatment.

  8. Microbial and Metabolic Diversity of the Alkaline Hot Springs of Paoha Island: A Late Archean and Proterozoic Ocean Analogue Environment.

    NASA Astrophysics Data System (ADS)

    Foster, I. S.; Demirel, C.; Hyde, A.; Motamedi, S.; Frantz, C. M.; Stamps, B. W.; Nunn, H. S.; Oremland, R. S.; Rosen, M.; Miller, L. G.; Corsetti, F. A.; Spear, J. R.

    2016-12-01

    Paoha Island formed 450 years ago within Mono Lake, California, as a result of magmatic activity in the underlying Long Valley Caldera. Previous studies of Paoha Island hot springs focused on the presence of novel organisms adapted to high levels of arsenic (114-138 µM). However, the microbial community structure, relationship with Mono Lake, and preservation potential of these communities remains largely unexplored. Here, we present water chemistry, 16S and 18S rRNA gene sequences, and metagenomic data for spring water and biofilms sampled on a recently exposed mudflat along the shoreline of Paoha Island. Spring waters were hypoxic, alkaline, and saline, had variable temperature (39-70 °C near spring sources) and high concentrations of arsenic, sulfide and reduced organic compounds. Thermodynamic modeling based on spring water chemistry indicated that sulfide and methane oxidation were the most energetically favorable respiratory metabolisms. 16S rRNA gene sequencing revealed distinct communities in different biofilms: red biofilms were dominated by arsenite-oxidizing phototrophs within the Ectothiorhodospiraceae, while OTUs most closely related to the cyanobacterial genus Arthrospira were present in green biofilms, as well as a large proportion of sequences assigned to sulfur-oxidizing bacteria. Metagenomic analysis identified genes related to arsenic resistance, arsenic oxidation/reduction, sulfur oxidation and photosynthesis. Eukaryotic rRNA gene sequencing analyses revealed few detectable taxa in spring biofilms and waters compared to Mono Lake; springs receiving splash from the lake were dominated by the alga Picocystis. The co-occurrence of hypoxia, high pH, and close proximity of anoxygenic and oxygenic phototrophic mats makes this site a potential Archean/Proterozoic analogue environment, but suggests that similar environments if preserved in the rock record, may not preserve evidence for community dynamics or the existence of photosynthetic metabolisms.

  9. Characterization of a Pleistocene thermal spring in Mozambique

    NASA Astrophysics Data System (ADS)

    Steinbruch, Franziska; Merkel, Broder J.

    2008-12-01

    A hydrogeological study was conducted with the objective to investigate the only currently known hot spring of Sofala Province in Mozambique with respect to the origin of the water, the discharge, and its chemical composition. Field investigations comprised a general land use survey, mapping of sediment and water temperatures, discharge measurements and on-site water chemistry as well as sampling for further chemical analyses and groundwater dating. Thermal water discharge occurs along a 100 m long NE-SW zone with water temperatures ranging from 42 to 64.5°C. The thermal water is a low-mineralized sodium-chloride-sulfate water enriched in phosphate, fluorine and nickel. The silica geothermometer, the silica concentration of 43 mg/kg and the ratios of Br/Cl and I/Cl of 2.5 × 10-3, suggest that the thermal water stems from approximately 5,000 m depth and had a long residence time with silicate rocks. This points towards Gorongosa Mountain as the water source area. 14C dating suggests a groundwater age of 11,000 years.

  10. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments.

  11. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

    PubMed

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M; Fields, Matthew W

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  12. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    PubMed Central

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  13. Chemical and isotopic data for water from thermal springs and wells of Oregon

    SciTech Connect

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  14. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.

  15. [Natural gas-steam-thermal springs in combined therapy of osteomuscular system diseases].

    PubMed

    Badretdinov, R R; Fomin, A A; Badretdinova, L M

    2006-01-01

    The article describes effects of unique thermal springs of Yangan-Tau mountain in patients with locomotor diseases. Effects of gas, steam and thermal factors of the water from the above springs were studied in patients with rheumatoid arthritis who took baths in the sanatorium Yangan-Tau. Changes in the cytokine profile of the patients were analysed.

  16. Geologic framework of thermal springs, Black Canyon, Nevada and Arizona

    USGS Publications Warehouse

    Beard, L. Sue; Anderson, Zachary W.; Felger, Tracey J.; Seixas, Gustav B.

    2014-01-01

    Thermal springs in Black Canyon of the Colorado River, downstream of Hoover Dam, are important recreational, ecological, and scenic features of the Lake Mead National Recreation Area. This report presents the results from a U.S. Geological Survey study of the geologic framework of the springs. The study was conducted in cooperation with the National Park Service and funded by both the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The report has two parts: A, a 1:48,000-scale geologic map created from existing geologic maps and augmented by new geologic mapping and geochronology; and B, an interpretive report that presents results based on a collection of fault kinematic data near springs within Black Canyon and construction of 1:100,000-scale geologic cross sections that extend across the western Lake Mead region. Exposures in Black Canyon are mostly of Miocene volcanic rocks, underlain by crystalline basement composed of Miocene plutonic rocks or Proterozoic metamorphic rocks. The rocks are variably tilted and highly faulted. Faults strike northwest to northeast and include normal and strike-slip faults. Spring discharge occurs along faults intruded by dacite dikes and plugs; weeping walls and seeps extend away from the faults in highly fractured rock or relatively porous volcanic breccias, or both. Results of kinematic analysis of fault data collected along tributaries to the Colorado River indicate two episodes of deformation, consistent with earlier studies. The earlier episode formed during east-northeast-directed extension, and the later during east-southeast-directed extension. At the northern end of the study area, pre-existing fault blocks that formed during the first episode were rotated counterclockwise along the left-lateral Lake Mead Fault System. The resulting fault pattern forms a complex arrangement that provides both barriers and pathways for groundwater movement within and around Black

  17. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    NASA Astrophysics Data System (ADS)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2017-09-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  18. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  19. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  20. Chemistry of thermal and nonthermal springs in the vicinity of Lassen Volcanic National Park

    USGS Publications Warehouse

    Thompson, J.M.

    1985-01-01

    Meaningful applications of water geothermometry to thermal springs in and around Lassen Volcanic National Park (LVNP) are limited to Growler Hot Spring and Morgan Hot Springs. Most hot springs located within LVNP are low-chloride, acid-sulfate waters associated with nearby steam vents. This type of hot-spring activity is characteristically found above vapor-dominated hydrothermal systems. These acid-sulfate waters are not generally useful for liquid chemical geothermometry, however, because their chemical compositions result from water-rock interaction at relatively shallow depths. Thermal waters at Drakesbad and in Little Hot Springs Valley have neutral-pH, low-Cl concentrations and have estimated Na-K-Ca and Na-Li geothermometer temperatures close to measured spring temperatures of 65 to 95??C. Hot-spring waters located south of LVNP at Growler Hot Spring, Morgan Hot Springs, and in the south-central part of LVNP in the Walker "O" No. 1 well at Terminal Geyser are rich in chloride and yield calculated geothermometer temperatures between 220 and 230??C. These thermal waters probably originate within a zone of upflow of high-enthalpy fluid inside LVNP and cool conductively during lateral flow to the south and southeast. ?? 1985.

  1. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    PubMed

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s).

  2. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park▿ †

    PubMed Central

    Miller, Scott R.; Strong, Aaron L.; Jones, Kenneth L.; Ungerer, Mark C.

    2009-01-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for ∼70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s). PMID:19429553

  3. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park.

    PubMed

    Jiang, Xiaoben; Takacs-Vesbach, Cristina D

    2017-01-01

    The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4-5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.

  4. Treatment of kidney diseases in the thermal springs of Pithecusa during the XVIII Century.

    PubMed

    Ricciardi, Elisabetta; Ricciardi, Carlo Alberto; Ricciardi, Biagio

    2016-02-01

    The island of Pithecusa (Ischia) is a volcanic island in the Tyrrhenian Sea in the north end of the Gulf of Naples at about 30 kilometers from the same city. Pithecusa is very popular for its hot springs which even the ancients used. This report aims to analyze the renal therapeutic benefits of the Pithacusa thermal mineral spring through a review of two different manuscripts: i) "Di Napoli il seno cratero"(The gulf of Naples) of Domenico Antonio Parrino (1642-1708) and ii) "De' rimedi naturali che sono nell'isola di Pithecusa oggi detta Ischia"(On the natural cures of the island of Pithecusa known today as Ischia)of Giulio Iasolino (1583-1622). These two manuscripts published during the 18th century and both manuscripts highlight the thermal virtues of the thermal springs of Pithecusa. In the past natural remedies were important in the treatment of different diseases including that of thermal springs dating back to ancient Rome. Thermal springs were used to treat spasms, skin diseases, hair loss and various renal ailments. Both manuscripts describe the thermal springs in Ischia and their therapeutic benefits in medical diseases.

  5. 2D resistivity imaging and magnetic survey for characterization of thermal springs: A case study of Gergedi thermal springs in the northwest of Wonji, Main Ethiopian Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Yahya Ali; Eritro, Tigistu Haile

    2017-09-01

    Electrical resistivity imaging and magnetic surveys were carried out at Gergedi thermal springs, located in the Main Ethiopian Rift, to characterize the geothermal condition of the area. The area is geologically characterized by alluvial and lacustrine deposits, basaltic lava, ignimbrites, and rhyolites. The prominent structural feature in this part of the Main Ethiopian Rift, the SW -NE trending structures of the Wonji Fault Belt System, crosse over the study area. Three lines of imaging data and numerous magnetic data, encompassing the active thermal springs, were collected. Analysis of the geophysical data shows that the area is covered by low resistivity response regions at shallow depths which resulted from saline moisturized soil subsurface horizon. Relatively medium and high resistivity responses resulting from the weathered basalt, rhyolites, and ignimbrites are also mapped. Qualitative interpretation of the magnetic data shows the presence of structures that could act as pathways for heat and fluids manifesting as springs and also characterize the degree of thermal alteration of the area. Results from the investigations suggest that the Gergedi thermal springs area is controlled by fault systems oriented parallel and sub-parallel to the main tectonic lines of the Main Ethiopian Rift.

  6. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  7. Geochemistry and hydrology of thermal springs in the Idaho Batholith and adjacent areas, central Idaho

    USGS Publications Warehouse

    Young, H.W.

    1985-01-01

    The occurrence of nature of thermal springs in the Idaho batholith and adjacent areas suggest a relation between structural controls and deeply circulating hot-water systems. Springs issuing from granitic rocks are associated mostly with major regional fault structures. Springs issuing from other rocks probably are related to local faulting. Individual spring flows and water temperatures are variable and range from less than 1 gallon per minute to 2,710 gallons per minute and from 20.5 degrees to 94.0 degrees Celsius. Annual spring discharge is at least 27,000 acre-feet; heat discharges convectively is estimated to be 5.0 x 107 calories per second. Thermal springs discharge relatively dilute water; dissolved solids range from 103 to 839 milligrams per liter. The chemical quality of the water suggests deep circulation of meteoric water. Estimated reservoir temperatures are generally less than 100 degrees Celsius, but temperatures for several springs exceed 150 degrees Celsius. Stable-isotope data suggest that most of the thermal water is not derived from current precipitation. Carbon-14 values indicate that thermal waters are old; apparent residence times range from 9,000 to more than 40,000 years.

  8. Geochemistry and fluxes of volatiles in the Magadi and Natron thermal springs, East African Rift

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Muirhead, J.; Ebinger, C. J.; Kattenhorn, S. A.; Sharp, Z. D.; Sano, Y.; Takahata, N.

    2016-12-01

    The Magadi and Natron basin (MNB) is in the earliest stages of continental rifting (<10 Ma) in the East African Rift, and is bounded by numerous normal faults releasing a significant amount of CO2 (4.05 Mt/yr). Although many thermal springs have been observed along fault zones, sources and fluxes of volatiles from these fluids are poorly known. This study reports geochemistry and fluxes of dissolved gases in thermal springs of the MNB (T = 36.8 - 83.5°C and pH = 8.5 - 10.3), including major gas chemistry, d13C-CO2, d15N-N2, and 3He/4He ratios. N2 (< 94.7 vol%) is the most abundant gas, with minor air contamination (mean value of O2 = 1.79 vol%). The majority of CO2 (mean = 11.8 vol%) is dissolved in alkaline waters. Abundant CH4 concentrations (19.3 and 25.1 vol%) are observed only in high temperature (82.3 - 83.5°C) samples. Mean values of Ar and He are 1.75 and 0.59 vol%, respectively. d13C-CO2 (-5.68 to 1.62‰) and CO2/3He (7.24 x 108 - 1.81 x 1011) values show that CO2 originates from both mantle and limestone. d15N-N2 (-1.46 to 0.35‰) and N2/3He (3.92 x 106 - 1.33 x 109) values indicate that the major source of N2 is atmospheric, with a minor input of mantle N2 (fmantle < 22%), except for an anomalous biogenic sample (d15N-N2 = 5.93‰). 3He/4He ratios (0.64 - 4.00 Ra) suggest contributions of radiogenic 4He derived from a crustal source. 4He flux rates (3.64 x 1011 - 3.34 x 1014 atoms/m2 sec) calculated using spring flow rates are much greater than reported mean of continental flux values (4.18x1010 atoms/m2 sec), implying that magma intrusions or widespread normal faulting may help to mobilize crustal 4He in the study area. Total flux values (mol/yr) of CO2, N2, 3He, and 4He are 7.91 x 106, 1.77 x 107, 8.18, and 9.33 x 104, respectively. In particular, the total CO2 flux of springs is 0.01% of the total diffuse CO2 flux reported in the region. Our results reveal an interaction between mantle-derived volatiles and continental crust during early stage

  9. Catalog of known hot springs and thermal place names for Honduras

    SciTech Connect

    Finch, R.C.

    1986-08-01

    Thermal place names were compiled from all 1:50,000 topographic quadrangle maps for the Republic of Honduras as of July 1986, from other published maps, and from several sources of unpublished data. Known hot spring sites include those visited by Empresa Nacional de Energia Electrica (Honduras) geologists, sites visited by Los Alamos geologists in 1985, and other sites known to R.C. Finch. The number of known hot spring sites in Honduras with temperatures >30/sup 0/C is 125. In addition, 56 thermal sites are suspected on the basis of thermal place names. The total number of geothermal sites, known and suspected, is 181.

  10. Chemical and isotopic composition of water from thermal and mineral springs of Washington

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1982-02-01

    Waters from the thermal springs of Washington range in chemical composition from dilute Na-HCO/sub 3/ to moderately saline CO/sub 2/-charged Na-HCO/sub 3/-Cl type waters. St. Martin's Hot Spring which discharges a slightly saline Na-Cl water, is the notable exception. The dilute Na-HCO/sub 3/ waters are generally associated with granitic intrusions; the warm to hot CO/sub 2/-charged waters issue on or near the large stratovolcanoes. The dilute waters have oxygen-isotopic compositions that indicate relatively little water-rock exchange. The CO/sub 2/-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. The carbon-13 in the CO/sub 2/-charged thermal waters is more depleted (-10 to -12 %) than in the cold CO/sub 2/-charged soda springs (-2 to -8%) which are also scattered throughout the Cascades. The hot and cold CO/sub 2/-charged waters are supersaturated with respect to CaCO/sub 3/, but only the hot springs are actively depositing CaCO/sub 3/. Baker, Gamma, Sulphur, and Ohanapecosh hot springs seem to be associated with thermal aquifers of more than 100/sup 0/C. As these springs occur as individual springs or in small clusters, the respective aquifers are probably of restricted size.

  11. Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production.

    PubMed

    Nkemka, Valentine Nkongndem; Li, Yongqiang; Hao, Xiying

    2016-01-01

    Giant miscanthus (Miscanthus × giganteus) and Chinese fountaingrass (Pennisetum alopecuroides (L.) Spreng), cultivated for landscaping and soil conservation, are potential energy crops. The study investigated the effect of combined thermal and alkaline pretreatments on biogas production of these energy crops. The pretreatment included two types of alkali (6% CaO and 6% NaOH) at 22, 70 and 100 °C. The alkaline pretreatment resulted in a greater breakdown of the hemicellulose fraction, with CaO more effective than NaOH. Pretreatment of giant miscanthus with 6% CaO at 100 °C for 24 h produced a CH4 yield (313 mL g(-1) volatile solids (VS)) that was 1.7 times that of the untreated sample (186 mL g(-1) VS). However, pretreatment of Chinese fountaingrass with 6% CaO or 6% NaOH at 70 °C for 24 h resulted in similar CH4 yields (328 and 302 mL g(-1) VS for CaO and NaOH pretreatments) as the untreated sample (311 mL g(-1) VS). Chinese fountaingrass was more easily digestible but had a low overall CH4 yield per hectare (1,831 m(3) ha(-1) y(-1)) compared to giant miscanthus (6,868 m(3) ha(-1) y(-1)). This study demonstrates the potential of thermal/alkaline pretreatment and the use of giant miscanthus and Chinese fountaingrass for biogas production.

  12. Microbial quality and physical-chemical characteristics of thermal springs.

    PubMed

    Fazlzadeh, Mehdi; Sadeghi, Hadi; Bagheri, Pari; Poureshg, Yusef; Rostami, Roohollah

    2016-04-01

    Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect.

  13. Fossilization of Coniform (Phormidium) Stromatolites In Siliceous Thermal Springs, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Farmer, Jack; Bebout, Brad; Jahnke, Linda; Chang, Sherwood (Technical Monitor)

    1997-01-01

    We have studied fossilization processes in well-developed cyanobacterial mats present in mid-terrace ponds of silica-precipitating thermal springs of Yellowstone National Park. These mats occur over temperatures of approx.35-60 C and are dominated by species of Phormidium. Within Bonded systems two end member environments have been distinguished based temperature, depth, and the stability of spring inflows, each differing substantially in the style of stromatolite morphogenesis and fossilization. Type 1 systems include shallow, ephemeral ponds where water flow and temperature fluctuates widely on a seasonal basis; mats typically secrete rapidly up to the air-water interface, forming exposed islands. Silicification occurs primarily by the wicking of water onto the surface of exposed mats, leading to the evaporative concentration of silica near the surface. pH microelectronic measurements in partially-exposed columns show strong gradients in pH with values exceeding 10.5 in the upper am of silicifying mats, decreasing to <9.0 a few mm below the surface. High oxygen concentrations lead to the rapid oxidation of most organic materials. In Type I systems, the tops of coniform and columnar stromatolites become silicified first, followed by the bases. This typically leads to extensive fragmentation during the initial stages of burial. Case 2 systems include deeper ponds where the water flow, temperature and depth are seasonally more stable, and where mats develop larger-scale tufts and columns. Alkalinity in permanently submerged mats increases into tuft interiors from approx.9.0 near the surface to >10.0 at depth. Moderate silicification is apparent throughout mat frameworks, although there is frequently a densely silicified core near the base. In Type 2 systems, preservation of the coniform and columnar architecture of stromatoilites is much more robust. Sub-fossil examples suggest minimal fragmentation prior to burial. Comparative rapid analysis of the phone zones of

  14. Fossilization of Coniform (Phormidium) Stromatolites In Siliceous Thermal Springs, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Farmer, Jack; Bebout, Brad; Jahnke, Linda; Chang, Sherwood (Technical Monitor)

    1997-01-01

    We have studied fossilization processes in well-developed cyanobacterial mats present in mid-terrace ponds of silica-precipitating thermal springs of Yellowstone National Park. These mats occur over temperatures of approx.35-60 C and are dominated by species of Phormidium. Within Bonded systems two end member environments have been distinguished based temperature, depth, and the stability of spring inflows, each differing substantially in the style of stromatolite morphogenesis and fossilization. Type 1 systems include shallow, ephemeral ponds where water flow and temperature fluctuates widely on a seasonal basis; mats typically secrete rapidly up to the air-water interface, forming exposed islands. Silicification occurs primarily by the wicking of water onto the surface of exposed mats, leading to the evaporative concentration of silica near the surface. pH microelectronic measurements in partially-exposed columns show strong gradients in pH with values exceeding 10.5 in the upper am of silicifying mats, decreasing to <9.0 a few mm below the surface. High oxygen concentrations lead to the rapid oxidation of most organic materials. In Type I systems, the tops of coniform and columnar stromatolites become silicified first, followed by the bases. This typically leads to extensive fragmentation during the initial stages of burial. Case 2 systems include deeper ponds where the water flow, temperature and depth are seasonally more stable, and where mats develop larger-scale tufts and columns. Alkalinity in permanently submerged mats increases into tuft interiors from approx.9.0 near the surface to >10.0 at depth. Moderate silicification is apparent throughout mat frameworks, although there is frequently a densely silicified core near the base. In Type 2 systems, preservation of the coniform and columnar architecture of stromatoilites is much more robust. Sub-fossil examples suggest minimal fragmentation prior to burial. Comparative rapid analysis of the phone zones of

  15. Biogeographic patterns of desert springs in the Great Basin with an emphasis on regional aquifer thermal springs as refugia for vulnerable crenobiotic species

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Sada, D. W.; Norris, R. D.

    2013-12-01

    The desert springs of the Great Basin Region in western North America provide ideal systems to study biogeographic and evolutionary patterns. In arid regions, springs are biodiversity hotspots because they often provide the sole source of water for the biota within and around them. In the Great Basin, springs provide critical habitat for diverse and extensive crenobiotic flora and fauna comprising over 125 endemic species. These aquatic environments represent island ecosystems surrounded by seas of desert, and researchers have compiled large databases of their biota and chemistry. Consequently, desert springs are excellent systems for biogeographic studies and multivariate statistical analyses of relationships between the chemical and physical characteristics of the springs and the biological communities that they support. The purpose of this study is to elucidate the relationships between the physicochemical characteristics of springs and their biota using multivariate statistical analyses to characterize 1325 springs, including regional aquifer springs, local aquifer cold springs and geothermal springs. The analyses reveal that regional aquifer thermal springs harbor disproportionate numbers of crenobiotic species including endemic gastropods, fishes, and aquatic insects. However, these regional aquifer springs also contain significantly more introduced species than cold and geothermal local aquifer springs. Springs are threatened by anthropogenic impacts including groundwater depletion and pollution, alteration of flow regimes, and the introduction of exotic species. In this study, one of the major factors that distinguished regional aquifer thermal springs from cold and geothermal local aquifer springs was the higher number of introduced species found in regional aquifer springs. This may be due to the influences of the same physicochemical characteristics that allow regional aquifer springs to serve as refugia for endemic species--species that are able to gain

  16. The influence of alkaline treatment on thermal stability of flax fibres

    NASA Astrophysics Data System (ADS)

    Chaishome, J.; Rattanapaskorn, S.

    2017-04-01

    The paper pursued the hypothesis that alkaline treatment removed hemicellulose and pectin from the flax fibres, the fibre thermal stability will be improved. The use of plant fibres as reinforcement in thermoplastic composites comes with the detrimental effect of thermal degradation on the tensile performance of fibres and composites, particularly during long consolidation times at high temperature. SEM was used to observe the treated fibre surface. The micrographs show that the treatment with a higher concentration of NaOH solution results in a more obviously rough fibre surface. Moreover, FTIR and TGA were used to examine the chemical decomposition and thermal stability, respectively. The spectra of treated materials indicate that both hemicellulose and pectin were dissolved from the fibre surface following treatment. Finally, TGA results revealed that the loss of mass belonging to hemicellulose and pectin in treated fibres results in a shift of the main degradation temperature to higher temperature.

  17. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  18. Mt. St. Helens: Influence of Magmatic Activity on the Biogeochemistry of Thermal Springs

    NASA Astrophysics Data System (ADS)

    Montross, S. N.; Skidmore, M.; Abrahamson, I. S.

    2005-12-01

    Mt St. Helens erupted explosively in 1980, and the intense heat of this event effectively sterilized the crater. The crater is filled with significant ash and volcanic debris and the crater environment has limited vegetation despite relatively abundant water, from rainfall and snowmelt. However, microorganisms thrive in the hot springs that have developed in the crater since the 1980 eruption in this otherwise biologically hostile environment. Channelized drainages exiting the crater contain numerous hot spring sources which result from thermal heating of meteoric water and gain solutes from water-rock interactions. These solutes are important inputs for the microbial communities found within the crater thermal systems. Water samples collected in August 2004 and August 2005 from thermal springs in Step Canyon allow the opportunity to assess the effects of recent magmatic activity in the crater since September 2004, on the aqueous chemistry and microbiology of thermal spring water. We have investigated the composition of microbial communities in crater hot spring ecosystems by identifying small subunit ribosomal RNA sequences amplified directly from extracted genomic DNA. Initial screening of cloned DNA (16S rRNA gene sequence) by restriction fragment length polymorphism and sequencing indicates moderate microbial diversity in this environment with representatives from the domains Bacteria and Archaea. The presentation will examine relationships between the aqueous geochemistry and the microbial communities and temporal changes in these related to the recent magmatic activity.

  19. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    PubMed

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Computer simulation of thermal modelling of alkaline hydrogen/oxygen fuel cells

    NASA Astrophysics Data System (ADS)

    Baumann, A.; Hauff, S.; Bolwin, K.

    1991-11-01

    An essential problem connected with the operation of regenerative fuel cell systems in space is the rejection of waste heat, produced mainly during discharging the regenerative fuel cell. The intention of this investigation was to gain a better understanding of the heat generation and heat rejection mechanism in alkaline fuel cells by performing detailed thermal modeling of a single cell stack. In particular, spatial temperature profiles within the fuel cell stack and the start-up behavior of the cells were predicted. Furthermore a model simulation of an emergency situation due to a partial failure of the coolant circuit was performed and theoretically temperature versus time curves were given for restarting the cooling.

  1. Hydrogeochemical signatures of thermal springs compared to deep formation water of North Germany

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; van Berk, Wolfgang

    2014-05-01

    Thermal springs and hot deep formation waters can be used for geothermal energy production. Depending on the chemical composition of the used waters, geothermal power plants have to deal with scaling and corrosion effects. Therefore, the understanding of the hydrogeochemical behaviour of such waters can be helpful to enhance the efficiency of the energy production. This study is comparing hydrogeochemical characteristics of thermal springs in the Harz Mountains (North Germany) and deep formation water of the North German Basin. The Harz Mountains consist of uplifted Palaeozoic rocks, whereas the North German Basin consists of sedimentary layers of Permian, Mesozoic and Cenozoic age. Volcanic rocks are included in the Permian layers. The thickness of the sedimentary basin varies between 2 km and more than 8 km. The deep aquifers of the North German Basin are mostly not involved in the recent meteoric water cycle. Their waters have contents of Total Dissolved Solids (TDS) up to about 400 g/L. Thermal springs of the Harz Mountains are situated close to the main fracture system of the region. These springs are connected to the meteoric water cycle and display lower contents of TDS (< 25 g/L). In both geological systems the TDS content is increasing with depth and temperature. The elemental ratios of the waters (e.g., Na/Cl, Cl/Br, Na/Ca) indicate similar hydrogeochemical formation processes in the Harz Mountains and the North German Basin. The concentrations of calcium, sodium, and chloride differ due to salt dissolution and feldspar transformation (albitisation) in the thermal springs as well as in the deep formation waters. Based on today's knowledge hydrochemical and stratigraphical data from the North German Basin can be used to elucidate the geological origin of the thermal springs in the Harz Mountains. Acknowledgements. The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the

  2. Anaerobic biodegradation of polylactic acid under mesophilic condition using thermal-alkaline pretreatment

    NASA Astrophysics Data System (ADS)

    Samitthiwetcharong, Sutisa; Kullavanijaya, Pratin; Chavalparit, Orathai

    2017-07-01

    The propose of this study was to investigate the effect of thermal-alkaline pretreatment with emphasis on sodium hydroxide concentration (NaOH), temperature and reaction time, on enhancement of polylactic acid (PLA) films degradation and biogas production. The results found that NaOH concentration and reaction time were two main parameters influencing on PLA degradation. While, less significant was found for temperature. From the Response Surface Methodology (RSM), it was concluded that the optimum pretreatment conditions were at 0.5 M of NaOH, temperature of 60°C and 24 hr of reaction time. This was generated about 3.7 times (215.47 ml/gVSadded) higher gas production comparing to non-pretreated PLA films which was 58.28 ml/gVSadded. The maximum biodegradability of PLA film was 20.14%. This was estimated to be 4.7 times higher than non-pretreated PLA (4.32%). This finding demonstrated the benefit of thermal-alkaline pretreatment on surface of PLA films destruction. Consequently, the microbial enzymes could degrade PLA more easily, resulting in an increase of biogas production.

  3. [Impacts of alkaline thermal treatment on characteristics of sludge from sewage treatment plant].

    PubMed

    Yang, Shi-Dong; Chen, Xia; Liu, Cao; Xiao, Ben-Yi

    2015-02-01

    Alkaline thermal treatment is an important pretreatment method for sewage sludge. In this paper, in order to optimize the alkaline thermal treatment conditions for sludge pretreatment, four pretreatment parameters ( sludge concentration, pH, temperature and treatment time) were investigated through orthogonal experiments to determine their effects on the sludge disintegration, sludge concentration and sludge morphology of sewage sludge. The experimental results showed that the significance of the four factors on sludge characteristics was in the order of pH > temperature > treatment time > sludge concentration. Additionally, the optimal conditions of the four factors for the release of soluble chemical oxygen demand (SCOD) of unit sludge and decrease of sludge concentration were as follows: 36.55 g x L(-1), pH 12.45, 175 degrees C and 60 min. While the optimal conditions for the decrease of particle size and fractal dimension were 36.55 g x L(-1), pH 12.5, 175 degrees C and 45 min.

  4. Gas composition and hydrochemistry of non-volcanic thermal springs in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Wuh Terng, Lim; Tsanyao F, Yang; Hsuan-Wen, Chen; Yusoff, Ismail Bin

    2015-04-01

    Peninsular Malaysia is located on Sunda Plate which situated between two major boundaries of tectonic plates, Australian Plate and Eurasian Plate. Over sixty thermal springs have been reported in Peninsular Malaysia, a non-volcanic country, but their water and gas geochemistry characteristic have not been reported yet. The aim of this study is to identify the geochemical characteristics of water and gas samples from selected sixteen thermal springs. This is the first time to study the thermal springs in Peninsular Malaysia in terms of dissolved gas. Due to the chemical inertness, the concentration and isotopic composition of dissolved gas can always become a good indicators of mantle degassing, geothermal circulation and the condition of water-rock interaction. Other parameters such as pH, temperature, electric conductivity, and water radon values will be also recorded. The surface temperature of studied thermal springs range from 40.1° C to 88.7° C, the pH values range from 6.6 to 9.1, and the conductivity varies between 200 μs/cm and 3700 μs/cm. Meanwhile, the water radon analysis which been carried out in the field by using RAD7 Radon Detector. The water radon values of selected thermal springs in Peninsular Malaysia vary from 111,866 Bq/cm3 to 200 Bq/cm3, indicating various radon sources which mainly controlled by the permeability and lithology of host rocks in studied areas. Analysed results show that the constituent of dissolved gas in thermal springs is major in nitrogen and minor in other compositions such as argon, carbon dioxides and oxygen. Isotopic composition of hydrogen (D/H) and oxygen (18O/16O) mostly fall along the MWL, indicating the meteoric water is the major fluid source for those hot springs. However, the helium isotopic ratios of most samples show consistently low value, less than 0.1 Ra (Ra is the 3He/4He ratio of the air). It implies that crust component is the major helium gas source for those hot springs.

  5. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  6. Thermal stability in exchange-spring chains of spins

    NASA Astrophysics Data System (ADS)

    Pellicelli, Raffaele; Solzi, Massimo

    2016-02-01

    Thermal stability and switching behaviour have been compared in pure-hard and soft-hard Heisenberg linear spin chains of the same total length and equal magnetic parameters (except for magnetic anisotropy) with the anisotropy axis and external magnetic field parallel to the chain direction. The zero-temperature energy barriers and finite-temperature transition rates between remanent equilibrium states have been calculated by utilizing the string method and the forward flux sampling (FFS) method, respectively. Depending on the assumed interfaces, the FFS method could in fact fail to correctly sample the characteristic transition paths at interfaces at which these paths have probabilities much lower than those associated with other non-characteristic transition paths. This can especially occur in the case of the asymmetric energy landscapes and multiple asymmetric minimum energy paths (MEPs) of soft-hard systems. Therefore, a proper interface definition is needed in order to deduce the correct transition rates. In particular, we show that the thermal switching of soft-hard chains starting in the soft or in the hard part turns out to occur with an equal rate provided that the interfaces of the FFS method are defined on the basis of the corresponding zero-temperature MEPs. The thermal stability of a soft-hard chain in the remanent equilibrium state could be to some extent lower with respect to that of a pure-hard chain, due to the shorter hard-part length crossed by the domain wall formed in the chain and also to the related slightly smaller energy barrier. However, its switching field at zero temperature is verified to be widely lower than that of the pure-hard chain. Analytical expressions of switching fields and energy barriers have been deduced in various cases.

  7. Preservation of biological information in thermal spring deposits - Developing a strategy for the search for fossil life on Mars

    NASA Technical Reports Server (NTRS)

    Walter, M. R.; Des Marais, David J.

    1993-01-01

    Paleobiological experience on earth is used here to develop a search strategy for fossil life on Mars. In particular, the exploration of thermal spring deposits is proposed as a way to maximize the chance of finding fossil life on Mars. As a basis for this suggestion, the characteristics of thermal springs are discussed in some detail.

  8. Preservation of biological information in thermal spring deposits - Developing a strategy for the search for fossil life on Mars

    NASA Technical Reports Server (NTRS)

    Walter, M. R.; Des Marais, David J.

    1993-01-01

    Paleobiological experience on earth is used here to develop a search strategy for fossil life on Mars. In particular, the exploration of thermal spring deposits is proposed as a way to maximize the chance of finding fossil life on Mars. As a basis for this suggestion, the characteristics of thermal springs are discussed in some detail.

