Sample records for alkaline-surfactant-polymer flood oil

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  3. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan gum gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar. Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow.« less

  4. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan guin gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar.« less

  5. Modelling and scale-up of chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Sepehrnoori, K.

    1990-03-01

    The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. We have continued to develop, test, and apply our chemical flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agents. Part I is an update on the Application of Higher-Order Methods in Chemical Flooding Simulation.more » This update focuses on the comparison of grid orientation effects for four different numerical methods implemented in UTCHEM. Part II is on Simulation Design Studies and is a continuation of Saad's Big Muddy surfactant pilot simulation study reported last year. Part III reports on the Simulation of Gravity Effects under conditions similar to those of some of the oil reservoirs in the North Sea. Part IV is on Determining Oil Saturation from Interwell Tracers UTCHEM is used for large-scale interwell tracer tests. A systematic procedure for estimating oil saturation from interwell tracer data is developed and a specific example based on the actual field data provided by Sun E P Co. is given. Part V reports on the Application of Vectorization and Microtasking for Reservoir Simulation. Part VI reports on Alkaline Simulation. The alkaline/surfactant/polymer flood compositional simulator (UTCHEM) reported last year is further extended to include reactions involving chemical species containing magnesium, aluminium and silicon as constituent elements. Part VII reports on permeability and trapping of microemulsion.« less

  6. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less

  7. Chemical Methods for Ugnu Viscous Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing coldmore » heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was produced and pressure drop increased. With low salinity (deionized) water, the oil recovery was lower, but so was the pressure drop because only oil-in-water emulsion was produced. Secondary waterflood of the 10,000 cp heavy oil in 5-spot sand packs recovers 30-35% OOIP of the oil in about 2.5 PV injection. Tertiary injection of the alkaline-surfactant solution increases the cumulative oil recovery from 51 to 57% OOIP in 5-spot sand packs. As water displaces the heavy oil, it fingers through the oil with a fractal structure (fractal dimension = 1.6), as seen in the micromodel experiments. Alkaline-surfactant solution emulsifies the oil around the brine fingers and flows them to the production well. A fractional flow model incorporating the effect of viscous fingering was able to match the laboaratory experiments and can be used in reservoir simulators. The chemical techniques look promising in the laboratory and should be tested in the fields.« less

  8. Development of an alkaline/surfactant/polymer compositional reservoir simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, D.

    1989-01-01

    The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less

  9. Asymmetric membranes for destabilization of oil droplets in produced water from alkaline-surfactant-polymer (ASP) flooding

    NASA Astrophysics Data System (ADS)

    Ramlee, Azierah; Chiam, Chel-Ken; Sarbatly, Rosalam

    2018-05-01

    This work presents a study of destabilization of oil droplets in the produced water from alkaline-surfactant-polymer (ASP) flooding by using four types of laboratory-fabricated polyvinylidene fluoride (PVDF) membranes. The PVDF membranes were fabricated via immersion precipitation method with ethanol (0 - 30 %, v/v) as the coagulant. The membranes with the effective area of 17.35 cm2 were tested with synthesized ASP solution as the feed in cross-flow microfiltration process. The ASP feed solution initially contained the oil droplets with radius ranged from 40 to 100 nm and the mean radius was 61 nm. Results have shown that the concentration of the ethanol in the coagulation bath affects the formation of the membrane structure and the corresponding porosity, while no significance influence on the membrane thickness. Coalescence of the oil droplets was occurred when the ASP solution permeated through the asymmetric PVDF membranes. Through the coalescence process, the oil droplets were destabilized where the radius of the oil droplets in the permeates increased to 1.5-4 µm with the corresponding mean radius ranged from 2.4 to 2.7 µm.

  10. Influence of stability of polymer surfactant on oil displacement mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang

    2018-02-01

    At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer surfactant flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer surfactant has chromatographic separation at the extraction end, which indicates that the property of the polymer surfactant has changed during the displacement process. At present, there was few literature about how the stability of polymer surfactant affects the oil displacement mechanism. This paper used HuaDing-I polymer surfactant to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer surfactant before and after static setting. Finally, the influence law of stability of polymer surfactant on the oil displacement mechanism is obtained by comprehensive analysis.

  11. Modelling and scale-up of chemical flooding: Second annual report for the period October 1986--September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Sepehrnoori, K.

    1988-11-01

    The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. Developing, testing and applying flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agent has been continued. Improvements in both the physical-chemical and numerical aspects of UTCHEM have been made which enhance its versatility, accuracymore » and speed. Supporting experimental studies during the past year include relative permeability and trapping of microemulsion, tracer flow studies oil recovery in cores using alcohol free surfactant slugs, and microemulsion viscosity measurements. These have enabled model improvement simulator testing. Another code called PROPACK has also been developed which is used as a preprocessor for UTCHEM. Specifically, it is used to evaluate input to UTCHEM by computing and plotting key physical properties such as phase behavior interfacial tension.« less

  12. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  13. Alkaline flooding for enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less

  14. Mathematical modeling of high-pH chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, D.; Lake, L.W.; Pope, G.A.

    1990-05-01

    This paper describes a generalized compositional reservoir simulator for high-pH chemical flooding processes. This simulator combines the reaction chemistry associated with these processes with the extensive physical- and flow-property modeling schemes of an existing micellar/polymer flood simulator, UTCHEM. Application of the model is illustrated for cases from a simple alkaline preflush to surfactant-enhanced alkaline-polymer flooding.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Troy

    Le Norman Energy Company conducted research on field application of alkaline-surfactant-polymer (ASP) flooding as a part of the U.S. Department of Energy's plan to maximize the production of our domestic oil resources. In addition to having substantial technical merit, the process uses chemicals that are environmentally acceptable. Le Norman's field project is located in the Sho-Vel-Tum (OK) oil field, which was a major producer of crude oil in past years, but has since been extensively waterflooded. This reservoir in this portion of the field is typical of many shallow reservoirs in the Oklahoma-Kansas area and is a good demonstration sitemore » for that area. The pay zones are located approximately 700 ft. deep, and this project is the shallowest field test for ASP flooding.« less

  16. Optimized polymer enhanced foam flooding for ordinary heavy oil reservoir after cross-linked polymer flooding.

    PubMed

    Sun, Chen; Hou, Jian; Pan, Guangming; Xia, Zhizeng

    2016-01-01

    A successful cross-linked polymer flooding has been implemented in JD reservoir, an ordinary heavy oil reservoir with high permeability zones. For all that, there are still significant volumes of continuous oil remaining in place, which can not be easily extracted due to stronger vertical heterogeneity. Considering selective plugging feature, polymer enhanced foam (PEF) flooding was taken as following EOR technology for JD reservoir. For low cost and rich source, natural gas was used as foaming gas in our work. In the former work, the surfactant systems CEA/FSA1 was recommended as foam agent for natural gas foam flooding after series of compatibility studies. Foam performance evaluation experiments showed that foaming volume reached 110 mL, half-life time reached 40 min, and dimensionless filter coefficient reached 1.180 when CEA/FSA1 reacted with oil produced by JD reservoir. To compare the recovery efficiency by different EOR technologies, series of oil displacement experiments were carried out in a parallel core system which contained cores with relatively high and low permeability. EOR technologies concerned in our work include further cross-linked polymer (C-P) flooding, surfactant-polymer (S-P) flooding, and PEF flooding. Results showed that PEF flooding had the highest enhanced oil recovery of 19.2 % original oil in place (OOIP), followed by S-P flooding (9.6 % OOIP) and C-P flooding (6.1 % OOIP). Also, produced liquid percentage results indicated PEF flooding can efficiently promote the oil recovery in the lower permeability core by modifying the injection profile.

  17. Proficiency feasibility of multi-walled carbon nanotubes in the presence of polymeric surfactant on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Nezhad, Javad Razavi; Jafari, Arezou; Abdollahi, Mahdi

    2018-01-01

    Enhanced heavy oil recovery methods are widely utilized to increase oil recovery. For this purpose, polymer and surfactant flooding have been used extensively. Recently, polymeric surfactant flooding has become an attractive alternative to sole polymer flooding due to their capability of providing an increase in solution viscosity and a decrease in interfacial tension, which are both beneficial for efficiency of the process. Applying nanoparticles as an additive to polymer solutions is a method to improve viscosity and alter rock wettability. Therefore, in this research, multi-walled carbon nanotube (MWCNT) was mixed with a polymeric surfactant of polyacrylamide-graft-lignin copolymer (PAM-g-L) synthesized via radical grafting reaction. Moreover, several solutions with different concentrations of nanoparticles with PAM-g-L were prepared. The solutions were injected into a micromodel to evaluate the PAM-g-L flooding efficiency in presence of the multi-walled carbon nanotubes. The results of micromodel flooding showed that increasing MWCNT concentration results in lower sweep efficiencies; and consequently, oil production will decrease. Therefore, MWCNT along with PAM-g-L has an unacceptable performance in enhanced heavy oil recovery. But data of wettability tests revealed that MWCNT can change the wettability from oil-wet to water-wet. In addition, the combination of the PAM-g-L and MWCNT in a solution will cause more water-wet condition.

  18. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  19. A chemical EOR benchmark study of different reservoir simulators

    NASA Astrophysics Data System (ADS)

    Goudarzi, Ali; Delshad, Mojdeh; Sepehrnoori, Kamy

    2016-09-01

    Interest in chemical EOR processes has intensified in recent years due to the advancements in chemical formulations and injection techniques. Injecting Polymer (P), surfactant/polymer (SP), and alkaline/surfactant/polymer (ASP) are techniques for improving sweep and displacement efficiencies with the aim of improving oil production in both secondary and tertiary floods. There has been great interest in chemical flooding recently for different challenging situations. These include high temperature reservoirs, formations with extreme salinity and hardness, naturally fractured carbonates, and sandstone reservoirs with heavy and viscous crude oils. More oil reservoirs are reaching maturity where secondary polymer floods and tertiary surfactant methods have become increasingly important. This significance has added to the industry's interest in using reservoir simulators as tools for reservoir evaluation and management to minimize costs and increase the process efficiency. Reservoir simulators with special features are needed to represent coupled chemical and physical processes present in chemical EOR processes. The simulators need to be first validated against well controlled lab and pilot scale experiments to reliably predict the full field implementations. The available data from laboratory scale include 1) phase behavior and rheological data; and 2) results of secondary and tertiary coreflood experiments for P, SP, and ASP floods under reservoir conditions, i.e. chemical retentions, pressure drop, and oil recovery. Data collected from corefloods are used as benchmark tests comparing numerical reservoir simulators with chemical EOR modeling capabilities such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL of Petroleum Experts. The research UTCHEM simulator from The University of Texas at Austin is also included since it has been the benchmark for chemical flooding simulation for over 25 years. The results of this benchmark comparison will be utilized to improve chemical design for field-scale studies using commercial simulators. The benchmark tests illustrate the potential of commercial simulators for chemical flooding projects and provide a comprehensive table of strengths and limitations of each simulator for a given chemical EOR process. Mechanistic simulations of chemical EOR processes will provide predictive capability and can aid in optimization of the field injection projects. The objective of this paper is not to compare the computational efficiency and solution algorithms; it only focuses on the process modeling comparison.