  9. Geochemical signature of permanent and ephemeral thermal springs in Val di Cornia, Central Italy

    NASA Astrophysics Data System (ADS)

    Pierotti, Lisa; Pennisi, Maddalena; Muti, Antonio; Gherardi, Fabrizio

    2014-05-01

    In the Val di Cornia area, several permanent thermal springs outflow. They belong to the hydrothermal system of Campiglia Marittima and have been exploited since longtime for the therapeutic properties of the discharged waters. With an average outflow of 250 L/sec, Calidario (36.3±0.2° C) is the most important permanent spring of the area. Periodically, i.e. about every 10 years, a number of ephemeral thermo-mineral springs in Bagnarello (46±0.2° C) and Monte Peloso (42.2±0.3° C) area, spontaneously reactivate over short time periods (several weeks to few months), with a maximum discharge of 150±20 L/sec. This phenomenon is generally induced by intensive rainfall events. In this contribution, we present new geochemical analyses of waters discharged from Calidario and the ephemeral springs reactivated at the beginning of 2001 and at the end of 2010. These new data are then compared to previous analyses to investigate geochemical variations over a 30-years period. Both ephemeral and permanent thermal springs have Ca-SO4 geochemical signature, typical of groundwaters circulating through the carbonate-evaporitic complexes of the Tuscan Nappe (Mesozoic age). Clear salinity trends are identified, with TDS increasing from Calidario to Monte Peloso and Bagnarello springs, up to a maximum of about 3000 ppm. Chemical speciation indicates that most of the thermal waters are close to saturation with respect to fluorite and gypsum/anhydrite, with solute geothermometers indicating possible equilibrium temperature of 50-55° C for Monte Peloso and Bagnarello waters, respectively. Higher temperatures, up to 75° C, were inferred by assuming equilibrium at depth with the aluminosilicates of the regional Basement (phyllitic formations of Paleozoic age), below the evaporites of the Tuscan Nappe (Triassic age). With δ18O and δ2H values of -6.4 (±0.2)o and -38.9 (±2.9)o respectively, the ephemeral springs have a steady stable isotope composition, comparable to permanent

  10. Discharge rates of fluid and heat by thermal springs of the Cascade Range, Washington, Oregon, and northern California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.; Pringle, M.K.W.

    1990-01-01

    Fluid and heat discharge rates of thermal springs of the Cascade Range have been determined using the chloride inventory method. Discharge rates of thermal spring groups range from 1 to 120 L s−1. Most of the fluid (50%) and heat (61%) are discharged from two hot spring groups in northern Oregon. Total discharge from thermal springs in the Cascade Range of California, Oregon, and Washington is about 340 Ls−1, which corresponds to about 8.2×104 kJ s−1 of heat. This does not include hot springs developed on the flanks of Mount St. Helens after the 1980 eruption. The Cascade Range consists of geologically and technically distinct segments; rates of convective heat discharge by the thermal springs in these segments correlate with volcanic rock extrusion rates for the last 2 m. y. In Oregon and Washington, many streams without known thermal or mineral springs in their drainage basins also were sampled for chloride and sodium to detect chemical anomalies that might be associated with previously unknown thermal or mineral waters. Only three chloride anomalies not associated with known thermal or mineral springs were identified in the streams of the Cascade Range.

  11. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    PubMed

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  12. Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Wu, Jung-Fen; Lo, Chieh-Fang; Li, Long-Yun; Li, Hsieh-Yu; Chang, Chia-Ming; Liao, Kuo-Sung; Hu, Chien-Chieh; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2014-01-01

    Nanocomposites of thermally stable polybenzimidazole (PBI) containing small amounts (<1%) of functionalized multi-walled carbon nano-tubes (CNT) are prepared using solution casting methods. These PBI and PBI/CNT composites are doped with potassium hydroxide (KOH) solution to prepare hydroxide-conducting electrolytes for alkaline direct methanol fuel cell (ADMFC) applications. The CNT-containing composites exhibit higher fractional free volumes and higher water diffusivities. CNT also promotes ionic conductivity of electrolytes and improves the fuel cell performance. Gas diffusion electrodes (GDEs) without polytetrafluoroethene (PTFE) treatment give superior cell power density compared to commercial E-tek GDEs, which contain hydrophobic PTFE layers. When the fuel cell is fed with 2 M methanol in 6 M KOH (as the anode fuel) and humidified oxygen (as the cathode oxidant), the system achieves a maximum power density of 104.7 mW cm-2 at 90 °C. These KOH-doped PBI/CNT composites have the potential to be used in high temperature alkaline fuel cell applications.

  13. Discharge rates of fluid and heat by thermal springs of the Cascade Range, Washington, Oregon, and northern California

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.; Pringle, M.K.W. )

    1990-11-10

    Fluid and heat discharge rates of thermal springs of the Cascade Range have been determined using the chloride inventory method. Discharge rates of thermal spring groups range from 1 to 120 l/s. Most of the fluid (50%) and heat (61%) are discharged from two hot spring groups in northern Oregon. Total discharge from thermal springs in the Cascade Range of California, Oregon, and Washington is about 340 l/s, which corresponds to about 8.2 {times} 10{sup 4} kJ/s of heat. This does not include hot springs developed on the flanks of Mount St. Helens after the 1980 eruption. The Cascade Range consists of geologically and tectonically distinct segments; rates of convective heat discharge by the thermal springs in these segments correlate with volcanic rock extrusion rates for the last 2 m.y. In Oregon and Washington, many streams without known thermal or mineral springs in their drainage basins also were sampled for chloride and sodium to detect chemical anomalies that might be associated with previously unknown thermal or mineral springs were identified in the streams of the Cascade Range.

  14. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    USGS Publications Warehouse

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P < 0.001; R2 = 0.881) to changes in bed height (BH, cm) over the range 83–165 cm following the relation: (Alkalinity, mg/L) = 123.51 − (3788.76 (BH)). Differences between filtered and non-filtered alkalinity were small(P > 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the

  15. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect

    Rohrs D.T.; Bowman, J.R.

    1980-05-01

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  16. Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity

    NASA Astrophysics Data System (ADS)

    Li, Long; Bonifacie, Magali; Aubaud, Cyril; Crispi, Olivier; Dessert, Céline; Agrinier, Pierre

    2015-03-01

    The evaluation of the status of shallow magma body (i.e., from the final intrusion stage, to quiescence, and back to activity), one of the key parameters that trigger and sustain volcanic eruptions, has been challenging in modern volcanology. Among volatile tracers, chlorine (Cl) uniquely exsolves at shallow depths and is highly hydrophilic. Consequently, Cl enrichment in volcanic gases and thermal springs has been proposed as a sign for shallow magmatic activities. However, such enrichment could also result from numerous other processes (e.g., water evaporation, dissolution of old chloride mineral deposits, seawater contamination) that are unrelated to magmatic activity. Here, based on stable isotope compositions of chloride and dissolved inorganic carbon, as well as previous published 3He/4He data obtained in thermal springs from two recently erupted volcanoes (La Soufrière in Guadeloupe and Montagne Pelée in Martinique) in the Lesser Antilles Arc, we show that the magmatic Cl efficiently trapped in thermal springs displays negative δ37Cl values (≤ - 0.65 ‰), consistent with a slab-derived origin but distinct from the isotope compositions of chloride in surface reservoirs (e.g. seawater, local meteoric waters, rivers and cold springs) displaying common δ37Cl values of around 0‰. Using this δ37Cl difference as an index of magmatic Cl, we further examined thermal spring samples including a 30-year archive from two thermal springs in Guadeloupe covering samples from its last eruption in 1976-1977 to 2008 and an island-wide sampling event in Martinique in 2008 to trace the evolution of magmatic Cl in the volcanic hydrothermal systems over time. The results show that magmatic Cl can be rapidly flushed out of the hydrothermal systems within <30 to 80 years after the eruption, much quicker than other volatile tracers such as CO2 and noble gases, which can exsolve at greater depths and constantly migrate to the surface. Because arc volcanoes often have well

  17. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia).

    PubMed

    Rozanov, Alexey S; Bryanskaya, Alla V; Malup, Tatiana K; Meshcheryakova, Irina A; Lazareva, Elena V; Taran, Oksana P; Ivanisenko, Timofey V; Ivanisenko, Vladimir A; Zhmodik, Sergey M; Kolchanov, Nikolay A; Peltek, Sergey E

    2014-01-01

    Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed.

  18. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  19. Microbial Diversity and Biochemical Potential Encoded by Thermal Spring Metagenomes Derived from the Kamchatka Peninsula

    PubMed Central

    Wemheuer, Bernd; Taube, Robert; Akyol, Pinar; Wemheuer, Franziska; Daniel, Rolf

    2013-01-01

    Volcanic regions contain a variety of environments suitable for extremophiles. This study was focused on assessing and exploiting the prokaryotic diversity of two microbial communities derived from different Kamchatkian thermal springs by metagenomic approaches. Samples were taken from a thermoacidophilic spring near the Mutnovsky Volcano and from a thermophilic spring in the Uzon Caldera. Environmental DNA for metagenomic analysis was isolated from collected sediment samples by direct cell lysis. The prokaryotic community composition was examined by analysis of archaeal and bacterial 16S rRNA genes. A total number of 1235 16S rRNA gene sequences were obtained and used for taxonomic classification. Most abundant in the samples were members of Thaumarchaeota, Thermotogae, and Proteobacteria. The Mutnovsky hot spring was dominated by the Terrestrial Hot Spring Group, Kosmotoga, and Acidithiobacillus. The Uzon Caldera was dominated by uncultured members of the Miscellaneous Crenarchaeotic Group and Enterobacteriaceae. The remaining 16S rRNA gene sequences belonged to the Aquificae, Dictyoglomi, Euryarchaeota, Korarchaeota, Thermodesulfobacteria, Firmicutes, and some potential new phyla. In addition, the recovered DNA was used for generation of metagenomic libraries, which were subsequently mined for genes encoding lipolytic and proteolytic enzymes. Three novel genes conferring lipolytic and one gene conferring proteolytic activity were identified. PMID:23533327

  20. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia)

    PubMed Central

    2014-01-01

    Background Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Results Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. Conclusions In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed. PMID:25563397

  1. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation.

    PubMed

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L; Steele, Andrew

    2013-10-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  2. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece.

    PubMed

    Bravakos, Panos; Kotoulas, Georgios; Skaraki, Katerina; Pantazidou, Adriani; Economou-Amilli, Athena

    2016-05-01

    Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Complex Morphological Variability in Complex Evaporitic Systems: Thermal Spring Snails from the Chihuahuan Desert, Mexico

    NASA Astrophysics Data System (ADS)

    Tang, Carol M.; Roopnarine, Peter D.

    2003-11-01

    Thermal springs in evaporitic environments provide a unique biological laboratory in which to study natural selection and evolutionary diversification. These isolated systems may be an analogue for conditions in early Earth or Mars history. One modern example of such a system can be found in the Chihuahuan Desert of north-central Mexico. The Cuatro Cienegas basin hosts a series of thermal springs that form a complex of aquatic ecosystems under a range of environmental conditions. Using landmark-based morphometric techniques, we have quantified an unusually high level of morphological variability in the endemic gastropod Mexipyrgus from Cuatro Cienegas. The differentiation is seen both within and between hydrological systems. Our results suggest that this type of environmental system is capable of producing and maintaining a high level of morphological diversity on small spatial scales, and thus should be a target for future astrobiological research.

  4. Numerical modeling of the spring thermal bar and pollutant transport in a large lake

    NASA Astrophysics Data System (ADS)

    Tsydenov, Bair O.; Kay, Anthony; Starchenko, Alexander V.

    2016-08-01

    The spring riverine thermal bar phenomenon is investigated numerically on an example of Lake Baikal, and the spread of pollutants coming from the Selenga River is forecast using the 2.5 D non-hydrostatic model in the Boussinesq approximation. This hydrodynamic model takes into account the diurnal variability of the heat fluxes on the lake surface and the effects of wind and the Earth's rotation. The results of numerical modeling show that the variability of the total heat flux over 24 h plays a significant role in the variation of the thermal bar movement rate that contributes to the rapid mixing of impurities entering with river water.

  5. Relationships of anion-exchange sorption of boron from natural thermal-spring water

    SciTech Connect

    Meichik, N.R.; Leikin, Yu.A.; Antipov, M.A.; Goryacheva, N.V.; Klimenko, I.S.; Medvedev, S.A.; Galitskaya, N.B.

    1988-02-20

    Boric acid is one of the characteristic components of Kamchatka waters. Extraction of boron from thermal waters for production of potable water is closely linked with current problems of multiproduct utilization of resources and protection of the environment. The authors have investigated the possibilities of using ion exchange for extraction of boron from natural waters, and studied the sorption relationships by a dynamic method. They synthesized a macroporous anion-exchanger based on a copolymer of styrene with divinylbenzene, containing N-methylglucamine groups (ANB-11 resin). ANB-11 resin had high sorption capacity for boron anions during sorption from thermal-spring water. The experimental data were described by Elkins equation.

  6. Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes

    PubMed Central

    Colman, Daniel R.; Jay, Zackary J.; Inskeep, William P.; Jennings, Ryan deM.; Maas, Kendra R.; Rusch, Douglas B.; Takacs-Vesbach, Cristina D.

    2016-01-01

    Thermal spring ecosystems are a valuable resource for the discovery of novel hyperthermophilic Bacteria and Archaea, and harbor deeply-branching lineages that provide insight regarding the nature of early microbial life. We characterized bacterial populations in two circumneutral (pH ~8) Yellowstone National Park thermal (T ~80°C) spring filamentous “streamer” communities using random metagenomic DNA sequence to investigate the metabolic potential of these novel populations. Four de novo assemblies representing three abundant, deeply-branching bacterial phylotypes were recovered. Analysis of conserved phylogenetic marker genes indicated that two of the phylotypes represent separate groups of an uncharacterized phylum (for which we propose the candidate phylum name “Pyropristinus”). The third new phylotype falls within the proposed Calescamantes phylum. Metabolic reconstructions of the “Pyropristinus” and Calescamantes populations showed that these organisms appear to be chemoorganoheterotrophs and have the genomic potential for aerobic respiration and oxidative phosphorylation via archaeal-like V-type, and bacterial F-type ATPases, respectively. A survey of similar phylotypes (>97% nt identity) within 16S rRNA gene datasets suggest that the newly described organisms are restricted to terrestrial thermal springs ranging from 70 to 90°C and pH values of ~7–9. The characterization of these lineages is important for understanding the diversity of deeply-branching bacterial phyla, and their functional role in high-temperature circumneutral “streamer” communities. PMID:27014227

  7. LC method for determination of prasugrel and mass spectrometry detection for thermal and alkaline degradation products.

    PubMed

    Rigobello, C; Barden, A T; Steppe, M

    2015-08-01

    A stability-indicating RP-LC method for the determination of prasugrel in tablets was developed and validated. Stress testing of prasugrel was carried out in accordance with ICH guidelines, where the drug was submitted to acidic and basic hydrolysis, oxidative, thermal and photolytic conditions. Prasugrel was unstable under all the conditions and the degradations products were analyzed by HPLC-UV. Furthermore, two main degradation products found under alkaline and thermal conditions were investigated by LC-MS. Based on the fragmentation patterns, two products resulted from hydrolysis of the acetate ester moiety of prasugrel were observed. Due the chemical equilibrium, tautomerism occurs between the ketone and alcohol functions justifying the similar molecular weight and fragment pattern obtained in degradation products analysis. Successful separation was achieved on a RP-18 octadecyl silane column using acetonitrile and triethylamine 0.5% mixture (50:50, v/v) as the mobile phase at 25 degrees C. The flow rate was 1.0 mL/min and the detector wavelength was 263 nm. The method proposed in this work was successfully applied to quality control of prasugrel and contribute to stability assessment of pharmaceutical products containing this drug.

  8. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  9. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  10. Effect of osmotic, alkaline, acid or thermal stresses on the growth and inhibition of Listeria monocytogenes.

    PubMed

    Vasseur, C; Baverel, L; Hébraud, M; Labadie, J

    1999-03-01

    Five strains of Listeria monocytogenes (a, b, c, d and e) isolated from industrial plants have been subjected to different osmotic, alkaline, acid or thermal stresses. The effects of these treatments on lag-phase (L) and growth rate (mu) of cells in mid-log phase have been followed using an automated optical density monitoring system. Increasing the osmotic pressure by the addition of different amounts of NaCl increased the lag phase and decreased the growth rate. The same phenomena were observed after decreasing the pH of the medium to 5.8, 5.6 or 5.4 by addition of acetic, lactic or hydrochloric acids. The inhibitory effect was: acetic acid > lactic acid > hydrochloric acid. The addition of NaOH to attain pH values of 9.5, 10.0, 10.5 or 11.0 in the medium produced a dramatic increase of the lag phase at pH 10.5 and 11. Growth rates were also decreased while the maximal population increased with high pH values. These effects varied according to strains. Strains d and e were the most resistant to acidic and alkaline stresses, and e was the most affected by the addition of NaCl. A cold shock of 30 min at 0 degree C had limited effects on growth parameters. On the other hand, hyperthermal shocks (55 or 63 degrees C, 30 min) led to similar increased lag phases and to significant increases of the maximal population in all five strains.

  11. Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.

    1978-01-01

    Mammoth Hot Springs, located about 8 km inside the north entrance to Yellowstone National Park, consists of nearly 100 hot springs scattered over a score of steplike travertine terraces. The travertine deposits range in age from late Pleistocene to the present. Sporadic records of hot-spring activity suggest that most of the current major springs have been intermittently active since at least 1871. Water moving along the Norris-Mammoth fault zone is heated by partly molten magma and enriched in calcium and bicarbonate. Upon reaching Mammoth this thermal water (temperature about 73?C) moves up through the old terrace deposits along preexisting vertical linear planes of weakness. As the water reaches the surface, pressure is released, carbon dioxide escapes as a gas, and bicarbonate in the water is partitioned into more carbon dioxide and carbonate; the carbonate then combines with calcium to precipitate calcium carbonate, forming travertine. The travertine usually precipitates rapidly from solution and is lightweight and porous; however, dense travertine, such as is found in core from the 113-m research drill hole Y-10 located on one of the upper terraces, forms beneath the surface by deposition in the pore spaces of older deposits. The terraces abound with unusual hot-spring deposits such as terracettes, cones, and fissure ridges. Semicircular ledges (ranging in width from about 0.3 m to as much as 2.5 m), called terracettes, formed by deposition of travertine around slowly rising pools. Complex steplike arrangements of terracettes have developed along runoff channels of some hot springs. A few hot springs have deposited cone-shaped mounds, most of which reach heights of 1-2 m before becoming dormant. However, one long-inactive cone named Liberty Cap attained a height of about 14 m. Fissure ridges are linear mounds of travertine deposited from numerous hot-spring vents along a medial fracture zone. The ridges range in height from about 1 to 6 m and in length from a

  12. Geochemistry of hydrothermal alteration at the Roosevelt hot springs thermal area, Utah

    NASA Astrophysics Data System (ADS)

    Parry, W. T.; Ballantyne, J. M.; Bryant, N. L.; Dedolph, R. E.

    1980-01-01

    Hot spring deposits in the Roosevelt thermal area consist of opaline sinter and sintercemented alluvium. Alluvium, plutonic rocks, and amphibolite-facies gneiss have been altered by acidsulfate water to alunite and opal at the surface, and alunite, kaolinite, montmorillonite, and muscovite to a depth of 70 m. Marcasite, pyrite, chlorite, and calcite occur below the water table at about 30 m. The thermal water is dilute (ionic strength 0.1-0.2) sodium-chloride brine. The spring water now contains 10 times as much Ca, 100 times as much Mg, and up to 2.5 times as much SO 4 as the deep water. Although the present day spring temperature is 25°C, the temperature was 85°C in 1950. A model for development of the observed alteration is supported by observation and irreversible mass transfer calculations. Hydrothermal fluid convectively rises along major fractures. Water cools by conduction and steam separation, and the pH rises due to carbon dioxide escape. At the surface, hydrogen and sulfate ions are produced by oxidation of H 2S. The low pH water percolates downward and reacts with feldspar in the rocks to produce alunite, kaolinite, montmorillonite, and muscovite as hydrogen ion is consumed.

  13. The plumbing system of the Pagosa thermal Springs, Colorado: Application of geologically constrained geophysical inversion and data fusion

    NASA Astrophysics Data System (ADS)

    Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.

    2015-06-01

    Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.

  14. Hydrogeochemical characteristics and genetic implications of Edipsos thermal springs, north Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Kelepertsis, Akindynos; Tziritis, Evangelos; Kelepertzis, Eustratios; Leontakianakos, Giorgos; Pallas, Kostas

    2009-09-01

    Edipsos area, situated in northern Euboea, has been well known since ancient times for the existence of thermal springs. In order to assess the hydrogeochemical conditions, thermal and cold water samples were collected and analyzed by ICP method for major and trace elements. The results revealed the direct impact of seawater, a process which is strongly related to the major tectonic structures of the area. Seawater impact was confirmed by the Cl/Br and Na/Cl ionic ratios, as well as from statistical processing and graphical interpretation of the analytical results, which classified the sampled waters into three groups (two for cold waters and one for the thermal ones). Trace element ranges for thermal waters are: As (44-84 ppb), Pb (23-154 ppb), Ag (1-2 ppb), Mn (31-680 ppb), Cu (61-97 ppb), Cs (66-244 ppb), Se (0-76 ppb), Li (732-3269 ppb), Fe (0-1126 ppb), Sr (14000-34100 ppb), B (4300-9600 ppb). Compared with the chemical composition of other thermal springs from the Hellenic Volcanic Arc, Edipsos thermal waters are enriched in Ca2+, Na+, Cl-, SO4 2-, Li, B and K+, reflecting the influence from seawater. Cold waters are free of heavy metals compared with other natural waters and are characterized by good quality based on the major element chemistry. Finally, several geothermometers were applied in order to assess the reservoir temperatures, but none of them appear to be applicable, mainly due to the impact of seawater on the initial hydrogeochemistry of the geothermal fluids.

  15. Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology, and inferred paleoecophysiology.

    PubMed

    Channing, Alan; Zamuner, Alba; Edwards, Dianne; Guido, Diego

    2011-04-01

    Dated molecular phylogenies suggest a Cenozoic origin for the crown group of Equisetum. but compression fossil equisetaleans that are morphologically indistinguishable from extant Equisetum and recently discovered anatomically preserved examples strongly suggest an earlier Mesozoic initial diversification. In situ samples of Equisetum thermale sp. nov. from the Upper Jurassic San Agustín hot spring deposit were collected and studied with the use of polished blocks, thin sections, and light microscopy. Equisetum thermale exhibits all the morphological and anatomical characteristics of the extant crown group Equisetum. It shows a mixture of features present in the two extant subgenera, e.g., superficial stomata typical of subgenus Equisetum allied with infrequently ramifying stems typical of subgenus Hippochaete. This appears to ally E. thermale with the least derived extant species in the genus Equisetum bogotense (sister species to the two subgenera). Its association of hydromorphic and xeromorphic characters allowed it to grow as an emergent aquatic in physically and chemically stressed geothermally influenced wetlands, where it formed dense monospecific stands. Equisetum thermale, because it is preserved in situ with intact anatomy, provides clear paleoecological, biological, plus inferred paleoecophysiological evidence of adaptations known in extant species. As the earliest unequivocal member of the genus, E. thermale supports the hypothesis of a Mesozoic origin. Its inferred tolerance of a similar range of stresses (e.g., high salinity, alkalinity, and heavy metal concentrations) to that seen in extant Equisetum suggests early evolution and subsequent maintenance of ecophysiological innovations in the genus.

  16. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica.

    PubMed

    Sun, Yong-Chang; Wen, Jia-Long; Xu, Feng; Sun, Run-Cang

    2011-05-01

    Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-D-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1→4)-linked d-xylopyranosyl residues, having ramifications of α-L-arabinofuranose and 4-O-methyl-D-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400°C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.

  17. Hydrologic and chemical data for selected thermal-water wells and springs in the Indian Bathtub area, Owyhee County, southwestern Idaho

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.

    1989-01-01

    This report presents data collected during January through September 1989 from 86 thermal-water wells and 5 springs in the Indian Bathtub area, southwestern Idaho. The data include well and spring locations, well-construction and water level information, hydrographs of water levels in 9 wells, hydrographs of discharges in 4 springs, and chemical and isotopic analysis of water from 33 thermal-water wells and 5 springs. These data were collected as part of a continuing study to determine the cause or causes of decreased discharge at Indian Bathtub Spring and other thermal springs along Hot Creek.

  18. Changes in Quinone Profiles of Hot Spring Microbial Mats with a Thermal Gradient

    PubMed Central

    Hiraishi, Akira; Umezawa, Taichi; Yamamoto, Hiroyuki; Kato, Kenji; Maki, Yonosuke

    1999-01-01

    The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints. PMID:9872780

  19. Natural radioactivity in bottled mineral and thermal spring waters of Turkey.

    PubMed

    Taskin, Halim; Asliyuksek, Hizir; Bozkurt, Ahmet; Kam, Erol

    2013-12-01

    Radiological assessment of bottled mineral waters and thermal spring waters collected from various natural sources in Turkey was carried out using gross alpha and gross beta counting techniques. For 40 samples of bottled mineral water, the mean gross alpha activity concentration was determined to be 164 mBq l(-1) (min.:7 mBq l(-1); max.: 3042 mBq l(-1)), whereas the gross beta activity concentration was found to be 555 mBq l(-1) (min.: 21 mBq l(-1); max.: 4845 mBq l(-1)). For 24 samples of thermal spring water, the mean gross alpha activity concentration was obtained to be 663 mBq l(-1) (min.: 18 mBq l(-1); max.: 3070 mBq l(-1)). The gross beta activity concentration for these samples, on the other hand, was determined to be 3314 mBq l(-1) (min.: 79 mBq l(-1); max.: 17955 mBq l(-1)). These values lead to the average annual effective doses of 313 µSv for mineral waters and 1805 µSv for thermal spa waters, which are found to be higher than those recommended for drinking waters by the World Health Organization. It should be noted, however, that one will get less dose from mineral waters since the daily consumption is much lower than 2 l that these calculations assume.

  20. Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars.

    PubMed

    Walter, M R; Des Marais, D J

    1993-01-01

    Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring

  1. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2015-04-01

    Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+-Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+-Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd-Ofelt intensity parameter Ω2 is 5.47 × 10-20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2 → 4I15/2 are 30 nm and 6.80 × 10-21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.

  2. Division-specific differences in bacterial community assembly of two alkaline hot spring ecosystems from Yellowstone National Park.

    PubMed

    Weltzer, Michael L; Miller, Scott R

    2013-04-01

    A fundamental issue in ecology is whether communities are random assemblages or, alternatively, whether there are rules that determine which combinations of taxa can co-occur. For microbial systems, in particular, the question of whether taxonomic groups exhibit differences in community organization remains unresolved but is critical for our understanding of community structure and function. Here, we used presence-absence matrices derived from bar-coded pyrosequencing data to evaluate the assembly patterns of eight bacterial divisions distributed along two Yellowstone National Park hot spring outflow channels. Four divisions (Cyanobacteria, Chloroflexi, Acidobacteria, and Cytophaga-Flavobacterium-Bacteroides) exhibited less co-occurrence than expected by chance, with phototrophic taxa showing the strongest evidence for nonrandom community structure. We propose that both differences in environmental tolerance and competitive interactions within divisions contribute to these nonrandom assembly patterns. The higher degree of nonrandom structure observed for phototrophic taxa compared with the other divisions may be due in part to greater overlap in resource usage, as has been previously proposed for plant communities.

  3. Diversification of Bacterial Community Composition along a Temperature Gradient at a Thermal Spring

    PubMed Central

    Everroad, R. Craig; Otaki, Hiroyo; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    To better understand the biogeography and relationship between temperature and community structure within microbial mats, the bacterial diversity of mats at a slightly alkaline, sulfide-containing hot spring was explored. Microbial mats that developed at temperatures between 75–52°C were collected from an area of approximately 1 m2 in Nakabusa, Nagano, Japan. Bacterial 16S rRNA genes from these samples were examined by terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. T-RFLP profiles revealed 66 unique fragments (T-RFs). Based on total T-RFs observed in environmental profiles and clone libraries, a temperature effect on diversity was determined, with complexity in the community increasing as temperature decreased. The T-RF pattern indicated four distinct community assemblages related to temperature. Members of the Aquificales and particularly the sulfuroxidizing bacterium Sulfurihydrogenibium were present at all temperatures and were the dominant component of mats taken at 75–67°C. Sulfide oxidation, which persisted throughout the temperature gradient, was the presumed dominant pathway of primary production above 67°C. As temperature decreased, successive additions of anoxygenic and oxygenic phototrophs increased primary productivity, allowing for diversification of the community. PMID:22673306

  4. Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes.

    PubMed

    López-López, Olalla; Knapik, Kamila; Cerdán, Maria-Esperanza; González-Siso, María-Isabel

    2015-01-01

    A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH = 8.2) located in Ourense (Spain). Metagenomic sequencing of the fosmid library allowed the assembly of 9722 contigs ranging in size from 500 to 56,677 bp and spanning ~18 Mbp. 23,207 ORFs (Open Reading Frames) were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The six most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae, and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species "Candidatus Caldiarchaeum subterraneum." Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases, and lipases, was also revealed in the metagenomic library. Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 min at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5 to 8.

  5. Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes

    PubMed Central

    López-López, Olalla; Knapik, Kamila; Cerdán, Maria-Esperanza; González-Siso, María-Isabel

    2015-01-01

    A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH = 8.2) located in Ourense (Spain). Metagenomic sequencing of the fosmid library allowed the assembly of 9722 contigs ranging in size from 500 to 56,677 bp and spanning ~18 Mbp. 23,207 ORFs (Open Reading Frames) were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The six most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae, and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species “Candidatus Caldiarchaeum subterraneum.” Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases, and lipases, was also revealed in the metagenomic library. Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 min at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5 to 8. PMID:26635759

  6. Sulfur-oxidizing chemolithotrophic proteobacteria dominate the microbiota in high arctic thermal springs on Svalbard.

    PubMed

    Reigstad, Laila Johanne; Jorgensen, Steffen Leth; Lauritzen, Stein-Erik; Schleper, Christa; Urich, Tim

    2011-09-01

    The thermal springs Trollosen and Fisosen, located on the High Arctic archipelago Svalbard, discharge saline groundwaters rich in hydrogen sulfide and ammonium through a thick layer of permafrost. Large amounts of biomass that consist of filamentous microorganisms containing sulfur granules, as analyzed with energy dispersive X-ray analysis, were found in the outflow. Prokaryotic 16S rRNA gene libraries and quantitative polymerase chain reaction (qPCR) analyses reported bacteria of the γ- and ɛ-proteobacterial classes as the dominant organisms in the filaments and the planktonic fractions, closely related to known chemolithoautotrophic sulfur oxidizers (Thiotrix and Sulfurovum). Archaea comprised ∼1% of the microbial community, with the majority of sequences affiliated with the Thaumarchaeota. Archaeal and bacterial genes coding for a subunit of the enzyme ammonia monooxygenase (amoA) were detected, as well as 16S rRNA genes of Nitrospira, all of which is indicative of potential complete nitrification in both springs. 16S rRNA sequences related to methanogens and methanotrophs were detected as well. This study provides evidence that the microbial communities in Trollosen and Fisosen are sustained by chemolithotrophy, mainly through the oxidation of reduced sulfur compounds, and that ammonium and methane might be minor, additional sources of energy and carbon.

  7. Investigation of a putative nitrogen cycle in a subsurface radioactive thermal spring

    NASA Astrophysics Data System (ADS)

    Gerbl, Friedrich; Breitfuss, Angelika; Weidler, Gerhard; Stan-Lotter, Helga

    2010-05-01

    Background: Previous studies on the microbial diversity [1] of the slightly radioactive thermal springs near Bad Gastein, Salzburg, Austria, suggested the occurrence of a nitrogen cycle in this subterranean environment. Microcosm experiments were performed to prove if nitrogen compounds may be used as energy sources for certain members of the microbial community of this spring Methods: 2 x 25 l of thermal mineral water were sampled and filtered through a 0.22 µm Stericup (Millipore). Filters were excised and used as inocula for one microcosm. Stable isotope probing (SIP), was performed by using labeled nitrogen compounds to identify microorganisms, which were able to use nitrogen as the only energy source. 2 x 35 ml of natural grown biofilm were collected and used also as inocula for microcosms. Incubation was carried out as batch cultures in the dark at 30 °C or 40 °C, respectively. Two different types of media were used for incubation. Ammonium, nitrite and nitrate were measured 3-4 times a week. PH-value was also measured and adjusted to ca. 7.5 - 7.7 if necessary. DNA extraction was performed after 3 and 8 weeks of incubation, followed by an isopycnic centrifugation step. Clone libraries were performed only from microcosms incubated at 40 °C. To compare putative differences between the microbial communities at 30 °C with those at 40 °C, as well as the two different media, DGGE analyses were carried out. Results: A continuous decrease of the initial amount of ammonium was detected while the amounts of nitrite and nitrate increased simultaneously. No alterations of the initial amount of ammonium and nitrite or nitrate, could be detected with negative controls. Mass spectrometric measurements demonstrated that the extracted DNA was highly labeled. Phylogenetic analysis of DNA bands obtained from CsCl gradients led to differences in archaeal and bacterial communities of microcosms, which may reflect the different composition of media. Two of the archaeal

  8. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring.

    PubMed

    Pontin, A; Bonaldi, M; Borrielli, A; Cataliotti, F S; Marino, F; Prodi, G A; Serra, E; Marin, F

    2014-01-17

    We report the confinement of an optomechanical micro-oscillator in a squeezed thermal state, obtained by parametric modulation of the optical spring. We propose and implement an experimental scheme based on parametric feedback control of the oscillator, which stabilizes the amplified quadrature while leaving the orthogonal one unaffected. This technique allows us to surpass the -3  dB limit in the noise reduction, associated with parametric resonance, with a best experimental result of -7.4  dB. While the present experiment is in the classical regime, in a moderately cooled system our technique may allow squeezing of a macroscopic mechanical oscillator below the zero-point motion.

  9. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone.

    PubMed

    Venkatesan, Jayachandran; Qian, Zhong Ji; Ryu, BoMi; Thomas, Noel Vinay; Kim, Se Kwon

    2011-06-01

    In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 µm, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.

  10. Determination of spatial distribution and hydrochemistry of subaqueous thermal springs in the lacustrine and nearshore environments in southwest Anatolia

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Kurtuluş, Bedri; Avşar, Ulaş; Arslan, Şebnem; Güleç, Nilgün

    2013-04-01

    Although submarine and sublacustrine hydrothermal systems have not been studied as much as on-land geothermal resources, recent technological developments attract many researchers to undertake studies on subaqueous hydrothermal systems. Such studies are relatively common elsewhere in the world, yet the occurrences of subaqueous thermal springs have not been sufficiently investigated in Turkey. A project, that has recently received funding from The Scientific and Technological Research Council of Turkey (TUBITAK) aims to determine the spatial distribution and hydrogeochemical properties of the subaqueous thermal springs at the bottom of Fethiye-Göcek Bay, Köyceǧiz, Alagöl, Sülüngür, Kocagöl lakes that are located in a geothermally active area, Muǧla Province (SW Turkey).The expected outcomes of this study are the determination of (1) the exact locations of the subaqueous springs, (2) the hydrogeochemical and conceptual modeling of the study area through the geochemistry of the thermal fluids (3) the estimated reservoir temperatures of the hydrothermal systems, (4) the origin of the subaqueous thermal waters by means of their stable isotope composition and noble gas geochemistry (5) the contamination in the sea and lake waters, (6) effects of the subaqueous thermal springs on the mineralogy and geochemistry of the bottom sediments. The results, knowledge and experiences to be gained during this project are expected to considerably contribute to the existing on-land hydrogeochemical conceptual modeling studies by integrating the information obtained from subaqueous thermal springs. This will eventually lead to produce more precise models thereafter. In addition to its contribution to the geothermal exploration methods, this study will also provide valuable preliminary data to possible paleolimnological, paleoceanographical and paleoclimatic investigations in the near future.

  11. Diversity and morphological structure of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (Budapest, Hungary).

    PubMed

    Anda, Dóra; Büki, Gabriella; Krett, Gergely; Makk, Judit; Márialigeti, Károly; Erőss, Anita; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2014-09-01

    The Buda Thermal Karst System is an active hypogenic karst area that offers possibility for the analysis of biogenic cave formation. The aim of the present study was to gain information about morphological structure and genetic diversity of bacterial communities inhabiting the Diana-Hygieia Thermal Spring (DHTS). Using scanning electron microscopy, metal accumulating and unusual reticulated filaments were detected in large numbers in the DHTS biofilm samples. The phyla Actinobacteria, Firmicutes and Proteobacteria were represented by both bacterial strains and molecular clones but phyla Acidobacteria, Chlorobi, Chlorofexi, Gemmatimonadetes, Nitrospirae and Thermotogae only by molecular clones which showed the highest similarity to uncultured clone sequences originating from different environmental sources. The biofilm bacterial community proved to be somewhat more diverse than that of the water sample and the distribution of the dominant bacterial clones was different between biofilm and water samples. The majority of biofilm clones was affiliated with Deltaproteobacteria and Nitrospirae while the largest group of water clones was related to Betaproteobacteria. Considering the metabolic properties of known species related to the strains and molecular clones from DHTS, it can be assumed that these bacterial communities may participate in the local sulphur and iron cycles, and contribute to biogenic cave formation.

  12. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring.

    PubMed

    Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B

    2017-05-01

    Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40-60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats.

  13. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  14. Draft Genome Sequence of Geobacillus sp. Isolate T6, a Thermophilic Bacterium Collected from a Thermal Spring in Argentina

    PubMed Central

    Ortiz, Elio M.; Berretta, Marcelo F.; Benintende, Graciela B.; Zandomeni, Rubén O.

    2015-01-01

    Geobacillus sp. isolate T6 was collected from a thermal spring in Salta, Argentina. The draft genome sequence (3,767,773 bp) of this isolate is represented by one major scaffold of 3,46 Mbp, a second one of 207 kbp, and 20 scaffolds of <13 kbp. The assembled sequences revealed 3,919 protein-coding genes. PMID:26184933

  15. Effect of flour polymeric proteins on dough thermal properties and breadmaking characteristics for hard red spring wheat genotypes

    USDA-ARS?s Scientific Manuscript database

    The aim of this research was to investigate the effect of variation of flour polymeric proteins on rheological properties of dough under continuous mixing and thermal treatment for hard red spring (HRS) wheat genotypes grown in North Dakota, USA. Flour polymeric proteins were analyzed by size exclus...

  16. Effect of thermal-alkaline pretreatment on the anaerobic digestion of streptomycin bacterial residues for methane production.

    PubMed

    Zhong, Weizhang; Li, Zaixing; Yang, Jingliang; Liu, Chun; Tian, Baokuo; Wang, Yongjun; Chen, Ping

    2014-01-01

    The anaerobic digestion of streptomycin bacterial residues, solutions with hazardous waste treatments and bioenergy recovery, was tested in laboratory-scale digesters at 35°C at various organic loading rates (OLRs). The methane production and biomass digestion were efficient at OLRs below 2.33 gVS L(-1) d(-1) but were deteriorated as OLR increased because of the increased total ammonia nitrogen (TAN) concentration from cell protein decay. The thermal-alkaline pretreatment with 0.10 NaOH/TS at 70°C for 2 h significantly improved the digestion performance. With the thermal-alkaline pretreatment, the volumetric reactor productivity and specific methane yield of the pretreated streptomycin bacterial residue increased by 22.08-27.08% compared with those of the unpretreated streptomycin bacterial residue at an OLR of 2.33 gVS L(-1) d(-1). The volatile solid removal was 64.09%, with less accumulation of TAN and total volatile fatty acid.

  17. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Ormachea Muñoz, Mauricio; Bhattacharya, Prosun; Sracek, Ondra; Ramos Ramos, Oswaldo; Quintanilla Aguirre, Jorge; Bundschuh, Jochen; Maity, Jyoti Prakash

    2015-07-01

    Numerous hot springs and fumaroles occur along the Andes Mountains, in the Bolivian Altiplano, where people use thermal springs for recreational purposes as pools, baths and also for consumption as drinking water and irrigation once it is mixed with natural surface waters; most of these thermal springs emerge from earth surface and flow naturally into the rivers streams which drain further into the Poopó Lake. Physicochemical characteristics of the thermal water samples showed pH from 6.3 to 8.3 with an average of 7.0, redox potential from +106 to +204 mV with an average of +172 mV, temperatures from 40 to 75 °C with an average of 56 °C and high electrical conductivity ranging from 1.8 to 75 mS/cm and averaged 13 mS/cm. Predominant major ions are Na+ and Cl- and the principal water types are 37.5% Na-Cl type and 37.5% Na-Cl-HCO3 type. Arsenic concentrations ranged from 7.8 to 65.3 μg/L and arsenic speciation indicate the predominance of As(III) species. Sediments collected from the outlets of thermal waters show high iron content, and ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic attenuation by adsorption/co-precipitation processes. Arsenic concentrations in cold water samples from shallow aquifers are higher than those in thermal springs (range < 5.6-233.2 μg/L), it is likely that thermal water discharge is not the main source of high arsenic content in the shallow aquifer as they are very immature and may only have a small component corresponding to the deep geothermal reservoir. As people use both thermal waters and cold waters for consumption, there is a high risk for arsenic exposure in the area.

  18. Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia's hot springs

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Lin, Xuezheng; Huang, Xiaohang; Zheng, Li; Zilda, Dewi Seswita

    2012-06-01

    A total of 69 strains of thermophilic bacteria were isolated from water, soil and sediment samples from three Indonesia's hot spring areas (Pantai cermin, Kalianda and Banyu wedang) by using Minimal Synthetic Medium (MSM). The extreme thermophile Brevibacillus sp. PLI-1 was found to produce extracellular thermophilic alkaline protease with optimal activity at 70° and pH 8.0-9.0. The molecular weight of the protease was estimated to be around 56 kD by SDS-PAGE. The maximum activity of the protease was 26.54 U mL-1. The protease activity did not decrease after 30 min and still retained more than 70% of relative activity after 60 min at 70°C and pH 8.0. The ion Mg2+ was found to promote protease activity at both low and high concentrations, whereas Cu2+ and Zn2+ could almost completely inhibit the activity. Divalent cation chelator EDTA inhibited the enzyme activity by 55.06% ± 0.27%, while the inhibition caused by PMSF, Leupeptin, Pepstain A and Benzamidine were 66.78% ± 3.25%, 52.37% ± 0.25%, 62.47% ± 2.96% and 50.99% ± 0.24%, respectively. Based on these observations, the enzyme activity was conspicuously sensitive to the serine and cysteine protease inhibitors. All these results indicated that the protease isolated from the strain PLI-1 was a thermophilic protease and had a high-temperature stability and a pH stability.

  19. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  20. A comparative ToF-SIMS and GC—MS analysis of phototrophic communities collected from an alkaline silica-depositing hot spring

    DOE PAGES

    Siljestrom, S.; Parenteau, M. N.; Jahnke, L. L.; ...

    2017-04-03

    One of few techniques that is able to spatially resolve chemical data, including organic molecules, to morphological features in modern and ancient geological samples, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). The ability to connect chemical data to morphology is key for interpreting the biogenicity of preserved remains in ancient samples. However, due to the lack of reference data for geologically relevant samples and the ease with which samples can be contaminated, ToF-SIMS data may be difficult to interpret. In this project, we aimed to build a ToF-SIMS spectral database by performing parallel ToF-SIMS and gas chromatography–mass spectrometry (GC–MS) analysesmore » of extant photosynthetic microbial communities collected from an alkaline silica-depositing hot spring in Yellowstone National Park, USA. We built the library by analyzing samples of increasing complexity: pure lipid standards commonly found in thermophilic phototrophs, solvent extracts of specific lipid fractions, total lipid extracts, pure cultures of dominant phototrophic community members, and unsilicified phototrophic streamer communities. The results showed that important lipids and pigments originating from phototrophs were detected by ToF-SIMS (e.g., wax esters, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sufloquinovosyldiaglycerol, alkanes, etc.) in the streamer lipid extracts. Many of the lipids were also detected in situ in the unsilicified streamer, and could even be spatially resolved to individual cells within the streamer community. Together with the ToF-SIMS database, this mapping ability will be used to further explore other microbial mats and their fossilized counterparts in the geological record. This is likely to expand the geochemical understanding of these types of samples.« less

  1. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    NASA Astrophysics Data System (ADS)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  2. Crystallization and alkaline hydrolysis of poly(3- hydroxybutyrate) films probed by thermal analysis and infrared spectroscopy.

    PubMed

    Tapadiya, Asish; Vasanthan, Nadarajah

    2017-09-01

    Poly(3-hydroxybutyrate) (PHB) is a microbially synthesized polymer, which is often purified by alkaline treatment. The effect of microstructure on alkaline hydrolysis has been studied by varying concentration of base and the temperature. The morphologies of PHB films before and after degradation were evaluated using DSC and FTIR spectroscopy. The hydrolytic degradation study by weight loss measurement revealed that the crystallinity of PHB greatly decreased the hydrolytic ability of PHB. The crystallization of PHB and the effect of base on hydrolysis was investigated by time dependent FTIR spectroscopy. The normalized absorbance of 3010cm(-1) and 1183cm(-1) were used to characterize the crystalline and the amorphous phases of PHB. FTIR spectroscopy reveal that the extent of hydrolysis decreased with increasing crystallinity. The crotonic acid was detected as a major product after hydrolysis, confirmed by UV/Visible and proton NMR spectroscopy. The normalized absorbance of the crystalline band at 3010cm(-1) band remained constant, suggesting that there is no significant change in crystallinity with degradation. The normalized amorphous band at 1183cm(-1) showed a decrease in absorbance ratio, suggesting degradation of the amorphous phase. Our data suggests that alkaline hydrolysis depends on concentration of base and the crystallinity of PHB. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The impact of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Shoji, J.; Mishima, T.; Honda, H.; Fujii, M.; Ohsawa, S.; Taniguchi, M.

    2014-12-01

    Beppu is a region with many hot springs in Japan. Some of environmental studies of the rivers in this region (e.g. Kawano et al., 1998, Ohsawa et al., 2008) show that hot spring drainage flows into a river and then flow into the coastal are, and it strongly affects the river water quality. On the other hands, several kinds of tropical fish lives in those rivers (Hiramatu et al., 1995). We can easily have watched those fish there. Although the relationship between hot spring drainage and the fish community had not been investigated in the past in this area, it is easily assumed that thermal energy and materials derived from the hot spring drainage strongly affect the ecosystem. However, the impact of the hot spring drainage on the ecosystem in river and coastal area is not clear. We investigated the river water quality and physical property of six rivers in this region. Additionally, we investigated the fish community near the estuary at two rivers which are strongly affected by the hot spring drainage and not the influence of the hot spring at all. We tried an evaluation about the influence of thermal energy and materials derived from the hot spring drainage on the fish community near the estuary.The results of chemical and physical data in these rivers are as follows. The size of influence of hot spring drainage on river is different every river. In this region, Hirata River is most strongly affected by the hot spring drainage. The water temperature of Hirata River maintains 25 degrees Celsius or more through the year and the concentrations of dissolved component is very high. On the other hand, the water temperature and the concentrations of dissolved component of Hiya Rive is low. These data are similar to data of the upper side of Hirata River. The results of investigating the fish community indicate that Oreochromis niloticus and Rhinogobius giurinus is the dominant species at Hirata River and Hiya River respectively. In addition, there is more the number of

  4. Modeling of dough mixing profile under thermal and non thermal constraint for evalution of breadmaking quality of Hard Spring Wheat flour

    USDA-ARS?s Scientific Manuscript database

    This research was initiated to investigate the association between flour breadmaking traits and mixing characteristics and empirical dough rheological property under thermal stress. Flour samples from 30 hard spring wheat were analyzed by a mixolab standard procedure at optimum water absorptions. Mi...

  5. What's in the mud?: Water-rock-microbe interactions in thermal mudpots and springs

    NASA Astrophysics Data System (ADS)

    Dahlquist, G. R.; Cox, A. D.

    2016-12-01

    Limited aspects of mudpot geochemistry, mineralogy, and microbiology have been previously investigated in a total of 58 mudpots in Yellowstone National Park (YNP), Kamchatka, Iceland, Italy, Valles Caldera, New Mexico, Nicaragua, and the Stefanos hydrothermal crater, Greece (Allen and Day, 1935; Raymahashay, 1968; Shevenell, 1987; Bradley, 2005; Prokofeva, 2006; Bortnikova, 2007; Kaasalainen, 2012; Szynkiewicz, 2012; Hynek, 2013; Pol, 2014; Kanellopoulos, 2016). The composition of 35 mudpots was analyzed for aqueous geochemistry of filtrate and solid phase characterization. Here mudpots are defined as thermal features with viscosities between 5 and 100 centipoise at the approximate temperature of the mudpot, which was measured by an Ofite hand cranked viscometer. Analogous samples of nearby hot springs provide comparisons between mudpots and non-viscous thermal features. Aqueous geochemistry from mudpots was obtained by a novel two-step filtration process consisting of gravity prefiltration by a 100 or 50 micron trace metal cleaned polyethylene bag filter followed by syringe filtration with 0.8/0.2 Supor membrane filters. This filtered sample water was preserved and analyzed for water isotopes, major anions and cations, dissolved organic carbon, and trace metals. Mudpot meter readings show dissolved oxygen values ranging from below the detection limit of 0.156 to 22.5uM, pH values ranging from 1.41 to 6.08, and temperatures ranging from 64.8 to 92.5°C. Mudpots and turbid hot springs exhibited an inverse relationship between dissolved rare earth element concentrations and dissolved calcium concentrations (where calcium concentrations > 0.4mM). Mudpots altered existing surficial geology to form clays, primarily kaolinite, montmorillionite, and alunite. This hydrothermal alteration leaches metals, allowing mudpots to concentrate metals. DNA was extracted from mudpot solids and amplified with eukaryotic, bacterial, archaeal, and universal primers, which yielded only

  6. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  7. Impacts of Discharge Reductions on Physical and Thermal Habitat Characteristics in a Desert Spring, Death Valley National Park, California, USA

    NASA Astrophysics Data System (ADS)

    Morrison, R. R.; Stone, M. C.; Sada, D. W.

    2013-12-01

    Desert springs are biodiversity hotspots that are sensitive to anthropogenic activities. Despite their importance, the effects of human disturbance on desert springs are not well known, and scarce information exists describing the biotic or environmental effects of incrementally increasing disturbance. The objective of this research was to quantify the influence of incremental reductions in discharge on the physical and thermal characteristics of a desert springbrook. This objective was accomplished through a combination of field experiments at Travertine Spring in Death Valley National Park, USA, and hydraulic/temperature modeling in order to: (1) quantify changes in physical characteristics of the springbrook channel and aquatic environment; (2) investigate the effects of reduced spring discharge on seasonal spatial temperature patterns; (3) delineate tipping points that exhibit a non-linear response to decreased flow. The study results supported our predictions that decreased discharge would modify physical habitat characteristics of the springbrook, reduce aquatic habitat volume, increase variability in water temperatures along the springbrook, and reduce springbrook suitability for invertebrates that require stable environments. Field observations revealed a significant relationship between water depth and flow velocity with reduced spring discharge. The rate of change of mean water depths, velocities, and habitat volumes were greatest with only a 10% reduction in spring flow. In addition, a non-linear temperature response to flow reductions was present under all modeled conditions. Generally, water temperature gradients increased as flows were decreased, and the sensitivity of reduced discharge increased with distance from the spring source. The degree of sensitivity was a function of season, which reflects the influence of ambient air temperature and wind in the cooling of the springbrook. These results suggest that habitat for species using stable thermal

  8. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect

    Berry, G.W.; Grim, P.J.; Ikelman, J.A.

    1980-06-01

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  9. Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability.

    PubMed

    Ikegaya, Kazuo; Sugio, Shigetoshi; Murakami, Kohji; Yamanouchi, Kouichi

    2003-01-20

    The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.

  10. "Cold" and "hot" thermal anomalies/events during spring and autumn in Poland

    NASA Astrophysics Data System (ADS)

    Graczyk, Dariusz; Szwed, Małgorzata; Choryński, Adam

    2014-05-01

    Regular air temperatures' changes, as an effect of succession of the seasons, are a part of people's everyday life. When winters and summers are not characterised by extreme thermal conditions, people are well prepared and there are no losses for agriculture and economy or human health consequences observed. A similar situation takes place in case of typical springs and autumns, where normally no too low or too high air temperatures occur. The situation becomes totally different when the air temperature significantly exceeds frames of typical temperature for particular months or seasons. Appearance of winter conditions during months in which they are not expected may lead to losses in different branches of the economy e.g. transport or agriculture. Heat in non-summer months potentially brings less damages for the economy, but it might be a great threat for human health, especially for those with cardiological diseases, and it may result in thermal discomfort. If these conditions last for sufficient period of time, they may cause disorders in plant vegetation cycles. One element of the discussion held on the global warming which has been observed since the half of the twentieth century, is the question of how this effects the occurrence of climatic anomalies. Does it result in an decrease of "cold" thermal anomalies and in an increase of frequency of "hot" anomalies? Or does it increase the occurrence of both types of these events? In this research there will be performed an analysis of the occurrence of conditions typical for winter months, outside the climatic winter (December, January, February) at ten locations in the area of Poland. During the months directly close to this period (November and March) the threshold for winter conditions will be maximum temperature below 0 oC which means occurrence of frost all day long. For other non-summer months the threshold will be mean daily temperature below 0 oC meaning low temperatures during the day, not only morning

  11. Acclimation of killifish to thermal extremes of hot spring: Transcription of gonadal and liver heat shock genes.

    PubMed

    Akbarzadeh, Arash; Leder, Erica H

    2016-01-01

    In this study, we explored the hypothesis that killifish acclimate to thermal extremes through regulation of genes involved in stress and metabolism. We examined the liver and gonadal transcription of heat shock proteins (hsp70, hsp90a, hsp90b), glucokinase (gck), and high mobility group b1 (hmgb1) protein in wild killifish species from hot springs and rivers using quantitative real-time PCR. Moreover, we exposed a river killifish species to a long-term thermal regime of hot spring (37-40°C) and examined the liver transcription of the heat shock genes. Our results showed that hot spring killifish showed a significant, strong upregulation of liver hsp90a. Moreover, the testicular transcript levels of hsp90a, hsp90b, and hsp70 were higher in hot spring killifish than the river ones. The results of the common garden experiments showed that the transcripts of hsp70, hsp90b, and hmgb1 were mildly induced (> twofold) at the time when temperature reached to 37-40°C, while the transcripts of hsp90a were strongly induced (17-fold increase). The level of hsp90a was dramatically more upregulated when fish were maintained in thermal extreme (42-fold change higher than in ambient temperature). Moreover, a significant downregulation of gck transcripts was observed at the time when temperature was raised to 37-40°C (80-fold decrease) and during exposure to long-term thermal extreme (56-fold decrease). It can be concluded that the regulation of heat shock genes particularly hsp90a might be a key factor of the acclimation of fish to high temperature environments like hot springs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Halogen Chemistry and Stable Cl Isotope Composition of Thermal Springs in the Cascade Arc

    NASA Astrophysics Data System (ADS)

    Cullen, J.; Barnes, J.; Hurwitz, S.; Leeman, W. P.

    2012-12-01

    The Cascade volcanic arc is located above a young (~6Ma) and slowly subducting (~4 cm/y) Juan de Fuca plate. Because of the high temperatures in the subduction slab, dehydration reactions are thought to occur at shallow depth to the west of the Cascade volcanic front. Spatial devolatization trends may be observed at the surface by examining geochemical trends from along and across the volcanic front. We have measured the concentration of halogens (F, Cl, Br, I) and the stable Cl isotope compositions of thermal spring waters and primitive basalts along and across the Cascade arc in order to further quantify the extent of halogen cycling through the Cascadia subduction system. Thermal springs from 13 localities, between north-central Washington to Lassen, Northern California with Cl concentrations ranging from 250 to 180,000 ppm (Bergfeld et al., 2008, Hurwitz et al., 2005) were analyzed for their Cl isotope composition. The δ37Cl values range from -2.1 to +1.3 ‰ (n=17), and show no correlation with Cl concentrations and sample location along the arc. The majority of samples are characterized by slightly positive values, whereas only three have negative values (-0.9‰, -1.6‰, -2.1‰). Given the upper mantle has a δ37Cl value near 0‰, the variation in the Cl isotope data suggests either that the chloride isotope compositions of these spring waters were modified upon ascent to the surface by the interaction of underlying sediment and/or contain a subducted slab derived component. Nine well characterized basalt samples from across the southern Washington Cascades, (Leeman et al., 2005) were analyzed for their bulk halogen concentrations. Cl concentrations are highest at the volcanic front (140-157 ppm Mt. St. Helens and Mt. Adams) compared to the forearc (17-82 ppm) and in the backarc (19-65 ppm). Br shows a similar trend to Cl with the highest concentrations at the volcanic front (0.22-0.31 ppm) compared to the forearc (0.08-0.13 ppm) and in the backarc (<0

  13. Population bottleneck triggering millennial-scale morphospace shifts in endemic thermal-spring melanopsids.

    PubMed

    Neubauer, Thomas A; Harzhauser, Mathias; Georgopoulou, Elisavet; Wrozyna, Claudia

    2014-11-15

    For more than hundred years the thermal spring-fed Lake Pețea near Oradea, Romania, was studied for its highly endemic subfossil and recent fauna and flora. One point of focus was the species lineage of the melanopsid gastropod Microcolpia parreyssii, which exhibited a tremendous diversity of shapes during the earlier Holocene. As a consequence many new species, subspecies, and variety-names have been introduced over time, trying to categorize this overwhelming variability. In contrast to the varied subfossil assemblage, only a single phenotype is present today. We critically review the apparent "speciation event" implied by the taxonomy, based on the presently available information and new data from morphometric analyses of shell outlines and oxygen and carbon isotope data. This synthesis shows that one turning point in morphological evolution coincides with high accumulation of peaty deposits during a short time interval of maximally a few thousand years. The formation of a small, highly eutrophic swamp with increased input of organic matter marginalized the melanopsids and reduced population size. The presented data make natural selection as the dominating force unlikely but rather indicates genetic drift following a bottleneck effect induced by the environmental changes. This claim contrasts the "obvious trend" and shows that great morphological variability has to be carefully and objectively evaluated in order to allow sound interpretations of the underlying mechanisms.

  14. Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Hsu, Shih-Yung; Huang, Jen-Te; Liu, Jorn-Hon; Huang, Yu-Li

    2013-05-01

    Legionella are commonly found in natural and man-made aquatic environments and are able to inhabit various species of protozoa. The relationship between the occurrence of Legionella spp. within protozoa and human legionellosis has been demonstrated; however, the proportions of intracellular and extracellular Legionella spp. in the aquatic environment were rarely reported. In this study, we developed a new method to differentiate intracellular and extracellular Legionella spp. in the aquatic environment. Water samples from three thermal spring recreational areas in southeastern Taiwan were collected and analyzed. For each water sample, concurrent measurements were performed for Legionella spp. and their free-living amoebae hosts. The overall detection rate was 32 % (16/50) for intracellular Legionella spp. and 12 % (6/50) for extracellular Legionella spp. The most prevalent host of Legionella spp. was Hartmannella vermiformis. The identified Legionella spp. differed substantially between intracellular and extracellular forms. The results showed that it may be necessary to differentiate intracellular and extracellular forms of Legionella spp.

  15. Population bottleneck triggering millennial-scale morphospace shifts in endemic thermal-spring melanopsids

    PubMed Central

    Neubauer, Thomas A.; Harzhauser, Mathias; Georgopoulou, Elisavet; Wrozyna, Claudia

    2014-01-01

    For more than hundred years the thermal spring-fed Lake Pețea near Oradea, Romania, was studied for its highly endemic subfossil and recent fauna and flora. One point of focus was the species lineage of the melanopsid gastropod Microcolpia parreyssii, which exhibited a tremendous diversity of shapes during the earlier Holocene. As a consequence many new species, subspecies, and variety-names have been introduced over time, trying to categorize this overwhelming variability. In contrast to the varied subfossil assemblage, only a single phenotype is present today. We critically review the apparent “speciation event” implied by the taxonomy, based on the presently available information and new data from morphometric analyses of shell outlines and oxygen and carbon isotope data. This synthesis shows that one turning point in morphological evolution coincides with high accumulation of peaty deposits during a short time interval of maximally a few thousand years. The formation of a small, highly eutrophic swamp with increased input of organic matter marginalized the melanopsids and reduced population size. The presented data make natural selection as the dominating force unlikely but rather indicates genetic drift following a bottleneck effect induced by the environmental changes. This claim contrasts the “obvious trend” and shows that great morphological variability has to be carefully and objectively evaluated in order to allow sound interpretations of the underlying mechanisms. PMID:26089574

  16. Characterization of the products attained from a thermal treatment of a mix of zinc-carbon and alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Lin, Chitsan; Wang, Jian-Wen; Huang, Kuo-Lin; Tsai, Cheng-Hsien; Wang, Chih-Ta

    2016-01-01

    This study applies a thermal separation process (TSP) to recover Fe, Mn, and Zn from hazardous spent zinc-carbon and alkaline batteries. In the TSP, the batteries were heated together with a reducing additive and the metals in batteries, according to their boiling points and densities, were found to move into three major output materials: slag, ingot (mainly Fe and Mn), and particulate (particularly Zn). The slag well encapsulated the heavy metals of interest and can be recycled for road pavement or building materials. The ingot had high levels of Fe (522,000 mg/kg) and Mn (253,000 mg/kg) and can serve as an additive for stainless steel-making processes. The particulate phase had a Zn level of 694,000 mg/kg which is high enough to be directly sold for refinement. Overall, the TSP effectively recovered valuable metals from the hazardous batteries.

  17. [Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses].

    PubMed

    Hu, Yue-bo; Zhang, Xin-na; Zhou, Da-li; Jiao, Qing; Wang, Rong-fei; Huang, Jin-feng; Long, Xiao-bo; Qiu, Jian-bei

    2012-01-01

    Transparent Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides.

  18. Seismic-related variations in the chemical and isotopic composition of thermal springs near Acapulco, Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Taran, Yuri A.; Ramirez-Guzman, Alejandro; Bernard, Ruben; Cienfuegos, Edith; Morales, Pedro

    2005-07-01

    Chemical and isotopic analyses of waters from 4 thermal springs of the Guerrero Pacific coast, the most seismically active area in Mexico, were performed weekly during a period of 1.5 years (October 2002-March 2004). Within the same time interval more than 200 earthquakes with 3.8 <= M <= 5.3 occurred in the area. The data display several anomalies in Cl-, SO42-, δD and δ18O, always immediately after an event, with a relaxation time of 3-4 weeks. The responses occurred only to earthquakes with the estimated epicenters very close to the location of a spring. These results indicate that: 1) at least for earthquakes with M < 5.3 within the Guerrero ``seismic gap'' there were no precursors in the chemical (ionic) and isotopic composition of thermal waters (on a weekly basis); 2) two groups of springs near Acapulco, Dos Arroyos and Paso Real, are sensitive to seismic activity and therefore further monitoring of these springs may help to unravel the mechanisms of the ``hydro-seismo-interaction'' in the area.

  19. Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: Sedimentary or volcanic in origin?

    USGS Publications Warehouse

    Mariner, R.H.; Evans, William C.; Presser, T.S.; White, L.D.

    2003-01-01

    Anomalous N2/Ar values occur in many thermal springs and mineral springs, some volcanic fumaroles, and at least one acid-sulfate spring of the Cascade Range. Our data show that N2/Ar values are as high as 300 in gas from some of the hot springs, as high as 1650 in gas from some of the mineral springs, and as high as 2400 in gas from the acid-sulfate spring on Mt. Shasta. In contrast, gas discharging from hot springs that contain nitrogen and argon solely of atmospheric origin typically exhibits N2/Ar values of 40-80, depending on the spring temperature. If the excess nitrogen in the thermal and mineral springs is of sedimentary origin then the geothermal potential of the area must be small, but if the nitrogen is of volcanic origin then the geothermal potential must be very large. End-member excess nitrogen (??15N) is +5.3% for the thermal waters of the Oregon Cascades but is only about +1% for fumaroles on Mt. Hood and the acid-sulfate spring on Mt. Shasta. Dissolved nitrogen concentrations are highest for thermal springs associated with aquifers between 120 and 140??C. Chloride is the major anion in most of the nitrogen-rich springs of the Cascade Range, and N2/Ar values generally increase as chloride concentrations increase. Chloride and excess nitrogen in the thermal waters of the Oregon Cascades probably originate in an early Tertiary marine formation that has been buried by the late Tertiary and Quaternary lava flows of the High Cascades. The widespread distribution of excess nitrogen that has been generated in low to moderate-temperature sedimentary environments is further proof of the restricted geothermal potential of the Cascade Range. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Chemical analyses for thermal and mineral springs examined in 1982-1983

    SciTech Connect

    Korosec, M.A.

    1984-01-01

    Six water samples from three different spring systems were collected and analyzed for major element concentrations. This report presents the results of those analyses, along with predicted reservoir temperatures using various geothermometers. In addition, a table of chemical analyses from the US Geological Survey for Washington springs not previously reported in state geothermal reports is included.

  1. Bulk, thermal, and mechanical properties of the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nevada

    SciTech Connect

    Nimick, F.B.; Schwartz, B.M.

    1987-09-01

    Experimental data on matrix porosity, grain density, thermal expansion, compressive strength, Young`s modulus, Poisson`s ratio, and axial strain at failure for samples from the Topopah Spring Member of the Paintbrush Tuff are compiled. Heat capacity and emissivity also are discussed. Data have been analyzed for spatial variability; slight variability is observed for matrix porosity, grain density, and thermal expansion coefficient. Estimates of in situ values for some properties, such as bulk density and heat capacity, are presented. Vertical in situ stress as a function of horizontal and vertical location has been calculated. 96 refs., 37 figs., 27 tabs.

  2. Geophysical investigations of the Baltazor Hot Springs known geothermal resource area and the Painted Hills thermal area, Humboldt County, Nevada

    SciTech Connect

    Edquist, R.K.

    1981-02-01

    Geophysical investigations of the Baltazor Hot Springs KGRA and the Painted Hills thermal area, Humboldt Co., Nevada are described. The study includes a gravity survey of 284 stations covering 750 sq km, numerical modeling and interpretation of five detailed gravity profiles, numerical modeling and inerpretation of 21.8 line-km of dipole-dipole electrical resistivity data along four profiles, and a qualitative inerpretation of 38 line-km of self-potential data along eight profiles. The primary purpose of the investigation is to try to determine the nature of the geologic controls of the thermal anomalies at the two areas.

  3. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around South Canyon Hot Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder

  4. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Southwest Steamboat Springs, Garfield County, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots. Publication Information: Originator: Earth Science & Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder

  5. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  6. Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water

    PubMed Central

    Magnabosco, Cara; Tekere, Memory; Lau, Maggie C. Y.; Linage, Borja; Kuloyo, Olukayode; Erasmus, Mariana; Cason, Errol; van Heerden, Esta; Borgonie, Gaetan; Kieft, Thomas L.; Olivier, Jana; Onstott, Tullis C.

    2014-01-01

    South Africa has numerous thermal springs that represent topographically driven meteoric water migrating along major fracture zones. The temperature (40–70°C) and pH (8–9) of the thermal springs in the Limpopo Province are very similar to those of the low salinity fracture water encountered in the South African mines at depths ranging from 1.0 to 3.1 km. The major cation and anion composition of these thermal springs are very similar to that of the deep fracture water with the exception of the dissolved inorganic carbon and dissolved O2, both of which are typically higher in the springs than in the deep fracture water. The in situ biological relatedness of such thermal springs and the subsurface fracture fluids that feed them has not previously been evaluated. In this study, we evaluated the microbial diversity of six thermal spring and six subsurface sites in South Africa using high-throughput sequencing of 16S rRNA gene hypervariable regions. Proteobacteria were identified as the dominant phylum within both subsurface and thermal spring environments, but only one genera, Rheinheimera, was identified among all samples. Using Morisita similarity indices as a metric for pairwise comparisons between sites, we found that the communities of thermal springs are highly distinct from subsurface datasets. Although the Limpopo thermal springs do not appear to provide a new window for viewing subsurface bacterial communities, we report that the taxonomic compositions of the subsurface sites studied are more similar than previous results would indicate and provide evidence that the microbial communities sampled at depth are more correlated to subsurface conditions than geographical distance. PMID:25566203

  7. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries

    SciTech Connect

    Belardi, G.; Lavecchia, R.; Medici, F.; Piga, L.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We separated Zn from Mn in zinc-carbon and alkaline batteries after removal of Hg. Black-Right-Pointing-Pointer Almost total removal of Hg is achieved at low temperature in air. Black-Right-Pointing-Pointer Nitrogen atmosphere is needed to reduce zinc and to permit its volatilization. Black-Right-Pointing-Pointer A high grade Zn concentrate was obtained with a high recovery at 1000-1200 Degree-Sign C. Black-Right-Pointing-Pointer The grade of Mn in the residue was enhanced with complete recovery. - Abstract: The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357 Degree-Sign C and 906 Degree-Sign C the boiling point of mercury and zinc and 1564 Degree-Sign C the melting point of Mn{sub 2}O{sub 3}. Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400 Degree-Sign C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000 Degree-Sign C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at

  8. Effect of thermal alkaline pretreatment on the anaerobic digestion of wasted activated sludge.

    PubMed

    Vigueras-Carmona, S E; Ramírez, F; Noyola, A; Monroy, O

    2011-01-01

    The effect of alkaline pretreatment of waste-activated sludge, using two models to study the sequential hydrolysis rates of suspended (Sanders' surface model) and dissolved (Goel's saturation model) solids, on the mesophilic and thermophilic anaerobic digestion rate is evaluated. The pretreatment, which reduces the size of the solids, increases the reaction rate by increasing the surface area and the specific surface hydrolysis constant (K(SBK)); at thermophilic conditions from 0.45 x 10(-3) kg m(-2) d(-1) for the fresh sludge to 0.74 x 10(-3) kg m(-2) d(-1) for the pretreated sludge and at mesophilic conditions these values are 0.28 x 10(-3) kg m(-2) d(-1) and 0.47 x 10(-3) kg m(-2) d(-1) confirming the usefulness of a pretreatment for solids reduction. But for soluble solids, the thermoalkaline pretreatment decreases the reaction rates by inducing a competitive inhibition on the thermophilic anaerobic digestion rate while in the mesophilic range, a non-competitive inhibition is observed. A mathematical simulation of the consecutive reactions, suspended solids to dissolved solids and to methane in staged anaerobic thermophilic-mesophilic digestion, shows that with 4% suspended solids concentration it is better not to use a thermoalkaline pretreatment because overall solids reduction and total methane production are not as good as without pretreatment.