  20. Study to determine the technical and economic feasibility of reclaiming chemicals used in micellar polymer and low tension surfactant flooding. Final report. [Ultrafiltration membranes and reverse osmosis membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, R.H.; Himmelblau, A.; Donnelly, R.G.

    1978-02-01

    Energy Resources Company has developed a technology for use with enhanced oil recovery to achieve emulsion breaking and surfactant recovery. By using ultrafiltration membranes, the Energy Resources Company process can dewater an oil-in-water type emulsion expected from enhanced oil recovery projects to the point where the emulsion can be inverted and treated using conventional emulsion-treating equipment. By using a tight ultrafiltration membrane or a reverse osmosis membrane, the Energy Resources Company process is capable of recovering chemicals such as surfactants used in micellar polymer flooding.

  1. Modeling and simulation of surfactant-polymer flooding using a new hybrid method

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Dutta, Sourav

    2017-04-01

    Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.

  2. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  3. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  4. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  5. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less

  6. Salting-out and multivalent cation precipitation of anionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, R.D. Jr.; Keppel, R.A.; Cosper, M.B.

    1981-02-01

    In this surfactant/polymer flooding process, a carefully designed surfactant slug is injected into an oil-bearing formation with a view to reducing the oil/water interfacial tension substantially so as to facilitate mobilization of oil droplets trapped in the less accessible void spaces of the reservoir rock. When the surfactant comes into contact with reservoir brine, oil and rock, several phenomena can occur which result in loss of surfactant from the slug, i.e., salting-out of surfactant by NaCl, precipitation of insoluble soaps by multivalent cations such as calcium, partitioning to oil of both dissolved and precipitated surfactant, and adsorption of surfactant onmore » reservoir rock have been identified as important surfactant loss processes. This study presents some experimental data which illustrate the effects of salt and multivalent cations, identifies the mechanisms which are operative, and develops mathematical relationships which enable one to describe the behavior of surfactant systems when brought into contact with salt, multivalent cations, or both. 26 references.« less

  7. [Characterization of microbial community in produced water from a petroleum reservoir subjected to alkali-surfactant-polymer ASP flooding].

    PubMed

    Hao, Qin Qin; Shi, Rong Jiu; Hao, Jin Sheng; Zhao, Jin Yi; Li, Guo Qiao; Zhao, Feng; Han, Si Qin; Zhang, Ying

    2017-10-01

    Injection of alkali, surfactant and polymer (ASP) into oil reservoir can substantially increase oil recovery compared with water-flooding strategy. However, the effects of these agents on the microbial diversity and community structure, which is important for water management and corrosion control in oil industry, are hitherto poorly understood. Here, we disclosed the microbial diversity and community structure in the produced water collected from four producing wells of an ASP-flooded oilfield at Daqing, China, using high-throughput sequencing technique. Results showed that the average pH in produced water was as high as 9.65. The microbial diversity varied from well to well, and the Shannon diversity index was between 2.00 to 3.56. The Proteobacteria (85.5%-98.3%), γ-proteobacteria (83.7%-97.8%), and alkaliphilic Nitrincola (51.8%-82.5%) were the most dominant phylogenetic taxa at the phylum, class, and genus levels, respectively. A total of 12 potentially sulfide-producing genera were detected, and the most abundant taxon was Sulfurospirillum (0.4%-7.4%). The microbial community of ASP-flooded petroleum reservoir was distinct, showing an alkaliphilic or alkalitolerant potential; a reduced diversity and more simple structure were observed compared with those of the water-flooded petroleum reservoirs that were previously reported.

  8. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  9. Chemical enhanced oil recovery (EOR) activities in Indonesia: How it's future

    NASA Astrophysics Data System (ADS)

    Abdurrahman, Muslim

    2017-05-01

    Enhanced oil recovery (EOR) is a proven method for increasing oil production in many oil fields in the world. Huge oil remaining in the reservoir after primary and secondary recovery stage are the main reason for developing EOR methods. Approximately of 49.50 billion barrels oil as a candidate for EOR activities in Indonesia. This present study focuses on the chemical EOR activities involved surfactant and polymer. This research based on pertinent information from various resources such as journal papers, conference papers, and report from the government. Based on this information, this paper explain in detail the progress of each project and it shows the potential oil field employ chemical EOR in the near future. Generally, the EOR activities can be categorized into two phases such as preliminary study phase and field implementation phase. In the preliminary study, the activities simply involve experimental and/or simulation works. Following the preliminary is the field implementation phase which can be categorized into three phases such as field trial, pilot project, and full-scale. In fact, several activities have been conducted by Lemigas (government oil and gas research center), Institut Teknologi Bandung, Institut Pertanian Bogor. These activities focused on laboratory and simulation work. Those institutions have been developing the chemical formula collaborating with oil companies for applying the EOR method in their oil fields. Currently, status of chemical EOR activities include 5 oil fields under pilot project and 12 oil fields under field trial. There are 7 oil fields applying surfactant, 4 oil fields by alkaline-surfactant-polymer (ASP), 2 oil fields by polymer, 1 oil field by surfactant polymer (SP), and 1 oil field by caustic. According to this information, we will have insight knowledge about the EOR current activities, the main issues, future activities on chemical EOR in Indonesia. Moreover, this study can became the preliminary information for researchers who interested conducting further research and development on the chemical EOR activities in the near future.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, J.T.; Surkalo, H.

    Current world oil prices have forced a reevaluation of many enhanced oil recovery processes. One very promising approach is the use of low-cost alkaline chemicals combined with surfactants and polymers. It has been determined from the testing of hundreds of oils that acid number and API gravity are simplistic screening criteria and are of very little value in many cases. Oil recovery experiments in the laboratory have resulted in residual oil saturations as low as with the micellar-polymer technology for as little as 10% of the chemical costs. Indications are that this technology has the potential for producing incremental oilmore » for less than $3 per barrel.« less

  11. A Novel Equation-of-State to Model Microemulsion Phase Behavior for Enhanced Oil Recovery Application

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumyadeep

    Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR. The modified HLD-NAC model is also extended here for ASP flooding. We use an empirical equation to calculate the acid distribution coefficient from the molecular structure of the soap. Key HLD-NAC parameters like optimum salinities and optimum solubilization ratios are calculated from soap mole fraction weighted equations. The model is tuned to data from phase behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The modified HLD-NAC equations are then made dimensionless to develop important microemulsion phase behavior relationships and for use in tuning the new model to measured data. Key dimensionless groups that govern phase behavior and their effects are identified and analyzed. A new correlation was developed to predict optimum solubilization ratios at different temperatures, pressures and oil EACN with an average relative error of 10.55%. The prediction of optimum salinities with the modified HLD approach resulted in average relative errors of 2.35%. We also present a robust method to precisely determine optimum salinities and optimum solubilization ratios from salinity scan data with average relative errors of 1.17% and 2.44% for the published data examined.

  12. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  13. Investigation of certain physical-chemical features of oil recovery by an optimized alkali-surfactant-foam (ASF) system.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-01-01

    The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline-surfactant-foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali-surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10 -1 -10 -3  mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.

  14. Study on the reutilization of clear fracturing flowback fluids in surfactant flooding with additives for Enhanced Oil Recovery (EOR).

    PubMed

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10(-3) mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical.

  15. Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR)

    PubMed Central

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical. PMID:25409507

  16. Enhanced waterflooding design with dilute surfactant concentrations for North Sea conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, A.M.; Djojosoeparto, R.S.; Haas, H.

    1996-08-01

    Efficient selection procedures for surfactants have been applied to design a low-concentration surfactant-flooding process for North Sea oilfield application. Anionic surfactants of the propoxy ethoxy glyceryl sulfonate type can be used at 0.1 wt% concentrations together with sacrificial agents and without a polymer drive. Currently estimated unit technical costs (UTC`s)--at 8%--for application in the North Sea oil fields range frommore » $81 to $$94/incremental m{sup 3}, without taking uncertainty factors into account. Including such factors would likely add another $$31/m{sup 3} to the costs.« less

  17. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. Themore » phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.« less

  18. Next Generation Surfactants for Improved Chemical Flooding Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers,more » and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.« less

  19. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  20. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  1. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.

    PubMed

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-08-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil-gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×10 5  Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas (WAG) processes. This study shows that using the concentration of 1500 ppm of surfactant solution is practical and economical. Results also show that the SAG ratio of 1:1 with 0.2 cm 3 /min at temperature and pressure of 70 °C and 144.74×10 5  Pa, has the maximum oil removal efficiency. In this SAG ratio, stable foam was formed and viscous fingering delayed in comparison to other ratios. Finally, the results demonstrated that SAG injection has higher oil recovery in comparison to other displacement methods (water flooding, gas flooding and WAG).