  9. Chemical evolution of thermal springs at Arenal Volcano, Costa Rica: Effect of volcanic activity, precipitation, seismic activity, and Earth tides

    NASA Astrophysics Data System (ADS)

    López, D. L.; Bundschuh, J.; Soto, G. J.; Fernández, J. F.; Alvarado, G. E.

    2006-09-01

    Arenal Volcano in NW Costa Rica, Central America has been active during the last 37 years. However, only relatively low temperature springs have been identified on its slopes with temperatures less than around 60 °C. The springs are clustered on the NE and NW slopes of the volcano, close to contacts between the recent and older volcanic products or at faults that intercept the volcano. This volcano is located in a rain forest region with annual rainfall averaging around 5 m. During the last 15 years, the temperature and chemical composition of 4 hot springs and 2 cold springs have been monitored approximately every 3 months. In addition, two more thermal sites were identified recently and sampled, as well as two boreholes located on a fault NE of the volcano. Scatter plots of chemical species such as Cl and B suggest that the waters in these discharges belong to the same aquifer with a saline end member similar to Río Tabacón at the beginning of the study period (1990) and the deeper borehole (B-2) in 2004. The waters of Quebrada Bambú and Quebrada Fría represent a more dilute end member. Both long-term (over the 15 years) and short-term or seasonal decreases in concentration and steady or decreasing temperature are noted in NW springs. Springs located at the NE show increasing temperatures and ion concentrations, except for bicarbonate that has decreased in concentration for all the springs. This behavior is likely associated with a shallow source for the solutes and heat for this aquifer. To the NW the early lavas and pyroclastic flows have been cooling down, decreasing the contribution of leaching products to the infiltrating waters. To the NE, pyroclastic flows to the N during the last decade are contributing increasing concentrations of solutes and heat throughout water infiltration and circulation within the faults and the surficial drainage that has a NE regional trend. For the short-term or seasonal variations, concentrations of chemical constituents

  10. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    SciTech Connect

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests.

  11. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Belardi, G; Lavecchia, R; Medici, F; Piga, L

    2012-10-01

    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

  12. Supplemental data from the Ennis and other thermal-spring areas, southwestern Montana, 1978-1980

    SciTech Connect

    Leonard, R.B.; Wood,W.A.

    1980-10-01

    Hydrogeologic data were collected principally during 1978 to 1980 in eight hot-spring areas, in the Marysville geothermal test well, in the Butte mine and in the Bitterroot and Missoula River valleys to provide a basis for evaluating the geothermal potential of the areas. Measurements are tabulated for subsurface temperatures, water levels, rates of flow, and the chemical composition of water and gas in wells and test holes. Most of the data are for the area near Ennis Hot Springs.

  13. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  14. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  15. Mapping of Hot/Cold Springs in a Large Lake Using Thermal Remote Sensing and In-situ Measurement

    NASA Astrophysics Data System (ADS)

    Gurcan, T.; Kurtulus, B.; Avşar

    2016-12-01

    In this study, in-situ measurement and thermal infrared imagery was used to map hot and cold springs of Köyceǧiz Lake in Turkey, which is one of the biggest open coastal lakes in the world. In-situ surface, depth water temperature, climatic data and bathymetry measurement were collected using data loggers. Landsat 8 TIRS Band 10 (Thermal Infrared Sensors) images were compared with in-situ measurements. Electrical conductivity, pH and salinity measurement were also collected at the bottom of the lake to better understand the groundwater discharge evidence in the lake. In-situ measurement were interpolated using Empirical Bayesian Kriging (EBK). In-Situ measurement and Landsat 8 Images were compared pixel by pixel and appropriate regression equation were calculated according to best coefficient of correlation (R2). The results show that in-situ measurement of temperature at surface of the Köyceǧiz Lake has a good correlation for several cases (R2 ≥ 0.7) with Landsat 8 TIR images (Figure1). The mapping results of in-situ measurements also reveal that at the north east part of the Köyceǧiz Lake there exist several evidence of cold spring at the bottom of the Lake. Hot spring evidence were located at the South-West part of the Köyceǧiz Lake near the Sultaniye region. In this regard, we would like to thank TUBITAK project (112Y137) for their financial support.

  16. Environmental and developmental controls of morphological diversity in a thermal spring gastropod from Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Roopnarine, P. D.; Tang, C. M.

    2001-12-01

    Isolated thermal springs and associated aquatic environments near Cuatro Ciénegas, in north-central Mexico provide an opportunity to study patterns of evolutionary diversification under extreme conditions. Significant differences in temperature, seasonality, pH, and salinities among other variables may allow for high levels of differentiation and endemism. Biological studies of the unique faunas in this type of environment may serve as analogues for extreme and/or evaporitic environments as targeted by astrobiological research. The endemic hydrobiid gastropod \\textit{Mexipyrgus} is widely distributed in a variety of aquatic environments within the Cuatro Cienégas basin. Original description of this genus by Taylor listed six distinct species reflecting shell and anatomical features. Later revision by Hershler suggests that this diversity be reduced to one single, highly-variable species, based mainly on the morphology of reproductive structures. The systematic conflict emphasizes the need to understand the bases of morphological variation at small scales and in environmentally unusual settings. Shells of \\textit{Mexipyrgus} were collected from six localities and the following species were identified based on Taylor's classification: \\textit{M. carranzae}, \\textit{M. escobedae}, \\textit{M. multilineatus}, and specimens intermediate in character between \\textit{M. carranzae}, \\textit{M. lugoi} and \\textit{M. mojarralis}. All specimens consisted of 4-6 whorls. Shell shape was archived by the digitization of geometrically homologous landmarks on the spire (apex, whorl sutures in apertural view) and aperture. Shell size was calculated as Centroid Size. Data were analyzed using uniform and principal warp analysis of raw landmark coordinates, followed by relative warp analysis of uniform and partial warp scores. Three separate analyses were performed for 4, 5 and 6 whorled specimens. Results indicate two different levels of variation based on individual age

  17. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol

  18. Radiation heat transfer in multitube, alkaline-metal thermal-to-electric converter

    SciTech Connect

    Tournier, J.M.P.; El-Genk, M.S.

    1999-02-01

    Vapor anode, multitube Alkali-Metal Thermal-to-Electric Converters (AMTECs) are being considered for a number of space missions, such as the NASA Pluto/Express (PX) and Europa missions, scheduled for the years 2004 and 2005, respectively. These static converters can achieve a high fraction of Carnot efficiency at relatively low operating temperatures. An optimized cell can potentially provide a conversion efficiency between 20 and 30 percent, when operated at a hot-side temperature of 1000--1200 K and a cold-side temperature of 550--650 K. A comprehensive modeling and testing program of vapor anode, multitube AMTEC cells has been underway for more than three years at the Air Force Research Laboratory`s Power and Thermal Group (AFRL/VSDVP), jointly with the University of New Mexico`s Institute for Space and Nuclear Power Studies. The objective of this program is to demonstrate the readiness of AMTECs for flight on future US Air Force space missions. A fast, integrated AMTEC Performance and Evaluation Analysis Model (APEAM) has been developed to support ongoing vacuum tests at AFRL and perform analyses and investigate potential design changes to improve the PX-cell performance. This model consists of three major components (Tournier and El-Genk 1998a, b): (a) a sodium vapor pressure loss model, which describes continuum, transition and free-molecule flow regimes in the low-pressure cavity of the cell; (b) an electrochemical and electrical circuit model; and (c) a radiation/conduction heat transfer model, for calculating parasitic heat losses. This Technical Note describes the methodology used to calculate the radiation view factors within the enclosure of the PX-cells, and the numerical procedure developed in this work to determine the radiation heat transport and temperatures within the cell cavity.

  19. Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data around Pinkerton Hot Springs, Colorado

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots. Publication Information: Originator: Earth Science & Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder

  20. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    NASA Astrophysics Data System (ADS)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  1. Hawaii basic data for thermal springs and wells as recorded in geotherm

    SciTech Connect

    Bliss, J.D.

    1983-07-01

    GEOTHERM sample file contains 34 records for Hawaii. The high average ambient air temperature found on the Hawaiian Islands required fluid samples to have a temperature of at least 30/sup 0/C to be included. A computer-generated index is found in appendices A of this report. The index give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Hawaii. The index is found in appendix A (p. is sorted by county and by the name of the source. Also given are well number (when appropriate), site type (spring, well, fumarole), latitude, longitude (both use decimal minutes), GEOTHERM record identifier, and temperature (/sup 0/C). In conducting a search of Appendix A, site names are quite useful for locating springs or wells for which a specific name is commonly used, but sites which do not have specific names are more difficult to locate.

  2. Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens.

    PubMed

    Sun, Shao-Ni; Cao, Xue-Fei; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd; Baird, Mark

    2014-01-30

    An environmentally friendly pretreatment process was developed to fractionate hemicelluloses from dried and water-immersed Phyllostachys pubescens chips by steam explosion followed with alkali and alkali/ethanol extractions. The detailed chemical and structural features of the isolated hemicellulosic fractions were comparatively investigated by HPAEC, GPC, FT-IR, (13)C NMR spectroscopies, and TGA analysis. It was found that the xylose/arabinose ratios of hemicelluloses obtained from alkali and alkali/ethanol extractions were 21.5-34.4 and 7.7-9.9, respectively, suggesting that hemicelluloses extracted with alkali had relatively lower degree of branches than those extracted with alkali/ethanol. Hemicellulosic fractions isolated from the water-immersed samples were obtained in high yields and exhibited similar compositions, which can be used as raw materials for production of value-added products. Furthermore, the hemicelluloses extracted with alkali had relatively higher molecular weight than those extracted with alkali/ethanol. In addition, an increment of incubation time resulted in a decreased thermal stability of hemicelluloses obtained from water-immersed sample.

  3. An investigation into the interaction between taste masking fatty acid microspheres and alkaline buffer using thermal and spectroscopic analysis.

    PubMed

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2006-05-01

    Fatty acid-based microspheres may be used for the controlled delivery and taste masking of therapeutic agents, although the mechanisms involved in the release process are poorly understood. In this investigation, microspheres composed of high purity stearic and palmitic acid were prepared using a spray-chilling protocol. In addition, samples of binary fatty acid systems, fatty acid salts and acid-soaps were prepared to allow comparison with the microspheres. The interaction with alkaline buffer, into which release is known to be rapid, was studied using DSC and powder XRD with a view to examining the physicochemical changes undergone by the microspheres as a result of exposure to this medium. New species were identified for the postimmersion microsphere systems; similarities between the thermal and spectroscopic properties of these materials and the acid-soap references indicated the formation of acid-soaps during the exposure to the medium. The data indicate that simple exposure to buffer may result in the formation of acid soaps. This in turn has implications for understanding not only the release of drugs from the microspheres but also the biological fate of fatty acids on ingestion. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amiata, central Italy).

    PubMed

    Loppi, S; Bonini, I

    2000-11-01

    The contribution of thermal springs and fumaroles to environmental levels of Al, As, B, Cd, Cu, Fe, Hg, Mo, Pb, S, Sb and Zn was evaluated by means of lichens (Parmelia sulcata) and mosses (Hypnum cupressiforme) used as bioaccumulators. Compared to the data reported for unpolluted areas, accumulation of Hg, S and Al was found, with values of Hg and S in the same range as in the vicinity of geothermal power plants. Furthermore, fumaroles turned out to be a significant source of atmospheric arsenic.

  5. Inventory of thermal springs and wells within a one-mile radius of Yucca Lodge, Truth or Consequences, New Mexico

    SciTech Connect

    Schwab, G.E.

    1982-02-01

    Equity Management Corporation proposes (1) to build about 30 condominiums at the present site of the Yucca Lodge, Truth or Consequences, New Mexico and (2) to heat the condominiums with the natural thermal waters that discharge from the property. To do so the corporation must satisfy the rules and regulations of four state and federal agencies. To satisfy some of the data requirements of these agencies and to provide basic data on the geohydrology of the area this report provides the results of a field inventory of the springs and wells within one mile of the lodge. Table 1 summarizes the data for eight springs and three sites where springs once issued. Table 2 summarizes the data on forty-four operable wells and thirty wells that are unusable in their present condition. Appendices list (1) wells presumed to be in the area but not located during field inspection and (2) wells that could be in the area, but were found to be beyond the one-mile radius. Temperature and specific conductance of the water show only minor variation within the recognized hot-water.

  6. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen and chlorine isotope compositions

    USGS Publications Warehouse

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-01-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and View the MathML source values range from +0.2‰ to +1.9‰ (average=+1.0±0.4‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004 and Leeman et al., 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. View the MathML source values of the lavas range from −0.1 to +0.8‰ (average = +0.4±0.3‰). Our results suggest that the predominantly positive View the MathML source values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with View the MathML source values >+1.0‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor–liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid–rock interaction in order to improve volatile flux estimates through

  7. Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile

    NASA Astrophysics Data System (ADS)

    Scheihing, Konstantin W.; Moya, Claudio E.; Tröger, Uwe

    2017-09-01

    The thermal Pica springs, at ˜1,400 m above sea level (asl) in the Pampa del Tamarugal (Chile), represent a low-saline spring system at the eastern margin of the hyper-arid Atacama Desert, where groundwater resources are scarce. This study investigates the hydrogeological and geothermal characteristics of their feed reservoir, fostered by the interpretation of a 20-km east-west-heading reflection-seismic line in the transition zone from the Andean Precordillera to the Pampa del Tamarugal. Additional hydrochemical, isotope and hydrologic time-series data support the integrated analysis. One of the main factors that enabled the development of the spring-related vertical fracture system at Pica, is a disruption zone in the Mesozoic Basement caused by intrusive formations. This destabilized the younger Oligocene units under the given tectonic stress conditions; thus, the respective groundwater reservoir is made up of fractured Oligocene units of low to moderate permeability. Groundwater recharge takes place in the Precordillera at ˜3,800 m asl. From there groundwater flow covers a height difference of ˜3,000 m with a maximum circulation depth of ˜800-950 m, where the waters obtain their geothermal imprint. The maximal expected reservoir temperature, as confirmed by geothermometers, is ˜55 °C. Corrected mean residence times of spring water and groundwater plot at 1,200-4,300 years BP and yield average interstitial velocities of 6.5-22 m/year. At the same time, the hydraulic head signal, as induced by recharge events in the Precordillera, is transmitted within 20-24 months over a distance of ˜32 km towards the Andean foothills at Pica and Puquio Nunez.

  8. Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile

    NASA Astrophysics Data System (ADS)

    Scheihing, Konstantin W.; Moya, Claudio E.; Tröger, Uwe

    2017-03-01

    The thermal Pica springs, at ˜1,400 m above sea level (asl) in the Pampa del Tamarugal (Chile), represent a low-saline spring system at the eastern margin of the hyper-arid Atacama Desert, where groundwater resources are scarce. This study investigates the hydrogeological and geothermal characteristics of their feed reservoir, fostered by the interpretation of a 20-km east-west-heading reflection-seismic line in the transition zone from the Andean Precordillera to the Pampa del Tamarugal. Additional hydrochemical, isotope and hydrologic time-series data support the integrated analysis. One of the main factors that enabled the development of the spring-related vertical fracture system at Pica, is a disruption zone in the Mesozoic Basement caused by intrusive formations. This destabilized the younger Oligocene units under the given tectonic stress conditions; thus, the respective groundwater reservoir is made up of fractured Oligocene units of low to moderate permeability. Groundwater recharge takes place in the Precordillera at ˜3,800 m asl. From there groundwater flow covers a height difference of ˜3,000 m with a maximum circulation depth of ˜800-950 m, where the waters obtain their geothermal imprint. The maximal expected reservoir temperature, as confirmed by geothermometers, is ˜55 °C. Corrected mean residence times of spring water and groundwater plot at 1,200-4,300 years uc(BP) and yield average interstitial velocities of 6.5-22 m/year. At the same time, the hydraulic head signal, as induced by recharge events in the Precordillera, is transmitted within 20-24 months over a distance of ˜32 km towards the Andean foothills at Pica and Puquio Nunez.

  9. Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    Walter, M. R.; Desmarais, D.; Farmer, J. D.; Hinman, N. W.

    1996-01-01

    The Devonian to Carboniferous sinters of the Drummond Basin, Australia, are among the oldest well established examples of fossil subaerial hot springs. Numerous subaerial and subaqueous spring deposits are known from the geological record as a result of the occurrence of economic mineral deposits in many of them. Some are reported to contain fossils, but very few have been studied by paleobiologists; they represent an untapped source of paleobiological information on the history of hydrothermal ecosystems. Such systems are of special interest, given the molecular biological evidence that thermophilic bacteria lie near the root of the tree of extant life. The Drummond Basin sinters are very closely comparable with modern examples in Yellowstone National Park and elsewhere. Thirteen microfacies are recognisable in the field, ranging from high temperature apparently abiotic geyserite through various forms of stromatolitic sinter probably of cyanobacterial origin to ambient temperature marsh deposits. Microfossils in the stromatolites are interpreted as cyanobacterial sheaths. Herbaceous lycopsids occur in the lower temperature deposits.

  10. Tensor controlled-source audiomagnetotelluric survey over the Sulphur Springs thermal area, Valles Caldera

    SciTech Connect

    Wannamaker, P.E.

    1991-10-01

    The extensive tensor CSAMT survey of the Sulphur Springs geothermal area, Valles Caldera, New Mexico, consists of 45 high-quality soundings acquired in continuous-profiling mode and has been funded in support of CSDP drillholes VC-2A and VC-2B. Two independent transmitter bipoles were energized for tensor measurements using a 30 KW generator placed approximately 13 km south of the VC-2B wellhead. These current bipoles gave source fields over the receiver sites which were substantially independent in polarization and provided well-resolved tensor elements. The surroundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. At each receiver, two orthogonal electric and three orthogonal magnetic field components were acquired in accordance with tensor principles. Derivation of model resistivity cross sections from our data and their correlation with structure and geochemistry are principal components of the OBES award. However, Sulphur Springs also can serve as a natural testbed of traditional assumptions and methods of CSAMT with quantification through rigorous model analysis. Issues here include stability and accuracy of scalar versus tensor estimates, theoretical versus observed field patterns over the survey area, and controls on near-field effects using CSAMT and natural field data both inside and outside the caldera.

  11. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  12. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].

    PubMed

    Luo, Hong-Jing; Zhu, Tian-Le; Wang, Mei-Yan

    2010-06-01

    Non-thermal plasma (NTP) induced by positive corona discharge was utilized to oxidize NO and Hg0 to more water-soluble NO2 and Hg2+ under the conditions of simulated flue gas. The effects of discharge voltage and inlet SO2 and NO concentrations on NO and Hg0 oxidation and their removals by alkaline absorption were investigated. The results show that the oxidation and removal of NO and Hg0 are enhanced with the increase of discharge voltage. The concentrations of NO and NO2 at the outlet of absorption tower are 0 and 69 mg/m3 with an inlet NO concentration of 134 mg/m3 and a discharge voltage of 12. 8 kV while the outlet concentrations of Hg0 and Hg2+ are 22 microg/m3 and 11 microg/m3 with an inlet Hg0 concentration of 110 microg/m3 and a discharge voltage of 13.1 kV. The presence of SO2 slightly improves the oxidation and removal of Hg0 while it has almost no effect on NO oxidation and its removal. The oxidation and removal of Hg0 are significantly inhibited with the increase of inlet NO concentration. In the coexistence of 800 mg/m3 SO2, 134 mg/m3 NO and 110 microg/m3 Hg0, the removal efficiencies are 57% for NO and 31% for Hg0 with an energy input of 77 J/L.

  13. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps

    PubMed Central

    Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga

    2014-01-01

    Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540

  14. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps.

    PubMed

    Weidler, Gerhard W; Gerbl, Friedrich W; Stan-Lotter, Helga

    2008-10-01

    Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the "Franz-Josef-Quelle" (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (+/-4.5%) in the total 4',6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45 degrees C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation "thermal spring" cluster and which may be older than most AOA from soils on earth.

  15. A novel thermophilic methane-oxidizing bacteria from thermal springs of Uzon volcano caldera, Kamchatka

    NASA Astrophysics Data System (ADS)

    Dvorianchikova, E.; Kizilova, A.; Kravchenko, I.; Galchenko, V.

    2012-04-01

    Methane is a radiatively active trace gas, contributing significantly to the greenhouse effect. It is 26 times more efficient in absorbing and re-emitting infrared radiation than carbon dioxide. Methanotrophs play an essential role in the global carbon cycle by oxidizing 50-75% of the biologically produced methane in situ, before it reaches the atmosphere. Methane-oxidizing bacteria are isolated from the various ecosystems and described at present. Their biology, processes of methane oxidation in fresh-water, marsh, soil and marine habitats are investigated quite well. Processes of methane oxidation in places with extreme physical and chemical conditions (high or low , salinity and temperature values) are studied in much smaller degree. Such ecosystems occupy a considerable part of the Earth's surface. The existence of aerobic methanotrophs inhabiting extreme environments has been verified so far by cultivation experiments and direct detection of methane monooxygenase genes specific to almost all aerobic methanotrophs. Thermophilic and thermotolerant methanotrophs have been isolated from such extreme environments and consist of the gammaproteobacterial (type I) genera Methylothermus, Methylocaldum, Methylococcus and the verrucomicrobial genus Methylacidiphilum. Uzon volcano caldera is a unique area, where volcanic processes still happen today. Hydrothermal springs of the area are extreme ecosystems which microbial communities represent considerable scientific interest of fundamental and applied character. A thermophilic aerobic methane-oxidising bacterium was isolated from a sediment sample from a hot spring (56.1; 5.3) of Uzon caldera. Strain S21 was isolated using mineral low salt medium. The headspace gas was composed of CH4, Ar, CO2, and O2 (40:40:15:5). The temperature of cultivation was 50, pH 5.5. Cells of strain S21 in exponential and early-stationary phase were coccoid bacilli, about 1 μm in diameter, and motile with a single polar flagellum. PCR and

  16. Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09

    USGS Publications Warehouse

    Kresse, Timothy M.; Hays, Phillip D.

    2009-01-01

    A study was conducted by the U.S Geological Survey in cooperation with the Arkansas State Highway and Transportation Department to characterize the source and hydrogeologic conditions responsible for thermal water in a domestic well 5.5 miles east of Hot Springs National Park, Hot Springs, Arkansas, and to determine the degree of hydraulic connectivity between the thermal water in the well and the hot springs in Hot Springs National Park. The water temperature in the well, which was completed in the Stanley Shale, measured 33.9 degrees Celsius, March 1, 2006, and dropped to 21.7 degrees Celsius after 2 hours of pumping - still more than 4 degrees above typical local groundwater temperature. A second domestic well located 3 miles from the hot springs in Hot Springs National Park was discovered to have a thermal water component during a reconnaissance of the area. This second well was completed in the Bigfork Chert and field measurement of well water revealed a maximum temperature of 26.6 degrees Celsius. Mean temperature for shallow groundwater in the area is approximately 17 degrees Celsius. The occurrence of thermal water in these wells raised questions and concerns with regard to the timing for the appearance of the thermal water, which appeared to coincide with construction (including blasting activities) of the Highway 270 bypass-Highway 70 interchange. These concerns were heightened by the planned extension of the Highway 270 bypass to the north - a corridor that takes the highway across a section of the eroded anticlinal complex responsible for recharge to the hot springs of Hot Springs National Park. Concerns regarding the possible effects of blasting associated with highway construction near the first thermal well necessitated a technical review on the effects of blasting on shallow groundwater systems. Results from available studies suggested that propagation of new fractures near blasting sites is of limited extent. Vibrations from blasting can result in

  17. Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming

    SciTech Connect

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  18. Basic data for thermal springs and wells as recorded in GEOTHERM: Arizona

    SciTech Connect

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 314 records for Arizona. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Arizona. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  19. Colorado: basic data for thermal springs and wells as recorded in GEOTHERM

    SciTech Connect

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 225 records for Colorado. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Colorado. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  20. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere.

  1. Variation in thermal tolerance and routine metabolism among spring- and stream-dwelling freshwater sculpins (Teleostei: Cottidae) of the southeastern United States

    USGS Publications Warehouse

    Walsh, S.J.; Haney, D.C.; Timmerman, C.M.

    1997-01-01

    Evolutionary theory predicts that some aquatic organisms may adapt by directional selection to limiting physical environmental conditions, yet empirical data are conflicting. We sought to test the assumption that sculpins (family Cottidae) inhabiting thermally stable springs of the southeastern United States differ in temperature tolerance and metabolism from populations inhabiting more thermally labile stream habitats. Spring populations of pygmy sculpins (Coitus pygmaeus) and Ozark sculpins (C. hypselurus) differed interspecifically in thermal tolerance from populations of stream-dwelling mottled (C. bairdi) and Tallapoosa sculpins (C. tallapoosae), and both stream and spring populations of banded sculpins (C. carolinae). No intra- or interspecific differences in thermal tolerance were found among populations of C. bairdi, C. tallapoosae, or C. carolinae. Coitus pygmaeus acclimated to 15??C differed intraspecifically in routine metabolism from fish acclimated to 20?? and 25??C. Cottus pygmaeus and stream-dwelling C. bairdi and C. carolinae acclimated to temperatures of 20?? and 25??C showed no interspecific differences in routine metabolism. Our results suggest that some spring-adapted populations or species may be more stenothermal than stream-dwelling congeners, but a greater understanding of the interactions of other physical and biological factors is required to better explain micro- and macrohabitat distributions of eastern North American sculpins.

  2. Geology and hydrogeochemistry of the Jungapeo CO 2-rich thermal springs, State of Michoacán, Mexico

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Goff, Fraser; Armienta, María Aurora; Counce, Dale; Poreda, Robert; Chipera, Steve

    2007-06-01

    We present the first geothermal assessment of the Jungapeo CO 2-rich mineral springs, which are located in the eastern part of Michoacán State (central Mexico) at the southern limit of the Trans-Mexican Volcanic Belt. All but one of the > 10 springs occur at the lower contact of the distal olivine-bearing basaltic andesite lavas of the Tuxpan shield, a 0.49- to 0.60-Ma-old cluster of monogenetic scoria cones and lava flows. The Tuxpan shield has a maximum radius of 6 km and was constructed on top of a folded and faulted Cretaceous basement consisting largely of marine limestones, marls, and shales. The mineral waters are characterized by moderate temperatures (28 to 32 °C), mild acidity (pH from 5.5 to 6.5), relatively high discharge rates, effervescence of CO 2 gas, clarity at emergence and abundant subsequent precipitation of hydrous iron, silica oxides, and carbonates around pool margins and issuing streamlets. Chemical and isotopic (deuterium, oxygen, and tritium) analyses of water and gas samples obtained during the period 1991-1997 indicate that the springs are largely composed of meteoric water from a local source with relatively short residence times (water ages of 7 to 25 years). Spring waters are chemically characterized by moderate SiO 2, Ca + Mg nearly equal to Na + K, high HCO 3, moderate to low Cl, low F and SO 4, high B, moderate Li, while Br and As are low. In contrast, Fe + Mn is exceptionally high. Thus, the Jungapeo waters cannot be regarded as high-temperature geothermal fluids. Instead, they resemble soda spring waters similar to other low-to-medium temperature soda waters in the world. Gas samples are extremely rich in CO 2 with no detectable geothermal H 2S or H 2 and very low contents of CH 4 and NH 3, indicating the gases are not derived from a high-temperature resource. Carbon-13 analyses of CO 2 show a narrow range (- 6.7‰ and - 7.2‰) that falls within the range for MORB CO 2. Thus, most CO 2 seems to originate from the mantle but

  3. Hopanoid Biomarker Preservation In Coniform (Phormidium) Stromatolites in Siliceous Thermal Springs, Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Farmer, Jack D.; Klein, Harold P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The microbial communities that characterize modem hydrothermal ecosystems serve as modern analogs to those thought to have dominated early environments on Earth and possibly Mars. The importance of such hydrothermal systems as targets in exploring for an early biosphere on Mars is well established. Such work provides an important basis for the analysis of Martian samples associated with such environments. The surviving molecular structure and isotopic signature of diagnostic lipid biomarkers found as chemical fossils can provide a link between modern bacterially dominated ecosystems and their ancient counterparts. We are interested in the processes involved in the deposition and/or degradation of organic material in moderately thermal, silicifying microbial mats, particularly as this relates to the potential for preservation of some biomarker components known to be more highly resistant to microbial degradation. Several excellent biomarker molecules are associated with the cyanobacteria that dominate these mats, particularly the 2-methylbacteriohopanepolyols (2-MeBHP). These compounds are ubiquitous on Earth and are not easily degraded in nature, a fact documented by their detection in ancient Earth rocks dating back as far as 2,700 Ma.

  4. Investigation of bacterial transport in the large-block test, a thermally perturbed block of Topopah Spring Tuff

    SciTech Connect

    Chen, C. I.; Chuu, Y. J.; Lin, W.; Meike, A.; Sawvel, A.

    1998-10-30

    This study investigates the transport of bacteria in a large, thermally perturbed block of Topopah Spring tuff. The study was part of the Large-Block Test (LBT), thermochemical and physical studies conducted on a 10 ft x 10 ft x 14 ft block of volcanic tuff excavated on 5 of 6 sides out of Fran Ridge, Nevada. Two bacterial species, Bacillus subtilis and Arthrobacter oxydans, were isolated from the Yucca Mountain tuff. Natural mutants that can grow under the simultaneous presence of the two antibiotics, streptomycin and rifampicin, were selected from these species by laboratory procedures. The double-drug-resistant mutants, which could be thus distinguished from the indigenous species, were injected into the five heater boreholes of the large block hours before heating was initiated. The temperature, as measured 5 cm above one of the heater boreholes, rose slowly and steadily over a matter of months to a maximum of 142 C. Samples (cotton cloths inserted the length of the hole, glass fiber swabs, and filter papers) were collected from the boreholes that were approximately 5 ft below the injection points. Double-drug-resistant bacteria were found in the collection boreholes nine months after injection. Surprisingly, they also appeared in the heater boreholes where the temperature had been sustainably high throughout the test. These bacteria appear to be the species that were injected. The number of double-drug-resistant bacteria that were identified in the collection boreholes increased with time. An apparent homogeneous distribution among the observation boreholes and heater boreholes suggests that a random motion could be the pattern that the bacteria migrated in the block. These observations indicated the possibility of rapid bacterial transport in a thermally perturbed geologic setting.

  5. Geochemical Patterns of Geothermal Elements in Southern Italian Fumaroles and Thermal Springs in Relation with Mantle Intrusions

    NASA Astrophysics Data System (ADS)

    Boudreau, A. E.; Minissale, A.; Donato, A.; Procesi, M.; Pizzino, L.; Giammanco, S.

    2015-12-01

    The review of published data together with some new data specifically made to fill gaps, to make a database of chemical and isotopic data for thermal emergences (springs, fumaroles and gas vents) in southern Italy, to be used for the publication of a Geothermal Atlas, has hallowed the re-interpretation of all the geochemical data gathered. The main conclusions are as follows. All active volcanic areas (Solfatara, Vesuvius, Ischia Isle, Mt Etna, Aeolian Islands and Pantelleria Isle) have i) high 3He/4He rations coupled with ii) high CO2 emissions and iii) geo-thermometric (isotopic) signatures that suggest the presence of active geothermal systems in all places at shallow depth. In spite of this, no one of these areas, is exploited for geothermal power generation. There are three further Quaternary volcanic areas at: Iblei Mts in Sicily, Vulture volcano in Basilicata region and Logudoro area in Sardinia Island that also have CO2-rich gas emissions, high in 3He/4He ratio, but they are not associated to any relevant thermal emission nearby. In terms of regional patterns, apart from the Calabria subduction arc area (Calabria region), the stable flat cratonic areas of Apulia in SE Italy, the Iblean Platform in SE Sicily, and most of Sardinia, the latter not involved in the Apennine Orogeny, the remaining southern Italy along the Tyrrhenian sector has huge emission of hydrothermally generated CO2 crossed, in counterflow, by descending topographically driven N2 solubilized in recharge meteoric water from the main Apennine belt. Iso-distribution maps of several of the parameters investigated even more clearly show the sectors of southern Italy affected by the intrusion of mantle magma and therefore the areas where the geothermal heat-flow is maximized by active tectonics.

  6. Crenarchaeota and Their Role in the Nitrogen Cycle in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps▿

    PubMed Central

    Weidler, Gerhard W.; Gerbl, Friedrich W.; Stan-Lotter, Helga

    2008-01-01

    Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the “Franz-Josef-Quelle” (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (±4.5%) in the total 4′,6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45°C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation “thermal spring” cluster and which may be older than most AOA from soils on earth. PMID:18723663

  7. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and

  8. Characterising the hydrothermal circulation patterns beneath thermal springs in the limestones of the Carboniferous Dublin Basin, Ireland: a geophysical and geochemical approach.

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker

    2016-04-01

    A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin

  9. Impact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).

    PubMed

    van der Meer, Marcel T J; Schouten, Stefan; Damsté, Jaap S Sinninghe; Ward, David M

    2007-02-01

    Alkaline siliceous hot spring microbial mats in Yellowstone National Park are composed of two dominant phototropic groups, cyanobacteria and green non-sulfur-like bacteria (GNSLB). While cyanobacteria are thought to cross-feed low-molecular-weight organic compounds to support photoheterotrophic metabolism in GNSLB, it is unclear how this could lead to the heavier stable carbon isotopic signatures in GNSLB lipids compared with cyanobacterial lipids found in previous studies. The two groups of phototrophs were separated using percoll density gradient centrifugation and subsequent lipid and stable carbon isotopic analysis revealed that we obtained fractions with a approximately 60-fold enrichment in cyanobacterial and an approximately twofold enrichment in GNSLB biomass, respectively, compared with the mat itself. This technique was used to study the diel cycling and 13C content of the glucose pools in and the uptake of 13C-bicarbonate by the cyanobacteria and GNSLB, as well as the transfer of incorporated 13C from cyanobacteria to GNSLB. The results show that cyanobacteria have the highest bicarbonate uptake rates and accumulate glucose during the afternoon in full light conditions. In contrast, GNSLB have relatively higher bicarbonate uptake rates compared with cyanobacteria in the morning at low light levels. During the night GNSLB take up carbon that is likely derived through fermentation of cyanobacterial glucose enriched in 13C. The assimilation of 13C-enriched cyanobacterial carbon may thus lead to enriched 13C-contents of GNSLB cell components.

  10. Thermal Models and 1--5mu M Photometry: Spring 1997 Loki Brightening

    NASA Astrophysics Data System (ADS)

    Stansberry, J. A.; Spencer, J. R.; Howell, R. R.; Dumas, C.

    1997-07-01

    .R. (1997). Thermal emission from lava flows on Io. Icarus, In Press. Spencer, J., \\frenchspacing et al. (1997). A history of high-temperature Io volcanism at the start of the Galileo tour. Submitted to GRL. Stansberry, J., \\frenchspacing et al. (1997). Violent silicate volcanism on Io in 1996. Submitted to GRL.

  11. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  12. Hydrochemical and isotopic properties of the Mahmutlu and Bağdatoğlu mineralized thermal springs, Kırşehir, Turkey

    NASA Astrophysics Data System (ADS)

    Ünsal, N.; Afşin, M.

    1999-12-01

    The present study identifies the hydrochemical and isotopic properties of the Mahmutlu and Bağdatoğlu mineralized thermal springs in Kırşehir province, a geothermal field in central Anatolia, Turkey. Based on these properties, a hydrogeological regime is proposed in order to explain the Mahmutlu-Bağdatoğlu geothermal system. The relation between the concentrations of the environmental stable isotopes deuterium and oxygen-18 in the water is similar to the relationship in global meteoric water, indicating that the water is of meteoric origin. Evaluation of the geochemical characteristics of the water reveals that these two thermal springs belong to the same hydrogeological system. The hydrogeological system comprises a fractured limestone member of the Çevirme Formation and the Kervansaray Formation as reservoir rocks, and the Deliceırmak Formation as an overlying aquitard. The waters of the Mahmutlu and Bağdatoğlu springs are mainly of the Na-Cl-SO4 type that originate from the Pohrenk evaporite. The thermal waters are undersaturated with respect to calcite, dolomite, halite, and gypsum. The δ 18O and δ 2H contents indicate a δ 18O shift in the Mahmutlu and Bağdatoğlu waters. The temperature range of the two reservoirs is estimated to be 98-158 °C, on the basis of Na+K+Ca and SiO2 geothermometers.

  13. Unraveling the microbial and functional diversity of Coamo thermal spring in Puerto Rico using metagenomic library generation and shotgun sequencing.

    PubMed

    Padilla-Del Valle, Ricky; Morales-Vale, Luis R; Ríos-Velázquez, Carlos

    2017-03-01

    In Puerto Rico, the microbial diversity of the thermal spring (ThS) in Coamo has never been studied using metagenomics. The focus of our research was to generate a metagenomic library from the ThS of Coamo, Puerto Rico and explore the microbial and functional diversity. The metagenomic library from the ThS waters was generated using direct DNA isolation. High molecular weight (40 kbp) DNA was end-repaired, electro eluted and ligated into a fosmid vector (pCCFOS1); then transduced into Escherichia coli EPI300-T1R using T1 bacteriophages. The library consisted of approximately 6000 clones, 90% containing metagenomic DNA. Next-Generation-Sequencing technology (Illumina MiSeq) was used to process the ThS metagenome. After removing the cloning vector, 122,026 sequences with 33.10 Mbps size and 64% of G + C content were annotated and analyzed using the MG-RAST online server. Bacteria showed to be the most abundant domain (95.84%) followed by unidentified sequences (2.28%), viruses (1.67%), eukaryotes (0.15%), and archaea (0.01%). The most abundant phyla were Proteobacteria (95.03%), followed by unidentified (2.28%), unclassified from viruses (1.74%), Firmicutes (0.20%) and Actinobacteria (0.18%). The most abundant species were Escherichia coli, Polaromonas naphthalenivorans, Albidiferax ferrireducens and Acidovorax sp. Subsystem functional analysis showed that 20% of genes belong to transposable elements, 10% to clustering-based subsystems, and 8% to the production of cofactors. Functional analysis using NOG annotation showed that 82.79% of proteins are poorly characterized indicating the possibility of novel microbial functions and with potential biomedical and biotechnological applications. Metagenomic data was deposited into the NCBI database under the accession number SAMN06131862.

  14. Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: A geochemometrics approach

    NASA Astrophysics Data System (ADS)

    Pandarinath, Kailasa; Domínguez-Domínguez, Humberto

    2015-10-01

    A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3-​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42- type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42- and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li-Mg, Na-Li, Na-K-Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area. In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly

  15. Alkaline permanganate oxidation of kerogens from Cretaceous black shales thermally altered by diabase intrusions and laboratory simulations

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Morinaga, Shigeo; Simoneit, Bernd R. T.

    1985-08-01

    Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 α,ω-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of α,ω-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (DENNIS et al., 1982).

  16. He and N isotopes in thermal springs of the Mexican Pacific coast: subducting slab, continental crust and mantle contributions to fluids of a forearc zone.

    NASA Astrophysics Data System (ADS)

    Taran, Yuri; Inguaggiato, Salvatore; Varley, Nicholas; Ramirez Guzman, Alejandro

    2010-05-01

    Two oceanic plates are subducting beneath the continent along the Mexican Pacific coast: Cocos Plate south of Colima graben (~19°N) and a young Rivera Plate to the north of Colima graben. The trench is situated ~ 70 km from the shore line which is very close comparing with other continental margins. There are 26 groups of thermal springs between 16°N and 21°N, in a 30 km-wide zone along the coast. The temperature and salinity ranges are 40-90°C and 100-20,000 ppm, respectively. The springs are mainly of a low salinity (< 1000 ppm), high pH (8-10) and temperatures of 37-50°C. Almost all springs discharge bubbling gas with N2 as a predominant component and have He content between 400 and 1500 ppmV. Two groups of springs are methane-rich (70 and 10 vol%). The CO2-rich springs and high-HCO3 waters are absent. All springs to the south of the Michoacan-Guerrero boarder (~ 18°N) are characterized by N2/Ar ≈ 100, δ15N ≈0 and 3He/4He ratios lower than 0.2Ra (where Ra=1.4x10-6, the air ratio) except the Paso Real springs (0.9Ra) located within a Coyuca seismogenic fracture zone. Springs along the Michoacan coast, the northern part of the Cocos Plate subduction, discharge gases with 1.5Ra < 3He/4He <2.5Ra but still low, close to the atmospheric N2/Ar and δ15N ≈0. All springs located within the Colima graben have high 3He/4He (up to 4.5Ra) and elevated N2/Ar and δ15N. The El Salitre (La Tuna) springs located within the southern board of the Colima graben discharge saline Na-Ca-Cl water (46°C, Cl=15,000 ppm) with N2/Ar > 400, δ15N = +4.6‰, almost no CH4 (<0.1 %) and 3He/4He = 2.3Ra. The only group of hot springs within the Jalisco Block and close to the shore line, Rio Purificacion, discharge hot, saline Na-Cl water (80°C, 12,000 ppm of Cl), with N2/Ar > 300, δ15N = +5‰ and 3He/4He = 0.4Ra. A number of hot and warm springs associated with Puerto Vallarta graben are characterized by high 3He/4He up to 4.5Ra, elevated N2/Ar and δ15N. The last group, Punta

  17. Lake Bogoria hot springs (Kenya): geochemical features and geothermal implications

    NASA Astrophysics Data System (ADS)

    Cioni, R.; Fanelli, G.; Guidi, M.; Kinyariro, J. K.; Marini, L.

    1992-04-01

    Many boiling springs and fumaroles are present along the shores of Lake Bogoria, which is a closed-basin alkaline saline lake typical of African Rifts. Two different geothermal waters, both of Na-HCO 3 type have been recognized. The first, discharged by the boiling springs located along the western shores of the lake, comes from a shallow steam-heated thermal aquifer. Its temperature is close to 100°C, as indicated by chalcedony solubility, while the chloride content of these waters is slightly higher than 200 mg L -1. The second, recognizable in the southernmost boiling springs, is representative of a deeper and hotter geothermal reservoir. The occurrence of mixing and boiling processes complicates the interpretation of geochemical data. Nevertheless, a chloride content of about 660 mg L -1, an equilibrium temperature close to 170°C and a high carbon dioxide partial pressure, at least 10-20 bar, have been estimated for the deep geothermal reservoir.

  18. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys.

  19. Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting.

    PubMed

    Marks, C R; Stevenson, B S; Rudd, S; Lawson, P A

    2012-09-01

    Water chemistry, energetic modeling, and molecular analyses were combined to investigate the microbial ecology of a biofilm growing in a thermal artesian spring within Hot Springs National Park, AR. This unique fresh water spring has a low dissolved chemical load and is isolated from both light and direct terrestrial carbon input - resulting in an oligotrophic ecosystem limited for fixed carbon and electron donors. Evaluation of energy yields of lithotrophic reactions putatively linked to autotrophy identified the aerobic oxidation of methane, hydrogen, sulfide, ammonia, and nitrite as the most exergonic. Small subunit (SSU) rRNA gene libraries from biofilm revealed a low-diversity microbial assemblage populated by bacteria and archaea at a gene copy ratio of 45:1. Members of the bacterial family 'Nitrospiraceae', known for their autotrophic nitrite oxidation, dominated the bacterial SSU rRNA gene library (approximately 45%). Members of the Thaumarchaeota ThAOA/HWCGIII (>96%) and Thaumarchaeota Group I.1b (2.5%), which both contain confirmed autotrophic ammonia oxidizers, dominated the archaeal SSU rRNA library. Archaea appear to dominate among the ammonia oxidizers, as only ammonia monooxygenase subunit A (amoA) genes belonging to members of the Thaumarchaeota were detected. The geochemical, phylogenetic, and genetic data support a model that describes a novel thermophilic biofilm built largely by an autotrophic nitrifying microbial assemblage. This is also the first observation of 'Nitrospiraceae' as the dominant organisms within a geothermal environment. © 2012 Blackwell Publishing Ltd.

  20. Insights into contaminant transport from unconventional oil and gas developments from analog system analysis of methane-bearing thermal springs in the northern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Grasby, Stephen E.

    2017-09-01

    Natural gas is currently being produced from shales of the Montney and Liard basins in western Canada. Production requires hydraulic fracturing due to the low permeability of the shales in the basins. Stratigraphically equivalent shales are present in the northern Canadian Rocky Mountains. Thermal springs with notable hydrocarbon concentrations occur where large-scale faults intersect the same shale units that are the focus of gas development, indicating that under certain circumstances, connection of deep fractured shales to the land surface is possible. To constrain these conditions, simulations were conducted for the spring with the highest hydrocarbon flux (Toad River Spring), results of which indicate that in order to supply sufficient water to a fault to support measurable advection, the effective permeability of the shales in these structurally deformed areas must be one to four orders of magnitude higher than in areas of active gas production to the east. The spatial scale of enhanced permeability is much greater than that which is achieved by hydraulic fracturing and the mechanism of maintaining high pressures at depth is more persistent in time. Examination of groundwater velocities suggests that upward migration of solutes from hydraulic fracturing may take decades to centuries. Results also indicate that any temperature anomaly will be associated with transport along a fault at such velocities. No such temperature anomaly has been documented in regions with unconventional oil and gas development to date. Such an anomaly would be diagnostic of a deep solute source.

  1. A novel alkaline hemicellulosic heteroxylan isolated from alfalfa (Medicago sativa L.) stem and its thermal and anti-inflammatory properties.

    PubMed

    Chen, Lei; Liu, Jie; Zhang, Yaqiong; Niu, Yuge; Dai, Bona; Yu, Liangli Lucy

    2015-03-25

    A novel hemicellulosic polysaccharide (ACAP) was purified from the cold alkali extraction of alfalfa stems and characterized as a heteroxylan with a weight-average molecular weight of 7.94 × 10(3) kDa and a radius of 58 nm. Structural analysis indicated that ACAP consisted of a 1,4-linked β-D-Xylp backbone with 4-O-MeGlcpA and T-L-Araf substitutions at O-2 and O-3 positions, respectively. Transmission electron microscopy (TEM) examination revealed the entangled chain morphology of ACAP molecules. The evaluation of thermal degradation property revealed a primary decomposition temperature range of 238.8-314.0 °C with an apparent activation energy (Ea) and a pre-exponential factor (A) of 220.0 kJ/mol and 2.81 × 10(24)/s, respectively. ACAP also showed significant inhibitory activities on IL-1β, IL-6, and COX-2 gene expressions in cultured RAW 264.7 mouse macrophage cells. These results suggested the potential utilization of ACAP in functional foods and dietary supplement products.

  2. Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions

    NASA Astrophysics Data System (ADS)

    Cullen, Jeffrey T.; Barnes, Jaime D.; Hurwitz, Shaul; Leeman, William P.

    2015-09-01

    In order to provide constraints on the sources of chlorine in spring waters associated with arc volcanism, the major/minor element concentrations and stable isotope compositions of chlorine, oxygen, and hydrogen were measured in 28 thermal and mineral springs along the Cascade Range in northwestern USA. Chloride concentrations in the springs range from 64 to 19,000 mg/L and δ37Cl values range from + 0.2 ‰ to + 1.9 ‰ (average = + 1.0 ± 0.4 ‰), with no systematic variation along or across the arc, nor correlations with their presumed underlying basement lithologies. Additionally, nine geochemically well-characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade Range (Leeman et al., 2004, 2005) were analyzed for their halogen concentrations and Cl isotope compositions. In the arc lavas, Cl and Br concentrations from the volcanic front are higher than in lavas from the forearc and backarc. F and I concentrations progressively decrease from forearc to backarc, similar to the trend documented for B in most arcs. δ37Cl values of the lavas range from -0.1 to + 0.8 ‰ (average = + 0.4 ± 0.3 ‰). Our results suggest that the predominantly positive δ37Cl values observed in the springs are consistent with water interaction with underlying 37Cl-enriched basalt and/or altered oceanic crust, thereby making thermal spring waters a reasonable proxy for the Cl isotope compositions of associated volcanic rocks in the Cascades. However, waters with δ37Cl values > + 1.0 ‰ also suggest additional contributions of chlorine degassed from cooling magmas due to subsurface vapor-liquid HCl fractionation in which Cl is lost to the aqueous fluid phase and 37Cl is concentrated in the ascending magmatic HCl vapor. Future work is necessary to better constrain Cl isotope behavior during volcanic degassing and fluid-rock interaction in order to improve volatile flux estimates through subduction zones.

  3. Evaluation of R. Paul Smith Steam Electric Station thermal discharge effects on benthic communities; Spring 1980. Final report

    SciTech Connect

    Not Available

    1980-09-01

    A study of thermal effluent effects on benthic invertebrates was conducted near the R.P. Smith Steam Electric Station. Samples were collected during May 1980 with a dome suction sampler and an aquatic drift net. Samples were collected on upstream and downstream control transects and on transects in the thermally influenced area. The objective of this survey was to assess effects of thermal discharge on the abundance and biomass macroinvertebrates in the Potomac River.

  4. [New Strains of an Aerobic Anoxygenic Phototrophic Bacterium Porphyrobacter donghaensis Isolated from a Siberian Thermal Spring and a Low-Mineralization Lake].

    PubMed

    Nuyanzina-Boldareva, E N; Akimova, V N; Takaiche, S; Gorlenko, V M

    2016-01-01

    A strain of aerobic anoxygenic phototrophic bacteria (AAPB) isolated from the surface of a cyano- bacterial mat of an Eastern Siberian thermal spring (40 C) and designated Se 4 was identified as Porphyro- bacter donghaensis according to its 16S rRNA gene sequence. A DNA-DNA hybridization level of 95% was determined between strain Se-4 and the type strain of this species; SW-132@T. The isolate was an obligate aerobe,. forming orange round colonies on solid media, which turn red in the course of growth. The cells were motile rods capable of branching. The cells divided by uniform fission by constriction. Optimal growth was observed at pH 7.5 and NaCl concentrations from 0 to 1 g/L. The pigments present were carotenoids and bacteriochlorophyll a. Another Porphyrobacter donghaensis strain, Noj- 1, isolated from a purple mat developing on the surface of a coastal set-up in a steppe low-mineralization (1.5 g/L) soda lake Nozhii (Eastern Siberia) possessed similar characteristics. Thus, the AAPB species Porphyrobacter donghaensis was shown to-occur, apart from its known habitat, marine environments, in low-mineralization soda lakes and freshwater thermal springs. Description of the species Porphyrobacter donghaensis was amended.

  5. DYNAMIC MIXING MODEL OF THE CHIGNAHUAPAN THERMAL SPRING IN THE GEOTHERMAL ZONE OF THE ACOCULCO CALDERA, PUEBLA, MEXICO

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A.; Torres-Rodriguez, V.

    2009-12-01

    The Acoculco Caldera, of Pliocenic age, is located within the limits of the Transmexican Volcanic Belt (CVT) and the Sierra Madre Oriental (SMOr). The Acoculco geothermal zone consists of a 790m thick igneous sequence, related to a volcanic complex formed by andesites and rhyolitic domes emplaced in an 18 Km diameter annular fracture. It unconformably overlies a 5000 m thick section of folded and faulted Jurassic-Cretaceous carbonate rocks. The Chignahuapan Spring, located in the extreme eastern part of the Geothermal Zone of the Acoculco Caldera, yields temperatures of 49°C and discharges an estimated of 98 lps from the karstified Lower Cretaceous limestone. Both major and trace element geochemical analysis were carried out, and results were interpreted using Piper and Stiff diagrams, as well as geothermometry. The results indicate that water belongs to the calcium-bicarbonate type and yield temperatures in a range of 70-80°C at depth, which suggest an extensive lateral flow from the main reservoir and mixing with shallow groundwaters. The spring suffers significant variations in its temperature throughout the year, especially during the rainy season, when water temperature decreases up to 10°C. Analyzing the hot spring water temperature data from of the last 10 years and comparing it with the precipitation and air temperature curves of the region, we expect to develop a dynamic mixing model which depicts the relation between these factors and the importance of each one in the water temperature variation. We also look forward to be able to forecast water temperature trends for the next several years and correlate it with climate change in the area.

  6. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes

  7. Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes▿ †

    PubMed Central

    Hall, Justine R.; Mitchell, Kendra R.; Jackson-Weaver, Olan; Kooser, Ara S.; Cron, Brandi R.; Crossey, Laura J.; Takacs-Vesbach, Cristina D.

    2008-01-01

    The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera—Thermocrinis, Hydrogenobaculum, and Sulfurihydrogenibium—and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R2 = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments. PMID:18539788

  8. Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing Crenarchaeota.

    PubMed

    Weidler, Gerhard W; Dornmayr-Pfaffenhuemer, Marion; Gerbl, Friedrich W; Heinen, Wolfgang; Stan-Lotter, Helga

    2007-01-01

    Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the "Franz-Josef-Quelle" in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (alpha, beta, gamma, and delta), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (delta-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities.

  9. Communities of Archaea and Bacteria in a Subsurface Radioactive Thermal Spring in the Austrian Central Alps, and Evidence of Ammonia-Oxidizing Crenarchaeota▿

    PubMed Central

    Weidler, Gerhard W.; Dornmayr-Pfaffenhuemer, Marion; Gerbl, Friedrich W.; Heinen, Wolfgang; Stan-Lotter, Helga

    2007-01-01

    Scanning electron microscopy revealed great morphological diversity in biofilms from several largely unexplored subterranean thermal Alpine springs, which contain radium 226 and radon 222. A culture-independent molecular analysis of microbial communities on rocks and in the water of one spring, the “Franz-Josef-Quelle” in Bad Gastein, Austria, was performed. Four hundred fifteen clones were analyzed. One hundred thirty-two sequences were affiliated with 14 bacterial operational taxonomic units (OTUs) and 283 with four archaeal OTUs. Rarefaction analysis indicated a high diversity of bacterial sequences, while archaeal sequences were less diverse. The majority of the cloned archaeal 16S rRNA gene sequences belonged to the soil-freshwater-subsurface (1.1b) crenarchaeotic group; other representatives belonged to the freshwater-wastewater-soil (1.3b) group, except one clone, which was related to a group of uncultivated Euryarchaeota. These findings support recent reports that Crenarchaeota are not restricted to high-temperature environments. Most of the bacterial sequences were related to the Proteobacteria (α, β, γ, and δ), Bacteroidetes, and Planctomycetes. One OTU was allied with Nitrospina sp. (δ-Proteobacteria) and three others grouped with Nitrospira. Statistical analyses suggested high diversity based on 16S rRNA gene analyses; the rarefaction plot of archaeal clones showed a plateau. Since Crenarchaeota have been implicated recently in the nitrogen cycle, the spring environment was probed for the presence of the ammonia monooxygenase subunit A (amoA) gene. Sequences were obtained which were related to crenarchaeotic amoA genes from marine and soil habitats. The data suggested that nitrification processes are occurring in the subterranean environment and that ammonia may possibly be an energy source for the resident communities. PMID:17085711

  10. Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes.

    PubMed

    Hall, Justine R; Mitchell, Kendra R; Jackson-Weaver, Olan; Kooser, Ara S; Cron, Brandi R; Crossey, Laura J; Takacs-Vesbach, Cristina D

    2008-08-01

    The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1 degrees C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera--Thermocrinis, Hydrogenobaculum, and Sulfurihydrogenibium--and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R(2) = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.

  11. Chemical and Isotopic Composition of Waters and Dissolved Gases in Some Thermal Springs of Sicily and Adjacent Volcanic Islands, Italy

    NASA Astrophysics Data System (ADS)

    Grassa, Fausto; Capasso, Giorgio; Favara, Rocco; Inguaggiato, Salvatore

    2006-04-01

    Hydrochemical (major and some minor constituents), stable isotope ([InlineMediaObject not available: see fulltext.] and [InlineMediaObject not available: see fulltext.], δ13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg > Na-SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, δ 18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and δ 13C TDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from 10.0‰ and 2.8‰, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios ([InlineMediaObject not available: see fulltext.] value from -3 to 0‰ vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.

  12. Were fossil spring-associated carbonates near Zaca Lake, Santa Barbara, California deposited under an ambient or thermal regime?

    NASA Astrophysics Data System (ADS)

    Ibarra, Yadira; Corsetti, Frank A.; Cheetham, Michael I.; Feakins, Sarah J.

    2014-03-01

    A previously undescribed succession of currently-inactive spring-associated carbonates located near Zaca Lake, Southern California, was investigated in order to determine the nature of deposition (ambient temperature or hydrothermal water, as both are found within the region). The carbonate deposits are up to ~ 1 m thick and formed discontinuously for over 200 m in a narrow valley between two ridges that drain Miocene Monterey Formation bedrock. Depositional facies along the presently dry fluvial path include barrage deposits, narrow fluvial channels, and cascade deposits. The carbonates are mesoscopically banded and contain ubiquitous micro- to macrophyte calcite encrusted fabrics. All of the depositional facies contain alternating bands (~ .05 mm to 5 mm thick) of dark brown and light brown isopachous calcite; the dark brown bands are composed of dense isopachous bladed calcite, whereas the light brown bands are composed of bundles of calcite tubules interpreted as the biosignature of the desmid microalgae Oocardium stratum. Oxygen isotope thermometry utilizing modern water δ18O values from the piped spring reveal depositional water temperature estimates that collectively range from ~ 11 to 16 °C. Stable isotope carbon values exhibit a mean δ13C value of - 9.01 ± 0.62‰ (1σ, n = 27). Our petrographic and geochemical data demonstrate that (1) inactive carbonates were likely sourced from ambient temperature water with a strong soil-zone δ13C signal, (2) the Oocardium calcite biosignature can be used to infer depositional temperature and flow conditions, and (3) the occurrence of extensive carbonates (especially the presence of a perched cascade deposit) indicate the carbonates formed when conditions were much wetter.

  13. Hydrochemical and isotopic properties of the Mahmutlu and Bağdatoğlu mineralized thermal springs, Krşehir, Turkey

    NASA Astrophysics Data System (ADS)

    Ünsal, N.; Afşin, M.

    1999-12-01

    The present study identifies the hydrochemical and isotopic properties of the Mahmutlu and Bağdatoğlu mineralized thermal springs in Krşehir province, a geothermal field in central Anatolia, Turkey. Based on these properties, a hydrogeological regime is proposed in order to explain the Mahmutlu-Bağdatoğlu geothermal system. The relation between the concentrations of the environmental stable isotopes deuterium and oxygen-18 in the water is similar to the relationship in global meteoric water, indicating that the water is of meteoric origin. Evaluation of the geochemical characteristics of the water reveals that these two thermal springs belong to the same hydrogeological system. The hydrogeological system comprises a fractured limestone member of the Çevirme Formation and the Kervansaray Formation as reservoir rocks, and the Delicermak Formation as an overlying aquitard. The waters of the Mahmutlu and Bağdatoğlu springs are mainly of the Na-Cl-SO4 type that originate from the Pohrenk evaporite. The thermal waters are undersaturated with respect to calcite, dolomite, halite, and gypsum. The δ18O and δ2H contents indicate a δ18O shift in the Mahmutlu and Bağdatoğlu waters. The temperature range of the two reservoirs is estimated to be 98-158 °C, on the basis of Na+K+Ca and SiO2 geothermometers. RésuméCette étude présente les caractéristiques chimiques et isotopiques des sources thermales minéralisées de Mahmutlu et de Bağdatoğlu, dans la province de Krşehir, un champ géothermal d'Anatolie centrale (Turquie). Un fonctionnement hydrogéologique est proposéà partir de ces caractéristiques, permettant d'expliquer le système géothermal de Mahmatlu-Bağdatoğlu. La relation entre les teneurs en deutérium et celles en oxygène-18 des eaux est semblable à celle des eaux météoriques mondiales, ce qui indique que l'eau est d'origine météorique. Les caractéristiques géochimiques des eaux de ces deux sources montrent qu'elles appartiennent au

  14. Highly diverse community structure in a remote central Tibetan geothermal spring does not display monotonic variation to thermal stress.

    PubMed

    Yim, Lau Chui; Hongmei, Jing; Aitchison, Jonathan C; Pointing, Stephen B

    2006-07-01

    We report an assessment of whole-community diversity for an extremely isolated geothermal location with considerable phylogenetic and phylogeographic novelty. We further demonstrate, using multiple statistical analyses of sequence data, that the response of community diversity is not monotonic to thermal stress along a gradient of 52-83 degrees C. A combination of domain- and division-specific PCR was used to obtain a broad spectrum of community phylotypes, which were resolved by denaturing gradient gel electrophoresis. Among 58 sequences obtained from microbial mats and streamers, some 95% suggest novel archaeal and bacterial diversity at the species level or higher. Moreover, new phylogeographic and thermally defined lineages among the Cyanobacteria, Chloroflexi, Eubacterium and Thermus are identified. Shannon-Wiener diversity estimates suggest that mats at 63 degrees C supported highest diversity, but when alternate models were applied [Average Taxonomic Distinctness (AvTD) and Variation in Taxonomic Distinctness (VarTD)] that also take into account the phylogenetic relationships between phylotypes, it is evident that greatest taxonomic diversity (AvTD) occurred in streamers at 65-70 degrees C, whereas greatest phylogenetic distance between taxa (VarTD) occurred in streamers of 83 degrees C. All models demonstrated that diversity is not related to thermal stress in a linear fashion.

  15. Spring Tire

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  16. Thermostable Xanthine Oxidase Activity from Bacillus pumilus RL-2d Isolated from Manikaran Thermal Spring: Production and Characterization.

    PubMed

    Sharma, Nirmal Kant; Thakur, Shikha; Thakur, Neerja; Savitri; Bhalla, Tek Chand

    2016-03-01

    Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.

  17. Alkalinity and carbon budgets in the Mediterranean Sea

    SciTech Connect

    Copin-Montegut, C. )

    1993-12-01

    The carbon budget of the Mediterranean Sea has never been assessed. This paper reports the results of numerous measurements of pH and alkalinity in the spring of 1991. This concentration in inorganic carbon was deduced from the measurements. The existence of simple relationships between alkalinity and salinity or inorganic carbon and salinity made it possible to assess the budget of alkalinity and carbon in the Mediterranean Sea. 55 refs., 4 figs., 4 tabs.

  18. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate

    PubMed Central

    de Freitas, Christopher R.; Grigorieva, Elena A.

    2015-01-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  19. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate.

    PubMed

    de Freitas, Christopher R; Grigorieva, Elena A

    2015-11-26

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  20. The memory of volcanic waters: Shallow magma degassing revealed by halogen monitoring in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Villemant, Benoît; Hammouya, Gilbert; Michel, Agnès; Semet, Michel P.; Komorowski, Jean-Christophe; Boudon, Georges; Cheminée, Jean-Louis

    2005-09-01

    The halogen contents of thermal waters collected since 1979 at La Soufrière volcano (Guadeloupe, Lesser Antilles) are interpreted as a retarded record of magma degassing pulses dispersed into the hydrothermal system. The further the spring is located from the source, the larger the time delay and the older the event recorded in water chemistry. Using advection-dispersion transport models in porous media, we reconstruct the time-series of degassing pulses for the period 1971-1992 and show that it correlates with the seismic records. The 1975-1977 sismo-volcanic crisis at La Soufrière is thereby interpreted as the result of a magma intrusion at shallow depth (˜3 km) which likely began in approximately 1973 and degassed in a pulsatory regime during ˜15 yr. The recent recrudescence of fumarolic and seismic activity could represent the initial stage of new magma injection. Measurement of halogen contents in hydrothermal waters collected around active volcanoes may provide a powerful tool for detection of the initial stages of magma intrusions.

  1. Capillary electrophoresis for measuring major and trace anions in thermal water and condensed-steam samples from hydrothermal springs and fumaroles.

    PubMed

    Santoyo, E; García, R; Abella, R; Aparicio, A; Verma, S P

    2001-06-22

    A new application of capillary electrophoresis for measuring major and trace anions in thermal water and condensed-steam samples is presented. Ten fluid samples were collected from hydrothermal springs and fumaroles located in a volcanic zone of Deception Island, Antarctica. Anion separation was achieved in less than 6 min using indirect UV detection at 254 nm with a negative power supply (-15 kV). The electrolyte consisted of 4.7 mM sodium chromate, 4.0 mM electroosmotic flow modifier (OFM) hydroxide, 10 mM 2-(N-cyclohexylamino)ethanesulfonic acid and 0.1 mM calcium gluconate (pH 9.1). Major anions (Cl-, SO4(2), PO4H2+, and CO3H-) were measured using hydrostatic injection (10 cm for 30 s) at 25 degrees C. Trace amounts of anions (F-, Br-, and NO3-) were better determined by electromigration injection (4 kV, 10 s) at 15 degrees C. Good reproducibility of the migration times (<0.72% RSD), a satisfactory linear response and accuracy as well as acceptable detection limits were successfully obtained.

  2. Spring Regimes

    DTIC Science & Technology

    2003-04-15

    1 through Figure 2- 2. (These illustrations are several days prior to the arrival of the vernal equinox ). Note: Further discussions on jet stream...upper-level westerlies, and become cut off. Cutoff lows appear more often during the transitional periods of spring and autumn because the main belt...events of late autumn and winter. Low clouds and fog may con- tinue to occur in the Columbia Basin/Snake River Valley regions during early spring

  3. Spring performance tester for miniature extension springs

    DOEpatents

    Salzbrenner, Bradley; Boyce, Brad

    2017-05-16

    A spring performance tester and method of testing a spring are disclosed that has improved accuracy and precision over prior art spring testers. The tester can perform static and cyclic testing. The spring tester can provide validation for product acceptance as well as test for cyclic degradation of springs, such as the change in the spring rate and fatigue failure.

  4. Quantum Spring

    NASA Astrophysics Data System (ADS)

    Feng, Chao-Jun; Li, Xin-Zhou

    In this paper, we will give a short review on quantum spring, which is a Casimir effect from the helix boundary condition that proposed in our earlier works. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.

  5. Spring Defrosting

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows defrosting south high latitude dunes. In late winter and into the spring season, dark spots commonly form on dunes and other surfaces as seasonal carbon dioxide begins to sublime away.

    Location near: 59.3oS, 343.3oW Image width: 2 km (1.2 mi) Illumination from: upper left Season: Southern Spring

  6. Multistable slip of a one-degree-of-freedom spring-slider model in the presence of thermal-pressurized slip-weakening friction and viscosity

    NASA Astrophysics Data System (ADS)

    Wang, Jeen-Hwa

    2017-08-01

    This study is focused on multistable slip of earthquakes based on a one-degree-of-freedom spring-slider model in the presence of thermal-pressurized slip-weakening friction and viscosity by using the normalized equation of motion of the model. The major model parameters are the normalized characteristic displacement, Uc, of the friction law and the normalized viscosity coefficient, η, between the slider and background plate. Analytic results at small slip suggest that there is a solution regime for η and γ ( = 1/Uc) to make the slider slip steadily. Numerical simulations exhibit that the time variation in normalized velocity, V/Vmax (Vmax is the maximum velocity), obviously depends on Uc and η. The effect on the amplitude is stronger due to η than due to Uc. In the phase portrait of V/Vmax versus the normalized displacement, U/Umax (Umax is the maximum displacement), there are two fixed points. The one at large V/Vmax and large U/Umax is not an attractor, while that at small V/Vmax and small U/Umax can be an attractor for some values of η and Uc. When Uc<0. 55, unstable slip does not exist. When Uc ≥ 0. 55, Uc and η divide the solution domain into three regimes: stable, intermittent, and unstable (or chaotic) regimes. For a certain Uc, the three regimes are controlled by a lower bound, ηl, and an upper bound, ηu, of η. The values of ηl, ηu, and ηu - ηl all decrease with increasing Uc, thus suggesting that it is easier to yield unstable slip for larger Uc than for smaller Uc or for larger η than for smaller η. When Uc<1, the Fourier spectra calculated from simulation velocity waveforms exhibit several peaks, thus suggesting the existence of nonlinear behavior of the system. When Uc>1, the related Fourier spectra show only one peak, thus suggesting linear behavior of the system.

  7. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  8. Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

    NASA Astrophysics Data System (ADS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-08-01

    One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of -0.15 V vs. Ag/AgCl and a limiting diffusion current density of -4.38 mA cm-2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C.

  9. THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. Novel alkaline earth silicate sealing glass for SOFC, Part I: the effect of nickel oxide on the thermal and mechanical properties

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Gow, Robert N.

    2007-06-01

    This is a two-part study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). In this paper (Part I), the effect of NiO on glass forming, thermal, and mechanical properties was studied with two different approaches: glass making and composite glass. In the following paper (Part II), sealing and interfacial microstructure of candidate composite glass with 10v percent NiO will be addressed. In Part I, higher NiO content in the glass resulted in precipitation during the glass making process, and the sintered powder compacts of these glasses showed extensive macro- and micro-cracks. Coefficient of thermal expansion (CTE) showed large decrease for glass with higher NiO contents. On the other hand, glass-based composites showed no fracture even with NiO content as high as 15 percent. The CTE of the composite glass, which increased with increasing NiO content (consistent with the rule of mixtures prediction), could be adjusted to match the CTE of SOFC components. Phase characterization by XRD identified phases of YBO3 and NiO in the glass, which were likely responsible for the poor mechanical and thermal properties for the glass making approach.