  2. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase.more » A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.« less

  3. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

    PubMed Central

    2017-01-01

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10–2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion. PMID:29093612

  4. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  5. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  6. Development of an Improved Simulator for Chemical and Microbial EOR Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Gary A.; Sepehrnoori, Kamy; Delshad, Mojdeh

    2000-09-11

    The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods that use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. Task 1 is the addition of a dual-porosity model for chemical improved of recovery processes in naturally fractured oil reservoirs. Task 2 is the addition of a foam model. Task 3 addresses several numerical and coding enhancements that will greatly improve the versatility and performance of UTCHEM. Task 4 is the enhancements of physical propertymore » models.« less

  7. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  8. DEVELOPMENT OF AN IMPROVED SIMULATOR FOR CHEMICAL AND MICROBIAL IOR METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary A. Pope; Kamy Sepehrnoori; Mojdeh Delshad

    2001-10-01

    This is the final report of a three-year research project on further development of a chemical and microbial improved oil recovery reservoir simulator. The objective of this research was to extend the capability of an existing simulator (UTCHEM) to improved oil recovery methods which use surfactants, polymers, gels, alkaline chemicals, microorganisms and foam as well as various combinations of these in both conventional and naturally fractured oil reservoirs. The first task was the addition of a dual-porosity model for chemical IOR in naturally fractured oil reservoirs. They formulated and implemented a multiphase, multicomponent dual porosity model for enhanced oil recoverymore » from naturally fractured reservoirs. The multiphase dual porosity model was tested against analytical solutions, coreflood data, and commercial simulators. The second task was the addition of a foam model. They implemented a semi-empirical surfactant/foam model in UTCHEM and validated the foam model by comparison with published laboratory data. The third task addressed several numerical and coding enhancements that will greatly improve its versatility and performance. Major enhancements were made in UTCHEM output files and memory management. A graphical user interface to set up the simulation input and to process the output data on a Windows PC was developed. New solvers for solving the pressure equation and geochemical system of equations were implemented and tested. A corner point grid geometry option for gridding complex reservoirs was implemented and tested. Enhancements of physical property models for both chemical and microbial IOR simulations were included in the final task of this proposal. Additional options for calculating the physical properties such as relative permeability and capillary pressure were added. A microbiological population model was developed and incorporated into UTCHEM. They have applied the model to microbial enhanced oil recovery (MEOR) processes by including the capability of permeability reduction due to biomass growth and retention. The formations of bio-products such as surfactant and polymer surfactant have also been incorporated.« less

  9. β-Cyclodextrin associated polymeric systems: Rheology, flow behavior in porous media and enhanced heavy oil recovery performance.

    PubMed

    Wei, Bing

    2015-12-10

    This proof of concept research evaluates an approach to improve the enhanced heavy oil recovery performance of conventional polymers. Three associated polymeric systems, based on hydrolyzed polyacrylamide, xanthan gum, and a novel hydrophobic copolymer, were proposed in this work. The results of the theoretically rheology study indicate that these systems offer superior viscoelasticity and pronounced shear-thinning behavior due to the "interlocking effect". As a result of the surfactant collaboration, the dynamic interfacial tension between oil and polymer solution can be reduced by two orders of magnitude. Sandpack flooding tests demonstrated the capacity of the developed systems in mobility control during propagating in porous media, and the adsorption behavior was represented by the thickness of the adsorbed layer. The relationship between microscopic efficiency and capillary number indicated that the associated systems can significantly reduce the residual oil saturation due to the synergistic effect of the mobility reduction and surface activity, and the overall recovery efficiency was raised by 2-20% OOIP compared to the baseline polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  11. Polymer as permeability modifier in porous media for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Parsa, Shima; Weitz, David

    2017-11-01

    We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.

  12. Influence of relative permeabilities on chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Destefanis, M. F.; Savioli, G. B.

    2011-05-01

    The main objective of chemical flooding is to mobilize the trapped oil remaining after a secondary recovery by waterflooding. This purpose is achieved by lowering the oil-water interfacial tension and producing partial miscibility between both phases. The chemical partition among phases (phase behavior) influences all other physical properties. In particular, it affects residual saturations determining relative permeability curves. Relative permeabilities rule the flow of each phase through the porous medium, so they play an essential role in oil recovery. Therefore, in this work we study the influence of relative permeabilities on the behavior of a surfactant-polymer flooding for the three different types of phase behavior. This analysis is performed applying the 3D compositional numerical simulator UTCHEM developed at the University of Texas at Austin. From the examples studied, we conclude that the influence of relative permeabilities depends on the type of phase behavior, i.e., as microemulsion relative permeability decreases, oil recovery increases for Types II(+) and III while slightly decreases for Type II(-). Moreover, a better displacement efficiency is observed for Types II(+) and III, because they behave similarly to a miscible displacement.

  13. Development of cost-effective surfactant flooding technology. Quarterly report, January 1, 1994--March 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1994-09-01

    The objective of this research is to develop cost-effective surfactant flooding technology by using surfactant simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics, process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. The goal of Task 2 is to understand and generalize themore » impact of both process and reservoir characteristics on the optimal design of surfactant flooding. We have studied the effect of process parameters such as salinity gradient, surfactant adsorption, surfactant concentration, surfactant slug size, pH, polymer concentration and well constraints on surfactant floods. In this report, we show three dimensional field scale simulation results to illustrate the impact of one important design parameter, the salinity gradient. Although the use of a salinity gradient to improve the efficiency and robustness of surfactant flooding has been studied and applied for many years, this is the first time that we have evaluated it using stochastic simulations rather than simulations using the traditional layered reservoir description. The surfactant flooding simulations were performed using The University of Texas chemical flooding simulator called UTCHEM.« less

  14. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    PubMed

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  15. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  16. [Effects of polyacrylamide on settling and separation of oil droplets in polymer flooding produced water].

    PubMed

    Deng, Shubo; Zhou, Fusheng; Chen, Zhongxi; Xia, Fujun; Yu, Gang; Jiang, Zhanpeng

    2002-03-01

    The research found anion polyacrylamide (HPAM) had positive and negative effects on oil-water separation. Polymer made oily wastewater's viscosity increase and reduce rising velocity, and polymer can also increase intensity of water films between oil droplets and lengthen coalescence time of oil droplets. Those were not in favor of settling and separation for oil droplets. The positive effects on separation were that polyacrylamide had flocculating activity and made small droplets contact each other and combine into big droplets. When polymer's molecular weight was 2.72 x 10(6), and concentration was less than 800 mg/L, polymer was in favor of oil droplets settling and separation. The prime reason for oily wastewater of polymer flooding difficult to dispose was that initial median diameters of oil droplets were small. The transverse flow oil separator can intensify oil droplets combination and shorten rising time. The locale experiments showed the separator was suitable for dealing with oily wastewater of polymer flooding.

  17. Distribution and Recovery of Crude Oil in Various Types of Porous Media and Heterogeneity Configurations

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.

    2015-12-01

    A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.

  18. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, wemore » examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).« less

  19. Mathematical modeling of polymer flooding using the unstructured Voronoi grid

    NASA Astrophysics Data System (ADS)

    Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.

    2017-12-01

    Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.

  20. Synthesis and characterization of dialkanolamides from castor oil (Ricinus communis) as nonionic surfactant

    NASA Astrophysics Data System (ADS)

    Anwar, M.; Wahyuningsih, T. D.

    2017-12-01

    Nonionic surfactant of dialkanolamide derivates was synthesized and characterized from castor oil (Ricinus comunnis). Ricinoleic acid was isolated from castor oil by hydrolysis in alkaline (KOH) condition at 65 °C. Oxidation of ricinoleic acid by dilute potassium permanganate (KMnO4) in alkaline condition at 75-90 °C gave dicarboxylic acid which was then reacted with ethanolamine at 140-160 °C for 6 hours. The product was recrystallized with isopropanol, and the structure elucidation was performed by FTIR, 1HNMR spectrometer, and GC-MS with silylation method. Characterization of surfactants was carried out by surface tension measurement (capillary rise method), Critical Micelle Concentration (CMC) based on turbidity method and calculation of Hydrophilic-Lipophilic Balance (HLB) value with Griffin method and Bancroft rule. The result showed that ricinoleic acid in castor oil is 86.19 % and it is oxidation give an azelaic acid and octanedioic acid in 53.25 %. Amidation of a dicarboxylic acid and ethanolamine at 140-160 °C for 6 hours yielded of N1,N9-bis(2-hydroxyethyl)nona diamide in 49.35 %. Surfactant characterization indicates that dialkanolamide derivates can be used as a surfactant due to its ability to reduce the surface tension of ethanol with CMC at 1.2 g/L, HLB value is 5.58 and can be used as emulsifier water in oil (W/O).

  1. Physicochemical Approaches for the Remediation of Former Manufactured Gas Plant Tars

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Miller, C. T.

    2014-12-01

    Former manufactured gas plant (FMGP) tars are one of the most challenging non-aqueous phase liquid (NAPL) contaminants to remediate due to their complex chemical composition, high viscosities, and ability to alter wettability. In this work, we investigate several in situ remediation techniques for the removal of tar from porous media. Batch and column experiments were conducted to test the effectiveness of mobilization, solubilization, and chemical oxidation remediation approaches. Alkaline (NaOH), surfactant (Triton X-100), and polymer (xanthan gum) agents were used in various combinations to reduce tar-water interfacial tension, increase flushing solution viscosity, and increase the solubilities of tar components. Base-activated sodium persulfate was used alone and in combination with surfactant to chemically oxidized tar components. The effectiveness of each method was assessed in terms of both removal of PAHs from the system and reduction of dissolved-phase effluent polycyclic aromatic hydrocarbon (PAH) concentrations. In column studies, alkaline-polymer (AP) and alkaline-surfactant-polymer (ASP) solutions efficiently mobilized 81-93% and 95-96% of residual PAHs, respectively, within two pore volumes. The impact of AP flushing on dissolved-phase PAH concentrations was relatively low; however, the concentrations of several low molar mass PAHs were significantly reduced after ASP flushing. Surfactant-polymer (SP) solutions removed over 99% of residual PAHs through a combination of mobilization and solubilization, and reduced the post-remediation, dissolved-phase total PAH concentration by 98.4-99.1%. Degradation of residual PAHs by base-activated sodium persulfate was relatively low (30-50%), and had little impact on dissolved-phase PAH concentrations.

  2. Succession of microbial communities and changes of incremental oil in a post-polymer flooded reservoir with nutrient stimulation.

    PubMed

    Gao, Peike; Li, Guoqiang; Le, Jianjun; Liu, Xiaobo; Liu, Fang; Ma, Ting

    2018-02-01

    Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial enhanced oil recovery (IMEOR) in a post-polymer flooded reservoir was performed. The succession of microbial communities was revealed by high-throughput sequencing of 16S rRNA genes and changes of incremental oil were analyzed. The results indicated that the abundances of reservoir microorganisms significantly increased, with alpha diversities decreased in the IMEOR process. With the intermittent nutrient injection, microbial communities showed a regular change and were alternately dominated by minority populations: Pseudomonas and Acinetobacter significantly increased when nutrients were injected; Thauera, Azovibrio, Arcobacter, Helicobacter, Desulfitobacterium, and Clostridium increased in the following water-flooding process. Accompanied by the stimulated populations, higher oil production was obtained. However, these populations did not contribute a persistent level of incremental oil in the reservoir. In summary, this study revealed the alternative succession of microbial communities and the changes of incremental oil in a post-polymer flooded reservoir with intermittent nutrient stimulation process.