  12. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  13. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  14. Environmental conditions of boreal springs explained by capture zone characteristics

    NASA Astrophysics Data System (ADS)

    Rossi, Pekka M.; Marttila, Hannu; Jyväsjärvi, Jussi; Ala-aho, Pertti; Isokangas, Elina; Muotka, Timo; Kløve, Bjørn

    2015-12-01

    Springs are unique ecosystems, but in many cases they are severely threatened and there is an urgent need for better spring management and conservation. To this end, we studied water quality and quantity in springs in Oulanka National Park, north-east Finland. Multivariate statistical methods were employed to relate spring water quality and quantity to hydrogeology and land use of the spring capture zone. This revealed that most springs studied were affected by locally atypical dolostone-limestone bedrock, resulting in high calcium, pH, and alkalinity values. Using Ward's hierarchical clustering, the springs were grouped into four clusters based on their water chemistry. One cluster consisted of springs affected by past small-scale agriculture, whereas other clusters were affected by the variable bedrock, e.g., springs only 1 km from the dolostone-limestone bedrock area were beyond its calcium-rich impact zone. According to a random forest model, the best predictors of spring water chemistry were spring altitude and the stable hydrogen isotope ratio of the water (δ2H). Thus stable water isotopes could be widely applicable for boreal spring management. They may also provide a rough estimate of groundwater flow route (i.e., whether it is mainly local or regional), which largely determines the chemical characteristics of spring water. Our approach could be applied in other boreal regions and at larger spatial scales for improved classification of springs and for better targeted spring management.

  15. Fusion of an Oligopeptide to the N Terminus of an Alkaline α-Amylase from Alkalimonas amylolytica Simultaneously Improves the Enzyme's Catalytic Efficiency, Thermal Stability, and Resistance to Oxidation

    PubMed Central

    Yang, Haiquan; Lu, Xinyao; Li, Jianghua; Shin, Hyun-dong; Chen, Rachel R.; Du, Guocheng

    2013-01-01

    In this study, we constructed and expressed six fusion proteins composed of oligopeptides attached to the N terminus of the alkaline α-amylase (AmyK) from Alkalimonas amylolytica. The oligopeptides had various effects on the functional and structural characteristics of AmyK. AmyK-p1, the fusion protein containing peptide 1 (AEAEAKAKAEAEAKAK), exhibited improved specific activity, catalytic efficiency, alkaline stability, thermal stability, and oxidative stability compared with AmyK. Compared with AmyK, the specific activity and catalytic constant (kcat) of AmyK-p1 were increased by 4.1-fold and 3.5-fold, respectively. The following properties were also improved in AmyK-p1 compared with AmyK: kcat/Km increased from 1.8 liter/(g·min) to 9.7 liter/(g·min), stable pH range was extended from 7.0 to 11.0 to 7.0 to 12.0, optimal temperature increased from 50°C to 55°C, and the half-life at 60°C increased by ∼2-fold. Moreover, AmyK-p1 showed improved resistance to oxidation and retained 54% of its activity after incubation with H2O2, compared with 20% activity retained by AmyK. Finally, AmyK-p1 was more compatible than AmyK with the commercial solid detergents tested. The mechanisms responsible for these changes were analyzed by comparing the three-dimensional (3-D) structural models of AmyK and AmyK-p1. The significantly enhanced catalytic efficiency and stability of AmyK-p1 suggests its potential as a detergent ingredient. In addition, the oligopeptide fusion strategy described here may be useful for improving the catalytic efficiency and stability of other industrial enzymes. PMID:23455344

  16. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  17. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  18. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  19. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  20. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  1. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    PubMed

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works.

  2. Spring Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    22 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes in the north polar region of Mars. In this scene, the dunes, and the plain on which the dunes reside, are at least in part covered by a bright carbon dioxide frost. Dark spots indicate areas where the frost has begun to change, either by subliming away to expose dark sand, changing to a coarser particle size, or both. The winds responsible for the formation of these dunes blew from the lower left (southwest) toward the upper right (northeast).

    Location near: 76.3oN, 261.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  3. Alkaline battery operational methodology

    SciTech Connect

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  4. Electron thermalization and trapping rates in pure and doped alkali and alkaline-earth iodide crystals studied by picosecond optical absorption

    NASA Astrophysics Data System (ADS)

    Ucer, K. B.; Bizarri, G.; Burger, A.; Gektin, A.; Trefilova, L.; Williams, R. T.

    2014-04-01

    Although light continues to be emitted from insulating crystals used as scintillators over a period of nanoseconds to microseconds after stopping of an energetic particle, much of what determines the nonlinearity of response goes on in the first picoseconds. On this time scale, free carriers and excitons are at high density near the track core and thus are subject to nonlinear quenching. The hot (free) electrons eventually cool to low enough energy that trapping on holes, dopants, or defects can commence. In the track environment, spatial distributions of trapped carriers determined on the picosecond time scale can influence the proportionality between light yield and the initial particle energy throughout the whole light pulse. Picosecond spectroscopy of optical absorption induced by a short pulse of above-gap excitation provides a useful window on what occurs during the crucial early evolution of excited populations. The laser excitation can be tuned to excite carriers that are initially very hot (˜3 eV) relative to the band edges, or that are almost thermalized (˜0.1 eV excess energy) at the outset. Undoped and doped samples of NaI:Tl(0%, 0.1%), CsI:Tl(0%, 0.01%, 0.04%, 0.3%), and SrI2:Eu(0%, 0.2%, 0.5%, 3%) are studied in this work.

  5. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    SciTech Connect

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; Kamennaya, Nina; Brown, Natasha; Woyke, Tanja; Kyrpides, Nikos; Holman, Hoi-Ying; Torok, Tamas

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  6. Genome Sequence of the Alkaline-Tolerant Cellulomonas sp. Strain FA1

    DOE PAGES

    Cohen, Michael F.; Hu, Ping; Nguyen, My Vu; ...

    2015-06-18

    We present the genome of the cellulose-degrading Cellulomonas sp. strain FA1 isolated from an actively serpentinizing highly alkaline spring. Knowledge of this genome will enable studies into the molecular basis of plant material degradation in alkaline environments and inform the development of lignocellulose bioprocessing procedures for biofuel production.

  7. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    PubMed

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  8. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  9. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  10. Helical spring holder assembly

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S. (Inventor)

    1987-01-01

    A helically-threaded spring holder on which a helically wound spring is mounted has a groove formed in one side of the thread at the end where the spring engages the spring holder. The groove relieves the portion of the side in which it is formed from restricting the spring against axial movement during deflection of the spring. The circumferential length of this groove is chosen to establish the number of spring coils which can be deflected without contacting the side of the thread. The end of the thread is also made rigid to prevent flexing thereof during maximal elongation of the spring.

  11. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, William C.; Nielson, Dennis L.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  12. Alkaline phosphatase: an overview.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  13. Spring loaded thermocouple module

    DOEpatents

    McKelvey, T.E.; Guarnieri, J.J.

    1984-03-13

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  14. Spring loaded thermocouple module

    DOEpatents

    McKelvey, Thomas E.; Guarnieri, Joseph J.

    1985-01-01

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  15. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    USGS Publications Warehouse

    : Martin, Peter; Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle

    2011-01-01

    Numerical models of fluid and temperature flow were developed for the Agua Caliente Spring to (1) test the validity of the conceptual model that the Agua Caliente Spring enters the valley-fill deposits from fractures in the underlying basement complex and rises through more than 800 feet of valley-fill deposits by way of a washed-sand conduit and surrounding low-permeability deposits (spring chimney) of its own making, (2) evaluate whether water-level declines in the regional aquifer will influence the temperature of discharging water, and (3) determine the source of thermal water in the perched aquifer. A radial-flow model was used to test the conceptual model and the effect of water-level declines. The observed spring discharge and temperature could be simulated if the vertical hydraulic conductivity of the spring orifice was about 200 feet per day and the horizontal hydraulic conductivity of the orifice (spring chimney) was about 0.00002 feet per day. The simulated vertical hydraulic conductivity is within the range of values reported for sand; however, the low value simulated for the horizontal hydraulic conductivity suggests that the spring chimney is cemented with increasing depth. Chemical data collected for this study indicate that the water at Agua Caliente Spring is at saturation with respect to both calcite and chalcedony, which provides a possible mechanism for cementation of the spring chimney. A simulated decline of about 100 feet in the regional aquifer had no effect on the simulated discharge of Agua Caliente Spring and resulted in a slight increase in the temperature of the spring discharge. Results from the radial-flow- and three-dimensional models of the Agua Caliente Spring area demonstrate that the distribution and temperature of thermal water in the perched water table can be explained by flow from a secondary shallow-subsurface spring orifice of the Agua Caliente Spring not contained by the steel collector tank, not by leakage from the

  16. Microbial Paleontology, Mineralogy and Geochemistry of Modern and Ancient Thermal Spring Deposits and Their Recognition on the Early Earth and Mars"

    NASA Technical Reports Server (NTRS)

    Farmer, Jack D.

    2004-01-01

    The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.

  17. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A. Part 1: Implications for structure of the western caldera

    SciTech Connect

    Wannamaker, P.E.

    1997-03-01

    An extensive tensor controlled-source audiomagnetotelluric (CSAMT) survey has been carried out over the Sulphur Springs geothermal area, Valles Caldera, New Mexico. Forty-five sites were acquired using two crossed transmitter bipoles placed approximately 13 km south of the center of the survey. The soundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. CSAMT and magnetotelluric (MT) data taken outside Valles Caldera were constrained by drill logs and imply resistive Bandelier Tuff, underlain by conductive Paleozoic sediments, and further underlain by resistive, primarily Precambrian crystalline rocks. Model cross-sections within the caldera were derived using 2-D parameterized inversion constrained by drilling, with layered-earth inversion for starting models. Southeast of the Sulphur Creek fault, the upper 200 m of the section are of relatively low resistivity and correspond to unconsolidated land-slide and debris flows. The Bandelier Tuff below exhibits higher but variable resistivities because of alteration controlled by local faulting. Beneath the Bandelier Tuff, the Paleozoic sedimentary layer is only moderately less resistive than it is outside the caldera, with the lowest values occurring northwest of Sulphur Creek. Its low resistivity per se does not necessarily represent a hydrothermal aquifer. The Sulphur Creek fault appears to be a locus of substantial change in structural relief; upthrow of stratigraphy and basement to its west appears to be about 400--500 m. A major normal fault down to the southeast is located under the topographic expression of Freelove Canyon, which is up to 1 km farther southeast than suggested by previous geologic sections. High resistivities possibly corresponding to a vapor zone in the upper 500 m near VC-2B and VC-2A are not consistent with the CSAMT data.

  18. Electronic Feedback Control of Mass-Spring Systems.

    DTIC Science & Technology

    1985-09-01

    detectors. However, the conventional performance is limited by the size, the stiffness and Q of the spring. In order to measure the system ground motion...reduce the different modes of a spring. The sensitivity of the electronic circuit is limited by the thermal noise. Consequently, this thesis introduces a...that obtainable with air tables. However, it is limited by the size of the S " spring. For instance, if the resonant frequency is at 2 Hz, the spring

  19. Hot springs of the central Sierra Nevada, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Thermal springs of the central Sierra Nevada issue dilute to slightly saline sodium chloride, sodium bicarbonate, or sodium mixed-anion waters ranging in pH from 6.4 to 9.3. The solubility of chalcedony appears to control the silica concentration in most of the spring waters. Fales Hot Springs may be associated with a higher temperature aquifer, 150 degrees Celsius or more, in which quartz is controlling the silica concentration. Carbon dioxide is the predominant gas escaping from Fales Hot Springs, the unnamed hot spring on the south side of Mono Lake, and the two thermal springs near Bridgeport. Most of the other thermal springs issue small amounts of gas consisting principally of nitrogen. Methane is the major component of the gas escaping from the unnamed spring on Paoha Island in Mono Lake. The deuterium and oxygen isotopic composition of most of the thermal waters are those expected for local meteoric water which has undergone minor water-rock reaction. The only exceptions are the hot spring on Paoha Island in Mono Lake and perhaps the unnamed warm spring (south side of Mono Lake) which issues mixtures of thermal water and saline lake water. (Woodard-USGS)

  20. [Advances of alkaline amylase production and applications].

    PubMed

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  1. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  2. New alkaline earth-zirconium oxalates M{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O (M=Ba, Sr, Ca) synthesis, crystal structure and thermal behavior

    SciTech Connect

    Chapelet-Arab, B.; Abraham, F. . E-mail: francis.abraham@ensc-lille.fr; Grandjean, S.

    2004-11-01

    Three new alkaline earth-zirconium oxalates M{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M{sup 2+} and Zr{sup 4+} ions through silica gel containing oxalic acid. Ba{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.7H{sub 2}O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), c=9.178(2)A, {beta}=122.248(4){sup o}, V=2214.2(8)A3, Z=4, R=0.0427; Sr{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.11H{sub 2}O, tetragonal, space group I41/acd, a=16.139(4), c=18.247(6)A, V=4753(2)A3, Z=8, R=0.0403; Ca{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.5H{sub 2}O, orthorhombic, space group Pna2{sub 1}, a=8.4181(5), b=15.8885(8), c=15.8885(8)A, V=2125(2)A3, Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO{sub 6}(H{sub 2}O){sub x} (x=2 or 3) polyhedra connected to ZrO{sub 8} polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO{sub 8} polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M{sup 2+} cations (Sr{sup 2+}, Ca{sup 2+}), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba{sup 2+} cation, the second framework is formed and is closely related to that of Pb{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O. The decomposition at 800{sup o}C into strontium carbonate, barium carbonate or calcium oxide and MZrO{sub 3} (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.

  3. New alkaline earth-zirconium oxalates M2Zr(C 2O 4) 4· nH 2O ( M=Ba, Sr, Ca) synthesis, crystal structure and thermal behavior

    NASA Astrophysics Data System (ADS)

    Chapelet-Arab, B.; Nowogrocki, G.; Abraham, F.; Grandjean, S.

    2004-11-01

    Three new alkaline earth-zirconium oxalates M2Zr(C 2O 4) 4· nH 2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M 2+ and Zr 4+ ions through silica gel containing oxalic acid. Ba 2Zr(C 2O 4) 4·7H 2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), c=9.178(2) Å, β=122.248(4) °, V=2214.2(8) Å, Z=4, R=0.0427; Sr 2Zr(C 2O 4) 4·11H 2O, tetragonal, space group I41/acd, a=16.139(4), c=18.247(6) Å, V=4753(2) Å,Z=8, R=0.0403; Ca 2Zr(C 2O 4) 4·5H 2O, orthorhombic, space group Pna2 1, a=8.4181(5), b=15.8885(8), c=15.8885(8) Å, V=2125(2) Å, Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO 6(H 2O) x ( x=2 or 3) polyhedra connected to ZrO 8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO 8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr 2+, Ca 2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba 2+ cation, the second framework is formed and is closely related to that of Pb 2Zr(C 2O 4) 4· nH 2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO 3 ( M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.

  4. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  5. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  6. Ombla Spring, Croatia

    NASA Astrophysics Data System (ADS)

    Milanović, P.

    1996-03-01

    Ombla Spring is located on the Adriatic coast near the town of Dubrovnik. The spring discharges at sea level. To eliminate the influence of the tide, a small dam was constructed 50 m downstream of the spring outlet. The spring water overflows the dam crest at an elevation of 2.40 m. Since 1897 the springwater has been used for the water supply for Dubrovnik.

  7. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  8. Spring Wheat Breeding

    USDA-ARS?s Scientific Manuscript database

    Common wheat, known as bread wheat, is one of major crops for human food consumption. It is further classified into spring and winter wheat based on the distinct growing seasons. Spring wheat is grown worldwide and usually planted in the spring and harvested in late summer or early fall. In this c...

  9. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  10. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley

    SciTech Connect

    Renaut, R.W.; Owen, R.B.

    1988-08-01

    An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

  11. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Bernhart Owen, R.

    1988-08-01

    An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

  12. 1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING (LEFT BACKGROUND), AND TWIN COTTAGES (UPPER RIGHT) (4 x 5 negative; 5 x 7 print) - Salt Sulpher Springs, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  13. Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Mottl, M. J.; Wheat, G.; Baker, E.; Becker, N.; Davis, E.; Feely, R.; Grehan, A.; Kadko, D.; Lilley, M.; Massoth, G.; Moyer, C.; Sansone, F.

    1998-01-01

    We have located warm springs on an isolated basement outcrop on 3.5 Ma crust on the eastern flank of the Juan de Fuca Ridge in the northeast Pacific Ocean. These are the first ridge-flank hydrothermal springs discovered on crust older than 1 Ma. The springs are venting altered seawater at 25.0 °C along a fault near the summit of Baby Bare outcrop, a high point along a ridge-axis-parallel basement ridge that is otherwise buried by turbidite sediment. Baby Bare is a small volcano that probably erupted off-axis ca. 1.7 Ma; it is thermally extinct, but acts as a high-permeability conduit for venting of basement fluids. The springs have been sampled from the manned submersible Alvin. Compared with the ambient ocean bottom water, they are heavily depleted in Mg, alkalinity, CO2, sulfate, K, Li, U, O2, nitrate, and phosphate, and enriched in Ca, chlorinity, ammonia, Fe, Mn, H2S, H2, CH4, 222Rn, and 226Ra. The springs appear to support a community of thysirid clams. Although we saw no obvious bacterial mats, the surficial sediments contain the highest biomass concentrations ever measured in the deep sea, based on their phospholipid phosphate content. Areal integration of Alvin heat-flow and pore-water velocity data yields flux estimates of 4 13 L/s and 2 3 MW for the total (diffuse and focused) hydrothermal output from Baby Bare, comparable to that from a black smoker vent on the ridge axis. Warm springs such as those on Baby Bare may be important for global geochemical fluxes.

  14. Nonthermal springs of Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1971-01-01

    Data are presented for about 4,500 nonthermal springs that discharge in the State of Utah. Most major springs having discharge of several cubic feet per second or more are in or near mountain ranges or plateaus where precipitation is much greater than in other parts of the State. The largest instantaneous discharge observed at any spring was 314 cfs at Mammoth Spring in southwestern Utah.  Discharges exceeding 200 cfs have been observed at Swan Creek Spring in extreme northern Utah, and discharges of 200 cfs have been reported for Big Brush Creek Spring in northeastern Utah. Maximum discharges generally are during or within a few weeks after the main period of snowmelt, which is usually from late April to the middle of June.The largest springs generally discharge form or very near carbonate rocks in which solution channels and fractures are numerous or from areas of porous or fractured volcanic rocks. Most nonthermal springs in Utah probably are variable springs – that is, their variability of discharge exceeds 100 percent.Most of the major springs discharge water that contains less than 500 ppm (parts per million) of dissolved solids, and most of the water is of the calcium bicarbonate type. Water from springs is used for domestic, municipal, irrigation, livestock, mining, and industrial purposes.

  15. Springs of Florida

    USGS Publications Warehouse

    Rosenau, Jack C.; Faulkner, Glen L.; Hendry, Charles W.; Hull, Robert W.

    1977-01-01

    The first comprehensive report of Florida's springs, which contains both a story of the springs and a collection of facts about them, was published thirty years ago (Ferguson and others, 1947). Since then, much additional data on springs have been gathered and the current report, Springs of Florida, makes a wealth of information on springs available to the public. Springs of Florida, prepared by the U.S. Geological Survey in cooperation with the Bureau of Geology, Florida Department of Natural Resources, publishers, and the Bureau of Water Resources Management, Florida Department of Environmental Regulation, is intended to provide sufficient background information for a lucid understanding of the nature and occurrence of the springs in the State.

  16. Spring joint with overstrain sensor

    NASA Technical Reports Server (NTRS)

    Phelps, Peter M. (Inventor); Gaither, Bryan W. (Inventor)

    2011-01-01

    A flexible joint may include a conductive compression spring and a pair of non-conductive spring cages disposed at opposite ends of the compression spring to support the compression spring. A conductive member disposed inside the compression spring may extend between the pair of spring cages. One end of the conductive member may be fixed for movement with one of the spring cages and another end of the conductive member may be fixed for movement with the other of the spring cages.

  17. Acidification and Increasing CO2 Flux Associated with Five, Springs Coast, Florida Springs (1991-2014)

    USGS Publications Warehouse

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Scientists from the South West Florida Management District (SWFWMD) acquired and analyzed over 20 years of seasonally-sampled hydrochemical data from five first-order-magnitude (springs that discharge 2.83 m3 s-1 or more) coastal springs located in west-central Florida. These data were subsequently obtained by the U.S. Geological Survey (USGS) for further analyses and interpretation. The spring study sites (Chassahowitzka, Homosassa, Kings Bay, Rainbow, and Weeki Wachee), which are fed by the Floridan Aquifer system and discharge into the Gulf of Mexico were investigated to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2) and CO2 flux.

  18. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  19. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  20. Mantle to Surface Fluid Transfer Above a Flat Slab Subduction Zone: Isotopic Evidence from Hot Springs in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.

    2015-12-01

    Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera

  1. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  2. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  3. Peatland Structural Controls on Spring Distribution

    NASA Astrophysics Data System (ADS)

    Hare, D. K.; Boutt, D. F.; Hackman, A. M.; Davenport, G.

    2013-12-01

    The species richness of wetland ecosystems' are sustained by the presence of discrete groundwater discharge, or springs. Springs provide thermal refugia and a source of fresh water inflow crucial for survival of many wetland species. The subsurface drivers that control the spatial distribution of surficial springs throughout peatland complexes are poorly understood due to the many challenges peatlands pose for hydrologic characterization, such as the internal heterogeneities, soft, dynamic substrate, and low gradient of peat drainage. This has previously made it difficult to collect spatial data required for restoration projects that seek to support spring obligate and thermally stressed species such as trout. Tidmarsh Farms is a 577-acre site in Southeastern Massachusetts where 100+ years of cranberry farming has significantly altered the original peatland hydrodynamics and ecology. Farming practices such as the regular application of sand, straightening of the main channel, and addition of drainage ditches has strongly degraded this peatland ecosystem. Our research has overlain non-invasive geophysical, thermal, and water isotopic data from the Tidmarsh Farms peatland to provide a detailed visualization of how subsurface peat structure and spring patterns correlate. Ground penetrating radar (GPR) has proven particularly useful in characterizing internal peat structure and the mineral soil interface beneath peatlands, we interpolate the peatland basin at a large scale (1 km2) and compare this 3-D surface to the locations of springs on the peat platform. Springs, expressed as cold anomalies in summer and warm anomalies in winter, were specifically located by combining fiber-optic and infrared thermal surveys, utilizing the numerous relic agricultural drainage ditches as a sampling advantage. Isotopic signatures of the spring locations are used to distinguish local and regional discharge, differences that can be explained in part by the peat basin structure

  4. A Magnet Spring Model

    ERIC Educational Resources Information Center

    Fay, T. H.; Mead, L.

    2006-01-01

    The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…

  5. Mineral springs and miracles.

    PubMed

    Forster, M M

    1994-04-01

    Development of hot springs in the Canadian Rockies was closely linked to their reputed medicinal value. In 1885, the federal government created a small reserve around the springs at Sulphur Mountain, an area later enlarged to become Banff National Park, in recognition of the "great sanitary and curative advantage to the public."

  6. A Magnet Spring Model

    ERIC Educational Resources Information Center

    Fay, T. H.; Mead, L.

    2006-01-01

    The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…

  7. Restoration of White Springs

    Treesearch

    Jonathan W. Long; Delbin Endfield

    2000-01-01

    Rock structures, road closures, fencing and revegetation methods were employed to restore a culturally and ecologically important spring that had been damaged in the aftermath of a wildfire. The project has reestablished the stability of the spring and has moved it closer to its former condition. School groups were an essential part of the restoration project, and...

  8. Systematic variations in sinter mineralogy, microtexture and diagenesis in modern siliceous hot springs: Clues for interpreting depositional conditions in ancient deposits

    NASA Astrophysics Data System (ADS)

    Mills, V. W.; Farmer, J. D.; Ruff, S. W.; Nunez, J.; Jahnke, L. L.

    2011-12-01

    The deposits of siliceous hydrothermal springs are known to capture and preserve a wide range of microbial fossil information. The recent discovery of hydrothermal silica at Home Plate, Columbia Hills, Mars has once again raised interest in the potential importance of ancient spring sinters as targets for future astrobiological mission to Mars. To create additional context information to support future in situ missions to Mars, we have documented systematic changes in the mineralogy and microtexture of modern siliceous hot spring deposits, observed along gradients in temperature, pH and flow velocity. Specific objectives are to: 1) identify chemical and physical factors that promote early diagenetic transformations of amorphous silica (opal-A), to progressively more ordered and crystalline phases (cristobalite, tridymite and quartz); 2) determine the composition and abundance of minor mineral phases, especially clays, in relationship to pH, temperature and paragenesis; and 3) to assess the usefulness of sinter mineralogy and microtexture in reconstructing the paleoenvironmental records preserved in ancient deposits. Study sites for acidic (pH 2-5) sinters included Nymph Creek, located in the Norris Geyser Basin of Yellowstone National Park (YNP). Active alkaline (pH 7-10) springs included Rabbit Creek, Steep Cone and Mound Spring located in the Lower Geyser Basin, YNP. Field measurements in active springs included pH, temperature and flow velocity, along with general microfacies assignments. To better constrain types and rates of silica diagenesis, the study also sampled older (Holocene-Pleistocene-aged) deposits. Laboratory analyses included X-ray powder diffraction (XRPD), thermal infrared spectroscopy (TIR) and thin section petrography for characterizing sinter microtextures and for placing mineral phases (identified by XRPD and TIR) into a time-ordered diagenetic framework. In analyzing the phyllosilicates present in sinters, we applied clay separation and

  9. Advanced film-forming gel formula vs spring thermal water and white petrolatum as primary dressings after full-face ablative fractional CO2 laser resurfacing: a comparative split-face pilot study.

    PubMed

    Marini, L

    2017-06-29

    Aesthetically pleasing results and fast, uneventful recovery are highly desirable after rejuvenating ablative laser procedures. Wound dressings following ablative laser procedures should ideally improve and optimize the wound healing environment. The purpose of this comparative split-face, single-blinded, prospective observational study was to assess the efficacy and acceptability of two primary wound dressings immediately after a full-face fractional CO2 laser resurfacing procedure. The assessments of an innovative film-forming dressing called Stratacel (SC) vs spring thermal water + Vaseline (V+) were conducted after a standardized, single-pass, full-face ablative fractional CO2 laser skin resurfacing procedure. Clinical parameters, such as haemoglobin - HB; surface temperature - ST; micro-textural modifications - MT; superficial melanin - M; intrafollicular porphyrins - P, were assessed at different phases of the healing process using standardized, non-invasive technologies. Five female volunteers were enrolled in this inpatient, controlled pilot study. Most of the clinical parameters considered, including 3D surface texture analysis, revealed a better performance of SC vs. V+ during the early, more delicate phases of the healing process. This preliminary study, even if performed on a small number of volunteers, confirmed a definite advantage of the tested semipermeable film-forming formula (SC) over a more conventional postoperative skin care regime (V+). Clinical results could be explained by a better uniformity of distribution of SC over the micro-irregularities induced by ablative fractional CO2 laser resurfacing. Its thin, semipermeable film might, in fact, act as an efficient, perfectly biocompatible, full contact, temporary skin barrier, able to protect extremely delicate healing surfaces from potential environmental irritations. © 2017 European Academy of Dermatology and Venereology.

  10. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  11. Rotary spring energy storage

    SciTech Connect

    Cooley, S.

    1981-07-01

    The goal was to design a lightweight system, for bicycles, that can level the input energy requirement (human exertion) in accordance with variations in road load (friction, wind, and grade) and/or to provide a system for regenerative braking, that is, to store energy normally lost in brake pad friction for brief periods until it required for re-acceleration or hill-climbing. The rotary spring, also called the coil, motor, spiral, or power spring is governed by the equations reviewed. Materials used in spring manufacture are briefly discussed, and justification for steel as the design choice of material is given. Torque and power requirements for a bicycle and rider are provided as well as estimated human power output levels. These criteria are examined to define spring size and possible orientations on a bicycle. Patents and designs for coupling the spring to the drive train are discussed.

  12. CO(2) uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring.

    PubMed

    Boyd, Eric S; Leavitt, William D; Geesey, Gill G

    2009-07-01

    Carbon fixation at temperatures above 73 degrees C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (S(o) floc) at the source of Dragon Spring (73 degrees C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO(2) uptake of 21.3 +/- 11.9 microg of C 10(7) cells(-1) h(-1). When extrapolated over the estimated total quantity of S(o) floc at the spring's source, the S(o) floc-associated microbial community accounted for the uptake of 121 mg of C h(-1) at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO(2) by the S(o) floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the S(o) floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO(2) in this geothermal habitat.

  13. Temperature Adaptations in the Terminal Processes of Anaerobic Decomposition of Yellowstone National Park and Icelandic Hot Spring Microbial Mats

    PubMed Central

    Sandbeck, Kenneth A.; Ward, David M.

    1982-01-01

    The optimum temperatures for methanogenesis in microbial mats of four neutral to alkaline, low-sulfate hot springs in Yellowstone National Park were between 50 and 60°C, which was 13 to 23°C lower than the upper temperature for mat development. Significant methanogenesis at 65°C was only observed in one of the springs. Methane production in samples collected at a 51 or 62°C site in Octopus Spring was increased by incubation at higher temperatures and was maximal at 70°C. Strains of Methanobacterium thermoautotrophicum were isolated from 50, 55, 60, and 65°C sites in Octopus Spring at the temperatures of the collection sites. The optimum temperature for growth and methanogenesis of each isolate was 65°C. Similar results were found for the potential rate of sulfate reduction in an Icelandic hot spring microbial mat in which sulfate reduction dominated methane production as a terminal process in anaerobic decomposition. The potential rate of sulfate reduction along the thermal gradient of the mat was greatest at 50°C, but incubation at 60°C of the samples obtained at 50°C increased the rate. Adaptation to different mat temperatures, common among various microorganisms and processes in the mats, did not appear to occur in the processes and microorganisms which terminate the anaerobic food chain. Other factors must explain why the maximal rates of these processes are restricted to moderate temperatures of the mat ecosystem. PMID:16346109

  14. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  15. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  16. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  17. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  18. Hydrological and geochemical study of Yuseong hot spring in Korea

    NASA Astrophysics Data System (ADS)

    Lee, C.; Park, C.; Cho, Y.; LEE, Y.

    2013-12-01

    Yuseong hot spring is the first modernized hot spring in 1920's that has drawn the most tourists until 2000 before decline of tourists due to the aging of facility. It is located in the mid-west of South Korea. Geologically, it is in Precambrian metamorphic complex intruded by Mesozoic granite and porphyry. Fault zones exist in the E-W and NNW-SSE directions around Yuseong hot spring. Wells lie in the E-W direction indicating the correlation between the fault zones and the hot spring distribution. Water production rate has decreased gradually from 5,200 m3/d in 1993 to 2,500 m3/d in 2011. Water depth varies from 22 m - 57 m depending on pumping. Although enforced pumping has enacted last 50 years, water depth is observed to be stable. Water temperature is measured from the highest 51.8 degree Celsius to the lowest 25 degree Celsius. Yuseong hot spring is primarily the type of Na(Ca)-HCO3 whose pH ranges from low alkaline to alkaline with sufficient silica(≥40 mg/L).

  19. Harbingers of Spring

    ERIC Educational Resources Information Center

    Serrao, John

    1976-01-01

    Emphasizing the spring migration of frogs, toads, and salamanders to their watery breeding sites, this article presents information on numerous amphibians and suggests both indoor and outdoor educational activities appropriate for elementary and/or early secondary instruction. (JC)

  20. Harbingers of Spring

    ERIC Educational Resources Information Center

    Serrao, John

    1976-01-01

    Emphasizing the spring migration of frogs, toads, and salamanders to their watery breeding sites, this article presents information on numerous amphibians and suggests both indoor and outdoor educational activities appropriate for elementary and/or early secondary instruction. (JC)

  1. Mineral springs and miracles.

    PubMed Central

    Forster, M. M.

    1994-01-01

    Development of hot springs in the Canadian Rockies was closely linked to their reputed medicinal value. In 1885, the federal government created a small reserve around the springs at Sulphur Mountain, an area later enlarged to become Banff National Park, in recognition of the "great sanitary and curative advantage to the public." Images p730-a p731-a p732-a p733-a p734-a p736-a PMID:8199525

  2. Springs of Great Britain

    NASA Astrophysics Data System (ADS)

    Day, J. B. W.

    1996-03-01

    Predictably, in a country such as Britain, with its preponderance of consolidated, sedimentary, mainly fissure-flow aquifers, there is a very large number of springs, many of which are, or have been, used for public supply. Migratory springs are a feature of the British (Ur. Cretaceous) Chalk, the most important British aquifer. The Chalk's low specific yield and high capillary moisture retention together give rise to very considerable fluctuations (more than 33 m in some areas) of the unconfined water table. Along the gentle dip slopes of the Chalk (North and South Downs of southern and southeastern England) springs may migrate laterally for several miles, giving rise to seasonal streams locally known as “bournes” or “lavants”. However, springs such as at Duncton, West Sussex, at the base of the much steeper scarp slopes of the Chalk, form point sources, the flows from which tend to be relatively steady; such springs commonly supply and are the original reason for the existence of many of the small towns and villages which nestle along the bases of the chalk scarps of Sussex and Kent. Where the Chalk forms coastal cliffs, a number of springs break out at the base of the cliff between high and low tide levels; there are major chalk coastal springs, for instance, at St. Margaret's Bay (Kent) and at Arish Mells, east of Lulworth Cove, Dorset. Such springs are not used for direct supply (their salinity is usually too high) but are indicators of the presence of local reserves of groundwater for possible future development.

  3. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  4. Shape memory thermal conduction switch

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  5. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1988-01-01

    A spring (10) includes a tube (12) having an elliptical cross section, with the greater axial dimension (22) extending laterally and the lesser axial dimension (24) extending vertically. A plurality of cuts (20) in the form of slots passing through most of a wall of the tube (12) extend perpendicularly to a longitudinal axis (16) extending along the tube (12). An uncut portion (26) of the tube wall extends along the tube (12) for bonding or fastening the tube to a suitable base, such as a bottom (28) of a seat cushion (30).

  6. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, L. A. (Inventor)

    1985-01-01

    A spring which includes a tube with an elliptical cross section, with the greater axial dimension extending laterally and the lesser axial dimension extending vertically is disclosed. A plurality of cuts in the form of slots passing through most of a wall of the tube extend perpendiculary to a longitudinal axis extending along the tube. An uncut portion of the tube wall extends along the tube for bonding or fastening the tube to a suitable base, such as a bottom of a seat cushion.

  7. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed.

  8. Walking with springs

    NASA Astrophysics Data System (ADS)

    Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.

    2011-04-01

    Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.