  3. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  4. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  5. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  6. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.

    PubMed

    Alzobaidi, Shehab; Lee, Jason; Jiries, Summer; Da, Chang; Harris, Justin; Keene, Kaitlin; Rodriguez, Gianfranco; Beckman, Eric; Perry, Robert; Johnston, Keith P; Enick, Robert

    2018-09-15

    The design of surfactants for CO 2 /oil emulsions has been elusive given the low CO 2 -oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO 2 /oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO 2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO 2 and oil through a beadpack (CO 2 volume fractions (ϕ) of 0.50-0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C 30 alkyl chains are CO 2 -insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO 2 -philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO 2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C 30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO 2 , with CO 2 droplets in the 10-150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Somasundaran

    The aim of the project is to develop a knowledge base to help the design of enhanced processes for mobilizing and extracting untrapped oil. We emphasize evaluation of novel surfactant mixtures and obtaining optimum combinations of the surfactants for efficient chemical flooding EOR processes. In this regard, an understanding of the aggregate shape, size and structure is crucial since these properties govern the crude oil removal efficiency. During the three-year period, the adsorption and aggregation behavior of sugar-based surfactants and their mixtures with other types of surfactants have been studied. Sugar-based surfactants are made from renewable resources, nontoxic and biodegradable.more » They are miscible with water and oil. These environmentally benign surfactants feature high surface activity, good salinity, calcium and temperature tolerance, and unique adsorption behavior. They possess the characteristics required for oil flooding surfactants and have the potential for replacing currently used surfactants in oil recovery. A novel analytical ultracentrifugation technique has been successfully employed for the first time, to characterize the aggregate species present in mixed micellar solution due to its powerful ability to separate particles based on their size and shape and monitor them simultaneously. Analytical ultracentrifugation offers an unprecedented opportunity to obtain important information on mixed micelles, structure-performance relationship for different surfactant aggregates in solution and their role in interfacial processes. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. Four softwares: OptimaTM XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The results have been compared to that from Light Scattering. Based on the tests, Svedberg and SEDFIT analysis were chosen for further studies.« less

  8. Economic Implementation and Optimization of Secondary Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary D. Brock

    The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates formore » the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.« less

  9. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less

  10. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  11. Polymers for enhanced oil recovery: fundamentals and selection criteria.

    PubMed

    Rellegadla, Sandeep; Prajapat, Ganshyam; Agrawal, Akhil

    2017-06-01

    With a rising population, the demand for energy has increased over the years. As per the projections, both fossil fuel and renewables will remain as major energy source (678 quadrillion BTU) till 2030 with fossil fuel contributing 78% of total energy consumption. Hence, attempts are continuously made to make fossil fuel production more sustainable and cheaper. From the past 40 years, polymer flooding has been carried out in marginal oil fields and have proved to be successful in many cases. The common expectation from polymer flooding is to obtain 50% ultimate recovery with 15 to 20% incremental recovery over secondary water flooding. Both naturally derived polymers like xanthan gum and synthetic polymers like partially hydrolyzed polyacrylamide (HPAM) have been used for this purpose. Earlier laboratory and field trials revealed that salinity and temperature are the major issues with the synthetic polymers that lead to polymer degradation and adsorption on the rock surface. Microbial degradation and concentration are major issues with naturally derived polymers leading to loss of viscosity and pore throat plugging. Earlier studies also revealed that polymer flooding is successful in the fields where oil viscosity is quite higher (up to 126 cp) than injection water due to improvement in mobility ratio during polymer flooding. The largest successful polymer flood was reported in China in 1990 where both synthetic and naturally derived polymers were used in nearly 20 projects. The implementation of these projects provides valuable suggestions for further improving the available processes in future. This paper examines the selection criteria of polymer, field characteristics that support polymer floods and recommendation to design a large producing polymer flooding.

  12. Blocking effect and numerical study of polymer particles dispersion flooding in heterogeneous reservoir

    NASA Astrophysics Data System (ADS)

    Zhu, Weiyao; Li, Jianhui; Lou, Yu

    2018-02-01

    Polymer flooding has become an effective way to improve the sweep efficiency in many oil fields. Many scholars have carried out a lot of researches on the mechanism of polymer flooding. In this paper, the effect of polymer on seepage is analyzed. The blocking effect of polymer particles was studied experimentally, and the residual resistance coefficient (RRF) were used to represent the blocking effect. We also build a mathematical model for heterogeneous concentration distribution of polymer particles. Furthermore, the effects of polymer particles on reservoir permeability, fluid viscosity and relative permeability are considered, and a two-phase flow model of oil and polymer particles is established. In addition, the model was tested in the heterogeneous stratum model, and three influencing factors, such as particle concentration, injection volume and PPD (short for polymer particle dispersion) injection time, were analyzed. Simulation results show that PPD can effectively improve sweep efficiency and especially improve oil recovery of low permeability layer. Oil recovery increases with the increase of particle concentration, but oil recovery increase rate gradually decreases with that. The greater the injected amount of PPD, the greater oil recovery and the smaller oil recovery increase rate. And there is an optimal timing to inject PPD for specific reservoir.

  13. Development of cost-effective surfactant flooding technology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less

  14. Big muddy: can a chemical flood breathe new life into a tired old giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    A 9-year, $35.5-million tertiary recovery project has been begun in the Big Muddy Field in Wyoming. It will evaluate a chemical flooding process employing an aqueous surfactant slug followed by polymer. (DLC)

  15. Experimental Study on Oil Displacement Mechanism

    NASA Astrophysics Data System (ADS)

    Pi, Yanfu; Shao, Hongzhi; Pi, Yanming; Liu, Li

    2018-02-01

    In this work, the objective is enhancing oil recovery in offshore heavy oil after polymer flooding. The heterogeneous physical model is especially designed for oil fields with heavy oil. The comparative study of the two displacement experiments was carried out, and the experimental data was compared and analysed. The comparison between scheme one and scheme two was analysed from the production curve. The patterns of cores are analysed and compared with each other. It was found that the oil in the high permeability layer and medium permeability layer had been widely removed in the stage of binary combination flooding. There was a high degree of use in the low permeability layer. The recovery ratio is 66.29%. After polymer flooding, the addition of binary combination flooding in the heavy oil reservoir can greatly enhance oil recovery.

  16. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  17. Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation.

    PubMed

    Boo, Chanhee; Lee, Jongho; Elimelech, Menachem

    2016-11-15

    Microporous membranes fabricated from hydrophobic polymers such as polyvinylidene fluoride (PVDF) have been widely used for membrane distillation (MD). However, hydrophobic MD membranes are prone to wetting by low surface tension substances, thereby limiting their use in treating challenging industrial wastewaters, such as shale gas produced water. In this study, we present a facile and scalable approach for the fabrication of omniphobic polyvinylidene fluoride (PVDF) membranes that repel both water and oil. Positive surface charge was imparted to an alkaline-treated PVDF membrane by aminosilane functionalization, which enabled irreversible binding of negatively charged silica nanoparticles (SiNPs) to the membrane through electrostatic attraction. The membrane with grafted SiNPs was then coated with fluoroalkylsilane (perfluorodecyltrichlorosilane) to lower the membrane surface energy. Results from contact angle measurements with mineral oil and surfactant solution demonstrated that overlaying SiNPs with ultralow surface energy significantly enhanced the wetting resistance of the membrane against low surface tension liquids. We also evaluated desalination performance of the modified membrane in direct contact membrane distillation with a synthetic wastewater containing surfactant (sodium dodecyl sulfate) and mineral oil, as well as with shale gas produced water. The omniphobic membrane exhibited a stable MD performance, demonstrating its potential application for desalination of challenging industrial wastewaters containing diverse low surface tension contaminants.

  18. Field-scale simulation of chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, N.

    1989-01-01

    A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less

  19. Polymer-Coated Nanoparticles for Reversible Emulsification and Recovery of Heavy Oil.

    PubMed

    Qi, Luqing; Song, Chen; Wang, Tianxiao; Li, Qilin; Hirasaki, George J; Verduzco, Rafael

    2018-06-05

    Heavy crude oil has poor solubility and a high density, making recovery and transport much more difficult and expensive than for light crude oil. Emulsifiers can be used to produce low viscosity oil-in-water emulsions for recovery and transport, but subsequent demulsification can be challenging. Here, we develop and implement interfacially active, pH-responsive polymer-coated nanoparticles (PNPs) to reversibly stabilize, recover, and break oil/water emulsions through variation of solution pH. Silica particles with poly(2-(dimethylamino)ethyl methacrylate) (DMAEMA) chains covalently grafted to the surface are prepared although a reversible addition fragmentation chain transfer grafting-through technique. The resulting DMAEMA PNPs can stabilize emulsions of high viscosity Canadian heavy oil at PNP concentrations as low as 0.1 wt % and at neutral pH. The performance of the DMAEMA PNPs exceeds that of DMAEMA homopolymer additives, which we attribute to the larger size and irreversible adsorption of DMAEMA PNPs to the oil/water interface. After recovery, the emulsion can be destabilized by the addition of acid to reduce pH, resulting in separation and settling of the heavy oil from the aqueous phase. Recovery of more than 10 wt % of the crude heavy oil-in-place is achieved by flooding with aqueous solution of 0.1 wt % DMAEMA PNPs without any additional surfactant or chemical. This work demonstrates the applicability of PNPs as surface active materials for enhanced oil recovery processes and for heavy oil transport.

  20. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  1. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  2. Interfacial activity in alkaline flooding enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less

  3. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  4. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla

    2018-04-01

    Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.

  5. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    PubMed Central

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature. PMID:29489897

  6. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    PubMed

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.

  7. The oil displacement effect evaluation of Different Displacing systems

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Zhang, Bowen; Li, Gen

    2018-02-01

    During the chemical flooding, the surfactant and the alkali play an emulsifying role. The emulsification can not only improve the displacement efficiency, but also expand the swept volume by the mechanism of emulsifying trapping. We select some chemical flooding systems including different kinds of surfactants, alkali/alkali-free and different emulsion degrees to make the comparative experiment and draw the conclusion that it is an effective way to enhance the recovery by increasing the emulsion stability without having to pursue the ultra-low interfacial tension.

  8. Absorption properties of carbon dioxide enhanced-oil-recovery additives. Final Technical report, 12 May 1987-31 August 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurement of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorption above.

  9. Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL

    NASA Astrophysics Data System (ADS)

    Ghosh, J.; Tick, G. R.

    2011-12-01

    The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.

  10. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system

    NASA Astrophysics Data System (ADS)

    Foster, Tobias; Sottmann, Thomas; Schweins, Ralf; Strey, Reinhard

    2008-02-01

    Amphiphilic block copolymers of the type poly(ethylenepropylene)-co-poly(ethyleneoxide) dramatically enhance the solubilisation efficiency of non-ionic surfactants in microemulsions that contain equal volumes of water in oil. Consequently, the length scale of the microstructure of such bicontinuous microemulsions is dramatically increased up to the order of a few 100nm. In this paper, we show that this so-called efficiency boosting effect can also be applied to water-in-oil microemulsions with droplet microstructure. Such giant water-in-oil microemulsions would provide confined compartments in which chemical reactions of biological macromolecules can be performed on a single molecule level. With this motivation we investigated the phase behavior and the microstructure of oil-rich microemulsions containing D2O, n-decane(d22), C10E4 and the amphiphilic block copolymer PEP5-PEO5 [poly(ethylenepropylene)-co-poly(ethyleneoxide), weight per block of 5000g/mol]. We found that 15wt% of water can be solubilised by 5wt% of surfactant and block copolymer when about 6wt% of surfactant is replaced by the block copolymer. Small-angle-neutron-scattering experiments were performed to determine the length scales and microstructure topologies of the oil-rich microemulsions. To analyze the scattering data, we derived a novel form factor that also takes into account the scattering contribution of the hydrophobic part of the block copolymer molecules that reside in the surfactant shell. The quantitative analysis of the scattering data with this form factor shows that the radius of the largest droplets amounts up to 30nm. The novel form factor also yielded qualitative information on the stretching of the polymer chains in dependence on the polymer surface density and the droplet radius.

  11. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    NASA Astrophysics Data System (ADS)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  12. USING PHASE DIAGRAMS TO PREDICT THE PERFORMANCE OF COSOLVENT FLOODS FOR NAPL REMEDIATION

    EPA Science Inventory

    Cosolvent flooding using water miscible solvents such as alcohols has been proposed as an in-situ NAPL remediation technique. This process is conceptually similar to enhanced oil recovery (EOR) using alcohols and some surfactant formulations. As a result of interest in the EOR ...

  13. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Adsorption properties of carbon dioxide enchanced oil recovery additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, J.T.; Holbrook, S.T.

    1990-01-01

    The selection of the optimum foaming agent (surfactant) for enhancing oil production by carbon dioxide flooding is based on foamability and adsorption. Measurements of adsorption on carbonate cores from New Mexico reservoirs showed large adsorption differences between three commercial, high-foaming surfactants. An ethoxylated alcohol structure was at least adsorbed, 0.64 mg/cc pore volume; an ethoxylated alcohol sulfate was next, 0.74 mg/cc pore volume; the highest adsorbed was a glyceryl sulfonate, 2.30 mg/cc pore volume. Commercial application of the foaming additive involves injecting alternate slugs of surfactant solution and carbon dioxide. Surfactant concentration should be determined to allow for the adsorptionmore » above. 9 refs., 27 figs., 6 tabs.« less

  15. Nanoparticle-enabled delivery of surfactants in porous media.

    PubMed

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.

    PubMed

    Carretti, Emiliano; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2007-05-22

    A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are very attractive for the low amount of organic solvent used to extract the polymers or highly insoluble substances as the asphaltene and the very efficient and mild impact of the cleaning procedure on the fragile painted surfaces.

  17. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  18. Ionic liquids for low-tension oil recovery processes: Phase behavior tests.

    PubMed

    Rodriguez-Escontrela, Iria; Puerto, Maura C; Miller, Clarence A; Soto, Ana

    2017-10-15

    Chemical flooding with surfactants for reducing oil-brine interfacial tensions (IFTs) to mobilize residual oil trapped by capillary forces has a great potential for Enhanced Oil Recovery (EOR). Surface-active ionic liquids (SAILs) constitute a class of surfactants that has recently been proposed for this application. For the first time, SAILs or their blends with an anionic surfactant are studied by determining equilibrium phase behavior for systems of about unit water-oil ratio at various temperatures. The test fluids were model alkane and aromatic oils, NaCl brine, and synthetic hard seawater (SW). Patterns of microemulsions observed are those of classical phase behavior (Winsor I-III-II transition) known to correlate with low IFTs. The two anionic room-temperature SAILs tested were made from common anionic surfactants by substituting imidazolium or phosphonium cations for sodium. These two anionic and two cationic SAILs were found to have little potential for EOR when tested individually. Thus, also tested were blends of an anionic internal olefin sulfonate (IOS) surfactant with one of the anionic SAILs and both cationic SAILs. Most promising for EOR was the anionic/cationic surfactant blend of IOS with [C 12 mim]Br in SW. A low equilibrium IFT of ∼2·10 -3 mN/m was measured between n-octane and an aqueous solution having the optimal blend ratio for this system at 25°C. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Johnson; Mehdi Salehi; Karl Eisert

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium.more » The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.« less

  20. Molecular Dynamics Simulations of the Oil-Detachment from the Hydroxylated Silica Surface: Effects of Surfactants, Electrostatic Interactions, and Water Flows on the Water Molecular Channel Formation.

    PubMed

    Tang, Jian; Qu, Zhou; Luo, Jianhui; He, Lanyan; Wang, Pingmei; Zhang, Ping; Tang, Xianqiong; Pei, Yong; Ding, Bin; Peng, Baoliang; Huang, Yunqing

    2018-02-15

    The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.

  1. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery

    PubMed Central

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  2. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    PubMed

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  3. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.

    PubMed

    De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T

    2018-01-15

    Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  5. Study on distribution of reservoir endogenous microbe and oil displacement mechanism.

    PubMed

    Yue, Ming; Zhu, Weiyao; Song, Zhiyong; Long, Yunqian; Song, Hongqing

    2017-02-01

    In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can't sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.

  6. User`s guide for UTCHEM-5.32m a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM is a three-dimensional chemical flooding simulator. The solution scheme is analogous to IMPES, where pressure is solved for implicitly, but concentrations rather than saturations are then solved for explicitly. Phase saturations and concentrations are then solved in a flash routine. An energy balance equation is solved explicitly for reservoir temperature. The energy balance equation includes heat flow between the reservoir and the over-and under-burden rocks. The major physical phenomena modeled in the simulator are: dispersion; dilution effects; adsorption; interfacial tension; relative permeability; capillary trapping; cation exchange; phase density; compositional phase viscosity; phase behavior (pseudoquaternary); aqueous reactions; partitioning of chemicalmore » species between oil and water; dissolution/precipitation; cation exchange reactions involving more than two cations; in-situ generation of surfactant from acidic crude oil; pH dependent adsorption; polymer properties: shear thinning viscosity; inaccessible pore volume; permeability reduction; adsorption; gel properties: viscosity; permeability reduction; adsorption; tracer properties: partitioning; adsorption; radioactive decay; reaction (ester hydrolization); temperature dependent properties: viscosity; tracer reaction; gel reactions The following options are available with UTCHEM: isothermal or non-isothermal conditions, a constant or variable time-step, constant pressure or constant rate well conditions, horizontal and vertical wells, and a radial or Cartesian geometry. Please refer to the dissertation {open_quotes}Field Scale Simulation of Chemical Flooding{close_quotes} by Naji Saad, August, 1989, for a more detailed discussion of the UTCHEM simulator and its formulation.« less

  7. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul Sharma; Steven Bryant; Chun Huh

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents tomore » better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a factor of 2 to 10 can have a significant impact on the economics of chemical flooding and conformance control applications. Simulation tools and experimental data presented in this report help to design and implement such polymer injection projects.« less

  8. An Investigation of Carbon-Based Nanomaterials for Efficient Energy Production And Delivery

    NASA Astrophysics Data System (ADS)

    Gangoli, Varun Shenoy

    Carbon-based nanomaterials have been demonstrated to have different potential applications in the energy industry. However, there are challenges in the realization of these applications. Chirality of single wall carbon nanotubes (SWCNTs) defines their electronic properties, and obtaining an ensemble of SWCNTs of the same chirality has been a problem studied for over two decades with no clear solution yet. Other carbon-based nanomaterials, such as carbon black aggregates, are hydrophobic in nature and potential applications in the oil and gas industry require their dispersal in an aqueous solvent. Another application in the oil and gas industry is enhanced oil recovery (EOR), and here there is a need for an inexpensive, stable, and efficient surfactant compared to currently used industrial solutions. The challenge of producing SWCNTs of the same chirality is studied using two approaches--separation after synthesis of SWCNTs of mixed chiralities, and chemical control over chirality of as-synthesized SWCNTs. Agarose gel-based affinity chromatography was used as a means towards highly semiconductor- enriched SWCNTs using a family of nonionic surfactants. UV-vis-NIR spectroscopy, Raman spectroscopy and photoluminescence spectroscopy was used to quantify the separation efficiency of the metal- and semiconductor-enriched SWCNTs. This process is an improvement over other chromatography-based techniques at the time in that the nonionic surfactants used are less expensive, enable a higher purity of semiconductor SWCNTs (>95%) and decompose fully by simply heating in air thus leaving behind pristine SWCNTs. The second approach was based on using catalyst dopants to preferentially synthesize SWCNTs of a particular chirality at the expense of SWCNTs of other chiralities. Heterogeneous catalysis combined with the screw dislocation theory of SWCNT growth provided the background for this work, and both selenium and phosphorus were identified as chemical dopants for iron catalysts. Both selenium and phosphorus were demonstrated to have a direct effect on the average number density and length of SWCNTs, and selenium also was shown to have a direct control over the growth rate of SWCNTs. This, combined with some preliminary spectroscopy results, suggest chiral control over the carbon nanotubes. Collaborative work on phase transfer of hydrophobic carbon-based nanomaterials into aqueous solvents for applications including saturated oil residual (SOR) detection and quantification in underground reservoirs helped recognize the potential of hydrophobically modified polymers as surfactants for EOR. Polystyrene sulfonate was chosen as the polymer of study owing to ease of availability, low cost of the precursor material and aromatic sulfonates already being studied for EOR. Controlled desulfonation of PSS was achieved by rapid heating of an aqueous solution of PSS in a microwave reactor under acidic conditions, with the reactant temperature and pH having a strong effect on the degree of desulfonation of the product ranging from 4.9% (as-obtained PSS) to 40%. Dynamic light scattering of the desulfonated PSS (termed PDS) in brine showed good stability of the polymer aggregates at temperatures as high as 150 °C, and tensiometry with aromatic oils such as toluene and aliphatic oils such as Isopar L showed good surface activity with interfacial tension going as low as 10-2 mN/m. Breakthrough experiments with sand packed columns at the lab scale, and core flooding at an independent facility confirmed good propagation of PDS through materials such as Berea sandstone, with minimal plugging and adsorption losses.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyler, Beverly; Grube, John; Huff, Bryan