  9. Spectroscopic characterization of alkaline earth uranyl carbonates

    NASA Astrophysics Data System (ADS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-02-01

    A series of alkaline uranyl carbonates, M[UO 2(CO 3) 3]· nH 2O ( M=Mg 2, Ca 2, Sr 2, Ba 2, Na 2Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2[UO 2(CO 3) 3]·6H 2O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2)(CO 3) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90±0.02 Å.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces.

  10. Damper Spring For Omega Seal

    NASA Technical Reports Server (NTRS)

    Maclaughlin, Scott T.; Montgomery, Stuart K.

    1993-01-01

    Damper spring reduces deflections of omega-cross-section seal, reducing probability of failure and extending life of seal. Spring is split ring with U-shaped cross section. Placed inside omega seal and inserted with seal into seal cavity. As omega seal compressed into cavity, spring and seal make contact near convolution of seal, and spring becomes compressed also. During operation, when seal dynamically loaded, spring limits deflection of seal, reducing stress on seal.

  11. Spring polar ozone behavior

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1992-01-01

    Understanding of the springtime behavior of polar stratospheric ozone as of mid 1990 is summarized. Heterogeneous reactions on polar stratospheric clouds as hypothesis for ozone loss are considered and a simplified description of the behavior of Antarctic ozone in winter and spring is given. Evidence that the situation is more complicated than described by the theory is produced. Many unresolved scientific issues remain and some of the most important problems are identified. Ozone changes each spring since 1979 have clearly established for the first time that man made chlorine compounds influence stratospheric ozone. Long before important advances in satellite and in situ investigations, it was Dobson's decision to place a total ozone measuring spectrometer at Halley Bay in Antarctica during the International Geophysical Year and subsequent continuous monitoring which led to the discovery that ozone was being destroyed each spring by chlorine processed by polar stratospheric clouds.

  12. The alkaline solution to the emergence of life: energy, entropy and early evolution.

    PubMed

    Russell, Michael J

    2007-01-01

    The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through

  13. Hydrogeochemical response of groundwater springs during central Italy earthquakes (24 August 2016 and 26-30 October 2016)

    NASA Astrophysics Data System (ADS)

    Archer, Claire; Binda, Gilberto; Terrana, Silvia; Gambillara, Roberto; Michetti, Alessandro; Noble, Paula; Petitta, Marco; Rosen, Michael; Pozzi, Andrea; Bellezza, Paolo; Brunamonte, Fabio

    2017-04-01

    Co-seismic hydrological and chemical response at groundwater springs following strong earthquakes is a significant concern in the Apennines, a region in central Italy characterized by regional karstic groundwater systems interacting with active normal faults capable of producing Mw 6.5 to 7.0 seismic events. These aquifers also provide water supply to major metropolitan areas in the region. On August 24, 2016, a Mw 6.0 earthquake hit Central Italy in the area where Latium joins Umbria, Marche and Abruzzi; this was immediately followed one hour later by a Mw 5.4 shock. The epicenter of the event was located at the segment boundary between the Mt. Vettore and Mt. Laga faults. On October 26, 2016 and on October 30, 2016, three other big shocks (Mw 5.5, Mw 6.0 and Mw 6.5) ruptured again the Vettore Fault and its NW extension. Immediately after Aug. 24, we sampled springs discharging different aquifers in the Rieti area, including the Peschiera spring, which feeds the aqueduct of Rome. Thermal springs connected with deep groundwater flowpaths were also sampled. These springs, sampled previously in 2014 and 2015, provide some pre-earthquake data. Moreover, we sampled 4 springs along the Mt. Vettore fault system: 3 small springs at Forca di Presta, close to the trace of the earthquake surface ruptures, and two in Castel Sant'Angelo sul Nera. The latter are feeding the Nera aqueduct and the Nerea S.p.A. mineral water plant, which also kindly allowed us to collect bottled water samples from the pre-seismic period. The aim of this study is to evaluate the strong earthquake sequence effects on the hydrochemistry and flow paths of groundwater from different aquifer settings based on analysis before and after seismic events. The comparison between the responses of springs ca. 40 km from the epicenter (Rieti basin) and the springs located near the epicenter (Castelsantangelo sul Nera and Forca di Presta) is especially significant for understanding the resilience of groundwater

  14. Radioactive springs geochemical data related to uranium exploration

    USGS Publications Warehouse

    Cadigan, R.A.; Felmlee, J.K.

    1977-01-01

    Radioactive mineral springs and wells at 33 localities in the States of Colorado, Utah, Arizona and New Mexico in the United States were sampled and studied to obtain geochemical data which might be used for U exploration. The major source of radioactivity at mineral spring sites is 226Ra. Minor amounts of 228Ra, 238U and 232Th are also present. Ra is presumed to have been selectively removed from possibly quite deep uranium-mineralized rock by hydrothermal solutions and is either precipitated at the surface or added to fresh surface water. In this way, the source rocks influence the geochemistry of the spring waters and precipitates. Characteristics of the spring waters at or near the surface are also affected by variations in total dissolved solids, alkalinity, temperature and co-precipitation. Spring precipitates, both hard and soft, consist of four major types: (1) calcite travertine; (2) iron- and arsenic-rich precipitates; (3) manganese- and barium-rich precipitates; and (4) barite, in some instances accompanied by S, Ra and U, if present in the spring water, are co-precipitated with the barite, Mn-Ba and Fe-As precipitates. Using parameters based on U and Ra concentrations in waters and precipitates springsite areas are tentatively rated for favourability as potential uraniferous areas. ?? 1977.

  15. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  16. Energy Matters - Spring 2002

    SciTech Connect

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  17. A Burst of Spring

    NASA Image and Video Library

    2010-03-10

    In the winter a layer of carbon dioxide ice dry ice covers the north polar sand dunes as shown by NASA Mars Reconnaissance Orbiter. In the spring the sublimation of the ice going directly from ice to gas causes a host of uniquely Martian phenomena.

  18. The News. Spring 2006

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2006-01-01

    This Spring issue of the quarterly newsletter of the Community College League of California contains the following articles: (1) Enrollment Drops; Fees to Blame?; (2) Senate's Grad Proposal Triggers Debate on Mission, Access; (3) Compton Decision has Affected Perceptions of Commission (discussion with Barbara Beno); (4) Dynamic New Architectural…

  19. Editors' Spring Picks

    ERIC Educational Resources Information Center

    Library Journal, 2011

    2011-01-01

    While they do not represent the rainbow of reading tastes American public libraries accommodate, Book Review editors are a wildly eclectic bunch. One look at their bedside tables and ereaders would reveal very little crossover. This article highlights an eclectic array of spring offerings ranging from print books to an audiobook to ebook apps. It…

  20. Planar torsion spring

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Parsons, Adam H. (Inventor); Mehling, Joshua S. (Inventor); Griffith, Bryan Kristian (Inventor)

    2012-01-01

    A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.

  1. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  2. 1981 Spring Meeting Report

    NASA Astrophysics Data System (ADS)

    Approximately 2150 participants registered for the 1981 Spring Meeting. More than 1500 papers were presented.The spaciousness of the Baltimore Convention Center provided ample opportunity for attendees to exchange ideas and interact with their colleagues. Here are some candid shots.

  3. Editors' Spring Picks

    ERIC Educational Resources Information Center

    Library Journal, 2011

    2011-01-01

    While they do not represent the rainbow of reading tastes American public libraries accommodate, Book Review editors are a wildly eclectic bunch. One look at their bedside tables and ereaders would reveal very little crossover. This article highlights an eclectic array of spring offerings ranging from print books to an audiobook to ebook apps. It…

  4. Renaissance Administrator, Spring 1998.

    ERIC Educational Resources Information Center

    Dowdy, June P., Ed.

    1998-01-01

    This spring 1998 issue of Renaissance Administrator features the following articles: (1) "Servant Leadership and Higher Education--What is Leadership?" (Richard E. Hasselbach); (2) "Teaching Writing in the 90's--Carnivorous Printers and Dying Grandmothers" (Helen Ruggieri); (3) Assignment--Journal Writing" (Lynn Muscato); and (4) "A Business…

  5. Atascocita Springs Elementary School

    ERIC Educational Resources Information Center

    Nigaglioni, Irene; Yocham, Deborah

    2011-01-01

    With the significant amount of time invested in researching the best techniques for delivering instruction to their students, Humble ISD is always on the forefront of education. Taking the recommendations of their active and vocal community groups, the district embarked in the design of the 26th elementary school, Atascocita Springs Elementary…

  6. Has Spring Sprung?

    ERIC Educational Resources Information Center

    Weiss, Tarin Harrar

    1997-01-01

    Describes a research project that allows students to behave like scientists studying something as simple as the arrival of spring. Gives students practice in stating logical predictions and hypotheses, designing sound research, and collecting reliable data. Exposes them to the successes, failures, and biases inherent in scientific research.…

  7. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  8. Spa, springs and safety.

    PubMed

    Sukthana, Yaowalark; Lekkla, Amorn; Sutthikornchai, Chantira; Wanapongse, Paitoon; Vejjajiva, Athasit; Bovornkitti, Somchai

    2005-01-01

    Natural mineral water has long been used worldwide for bathing and health purposes. At present, Thailand is famous for health spas and natural hot springs among local people and tourists. Due to possible risks of exposure to harmful agents, we studied hazardous pollutants at 57 natural hot springs from 11 provinces in northern, central, eastern and southern Thailand. Pathogenic, free-living amebae of the genera Naegleria and Acanthamoeba, which can cause central nervous system infection, were found in 26.3% (15/57) and 15.8% (9/ 57), respectively. Dissolved radon, a soil gas with carcinogenic properties, was present in nearly all hot springs sites, with concentration ranging from 0.87-76,527 Becquerels/m3. There were 5 water samples in which radon concentration exceeded the safety limit for drinking. Legionella pneumoniphila (serogroups 1, 3, 5, 6, 7 10 and 13) were found in samples from 71.9% (41/57) of studied sites. Because spas and natural springs are popular tourist attractions, health authorities should be aware of possible hazards and provide tactful measures and guidelines to ensure safety without causing undue alarm to foreign and Thai tourists.

  9. Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China.

    PubMed

    Song, Zhao-Qi; Chen, Jing-Quan; Jiang, Hong-Chen; Zhou, En-Min; Tang, Shu-Kun; Zhi, Xiao-Yang; Zhang, Li-Xin; Zhang, Chuan-Lun L; Li, Wen-Jun

    2010-05-01

    Diversity of Crenarchaeota was investigated in eight terrestrial hot springs (pH 2.8-7.7; temperature 44-96 degrees C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were sequenced and a total of 47 operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59-77 degrees C) hot springs was the highest, indicating that the moderately hot-temperature springs may provide optimal conditions for speciation of Crenarchaeota.

  10. 9. CONTEXTUAL VIEW SOUTHSOUTHEAST TOWARDS SPRING SITE. SPRING LEFT CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CONTEXTUAL VIEW SOUTH-SOUTHEAST TOWARDS SPRING SITE. SPRING LEFT CORNER. - Juniata Mill Complex, 22.5 miles Southwest of Hawthorne, between Aurora Crater & Aurora Peak, Hawthorne, Mineral County, NV

  11. Alkaline Phosphatase in Normal Infants

    PubMed Central

    Stephen, Joan M. L.; Stephenson, Pearl

    1971-01-01

    Alkaline phosphatase was measured in plasma from children receiving vitamin D supplements in day nurseries in the London area, and from children exposed to sunlight in the West Indies. The distribution of values showed that there was no precise upper limit which could be used in the diagnosis of subclinical vitamin D deficiency. PMID:5576029

  12. Mantle metasomatism and alkaline magmatism

    SciTech Connect

    Morris, E.M.; Pasteris, J.D.

    1987-01-01

    The 24 papers in this volume were presented at the Symposium on Alkalic Rocks and Kimberlites, held at the Geological Society of America South-Central Section meeting, April 15-16, 1985, in Fayetteville, Arkansas. This two-day symposium included a total of 55 papers dealing with mantle metasomatism and the origin of alkaline magmas, kimberlites and related rocks, alkalic rocks in oceanic settings, and alkalic rocks in continental settings. Papers presented at this symposium heightened the awareness that alkaline magmatism may occur in virtually all tectonic and petrologic settings. Two papers deal specifically with data from California sites. These research papers on aspects of alkaline rock petrology contribute to a better insight into the complex diversity of alkalic systems, the mantle processes which precede and accompany alkaline magmatism, and kimberlitic and oceanic systems. Abstracts of all papers presented at the symposium and not published in full in the volume are included in an appendix to show the broad scope of data presented at the meeting.

  13. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  14. Studying Springs in Series Using a Single Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    Springs are used for a wide range of applications in physics and engineering. Possibly, one of their most common uses is to study the nature of restoring forces in oscillatory systems. While experiments that verify Hooke's law using springs are abundant in the physics literature, those that explore the combination of several springs together are…

  15. Studying Springs in Series Using a Single Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    Springs are used for a wide range of applications in physics and engineering. Possibly, one of their most common uses is to study the nature of restoring forces in oscillatory systems. While experiments that verify Hooke's law using springs are abundant in the physics literature, those that explore the combination of several springs together are…

  16. Isolation of Halotolerant Thermus spp. from Submarine Hot Springs in Iceland

    PubMed Central

    Kristjansson, Jakob K.; Hreggvidsson, Gudmundur O.; Alfredsson, Gudni A.

    1986-01-01

    Thermophilic, aerobic bacteria of the genus Thermus were isolated from submarine alkaline hot springs in Iceland. Five submarine hot springs were sampled, and all had viable counts of Thermus spp. of about 103 CFU/ml. All submarine strains grew in the presence of NaCl at 3% or higher, but no strains from terrestrial hot springs would grow at concentrations higher than 1% NaCl. The growth rate of submarine Thermus strains was not stimulated by NaCl and was reduced at NaCl concentrations higher than 1%. The pattern of growth of these isolates on single carbon sources was similar to that of terrestrial isolates. PMID:16347236

  17. Atomic force microscopy spring constant determination in viscous liquids.

    PubMed

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  18. Atomic force microscopy spring constant determination in viscous liquids

    NASA Astrophysics Data System (ADS)

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  19. Atomic force microscopy spring constant determination in viscous liquids

    SciTech Connect

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-15

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this 'thermal noise method' is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  20. The joys of spring.

    PubMed

    Riby, Leigh M

    2013-01-01

    This study used Vivaldi's Four Seasons, an extraordinary example of program music, to explore the consequence of music exposure on cognitive event-related potentials (ERPs). Seventeen participants performed a three-stimulus visual odd-ball task while ERPs were recorded. Participants were required to differentiate between a rare target stimulus (to elicit a memory updating component; P3b), a rare novel stimulus (to elicit a novelty attention component; P3a), and a frequent nontarget stimulus. During task performance participants listened to the four concertos: Spring, Summer, Autumn, and Winter in comparison to a silent control condition. Additionally, the three movements of each concerto have a fast, slow, fast structure that enabled examination of the impact of tempo. The data revealed that "Spring," particularly the well-recognized, vibrant, emotive, and uplifting first movement, had the ability to enhance mental alertness and brain measures of attention and memory.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  3. Portrait of a Geothermal Spring, Hunter’s Hot Springs, Oregon

    PubMed Central

    Castenholz, Richard W.

    2015-01-01

    Although alkaline Hunter’s Hot Springs in southeastern Oregon has been studied extensively for over 40 years, most of these studies and the subsequent publications were before the advent of molecular methods. However, there are many field observations and laboratory experiments that reveal the major aspects of the phototrophic species composition within various physical and chemical gradients of these springs. Relatively constant temperature boundaries demark the upper boundary of the unicellular cyanobacterium, Synechococcus at 73–74 °C (the world-wide upper limit for photosynthesis), and 68–70 °C the upper limit for Chloroflexus. The upper limit for the cover of the filamentous cyanobacterium, Geitlerinema (Oscillatoria) is at 54–55 °C, and the in situ lower limit at 47–48 °C for all three of these phototrophs due to the upper temperature limit for the grazing ostracod, Thermopsis. The in situ upper limit for the cyanobacteria Pleurocapsa and Calothrix is at ~47–48 °C, which are more grazer-resistant and grazer dependent. All of these demarcations are easily visible in the field. In addition, there is a biosulfide production in some sections of the springs that have a large impact on the microbiology. Most of the temperature and chemical limits have been explained by field and laboratory experiments. PMID:25633225

  4. Tensor controlled-source audiomagnetotelluric survey over the Sulphur Springs Thermal area, Valles Caldera, New Mexico, U.S.A.; Implication for structure of the western Caldera and for CSAMT methodology

    SciTech Connect

    Wannamaker, P.E.

    1994-06-01

    We have carried Out an extensive tensor CSAMT survey of the Sulphur Springs geothermal area, Valles Caldera, New Mexico. This survey, consisting of 45 high-quality sites, has been acquired by in support of Continental Scientific Drilling Program (CSDP) drillholes VC-2A and VC-2B. Two independent transmitter dipoles were energized for tensor measurements using a 30 kW generator placed approximately 13 km south of the VC-2B wellhead. The soundings in the Sulphur Springs area were arranged in four profiles to cross major structural features. The electric bipoles parallel to each profile were deployed contiguously to ensure against spatial aliasing of the impedance response corresponding to current flow across structural trends. The frequency range of acquisition was 4096 Hz down to 1 Hz for the central line, but only down to 4 Hz for most sites of the other lines. Data quality is high overall and is established by repeatability of measurements. Agreement between the CSAMT and available natural field MT data is very good over almost all the period range of overlap indicating that we are free of calibration problems and that far-field results are generally being obtained. Non plane-wave effects in the CSAMT around Sulphur Springs are apparent at 1 to 2 Hz, and perhaps slightly even at 4 Hz, however, which is near the bottom of our frequency range. CSAMT and MT data taken outside the Valles Caldera to the west were modeled in an attempt to compare resistivity structure exterior to the caldera to that within. With the availability of tensor CSAMT and MT data both inside and outside Valles Caldera, assumptions and methods of CSAMT are tested. In the Sulphur Springs area, near-coincident CSAMT and MT data near well VC -2B indicate that non-lane-wave effects in the apparent resistivity and impedance phase occure at a frequency near to that predicted from the resistivity structure local to the wester caldera.

  5. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  6. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  7. Alkaline hydrothermal conversion of cellulose to bio-oil: influence of alkalinity on reaction pathway change.

    PubMed

    Yin, Sudong; Mehrotra, Anil K; Tan, Zhongchao

    2011-06-01

    The effects of alkalinity on alkaline hydrothermal conversion (alkaline-HTC) of cellulose to bio-oil were investigated in this study. The results showed that the initial alkalinity greatly influenced the reaction pathways. Under initial strong alkaline conditions with final pH greater than 7, alkaline-HTC only followed the alkaline pathway. However, under initial weak alkaline conditions with final pH of less than 7, acidic as well as alkaline pathways were involved. The main mechanism behind this change of reaction pathways under weak alkaline conditions was that carboxylic acids were first formed from cellulose via the alkaline pathway and then neutralized/acidified the alkaline solutions. Once the pH of the alkaline solutions decreased to less than 7, the acidic instead of the alkaline reaction pathway occurred. This change of the reaction pathways with initial alkalinity partly explained the inconsistent results in the literature of alkaline-HTC bio-oil compositions and yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Silicious Biofilms in Alkaline Geyser Basins of Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Summons, R. E.; Shock, E. L.; Raymond, J.; Amend, J. P.; Havig, J. R.; Bradley, A. S.

    2006-12-01

    Silicious biofilm communities (SBCs), made up of streamer-forming microorganisms are common in alkaline- chloride geothermal environments worldwide, but the in situ physiochemical growth parameters of SBCs are largely unknown [1]. The association of microbe and mineral is likely key to survival in these extreme environments, and this relationship may be preserved in the rock record. SBCs are common but not ubiquitous in Yellowstone National Park (YNP) alkaline geyser basins, despite the relative geochemical homogeneity and widespread ecosystem suitability in these regions, as indicated by energetic profiling [2]. Based on several years of geochemical analysis, four hot springs (two with SBCs, two without) in YNP were chosen for an investigation of in situ biogeochemistry, colonization and metabolic strategies of SBCs. Surveys of 16S rRNA and analysis of total lipid extracts reveal a significant crenarchaeal component in the SBCs, in contrast to earlier studies of SBCs at Octopus Spring, a hot spring of similar geochemistry [3]. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. The locations without SBCs reveal a similar community structure, but lack representatives from the Thermotogales and some Crenarchaea found in the SBCs, which are potentially key to the formation of the biofilms. The biofilms contain at least 85% silica, have δ13C averaging - 19‰, and δ15N averaging +5‰. These microbial communities and their environments are ideal for coordination of geochemical and genomic data, allowing informed analysis of SBC function, growth parameters, and formation criteria. References [1] Jahnke, L. et al. (2001) AEM 67, 5179-5189 [2] Meyer-Dombard, D. et al. (2005) Geobiology 3, 211-227 [3] Reysenbach, A.-L. et al. (1994) AEM 60, 2113-2119

  9. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  11. Spring Deposits and Mud Volcanoes on Mars

    NASA Astrophysics Data System (ADS)

    Allen, C. C.; Oehler, D. Z.; Baker, D. M.

    2008-12-01

    the surrounding plains, indicating that the domes have relatively lower thermal inertia. The dome material is also very smooth, and appears smeared across the textured plains and in local depressions as if it were emplaced by low viscosity flows. CRISM spectral data (Leah Roach, Brown Univ.) were used to assess the mineralogy of selected features. Dome spectra exhibit a steep shoulder from 0.4 to 0.6 microns and are generally featureless in the near IR, overall resembling the spectra of bright Martian soil. The steep shoulder is due to the oxidization of iron to Fe3+. Dome spectra do not exhibit evidence for hydrated minerals or precipitates such as carbonates or silica. While a range of origins has been suggested for the Acidalia domes, we believe that they are most consistent with a mud volcano analog. A volcano or pseudocrater origin is unlikely, as no lava flows or volcanic features are observed in the vicinity. A spring mound origin is also unlikely, due to the absence of hydrated or spring precipitate mineral signatures in the CRISM spectral data as well as the absence of terracing, channels, and circumferential faults that typify the Vernal springs. In addition to the Vernal springs and the Acidalia mud volcanoes, several other recent studies have pointed to evidence of subsurface fluid flow. These include the large spring deposits proposed by Rossi et al. (2008), the resistant knobs in Candor Chasma (Chan, 2008), and the bleached zones along faults in Valles Marineris (Treiman, 2008). Together, these features are changing our understanding of the hydrologic history of Mars. class="ab'>

  12. Phototrophy in Mildly Acidic Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    Microbial light-driven reduction of carbon in continental hydrothermal ecosystems is restricted to environments at temperatures less than 73 °C. In circumneutral and alkaline systems bacterial phototrophs (cyanobacteria and anoxygenic phototrophs) are suggested to be principally responsible for this activity whereas algal (i.e., eukaryotic) phototrophs are thought to be responsible for this activity in acidic systems. In Yellowstone National Park numerous examples of phototrophic microbial communities exist at high and low pH, while hot springs with intermediate pH (values 3-5) are rare and commonly dilute. It is thought that the transition from algal photosynthesis to bacterial photosynthesis occurs within this pH range. To test this hypothesis, we sequenced bacterial and eukaryal small subunit ribosomal RNA genes, analyzed pigments, and performed comprehensive geochemical measurements from 12 hot springs within this pH realm. At all sites, the largest phototrophic population was either comprised of Cyanobacteria or affiliated with the algal order Cyanidiales, which are ubiquitous in acidic springs, yet abundant sequences of both lineages were present in 8 of the 12 sites. Nevertheless, some of these samples exceeded the known temperature limit of the algae (56 °C), suggesting that these populations are dead or inactive. Indeed, one site yielded evidence for a large Cyanidiales population as the only phototrophs present, yet an experiment at the time of sampling failed to demonstrate light-driven carbon fixation, and analysis of extracted pigments showed a large amount of the chlorophyll degradation product pheophorbide a and very little intact chlorophyll, indicating photosynthesis occurred at this site when conditions were different. Our observations illustrate the dynamic nature of these systems that may be transiently conducive to photosynthesis, which may open niches for phototrophs of both domains and likely played a role in the evolution of photosynthesis.

  13. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    USGS Publications Warehouse

    Rye, Robert O.; Truesdell, Alfred Hemingway; Morgan, Lisa A.

    2007-01-01

    The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is

  14. Historical patterns of acidification and increasing CO2 flux associated with Florida springs

    USGS Publications Warehouse

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Florida has one of the highest concentrations of springs in the world, with many discharging into rivers and predominantly into eastern Gulf of Mexico coast, and they likely influence the hydrochemistry of these adjacent waters; however, temporal and spatial trends have not been well studied. We present over 20 yr of hydrochemical, seasonally sampled data to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2), and CO2flux from five first-order-magnitude (springs that discharge greater than 2.83 m3 s−1) coastal spring groups fed by the Floridan Aquifer System that ultimately discharge into the Gulf of Mexico. All spring groups had pCO2 levels (averages 3174.3–6773.2 μatm) that were much higher than atmospheric levels of CO2 and demonstrated statistically significant temporal decreases in pH and increases in CO2 flux, pCO2, and alkalinity. Total carbon flux emissions increased from each of the spring groups by between 3.48 × 107 and 2.856 × 108 kg C yr−1 over the time period. By 2013 the Springs Groups in total emitted more than 1.1739 × 109 kg C yr−1. Increases in alkalinity and pCO2 varied from 90.9 to 347.6 μmol kg−1 and 1262.3 to 2666.7 μatm, respectively. Coastal data show higher CO2 evasion than the open Gulf of Mexico, which suggests spring water influences nearshore waters. The results of this study have important implications for spring water quality, dissolution of the Florida carbonate platform, and identification of the effect and partitioning of carbon fluxes to and within coastal and marine ecosystems.

  15. Fun with Automobile Springs

    NASA Astrophysics Data System (ADS)

    Fritsch, Klaus

    2006-10-01

    Simple measurements on car suspension systems and their analysis can raise student interest in the elementary discussion of the behavior of springs in oscillating systems. To understand these complicated oscillating systems and to interpret measurements properly, models may be used. Students find out how to make approximations and extract useful information from marginal data using common sense, basic physics, and simple software tools. Basic experiments on a physical model of a car suspension and on a passenger car, as well as the analysis of the data, will be presented. In particular, a value of the bounce mode frequency of a car was obtained using several approaches.

  16. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction.

    PubMed

    Zhang, Weimin; Zeng, Guanglin; Pan, Yonggui; Chen, Wenxue; Huang, Wuyang; Chen, Haiming; Li, Yuansong

    2017-09-15

    Soluble dietary fiber (SDF) from the peel of papaya (Carica papaya Linn.) was recovered through alkaline extraction (alkaline-extracted SDF, a-SDF) and ultrasound-assisted alkaline extraction (ultrasound-treated SDF, u-SDF) processes, and the composition, structure and properties of the extracts were compared. The optimal parameters for obtaining the maximum extraction yield of u-SDF were evaluated through response surface methodology. Under optimal conditions, the maximum yield of u-SDF was 36.99%, and u-SDF had a lower total amino acid content but a higher essential amino acid (16.18%) than a-SDF. A monosaccharide analysis indicated that the primary sugars in a-SDF and u-SDF were neutral sugars and pectic saccharides, respectively. An X-ray diffraction analysis confirmed that u-SDF was less crystalline than a-SDF. Moreover, a thermal analysis indicated that u-SDF exhibited higher thermal stability. In addition, u-SDF exhibited higher water-holding, oil-holding and swelling capacities than a-SDF. These results indicate that papaya peel is a potential inexpensive source of natural dietary fiber and a potential functional food ingredient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  18. Developments in Alkaline Tin Electrorefining

    NASA Astrophysics Data System (ADS)

    Saba, A. E.; Afifi, S. E.; El Sherief, A. E.

    1988-08-01

    Although alkaline stannate baths for electrorefining of tin have been used for some time, there is still room for improvement The effects of alkali concentration, current density and temperature on the cathodic current efficiency have been studied, and a bath temperature of 75°C is recommended. To avoid unstable conditions in the bath, a special treatment to the anode and application of an auxiliary cathode are necessary. Many of the metallic impurities present in the crude tin anode go into the slimes in the form of hydroxides, but lead impurities can only be tolerated if concentrations are less than one percent.

  19. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  20. Cantilever spring constant calibration using laser Doppler vibrometry

    SciTech Connect

    Ohler, Benjamin

    2007-06-15

    Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.

  1. Dynamic impact of rainfall on hydrogeochemistry of epikarst spring in Luota Township, western Hunan Province

    NASA Astrophysics Data System (ADS)

    Pan, X.; Tian, S. C.

    2016-12-01

    Abstract: In this study, rectangular weir, portable instruments and an alkalinity meter were used to conduct dynamic observation of the flow, pH, HB and HCO3- of the Ganhezhuchang spring in Luota Township, located in western Hunan Province, China. The results show that:Ecological restoration has regulation and storage functions for the water resources of epikarst springs, which results in the peak of the epikarst springs reducing in the wet season and postponing in the dry season; the larger the rainfall and rainfall intensity are, the larger the dynamic change amplitude of flow and the shorter the dynamic lag time of flow will be; after the atmospheric rainfall passes over the epikarst zone, the pH of the spring water becomes weak alkaline water, HB and HCO3- are both significantly higher than those of rainwater, and the pH, HB and HCO3- show certain regular changes with the epikarst spring water dynamic. At the beginning of the rainfall, the values of pH, HB and HCO3- become small, then later become large, and tend to be stable. This shows that the dilution effect of the rainfall process and karst effect of CO2 jointly produce clear impacts on the change of epikarst spring water chemistry.

  2. Developing bulk exchange spring magnets

    DOEpatents

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  3. Spring viremia of carp

    USGS Publications Warehouse

    Ahne, W.; Bjorklund, H.V.; Essbauer, S.; Fijan, N.; Kurath, G.; Winton, J.R.

    2002-01-01

    pring viremia of carp (SVC) is an important disease affecting cyprinids, mainly common carp Cyprinus carpio. The disease is widespread in European carp culture, where it causes significant morbidity and mortality. Designated a notifiable disease by the Office International des Epizooties, SVC is caused by a rhabdovirus, spring viremia of carp virus (SVCV). Affected fish show destruction of tissues in the kidney, spleen and liver, leading to hemorrhage, loss of water-salt balance and impairment of immune response. High mortality occurs at water temperatures of 10 to 17°C, typically in spring. At higher temperatures, infected carp develop humoral antibodies that can neutralize the spread of virus and such carp are protected against re-infection by solid immunity. The virus is shed mostly with the feces and urine of clinically infected fish and by carriers. Waterborne transmission is believed to be the primary route of infection, but bloodsucking parasites like leeches and the carp louse may serve as mechanical vectors of SVCV. The genome of SVCV is composed of a single molecule of linear, negative-sense, single-stranded RNA containing 5 genes in the order 3¹-NPMGL-5¹ coding for the viral nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and polymerase, respectively. Polyacrylamide gel electrophoresis of the viral proteins, and sequence homologies between the genes and gene junctions of SVCV and vesicular stomatitis viruses, have led to the placement of the virus as a tentative member of the genus Vesiculovirus in the family Rhabdoviridae. These methods also revealed that SVCV is not related to fish rhabdoviruses of the genus Novirhabdovirus. In vitro replication of SVCV takes place in the cytoplasm of cultured cells of fish, bird and mammalian origin at temperatures of 4 to 31°C, with an optimum of about 20°C. Spring viremia of carp can be diagnosed by clinical signs, isolation of virus in cell culture and molecular methods. Antibodies directed

  4. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  5. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  6. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  7. Springing into Spring: Reading Games for the Season

    ERIC Educational Resources Information Center

    Maxwell, D. Jackson

    2008-01-01

    As spring arrives, more time is spent outdoors. Unfortunately, as spring fever hits, books and learning often take a backseat. The goal is for educators to find a way to re-engage learners. In this article, the author presents a seasonal story and game that can help catch students' attention by making learning both informative and entertaining.…

  8. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China

    PubMed Central

    Wang, Shang; Dong, Hailiang; Hou, Weiguo; Jiang, Hongchen; Huang, Qiuyuan; Briggs, Brandon R.; Huang, Liuqin

    2014-01-01

    Temporal variation in geochemistry can cause changes in microbial community structure and diversity. Here we studied temporal changes of microbial communities in Tengchong hot springs of Yunnan Province, China in response to geochemical variations by using microbial and geochemical data collected in January, June and August of 2011. Greater temporal variations were observed in individual taxa than at the whole community structure level. Water and sediment communities exhibited different temporal variation patterns. Water communities were largely stable across three sampling times and dominated by similar microbial lineages: Hydrogenobaculum in moderate-temperature acidic springs, Sulfolobus in high-temperature acidic springs, and Hydrogenobacter in high-temperature circumneutral to alkaline springs. Sediment communities were more diverse and responsive to changing physicochemical conditions. Most of the sediment communities in January and June were similar to those in waters. However, the August sediment community was more diverse and contained more anaerobic heterotrophs than the January and June: Desulfurella and Acidicaldus in moderate-temperature acidic springs, Ignisphaera and Desulfurococcus in high-temperature acidic springs, the candidate division OP1 and Fervidobacterium in alkaline springs, and Thermus and GAL35 in neutral springs. Temporal variations in physicochemical parameters including temperature, pH, and dissolved organic carbon may have triggered the observed microbial community shifts. PMID:25524763

  10. Brackish karstic springs model: application to Almiros spring in Crete.

    PubMed

    Maramathas, Athanasios; Maroulis, Zacharias; Marinos-Kouris, Dimitrios

    2003-01-01

    A mathematical model is proposed to simulate brackish karstic springs. Rainfall data constitutes model input information while output information is the discharge and the chloride concentration of the water versus time. The model was constructed by considering the mass and mechanical energy balance on the hydrodynamic analog, which includes three reservoirs outflowing in a tube that lies adjacent to the spring. Two reservoirs emulate the karstic system, and the third one emulates the sea. The discharge of the spring is given by the sum of the discharge of the reservoirs, and the chloride concentration by the solution of the mixing problem between the fresh and the salty water, which exists in the tube leading to the spring. The model is applied to the spring of Almiros at Heraklion, Crete, Greece. The agreement between model values and field measurements is very good for depletion periods and satisfactory for recharge periods.

  11. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  12. Large springs of east Tennessee

    USGS Publications Warehouse

    Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.

    1963-01-01

    Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients

  13. Origin and classification of springs and historical review with current applications

    NASA Astrophysics Data System (ADS)

    Alfaro, C.; Wallace, M.