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) ismore » estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and reservoir simulation were completed as prerequisites for design of efficient ASP flood patterns. Characterizing the complex reservoir geology that identifies the geologic conditions that will optimize oil recoveries for expansion of the ASP pilots in the Bridgeport and Cypress sandstones to other areas of Lawrence Field is the primary objective of this project. It will permit evaluation of efficiency of oil recovery from Bridgeport and Cypress sandstone reservoirs using ASP technology. Additionally evaluation of similar Pennsylvanian and Chesterian reservoirs shows that it is likely that ASP flood technology can be successfully applied to similar reservoirs in the Illinois Basin as well as to other U.S. reservoirs. Chemical flooding was introduced in stages with the first flood initiated in 2010 and a second offset pilot project initiated during 2011. Rex Energy Corporation is reporting a positive response on its ASP Middagh pilot project in the Pennsylvanian Bridgeport B reservoir, Lawrence Field. Oil response in the 15 acre flood has continued to show an increase in oil cut from 1% to 12%. Total pattern production increased from 16 BOPD and stabilized at a range of 65-75 BOPD in the last three months of 2011. Peak production rose to 100 + BOPD. Oil cut in the pilot increased for 1.0% to ~ 12.0% with an individual well showing oil cuts greater than 20%. A second, 58 acre pilot (Perkins-Smith) adjacent to and likely in communication with the Middagh pilot has been initiated. Preliminary brine injection has been implemented and ASP injection was initiated in mid-2012. Response is expected by mid-2013 with peak recovery expected by late 2013. Rex Energy is projecting full scale expansion with the next step of development being a 351 acre project scheduled to begin in mid-2013. Preliminary development has been initiated in this Delta Unit area located in the south half of section 32, T4N, R12W.« less

  10. Application of Complex Fluids in Lignocellulose Processing

    NASA Astrophysics Data System (ADS)

    Carrillo Lugo, Carlos A.

    Complex fluids such as emulsions, microemulsions and foams, have been used for different applications due to the multiplicity of properties they possess. In the present work, such fluids are introduced as effective media for processing lignocellulosic biomass. A demonstration of the generic benefits of complex fluids is presented to enhance biomass impregnation, to facilitate pretreatment for fiber deconstruction and to make compatible cellulose fibrils with hydrophobic polymers during composite manufacture. An improved impregnation of woody biomass was accomplished by application of water-continuous microemulsions. Microemulsions with high water content, > 85%, were formulated and wood samples were impregnated by wicking and capillary flooding at atmospheric pressure and temperature. Formulations were designed to effectively impregnate different wood species during shorter times and to a larger extent compared to the single components of the microemulsions (water, oil or surfactant solutions). The viscosity of the microemulsions and their interactions with cell wall constituents in fibers were critical to define the extent of impregnation and solubilization. The relation between composition and formulation variables and the extent of microemulsion penetration in different woody substrates was studied. Formulation variables such as salinity content of the aqueous phase and type of surfactant were elucidated. Likewise, composition variables such as the water-to-oil ratio and surfactant concentration were investigated. These variables affected the characteristics of the microemulsion and determined their effectiveness in wood treatment. Also, the interactions between the surfactant and the substrate had an important contribution in defining microemulsion penetration in the capillary structure of wood. Microemulsions as an alternative pretreatment for the manufacture of cellulose nanofibrils (CNFs) was also studied. Microemulsions were applied to pretreat lignin-free and lignin-containing fibers obtained from various processes. Incorporation of active agents in the microemulsion facilitated fiber pretreatment before deconstruction via grinding and microfluidization. The energy consumed during the manufacture of cellulose nanofibrils was reduced by up to 55 and 32% in the case of lignin-containing and lignin-free fibers. Moreover, such pre-treatment did not affect negatively the mechanical properties of films prepared with the produced CNF. CNF was also used to enhance the stability of normal and multiple emulsions of the water-in-oil-in-water (W/O/W) type and to prevent their creaming. This was achieved by the marked increase in viscosity of the aqueous phase in the presence CNF. Finally, water-continuous emulsions were used to prepare nanocomposite fibers containing polystyrene and CNF. The morphology of composite fibers obtained after electrospinning of emulsions incorporating polystyrene and CNF was affected by parameters such the concentration of surfactant additives present in the microemulsion and the conductivity of the aqueous phase. Overall, emulsions and microemulsions are presented as a convenient platform to improve the compatibility between polymers of different hydrophilicity, to facilitate their processing and integration in composites.

  11. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOEpatents

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  12. Evaluation of a Particulate Filtration System for an Alkaline Paint Stripper at Letterkenny Army Depot

    DTIC Science & Technology

    1991-08-01

    hydroxide 66.0 17.5 1 Mineral seal oil 1.00 0.26 1.00 Fluorochemical surfactant 0.02 0.005 0.02 Sodiun carbonate 1.62 0.43 5.00 Sulfunated oleic acid ...specified rejuvenating additive is currently not added to the solution at LEAD. d Sodium salt of N-hydroxyethylethylenediamine triacetic acid , dihydrate...methylene chloride) and formic acid or I abrasive blasting. Aluminum parts are not stripped in alkaline solutions because these solutions chemically attack

  13. The influence of pore structure parameters on the digital core recovery degree

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi

    2017-05-01

    Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.

  14. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    PubMed

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  15. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William A. Goddard III; Yongchun Tang; Patrick Shuler

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies tomore » calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.« less

  16. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  18. Surfactant based enhanced oil recovery mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-01-01

    Oil recovery experiments using Bacillus licheniformis JF-2 and a sucrose based nutrient were performed using Berea sandstone cores ranging in permeability from 85 to 510 md (0.084 to 0.503 {mu}m{sup 2}). Bacillus licheniformis JF-2, a surfactant producing microorganism isolated from an oilfield environment, is nonpathogenic and will not reduce sulfate. Oil recovery efficiencies (E{sub r}) for four different crude oils ranging from 19.1 to 38.1{degrees}API (0.9396 to 0.8343 g/cm{sup 3}) varied from 2.8 to 42.6% of the waterflood residual oil. Injection of cell-free'' supernatants resulted in E{sub r} values from 7.0 to 16.4%. Microbially-mediated systems reduced interfacial tension (IFT) aboutmore » 20 mN/m for four different crude oils. Following microbial flood experimentation microorganisms were distributed throughout the core (110 md (0.109 {mu}m{sup 2}) Berea sandstone) with a predominance of cells located near the outlet end. 34 refs., 6 figs., 7 tabs.« less

  19. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.

  20. Quantifying the value of information for uncertainty reduction in chemical EOR modeling

    NASA Astrophysics Data System (ADS)

    Leray, Sarah; Yeates, Christopher; Douarche, Frédéric; Roggero, Frédéric

    2016-04-01

    Reservoir modeling is a powerful tool to assess the technical and economic feasibility of chemical Enhanced Oil Recovery methods such as the joint injection of surfactant and polymer. Laboratory recovery experiments are usually undertaken on cores to understand recovery mechanisms and to estimate properties, that will be further used to build large scale models. To capture the different processes involved in chemical EOR, models are described by a large number of parameters which are basically only partially constrained by recovery experiments and additional characterizations, mainly because of cost and time restrictions or limited representativeness. Among the most uncertain properties, features the surfactant adsorption which cannot be straightforwardly derived from bulk or simplified dynamic measurements (e.g. single phase dynamic adsorption experiments). It is unfortunately critical for the economics of the process. Identifying the most informative observations (e.g. saturation scans, pressure differential, surfactant production, oil recovery) is of primary interest to compensate deficiency of some characterizations and improve models robustness and their predictive capability. Building a consistent set of recovery experiments that will allow to seize recovery mechanisms is critical as well. To address these inverse methodology issues, we create a synthetic numerical model with a well-defined set of parameter values, considered to be our reference case. This choice of model is based on a similar real data set and a broad literature review. It consists of a water-wet sandstone subject to typical surfactant-polymer injections. We first study the effect of a salinity gradient injected after a surfactant-polymer slug, as it is known to significantly improve oil recovery. We show that reaching optimal conditions of salinity gradient is a fragile balance between surfactant desorption and interfacial tension increase. This high dependence on surfactant adsorption properties indicates that two recovery tests with and without salinity gradient are of great interest for model inversion and characterization of surfactant adsorption. Second, we analyze our capacity to find again the reference model using an assisted history matching method to reproduce a set of synthetic core-scale experiments. To do so, we use the reference model over five configurations with respect to chemicals injection to provide baseline recovery data. Then, we consider some uncertainty on model parameters, regarding surfactant adsorption properties amongst others, leading to a total of twelve uncertain parameters. Finally, we extensively explore the parameter space to find several reasonable matches. We show that an additional sixth recovery experiment is necessary to fully constrain the model, and specifically characterize surfactant adsorption. We besides show that production data are not equally informative: pressure differential is for instance the less informative data while a saturation scan at the end of the polymer post-flush can greatly help in the inversion. The inverse methodology carried out here has also been successfully tested with a real set of coreflood experiments.

  1. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar

    NASA Astrophysics Data System (ADS)

    Hauswirth, Scott C.; Miller, Cass T.

    2014-10-01

    The remediation of former manufactured gas plant (FMGP) sites contaminated with tar DNAPLs (dense non-aqueous phase liquids) presents a significant challenge. The tars are viscous mixtures of thousands of individual compounds, including known and suspected carcinogens. This work investigates the use of combinations of mobilization, solubilization, and chemical oxidation approaches to remove and degrade tars and tar components in porous medium systems. Column experiments were conducted using several flushing solutions, including an alkaline-polymer (AP) solution containing NaOH and xanthan gum (XG), a surfactant-polymer (SP) solution containing Triton X-100 surfactant (TX100) and XG, an alkaline-surfactant-polymer (ASP) solution containing NaOH, TX100, and XG, and base-activated sodium persulfate both with and without added TX100. The effectiveness of the flushing solutions was assessed based on both removal of polycyclic aromatic hydrocarbon (PAH) mass and on the reduction of dissolved-phase PAH concentrations. SP flushes of 6.6 to 20.9 PV removed over 99% of residual PAH mass and reduced dissolved-phase concentrations by up to two orders of magnitude. ASP flushing efficiently removed 95-96% of residual PAH mass within about 2 PV, and significantly reduced dissolved-phase concentrations of several low molar mass compounds, including naphthalene, acenaphthene, fluorene, and phenanthrene. AP flushing removed a large portion of the residual tar (77%), but was considerably less effective than SP and ASP in terms of the effect on dissolved PAH concentrations. Persulfate was shown to oxidize tar components, primarily those with low molar mass, however, the overall degradation was relatively low (30-50% in columns with low initial tar saturations), and the impact on dissolved-phase concentrations was minimal.

  2. Soy-based polymeric surfactants prepared in carbon dioxide media and influence of structure on their surface properties

    USDA-ARS?s Scientific Manuscript database

    Soybean oil (SO) and epoxidized soybean oil (ESO) were polymerized in the CO2 media (supercritical and sub-supercritical) by BF3•OEt2 catalyst. The resulting polymers (PSO and PESO) were hydrolyzed into polysoaps (HPSO) and (HPESO) with Na+, K+, or TEA+ (triethanolamine, ammonium salt) counter ions....

  3. Construction of digital core by adaptive porosity method

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Liu, Ting; Zhao, Ling; Sun, Yanyu; Pan, Junliang

    2017-05-01

    The construction of digital core has its unique advantages in the study of water flooding or polymer flooding oil displacement efficiency. The frequency distribution of pore size is measured by mercury injection experiment, the coordination number by CT scanning method, and the wettability data by imbibition displacement was measured, on the basis of considering the ratio of pore throat ratio and wettability, the principle of adaptive porosity is used to construct the digital core. The results show that the water flooding recovery, the degree of polymer flooding and the results of the Physical simulation experiment are in good agreement.

  4. Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.

    PubMed

    Geethu, P M; Yadav, Indresh; Aswal, Vinod K; Satapathy, Dillip K

    2017-11-14

    Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (k B T) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R g ) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T P ) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T P is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also reflects the increased stability of microemulsion droplets against thermal fluctuations.

  5. Surface Wetting-Driven Separation of Surfactant-Stabilized Water-Oil Emulsions.

    PubMed

    Zhang, Qian; Li, Lei; Li, Yanxiang; Cao, Lixia; Yang, Chuanfang

    2018-05-15

    Four fluorocarbon polymers including polytetrafluoroethylene and polyvinylidene fluoride were coated on a stainless steel felt to separate emulsified water droplets from ultralow sulfur diesel (ULSD) fuels. The original fuel treated with clay to remove additives was additized again with four known surfactants including pentaerythrityoleate, (octadecadienoic acid) dipolymer, (octadecadienoic acid) tripolymer, and monoolein individually. The different surfactants adsorbed on the fuel-water interface reduce the interfacial intension with different intensities. The separation efficiency at various surfactant concentrations was used to evaluate the coalescence effect exerted by these coatings. It was found the separation was both surfactant- and coating-dependent. A fluoro-polyurethane coating (FC1) stood out to counteract the adverse effect of all the surfactants. Solid free energy was then measured using acid-base and Kaelble-Uy adhesion theories for all the coatings, but its correlation with coalescence was not found at all. Coating aging in surfactant-additized fuel on the coating's water wettability was also examined to better understand how historical wetting affects separation. A tumbled model for fluorocarbons was identified that well-explained the continuous decline of the water contact angle on the FC1 coating in fuel. Subject to the challenge of the foreign environment, the fluoroalkyl chains of the polymer tilt to expose the carbonyl groups underneath, resulting in favored coalescence separation in the presence of surfactants.

  6. Charging and Screening in Nonpolar Solutions of Nonionizable Surfactants

    NASA Astrophysics Data System (ADS)

    Behrens, Sven

    2010-03-01

    Nonpolar liquids do not easily accommodate electric charges, but surfactant additives are often found to dramatically increase the solution conductivity and promote surface charging of suspended colloid particles. Such surfactant-mediated electrostatic effects have been associated with equilibrium charge fluctuations among reverse surfactant micelles and in some cases with the statistically rare ionization of individual surfactant molecules. Here we present experimental evidence that even surfactants without any ionizable group can mediate charging and charge screening in nonpolar oils, and that they can do so at surfactant concentrations well below the critical micelle concentration (cmc). Precision conductometry, light scattering, and Karl-Fischer titration of sorbitan oleate solutions in hexane, paired with electrophoretic mobility measurements on suspended polymer particles, reveal a distinctly electrostatic action of the surfactant. We interpret our observations in terms of a charge fluctuation model and argue that the observed charging processes are likely facilitated, but not limited, by the presence of ionizable impurities.

  7. Production report: enhanced recovery. [Combustion, steam, soak steam drive, polymer and caustic, micellar/surfactant miscible hydrocarbons and CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    Schemes for producing additional oil using enhanced-recovery (ER) methods are under way throughout the world. The extent and intensity of ER activity is highest in the U.S. with 156 projects, about two-thirds of which are thermal. Venezuela has a strong ER commitment with at least 70 active projects, with a major thrust on steam soak. Significant projects, but limited in number, are under way in Canada, North Africa, Southeast Asia, and elsewhere in Latin America. A breakdown of active U.S. ER projects for 1970, 1973, and 1975 is tabulated for combustion, steam soak, steam drive, polymer and caustic, micellar/surfactant, misciblemore » hydrocarbon, and CO/sub 2/ methods. This Oil and Gas Journal Survey includes seven articles; the first six were prepared by David Noran, Journal Production Editor. The final article on Venezuelan activity was written by Alvaro Franco, Editor and Publisher, Petroleo Internacional. The articles are entitled: U.S. Thermal Recovery Activity Growing Steadily; Operators Accelerate Testing of Micellar/Surfactant Potential; Polymer and Caustic Methods on Rebound; Gas Miscible Projects Move at Slow Pace; Canadian Enhanced-Recovery Activity Moderate, Centers on Thermal Projects; Other Global Enhanced-Recovery Work Sparse; and Thermal Work Humming in Venezuela. Detailed information on each method is tabulated for each article. (MCW)« less

  8. Surfactant-based EOR mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Duvall, M.L.; Robertson, E.P.

    1993-11-01

    Oil recovery experiments using Bacillus licheniformis JF-2 (ATCC 39307) and a sucrose-based nutrient were performed with Berea sandstone cores (permeability 0.084 to 0.503 [mu]m [85 to 510 md]). Oil recovery efficiencies for four different crude oils (0.9396 to 0.8343 g/cm[sup 3] [19.1 to 38.1 [degree] API]) varied from 2.8% to 42.6% of the waterflood residual oil. Microbial systems reduced interfacial tension (IFT) [approximately]20 mN/m [[approximately]20 dyne/cm] for all oils tested. After the microbial flood experimentation, organisms were distributed throughout the core, with most cells near the outlet.

  9. Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions.

    PubMed

    Poulsen, Allan K; Arleth, Lise; Almdal, Kristoffer; Scharff-Poulsen, Anne Marie

    2007-02-01

    Droplet microemulsions are widely used as templates for controlled synthesis of nanometer sized polymer gel beads for use as, e.g., nanobiosensors. Here we examine water-in-oil microemulsions typically used for preparation of sensors. The cores of the microemulsion droplets are constituted by an aqueous component consisting of water, reagent monomer mixture, buffer salts, and the relevant dyes and/or enzymes. The cores are encapsulated by a mixture of the surfactants Brij30 and AOT and the resulting microemulsion droplets are suspended in a continuous hexane phase. The size of the final polymer particles may be of great importance for the applications of the sensors. Our initial working hypothesis was that the size of the droplet cores and therefore the size of the synthesized polymer gel beads could be controlled by the surfactant-to-water ratio of the template microemulsion. In the present work we have tested this hypothesis and investigated how the monomers and the ratio between the two surfactants affect the size of the microemulsion droplets and the microemulsion domain. We find that the monomers in water have a profound effect on the microemulsion domain as well as on the size of the microemulsion droplets. The relation between microemulsion composition and droplet size is in this case more complicated than assumed in standard descriptions of microemulsions [R. Strey, Colloid Polym. Sci. 272 (1994) 1005-1019; I. Danielsson, B. Lindman, Colloids Surf. 3 (1981) 391-392; Y. Chevalier, T. Zemb, Rep. Progr. Phys. 53 (1990) 279-371].

  10. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gasmore » produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.« less

  11. Performance of dithiocarbamate-type flocculant in treating simulated polymer flooding produced water.

    PubMed

    Gao, Baoyu; Jia, Yuyan; Zhang, Yongqiang; Li, Qian; Yue, Qinyan

    2011-01-01

    Produced water from polymer flooding is difficult to treat due to its high polymer concentration, high viscosity, and emulsified characteristics. The dithiocarbamate flocculant, DTC (T403), was prepared by the amine-terminated polyoxypropane-ether compound known as Jeffamine-T403. The product was characterized by IR spectra and elemental analysis. The DTC agent chelating with Fe2+ produced a network polymer matrix, which captured and removed oil droplets efficiently. Oil removal by the flocculent on simulated produced water with 0, 200, 500, 900 mg/L of partially hydrolyzed polyacrylamide (HPAM) was investigated for aspects of effectiveness of DTC (T403) dosage and concentrations of HPAM and Fe2+ ions in the wastewater. Results showed that HPAM had a negative influence on oil removal efficiency when DTC (T403) dosage was lower than 20 mg/L. However, residual oil concentrations in tested samples with different concentrations of HPAM all decreased below 10 mg/L when DTC (T403) dosage reached 30 mg/L. The concentration of Fe2+ in the initial wastewater had a slight effect on oil removal at the range of 2-12 mg/L. Results showed that Fe3+ could not be used in place of Fe2+ as Fe3+ could not react with DTC under flocculated conditions. The effects of mineral salts ions were also investigated.

  12. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.

    PubMed

    Xiao, Siyang; Zeng, Yongchao; Vavra, Eric D; He, Peng; Puerto, Maura; Hirasaki, George J; Biswal, Sibani L

    2018-01-23

    Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

  13. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems.

    PubMed

    Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet

    2015-10-01

    The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.

    PubMed

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Distinct Interfacial Fluorescence in Oil-in-Water Emulsions via Exciton Migration of Conjugated Polymers.

    PubMed

    Koo, Byungjin; Swager, Timothy M

    2017-09-01

    Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dataset on experimental investigation of gum arabic coated alumina nanoparticles for enhanced recovery of nigerian medium crude oil.