    1994-10-01

    Numerous geologic processes operate to form the many types of springs in existence today. Karst springs, glacial springs, and thermal springs are reviewed with examples from different parts of the world to emphasize the diversity of their origin. Since Meinzer's classification in 1927, the classification of springs has changed as our understanding of their origin and our scientific knowledge of springs have increased. Today several different classifications have been developed that concentrate on one or more specific characteristics such as size, mineral content, or temperature. A historic sketch of the classification of springs that documents the most common classifications in use is presented. From this historical perspective it is apparent how our understanding of springs, combined with technological advances, will affect future trends in the classification of springs. Eventually a definitive classification of springs, scientific as well as legal, combined with computer data bases, will aid not only in our academic understanding of springs, but in our practical usage. In the late 20th century, there has been increased demand for spring, mineral, and curative waters. Springs, specifically their origin, have become increasingly important. Legislation to protect the rights and safety of consumers regarding springs is forthcoming from state, federal, national, and international organizations. Some current legislation will be highlighted to provide some insight into how exactly these legal rulings affect our use and definitions of springs. The purpose of this paper is to establish the geological/ hydrogeological framework for the diversity of origin and form of springs in addition to providing a historical perspective on classification systems throughout the ages.

  14. Experimenting with Inexpensive Plastic Springs

    ERIC Educational Resources Information Center

    Perez, Leander; Marques, Adriana; Sánchez, Iván

    2014-01-01

    Acommon undergraduate laboratory experience is the determination of the elastic constant of a spring, whether studying the elongation under a static load or studying the damped harmonic motion of the spring with a suspended mass. An alternative approach to this laboratory experience has been suggested by Menezes et al., aimed at studying the…

  15. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  16. Experimenting with Inexpensive Plastic Springs

    ERIC Educational Resources Information Center

    Perez, Leander; Marques, Adriana; Sánchez, Iván

    2014-01-01

    Acommon undergraduate laboratory experience is the determination of the elastic constant of a spring, whether studying the elongation under a static load or studying the damped harmonic motion of the spring with a suspended mass. An alternative approach to this laboratory experience has been suggested by Menezes et al., aimed at studying the…

  17. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  18. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    NASA Astrophysics Data System (ADS)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  19. Mallow Springs, County Cork, Ireland

    NASA Astrophysics Data System (ADS)

    Aldwell, C. R.

    1996-03-01

    Because of its copious and reliable rainfall, Ireland has an abundance of springs. Many of the larger ones issue from the Carboniferous limestone that occurs in over 40% of the country. The spring water is mainly a calcium bicarbonate type with a temperature of about 10°C. In the 18th century, warm and cold springs were developed as spas in various parts of Ireland. The popularity of these springs was short and most were in major decline by 1850. Today only one cold spa at Lisdoonvarna, Co. Clare is still operating. Springs in Ireland were places of religious significance for the pre-Christian Druidic religion. In the Christian period they became holy wells, under the patronage of various saints. Cures for many different ailments were attributed to water from these wells.

  20. Anosmia in Alkaline Battery Workers

    PubMed Central

    Adams, R. G.; Crabtree, Norman

    1961-01-01

    The sense of smell of 106 alkaline battery workmen exposed at their work to cadmium and nickel dust has been compared with a control group of 84 men matched for age. The battery workers reported significantly more anosmia than the controls (15% to zero) and did less well in the phenol smelling test (27·3% to 4·8%). Cadmium proteinuria was found in 17 of the battery workers, 11 of whom showed virtual anosmia. Figures of recent concentrations of cadmium and nickel in the atmosphere are given. The noses of 85 battery workers and 75 controls were examined. Signs of non-specific chronic irritation were more frequent in the battery workers but no significant relationship was established between this appearance and the presence of anosmia. It is concluded that the anosmia is due to exposure to cadmium or nickel dust or a mixture of the two. PMID:13681418

  1. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  2. Linear magnetic spring and spring/motor combination

    NASA Technical Reports Server (NTRS)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  3. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  4. Hydrogeological and geochemical study of the springs in San Severino Lucano territory (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Maggiore, M.; Santaloia, F.; Vurro, F.

    1993-09-01

    A hydrogeological and geochemical study is presented for the San Severino Lucano region of southern Italy. In this region, groundwater circulation occurs in rocks lithologically different from one another (metaophiolites, carbonate rocks, etc.). Many springs drain this region. The Frido springs are the most important both for their great volume of flow and for their water quality. A water balance estimated for the recharge area of the Frido springs suggests that during the period 1938 1958 the evapotranspiration represents 54.8 percent, runoff 21.2 percent, and infiltration to groundwater 34 percent of rainfall. The springs studied have a meteoric origin and their waters are mostly acid carbonate-alkaline earth type. The reservoir rocks appear to be the only discriminating factors for the chemical composition of the waters analysed.

  5. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  6. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.

    PubMed

    Ghosh, Kaushik; Mazumder Tagore, Debarati; Anumula, Rushith; Lakshmaiah, Basanth; Kumar, P P B S; Singaram, Senthuran; Matan, Thangavelu; Kallipatti, Sanjith; Selvam, Sabariya; Krishnamurthy, Prasad; Ramarao, Manjunath

    2013-11-01

    Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active. Expression of rat IAP in Escherichia coli (rIAP-Ec) led to ~200-fold loss of activity that was partially recovered by the addition of external Zn(2+) and Mg(2+) ions. Crystal structures of rIAP-Ec and rIAP-Ic were determined and they provide rationale for the discrepancy in enzyme activities. Rat IAP-Ic retains its activity in presence of both Zn(2+) and Mg(2+) whereas activity of most other alkaline phosphatases (APs) including the cIAP was strongly inhibited by excess Zn(2+). Based on our crystal structure, we hypothesized the residue Q317 in rIAP, present within 7 Å of the Mg(2+) at M3, to be important for this difference in activity. The Q317H rIAP and H317Q cIAP mutants showed reversal in effect of Zn(2+), corroborating the hypothesis. Further analysis of the two structures indicated a close linkage between glycosylation and crown domain stability. A triple mutant of rIAP, where all the three putative N-linked glycosylation sites were mutated showed thermal instability and reduced activity.

  7. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  8. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  9. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    PubMed

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.

  10. Piston and spring powered engine

    SciTech Connect

    Samodovitz, A. J.

    1985-12-10

    The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel's energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth. In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

  11. Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers.

    PubMed

    Roadcap, George S; Kelly, Walton R; Bethke, Craig M

    2005-01-01

    Extremely alkaline ground water has been found underneath many shuttered steel mills and slag dumps and has been an impediment to the cleanup and economic redevelopment of these sites because little is known about the geochemistry. A large number of these sites occur in the Lake Calumet region of Chicago, Illinois, where large-scale infilling of the wetlands with steel slag has created an aquifer with pH values as high as 12.8. To understand the geochemistry of the alkaline ground water system, we analyzed samples of ground water and the associated slag and weathering products from four sites. We also considered several potential remediation schemes to lower the pH and toxicity of the water. The principal cause of the alkaline conditions is the weathering of calcium silicates within the slag. The resulting ground water at most of the sites is dominated by Ca2+ and OH- in equilibrium with Ca(OH)2. Where the alkaline ground water discharges in springs, atmospheric CO2 dissolves into the water and thick layers of calcite form. Iron, manganese, and other metals in the metallic portion of the slag have corroded to form more stable low-temperature oxides and sulfides and have not accumulated in large concentrations in the ground water. Calcite precipitated at the springs is rich in a number of heavy metals, suggesting that metals can move through the system as particulate matter. Air sparging appears to be an effective remediation strategy for reducing the toxicity of discharging alkaline water.

  12. Biophysical model of prokaryotic diversity in geothermal hot springs.

    PubMed

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  13. Biophysical model of prokaryotic diversity in geothermal hot springs

    NASA Astrophysics Data System (ADS)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms.

  14. Multisystemic functions of alkaline phosphatases.

    PubMed

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  15. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

  16. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  17. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  19. Thermomechanical properties of nickel-titanium closed-coil springs and their implications for clinical practice.

    PubMed

    Bezrouk, Ales; Balsky, Libor; Smutny, Martin; Selke Krulichova, Iva; Zahora, Jiri; Hanus, Josef; Meling, Torstein R

    2014-09-01

    The aim was to study nickel-titanium closed-coil springs in a clinically relevant test setting with respect to the accuracy of the "preactivation" for nickel-titanium closed-coil springs application and whether it is possible to keep activation forces constant during the whole time of treatment. We tested 10 types of springs from 5 manufacturers under clinically relevant conditions, allowing us to study the interactions between load and temperature over time. Hystereses were compared using t tests. Springs with a large mechanical hysteresis also showed a large thermal hysteresis. After heating shock, these springs showed intensive force spikes and persistent high loads. Some springs showed negligible thermal and mechanical hysteresis. Such springs never showed any clinically significant persistent high loads. Springs with a large hysteresis were unable to keep activation forces constant during the whole time of treatment even after any preactivation, and they might cause persistently high loads and possibly overloading. Only springs with minor hysteresis, low temperature dependence of force, and a clinically useful plateau have the following clinical advantages: reduced chair time, optimal rates of tooth movement, reproducible clinical results, and conservation of anchorage. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: combining normal spring constant and classical beam theory.

    PubMed

    Álvarez-Asencio, R; Thormann, E; Rutland, M W

    2013-09-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever.

  1. Geothermal systems within the Mammoth Corridor in Yellowstone National Park and the adjacent Corwin Springs KGRA

    USGS Publications Warehouse

    Sorey, Michael; Colvard, Elizabeth; Sturchio, N.C.

    1990-01-01

    A study of potential impacts of geothermal development in the Corwin Springs KGRA north of Yellowstone Park on thermal springs within the Park is being conducted by the U.S. Geological Survey. Thermal waters in the KGRA and at Mammoth Hot Springs, located 13 km inside the Park boundary, are high in bicarbonate and sulfate and are actively depositing travertine. These similarities and the existence of numerous regional-scale structural and stratigraphic features that could provide conduits for fluid flow at depth indicate a possible cause for concern. The objectives of this study include delineations of any hydrologic connections between these thermal waters, the level of impact of geothermal development in the event of such connections, and mitigation measures to minimize or eliminate adverse impacts. The study involves a number of geochemical, geophysical, geologic, and hydrologic techniques, but does not include any test drilling. Preliminary results suggest that thermal waters at Bear Creek Springs may contain a component of water derived from Mammoth but that thermal waters at La Duke Hot Spring do not. The total rate of thermal water that discharges in the area proposed for geothermal development (near La Duke) has been determined; restricting the net production of thermal water to rates less than this total could provide a satisfactory margin of safety for development.

  2. Effect of alkaline treatment on the characterization of zalacca midrib wastes fibers

    NASA Astrophysics Data System (ADS)

    Raharjo, Wahyu Purwo; Soenoko, Rudy; Purnowidodo, Anindito; Choiron, Mochammad Agus; Triyono

    2016-03-01

    Nowadays, the need for new materials is urgent due to the scarcity of conventional materials and energy resources. The environmental issue requires materials which are biodegradable. There are many composites, arranged from synthetic fibers and matrix, which cannot be recyclable after their lifetime. In this research, the utilization potency of zalacca midrib wastes for their fibers as composite reinforcement were investigated, especially after the alkaline treatment to improve their characteristics. The influence of alkaline treatment on the density, functional groups of the fiber surface, thermal stability and crystallinity were measured and/or analyzed by linear-density-and-diameter-calculation, FTIR, TGA-DTA and XRD, respectively. The result showed that the zalacca midrib fibers had lower density than synthetic fibers and several natural fibers. Analysis of FTIR spectra indicated that the alkaline treatment of NaOH slightly raised their density because it removed several functional groups which attributed to the hemicellulose and lignin. TGA-DTA analysis indicated that zalacca fibers had good thermal stability until temperature of 220°C and it was improved by alkaline treatment. XRD analysis showed that the crystallinity of zalacca fibers was higher than several natural fibers like rice straw, sorghum stem and wheat straw fibers. Their crystallinity index was higher than wheat straw fiber. The alkaline treatment increases the crystallinity and crystallinity index rather than untreated fibers.

  3. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  5. Springs on and in the vicinity of Mount Hood volcano, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel

    2004-01-01

    Chemical and isotopic data are presented for nonthermal, thermal, and slightly thermal springs and drill holes and fumaroles on Mount Hood, Oregon. Temperatures of nonthermal springs on Mount Hood decrease with elevation and are similar to air temperatures from nearby weather stations. Dissolved constituents in nonthermal springs generally increase with spring temperatures and reflect weathering of volcanic rock from the action of dissolved carbon dioxide. Isotopic contents of nonthermal springs follow a local meteoric water line and generally become lighter with elevation. Some nonthermal springs at low-elevation have light values of isotopes indicating a high-elevation source for the water. Three hydrothermal systems have been identified on Mount Hood. Swim Warm Springs is interpreted to have a source water that boiled from 187?C, re-equilibrated at 96?C, and then mixed with nonthermal water to produce the range of compositions found in various springs. The Meadows Spring is interpreted to have a source water that boiled from 223?C, re-equilibrated at 94?C, and then mixed with nonthermal water to produce the range of compositions found in the spring over several years. Both systems contain water that originated as precipitation at higher elevation. The summit fumaroles have gas geothermometer temperatures generally over 300?C, indicating that they are not the steam discharge from the Swim and Meadows hydrothermal systems. Representative values of thermal discharge for the three hydrothermal systems are 10 MWt for the fumaroles, 2.2 MWt for Swim, and 1.9 MWt for the Meadows and Cascade springs.

  6. Silent Spring after 50 years.

    PubMed

    Davis, Frederick R

    2012-12-01

    As Silent Spring passed the half-century mark, historians have continued to reflect on its significance. For this issue of Endeavour, we drew together six articles that explore a few of the many legacies of this remarkable book. Given the impressive scope and breadth of the papers in this issue, it is clear that Silent Spring, and the shock waves surrounding its publication, continue to provide rich fodder for historical analysis.

  7. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  8. Analysis of potential geothermal resources and their use: Lebanon Springs area, New York

    SciTech Connect

    Not Available

    1981-04-01

    The feasibility of using thermal waters at Lebanon Springs or elsewhere in the Capital District of New York as an energy source was studied. To evaluate the area, geologic mapping of the Lebanon Springs, New York, to Williamstown, Massachusetts, area was conducted, and efforts made to locate additional thermal waters besides those already known. In addition to mapping, thermal gradients where measured in twenty-five abandoned water wells, and the silica contents and water temperatures of seventy-eight active domestic water wells were determined. Based on the results of that work, Lebanon Springs appears to be the first choice for a demonstration project, but further exploration may confirm that other areas with good potential exist. A preliminary economic analysis of possible uses in the Town of Lebanon Springs was made, and it was determined that a system combining groundwater heat pumps and a microhydroelectric plant could be applied to heating the town hall, town garage, and high school with significant savings.

  9. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  10. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  11. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  12. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  13. Boundary Creek thermal areas of Yellowstone National Park: II, thermal water analyses

    SciTech Connect

    Thompson, J.M.; Hutchinson, R.A.

    1980-09-01

    Water samples from 28 thermal springs, 2 non-thermal springs, and 2 creeks from the Boundary Creek Thermal Areas (BCTA) in the southwestern corner of Yellowstone National Park were analyzed to help establish a chemical water-quality base line prior to possible geothermal exploitation of the Island Park Geothermal Area (IPGA). The springs, situated at the southwestern end of the Madison Plateau, are the Yellowstone Park thermal waters nearest to the IPGA and might respond to geothermal exploitation in the IPGA. Water temperatures ranging from 50/sup 0/ to 90/sup 0/C and low Cl concentrations (< 110 mgL/sup -1/) characterize spring waters in the BCTA. They are chemically distinct from the major geysers and hot springs in Yellowstone Park. The Na-K-Ca and silica geothermometers are in general agreement, usually within 10/sup 0/C, and indicate reservoir temperatures of 150 to 170/sup 0/C.

  14. Northern Polar Spring in IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This image was collected October 19, 2002 during the northern spring season. The top half of this daytime IR image shows the North Polar sand sea.

    Image information: IR instrument. Latitude 76.2, Longitude 226.8 East (133.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  15. Northern Polar Spring in IR

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This image was collected October 19, 2002 during the northern spring season. The top half of this daytime IR image shows the North Polar sand sea.

    Image information: IR instrument. Latitude 76.2, Longitude 226.8 East (133.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  16. Southern Spring in False Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected June 25, 2003 during the southern spring season. This false color image shows both the layered ice cap and darker 'spots' that are seen only when the sun first lights the polar surface.

    Image information: VIS instrument. Latitude -82.3, Longitude 306 East (54 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the

  17. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  18. Status of hot spring water development in Korea 2014

    NASA Astrophysics Data System (ADS)

    Lee, Cholwoo; Park, Chan-Hee; Cho, Yong-Chan

    2015-04-01

    As of 2014, a number of Oncheon (hot spring) sites in Korea is 447. 207 sites among the total sites are located in the south-east part of Korea, because geothermal gradient in the region is higher than the average geothermal gradient of 25℃/km in Korea. The higher gradient leads to reduced drilling cost. 50% of the Oncheon sites are alkaline and their pH is higher than 8.5. pH for other 43% is between 7.5 and 8.5. As for the ion-type of Oncheon, 55% is are primarily the type of Na-HCO3. 20 % of Oncheon is the type of Na-Cl secondarily. 9% of Oncheon is the type of Na-SO4. While the well drilled deepest is 2,003 m from the surface, the average depth is 747 m. The highest temperature of hot spring is 78℃, while the average temperature is 30℃. The area of Oncheon development was big until year 2000. Since then, the development area has shrunk to less than 20,000m2 to reduce risks for initial investment and stabilize the Oncheon management. Keywords : Hot spring, Geothermal gradient, Temperature

  19. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  20. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats

    NASA Technical Reports Server (NTRS)

    Ruff-Roberts, A. L.; Kuenen, J. G.; Ward, D. M.

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.

  1. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats.

    PubMed Central

    Ruff-Roberts, A L; Kuenen, J G; Ward, D M

    1994-01-01

    Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments. Images PMID:11536630

  2. Mineralogy and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Owen, Richard Alastair; Owen, Richard Bernhart; Renaut, Robin W.; Scott, Jennifer J.; Jones, Brian; Ashley, Gail M.

    2008-01-01

    A wide range of rhizoliths occurs around the margins of Lake Bogoria, Kenya. These include root casts, moulds, tubules, rhizocretions, and permineralised root systems. These rhizoliths are variably composed of opaline silica, calcite, zeolites (mainly analcime), fluorite, and possibly fluorapatite, either alone or in combinations. Some rhizoliths are infilled moulds with detrital silicate grains. Most rhizoliths are in situ, showing both vertical and horizontal orientations. Reworked rhizoliths have been concentrated locally to form dense rhizolites. Hot-spring fluids, concentrated by evapotranspiration and capillary evaporation, have provided most of the silica for the permineralisation of the plant tissues. Precipitation involved the growth of silica nanospheres and microspheres that coalesced into homogeneous masses. Calcite rhizoliths formed following evaporative concentration, evapotranspiration, and (or) CO 2 degassing of Ca-bearing runoff water that infiltrated the sediment, or by mixing of runoff with saline, alkaline groundwater. Fluorite precipitated in areas where mixing of hot-spring and meteoric waters occurred, or possibly where hot-spring fluids came into contact with pre-existing calcite. Zeolitic rhizoliths formed during a prolonged period of aridity, when capillary rise and evaporative pumping brought saline, alkaline waters into contact with detrital silicate minerals around roots.

  3. Types and distribution of obligate thermophilic bacteria in man-made and natural thermal gradients.

    PubMed

    Ramaley, R F; Bitzinger, K

    1975-07-01

    The types and distribution of obligate thermophilic bacteria were found to be similar in a thermal gradient resulting from man-made thermal pollution and the thermal gradients of two natural hot springs located in Colorado.

  4. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  5. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  6. Monolithic geometric anti-spring blades

    NASA Astrophysics Data System (ADS)

    Cella, G.; Sannibale, V.; DeSalvo, R.; Márka, S.; Takamori, A.

    2005-03-01

    In this article we investigate the principle and properties of a vertical passive seismic noise attenuator conceived for ground based gravitational wave interferometers. This mechanical attenuator based on a particular geometry of cantilever blades called monolithic geometric anti springs (MGAS) permits the design of mechanical harmonic oscillators with very low resonant frequency (below 10 mHz). Here we address the theoretical description of the mechanical device, focusing on the most important quantities for the low-frequency regime, on the distribution of internal stresses, and on the thermal stability. In order to obtain physical insight of the attenuator peculiarities, we devise some simplified models, rather than use the brute force of finite element analysis. Those models have been used to optimize the design of a seismic attenuation system prototype for LIGO advanced configurations and for the next generation of the TAMA interferometer.

  7. Technetium recovery from high alkaline solution

    SciTech Connect

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  8. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  9. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., except when that spring is part of a nest of three or more springs and none of the other springs in the nest has its top leaf or any other three leaves broken. An outer coil spring or saddle may not be...

  10. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., except when that spring is part of a nest of three or more springs and none of the other springs in the nest has its top leaf or any other three leaves broken. An outer coil spring or saddle may not be...

  11. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., except when that spring is part of a nest of three or more springs and none of the other springs in the nest has its top leaf or any other three leaves broken. An outer coil spring or saddle may not be...

  12. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., except when that spring is part of a nest of three or more springs and none of the other springs in the nest has its top leaf or any other three leaves broken. An outer coil spring or saddle may not be...

  13. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., except when that spring is part of a nest of three or more springs and none of the other springs in the nest has its top leaf or any other three leaves broken. An outer coil spring or saddle may not be...

  14. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spring devices. 23.687 Section 23.687... Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter...

  15. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spring devices. 23.687 Section 23.687... Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter...

  16. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Spring devices. 23.687 Section 23.687... Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter...

  17. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Spring devices. 23.687 Section 23.687... Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter...

  18. 14 CFR 23.687 - Spring devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Spring devices. 23.687 Section 23.687... Systems § 23.687 Spring devices. The reliability of any spring device used in the control system must be established by tests simulating service conditions unless failure of the spring will not cause flutter...

  19. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  20. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03-0.34 meq g(-1)), other organic (0-0.92 meq g(-1)), carbonate (0.02-1.5 meq g(-1)), and other inorganic (0-0.26 meq g(-1)) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  2. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2003-2005

    USGS Publications Warehouse

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.

    2008-01-01

    Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved

  3. Improvement of thermoelectric properties of alkaline-earth hexaborides

    SciTech Connect

    Takeda, Masatoshi . E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu; Takahashi, Norihito; Ueda, Noriyoshi

    2006-09-15

    Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

  4. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  5. Changes in European spring phenology

    NASA Astrophysics Data System (ADS)

    Ahas, R.; Aasa, A.; Menzel, A.; Fedotova, V. G.; Scheifinger, H.

    2002-11-01

    The European phyto-phenological database of the EU 5th Framework project POSITIVE facilitated an examination of the rate and spatial pattern of changes in spring phenology across Europe. This database was collected, evaluated and composed from different national databases of Eastern and Western Europe covering the time period 1951-1998. Results show that spring phases have advanced four weeks in Western and Central Europe, and have been delayed up to two weeks in Eastern Europe. Western European spring starts earlier because of the intensive flow of warmer Atlantic air masses; the Eastern part of Europe has a different phenological rhythm and trends, that can be explained by the influence of the Siberian high. The highest rate of significant (p < 0.05) phenological change (-0.3 to -0.4 days per year) occurs in the Western Europe and Baltic Sea regions for early spring phases of hazel and colts-foot. Spring phases of birch, apple and lilac, and summer phases, such as the flowering of linden, tend to occur earlier with an average rate of -0.1 to 0.3 days per year.

  6. White sulphur springs, West Virginia

    SciTech Connect

    Lund, J.W.

    1996-05-01

    A large, historic, health-oriented mineral springs resort, The Greenbrier, occupies 2,600 ha (6,500 acres) in an upland valley of the Allegheny Mountains near the West Virginia-Virginia border in the eastern US Natural mineral water at 17{degree}C (62.5{degree}F) and with a high sulfate content is piped to individual soaking tubs of the mineral-bath wing, where it is heated by electricity to the desired temperature. Tubs are drained and filled after each use, so no chemical treatment is required. Water from a fresh-water spring is piped to an outdoor pool and the Grand Indoor Pool, where it is treated with chlorine and heated by steam. Thus, this mineral spring is not really geothermal, but has a two-century history of use by a spa resort. A chemical analysis of the spring gives a flow of 1.6 L/s (25 gpm) with sulphate 1400 mg/L, bicarbonate 210 mg/L, magnesium 130 mg/L, sodium 22 mg/L, silica 17 mg/L, chloride 17 mg/L, hydrogen sulfide 13 mg/L, potassium 1.2 mg/L and iron 1.1 mg/L (from Springs of West Virginia, West Virginia Geological and Economic Survey, 1986).

  7. Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, Northern Italy)

    NASA Astrophysics Data System (ADS)

    Peña Reyes, Fredy Alexander; Crosta, Giovanni B.; Frattini, Paolo; Basiricò, Stefano; Della Pergola, Roberto

    2015-10-01

    High arsenic (As) concentrations (up to 230 μg/L) have been historically observed (since 1999) in the upper Valtellina valley groundwater (UVV, central Italian Alps), and measured in samples collected during four campaigns of one full hydrological year (summer 2012-summer 2013). During these campaigns, water has been collected from both cold springs and thermal springs. The hydrogeochemistry of aquifers and superficial waters through the hydrologic year, and the long-term regional As distribution and time variability were analyzed. Although the studied springs belong to different catchments with different hydrochemical and lithological conditions, they present some typical characteristics: (1) the water types are dominated by Ca-Mg and SO4-HCO3 main ions, with seasonal variations for the second end members; (2) the Cl concentration is always very low, and poorly correlated with other ions; (3) the circulation time obtained from isotopic data ranges between 5 and 10 years for thermal springs and it is lower than 2 years for cold springs; (4) dominant oxidizing conditions have been observed for most of the cold and for the thermal springs; (5) anthropogenic contamination is absent, while natural contamination of arsenic affects most of the springs, with a natural background level for the entire UVV of 33 μg/L; (6) both As (V) and As (III) are present in all the springs analyzed, with a marked prevalence of As (V) among the cold ones. These conditions suggest that the latter belong to recent hydrochemical immature aquifers, where the presence of arsenic is mostly related to alkali desorption and sulfide oxidation, while the thermal springs derive from the rapid uprising of deep-circulation water, with a high concentration of geothermal arsenic.

  8. Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people.

    PubMed

    McKenna, M J; Freaney, R; Meade, A; Muldowney, F P

    1985-01-01

    The vitamin D status of 181 elderly Irish community-dwelling and institutionalized subjects was studied during Winter-Spring. The mean serum 25-hydroxyvitamin D level was 10 nmol/L (95% range less than 5.0-59 nmol/L); values were below 25 nmol/L in 79 percent of subjects. A significant seasonal variation of serum 25-hydroxyvitamin D levels was noted in elderly community-dwelling subjects. The previously documented age-related increase in serum alkaline phosphatase activity was significantly less in vitamin D replete subjects than in vitamin D deplete subjects in this study (P less than 0.005). The higher serum alkaline phosphatase values found in the vitamin D deplete subjects may represent mild secondary hyperparathyroidism or osteomalacia. The relationship of vitamin D status to both dietary intake and effective sunlight (latitude) is examined.

  9. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  10. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  11. Motor gasoline assessment, Spring 1997

    SciTech Connect

    1997-07-01

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  12. Bouncing dynamics of a spring

    NASA Astrophysics Data System (ADS)

    Hubert, M.; Ludewig, F.; Dorbolo, S.; Vandewalle, N.

    2014-04-01

    We consider the dynamics of a deformable object bouncing on an oscillating plate and we propose to model its deformations. For this purpose, we use a spring linked to a damper. Elastic properties and viscous effects are taken into account. From the bouncing spring equations of motion, we emphasize the relevant parameters of the dynamics. We discuss the range of parameters in which elastic deformations do not influence the bouncing dynamics of this object and compare this behavior with the bouncing ball dynamics. By calculating the spring bouncing threshold, we evidence the effect of resonance and prove that elastic properties can make the bounce easier. This effect is for example encountered in the case of bouncing droplets. We also consider bifurcation diagrams in order to describe the consequences of a dependence on the frequency. Finally, hysteresis in the dynamics is presented.

  13. Spring in Inca City III

    NASA Image and Video Library

    2014-11-13

    This image, acquired by NASA Mars Reconnaissance Orbiter, shows there are a few more fans on the ridge as spring activity progresses in Inca City. In Inca City another week has passed, and there are a few more fans on the ridge. We are studying the sequence of spring activity with the help of citizen scientists at the Planetfour website, sponsored by Zooniverse. Citizens of planet Earth log on and identify and measure fans and blotches in the South polar region of Mars imaged by HiRISE. With their help we can study the polar weather by looking at how the fan directions change through the spring. We see how the number of fans and blotches depends on the thickness of the ice layer and how high the sun is in the sky. http://photojournal.jpl.nasa.gov/catalog/PIA18894

  14. Mechanics of anisotropic spring networks

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Schwarz, J. M.; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, px and py, for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of px and py. We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  15. The Dependence of the Spring Constant in the Linear Range on Spring Parameters

    ERIC Educational Resources Information Center

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani; Khairurrijal

    2011-01-01

    In basic physics laboratories, springs are normally used to determine both spring constants and the Earth's gravitational acceleration. Students generally do not notice that the spring constant is not a universal constant, but depends on the spring parameters. This paper shows and verifies that the spring constant in the linear range is inversely…

  16. The Dependence of the Spring Constant in the Linear Range on Spring Parameters

    ERIC Educational Resources Information Center

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani; Khairurrijal

    2011-01-01

    In basic physics laboratories, springs are normally used to determine both spring constants and the Earth's gravitational acceleration. Students generally do not notice that the spring constant is not a universal constant, but depends on the spring parameters. This paper shows and verifies that the spring constant in the linear range is inversely…

  17. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  18. SPring-8 twin helical undulator.

    PubMed

    Hara, T; Tanaka, T; Tanabe, T; Maréchal, X M; Kumagai, K; Kitamura, H

    1998-05-01

    There are several ways of producing circularly polarized light, such as using asymmetric devices, crossed undulators etc. The SPring-8 helical undulator introduces a simple way of producing both horizontal and vertical fields in one undulator. All the magnet arrays are arranged above and below the plane of the electron orbit, so there is no limitation of access from the sides of the undulator. For the SPring-8 BL25SU, two helical undulators will be installed in tandem, and the helicity of the polarization can be switched at up to 10 Hz using five kicker magnets.

  19. Spring-Blade Impact Tester

    NASA Technical Reports Server (NTRS)

    Holmes, Alan M.; Champagne, James W.

    1989-01-01

    Record of energy relationships retrieved from compact, portable tester. Spring-blade impact tester developed to support evaluation of tolerance to damage of struts under consideration for use in Space Station. Approach offers potential for determining damage as function of change in relationship between applied and absorbed energies as applied energy successively increased with each impact. Impactor strikes specimen at moment of maximum kinetic energy after spring blades released from cocked position. Concept also provides potential for measuring behavior during impact, and energy relationships retrievable from oscilloscope traces of impact.

  20. Feasibility study of an alkaline-based chemical treatment for the purification of polyhydroxybutyrate produced by a mixed enriched culture.

    PubMed

    Jiang, Yang; Mikova, Gizela; Kleerebezem, Robbert; van der Wielen, Luuk Am; Cuellar, Maria C

    2015-12-01

    This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS (0.2 w/v% SDS) could reach 99% purity, with more than 90% recovery. The lost PHB could be mostly attributed to PHB hydrolysis during the alkaline treatment. PHB hydrolysis could be moderated by increasing the crystallinity of the PHB granules, for example, by biomass pretreatment (e.g. freezing or lyophilization) or by effective cell lysis (e.g. adjusting alkali concentration). The suitability of the purified PHB by alkaline treatment for polymer applications was evaluated by molecular weight and thermal stability. A solvent based purification method was also performed for comparison purposes. As result, PHB produced by mixed enriched cultures was found suitable for thermoplastic applications when purified by the solvent method. While the alkaline method resulted in purity, recovery yield and molecular weight comparable to values reported in literature for PHB produced by pure cultures, it was found unsuitable for thermoplastic applications. Given the potential low cost and favorable environmental impact of this method, it is expected that PHB purified by alkaline method may be suitable for other non-thermal polymer applications, and as a platform chemical.

  1. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary

  2. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with

  3. Folding Elastic Thermal Surface - FETS

    NASA Technical Reports Server (NTRS)

    Urquiza, Eugenio; Zhang, Burt X.; Thelen, Michael P.; Rodriquez, Jose I.; Pellegrino, Sergio

    2013-01-01

    The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator. An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and during orbit insertion. Once unfolded or deployed, the FETS serves as a heat shield, intercepting parasitic heat loads by blocking the passive cooler s view of the warm spacecraft. The technology significantly enhances the capabilities of instruments requiring either active or passive cooling of optical detectors. This can be particularly important for instruments where performance is limited by the available radiator area. Examples would be IR optical instruments on CubeSATs or those launched as hosted payloads because radiator area is limited and views are often undesirable. As a deployable radiator, the panels making up the FETS are linked thermally by thermal straps and heat pipes; the structural support and deployment energy is provided using tape-spring hinges. The FETS is a novel combination of existing technologies. Prior art for deployable heat shields uses rotating hinges that typically must be lubricated to avoid cold welding or static friction. By using tape-spring hinges, the FETS avoids the need for lubricants by avoiding friction altogether. This also eliminates the potential for contamination of nearby cooled optics by outgassing lubricants. Furthermore, the tape-spring design of

  4. Alkaline phosphatase and bone calcium parameters.

    PubMed

    Fauran-Clavel, M J; Oustrin, J

    1986-01-01

    Effects of cadmium, an alkaline phosphatase inhibitor, on the calcium content of rat bone were investigated in vivo by a radioisotopic method. Disturbance of bone metabolism is observed in both the superficial (delta) and slow exchanges (Ve), which are also significantly decreased. The crystallized calcium bone compartment (E) is also strongly affected. It appears that changes in the superficial calcium exchanges cause the observed decrease in the crystallized calcium mass. The slowing of osteogenesis is confirmed by the decrease of serum alkaline phosphatase activity. A statistical examination of the correlation coefficient reveals a close link (P less than 0.01) between serum alkaline phosphatase activity and the influx of superficial calcium (Vo+) and, as a result, the crystallized bone calcium parameters. These results show that cadmium can be used to study the relationship between alkaline phosphatase and calcification. The present observations allow us to consider the possibility that alkaline phosphatase may play a role in determining the calcium content of the crystallized phases in deep bone through its action on the tissue surface.

  5. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Ruff, S. W.; Morris, R. V.; Bell, J. F.; Herkenhoff, K.; Gellert, R.; Stockstill, K. R.; Tornabene, L. L.; Squyres, S. W.; Crisp, J. A.; Christensen, P. R.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-09-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater.

  6. Degradation modes of alkaline fuel cells and their components

    NASA Astrophysics Data System (ADS)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  7. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  8. The Forced Hard Spring Equation

    ERIC Educational Resources Information Center