    PubMed

    Orodu, Oyinkepreye D; Orodu, Kale B; Afolabi, Richard O; Dafe, Eboh A

    2018-08-01

    The dataset in this article are related to an experimental Enhanced Oil Recovery (EOR) scheme involving the use of dispersions containing Gum Arabic coated Alumina Nanoparticles (GCNPs) for Nigerian medium crude oil. The result contained in the dataset showed a 7.18% (5 wt% GCNPs), 7.81% (5 wt% GCNPs), and 5.61% (3 wt% GCNPs) improvement in the recovery oil beyond the water flooding stage for core samples A, B, and C respectively. Also, the improvement in recovery of the medium crude oil by the GCNPs dispersions when compared to Gum Arabic polymer flooding was evident in the dataset.

  17. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  18. Polymer loaded microemulsions: Changeover from finite size effects to interfacial interactions

    NASA Astrophysics Data System (ADS)

    Kuttich, B.; Ivanova, O.; Grillo, I.; Stühn, B.

    2016-10-01

    Form fluctuations of microemulsion droplets are observed in experiments using dielectric spectroscopy (DS) and neutron spin echo spectroscopy (NSE). Previous work on dioctyl sodium sulfosuccinate based water in oil microemulsions in the droplet phase has shown that adding a water soluble polymer (Polyethylene glycol M = 1500 g mol-1) modifies these fluctuations. While for small droplet sizes (water core radius rc < 37 Å) compared to the size of the polymer both methods consistently showed a reduction in the bending modulus of the surfactant shell as a result of polymer addition, dielectric spectroscopy suggests the opposite behaviour for large droplets. This observation is now confirmed by NSE experiments on large droplets. Structural changes due to polymer addition are qualitatively independent of droplet size. Dynamical properties, however, display a clear variation with the number of polymer chains per droplet, leading to the observed changes in the bending modulus. Furthermore, the contribution of structural and dynamical properties on the changes in bending modulus shifts in weight. With increasing droplet size, we initially find dominating finite size effects and a changeover to a system, where interactions between the confined polymer and the surfactant shell dominate the bending modulus.

  19. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Mandal, Ajay

    2017-10-01

    Application of foam in upstream petroleum industry specifically in enhanced oil recovery (EOR) has gained significant interest in recent years. In view of this, an attempt has been paid to design the suitable foaming agents (foamer) by evaluating the influence of three surfactants, five nanoparticles and several additives. Experimental investigations have been carried out in order to examine the mechanism of foam generation in presence of sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) and polysorbate 80 (Tween 80) as anionic, cationic and nonionic surfactants by using the CO2 as gaseous component. It has been found that ionic surfactants show the higher foam life compared to nonionic surfactant. Out of different nano particles used, namely alumina (Al2O3) zirconium oxide (ZrO2), calcium carbonate (CaCO3), boron nitride (BN) and silica (SiO2), boron nitride shows the maximum improvement of foam stability. The foam stability of surfactant-nanoparticles foam is further increased by addition of different additives viz. polymer, alcohol and alkali. The results show that, the designed foaming solution have nearly 2.5 times higher half-decay time (t1/2) compared to the simple surfactant system. Finally, it has been found that gas injection rate plays an important role in obtaining a uniform and stabilized foam.

  20. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush.

    PubMed

    Wang, Hua; Zhang, Heng; Yuan, Shiling; Liu, Chengbu; Xu, Zhen

    2014-06-01

    The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.

  1. Single well tracer method to evaluate enhanced recovery

    DOEpatents

    Sheely, Jr., Clyde Q.; Baldwin, Jr., David E.

    1978-01-01

    Data useful to evaluate the effectiveness of or to design an enhanced recovery process (the recovery process involving mobilizing and moving hydrocarbons through a hydrocarbon-bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well) are obtained by a process which comprises sequentially: determining hydrocarbon saturation in the formation in a volume in the formation near a well bore penetrating the formation, injecting sufficient of the mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore penetrating the formation, and determining by the single well tracer method a hydrocarbon saturation profile in a volume from which hydrocarbons are moved. The single well tracer method employed is disclosed by U.S. Pat. No. 3,623,842. The process is useful to evaluate surfactant floods, water floods, polymer floods, CO.sub.2 floods, caustic floods, micellar floods, and the like in the reservoir in much less time at greatly reduced costs, compared to conventional multi-well pilot test.

  2. Quality by Design approach for an in situ gelling microemulsion of Lorazepam via intranasal route.

    PubMed

    Shah, Vidhi; Sharma, Mukesh; Pandya, Radhika; Parikh, Rajesh K; Bharatiya, Bhavesh; Shukla, Atindra; Tsai, Hsieh-Chih

    2017-06-01

    The present study illustrates the application of the concept of Quality by Design for development, optimization and evaluation of Lorazepam loaded microemulsion containing ion responsive In situ gelator gellan gum and carbopol 934. A novel approach involving interactions between surfactant and polymer was employed to achieve controlled drug release and reduced mucociliary clearance. Microemulsion formulated using preliminary solubility study and pseudo ternary phase diagrams showed significantly improved solubilization capacity of Lorazepam with 54.31±6.07nm droplets size. The effect of oil to surfactant/cosurfactant ratio and concentration of gelling agent on the drug release and viscosity of microemulsion gel (MEG) was evaluated using a 3 2 full factorial design. The gel of optimized formulation (MEG 1 ) showed a drug release up to 6h of 97.32±1.35% of total drug loaded. The change in shear-dependent viscosity for different formulations on interaction with Simulated Nasal Fluid depicts the crucial role of surfactant-polymer interactions on the gelation properties along with calcium ions binding on the polymer chains. It is proposed that the surfactant-polymer interactions in the form of a stoichiometric hydrogen bonding between oxyethylene and carboxylic groups of the polymers used, provides exceptional ME stability and adhesion properties. Compared with the marketed formulation, optimized MEG showed improved pharmacodynamic activity. Ex vivo diffusion studies revealed significantly higher release for MEG compared to microemulsion and drug solution. MEG showed higher flux and permeation across goat nasal mucosa. According to the study, it could be concluded that formulation would successfully provide the rapid onset of action, and decrease the mucociliary clearance due to formation of in situ gelling mucoadhesive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.

    PubMed

    Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine

    2016-12-01

    Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

  5. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    PubMed

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  6. EPR spin probe and spin label studies of some low molecular and polymer micelles

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  7. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ andmore » in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.« less

  8. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  9. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  10. Thermoviscosifying Smart Polymers for Oil and Gas Production: State of the Art.

    PubMed

    Feng, Yujun; Su, Xin

    2018-06-11

    Water-soluble polymers have been extensively used in all sections of oil and gas upstream industry, but the inherent thermothinning behaviours limited their applications in harsh environment. To address this issue, thermoviscosifying (or "thermothickening") polymers (TVPs) whose aqueous solution viscosity automatically increase upon increasing temperature was introduced early 1990s. This review started with recalling the background for developing such smart materials, followed by demonstrating the mechanism of thermothickening. Next, three major TVPs including N-alkyl substituted acrylamide copolymers, grafted polyethers and cellulose derivatives were summarized with respect to their structure-property relationship, then their practical trials or potential uses in oil and gas drilling fluids, cementing slurries, hydraulic fracturing, steam flooding and enhanced oil recovery were discussed. Finally, the advantages and disadvantages of the current TVPs were commented, and the future prospects were outlooked to close this review. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM

    2003-05-27

    The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.

  12. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection.

    PubMed

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada

    2014-11-04

    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding.

    PubMed

    Urbano, Laura; Clifton, Luke; Ku, Hoi Ki; Kendall-Troughton, Hannah; Vandera, Kalliopi-Kelli A; Matarese, Bruno F E; Abelha, Thais; Li, Peixun; Desai, Tejal; Dreiss, Cécile A; Barker, Robert D; Green, Mark A; Dailey, Lea Ann; Harvey, Richard D

    2018-05-17

    π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.

  14. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    PubMed

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Visualization of surfactant enhanced NAPL mobilization and solubilization in a two-dimensional micromodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHONG,LIRONG; MAYER,ALEX; GLASS JR.,ROBERT J.

    Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations aremore » explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.« less

  16. Waterflooding employing surfactants derived from metallic soaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.A.

    1975-12-16

    A waterflooding process is described in which a petroleum oil containing divalent metal soaps is contacted with an inorganic acid in order to convert the soaps to the corresponding organic acids. The organic acids thus obtained may be injected into the reservoir followed by an aqueous alkaline solution. Alternatively, the organic acids may be contacted with an aqueous solution in order to convert the acids to the corresponding surface-active monovalent salts, which may be then injected into the reservoir. (4 claims)

  17. Preparation of polyamide nanocapsules of Aloe vera L. delivery with in vivo studies.

    PubMed

    Esmaeili, Akbar; Ebrahimzadeh, Maryam

    2015-04-01

    Aloe vera is the oldest medicinal plant ever known and the most applied medicinal plant worldwide. The purpose of this study was to prepare polyamide nanocapsules containing A. vera L. by an emulsion diffusion technique with in vivo studies. Diethyletriamine (DETA) was used as the encapsulating polymer with acetone ethyl acetate and dimethyl sulfoxide (DMSO) as the organic solvents and Tween and gelatin in water as the stabilizers. Sebacoyl chloride (SC) monomer, A. vera L. extract, and olive oil were mixed with the acetone and then water containing DETA monomer was added to the solution using a magnetic stirrer. Finally, the acetone was removed under vacuum, and nanocapsules were obtained using a freeze drier. This study showed that the size of the nanocapsule depends on a variety of factors such as the ratio of polymer to oil, the concentration of polymers, and the plant extract. The first sample is without surfactant and the size of nanocapsules in the sample is 115 nm. By adding surfactant, nanocapsules size was reduced to 96 nm. Nanocapsules containing A. vera were administered to rats and the effects were compared with a normal control group. The results showed that in the A. vera group, the effect is higher. The nanocapsules were identified by scanning electron microscopy (SEM), zeta potential sizer (ZPS), and Fourier-transform infrared spectroscopy (FT-IR).

  18. Rheological and tribological study of complex soft gels containing polymer, phospholipids, oil, and water

    NASA Astrophysics Data System (ADS)

    Farias, Barbara; Hsiao, Lilian; Khan, Saad

    Oil-in-water emulsions with polymers are widely used for personal care products. Since the accumulation of traditional surfactants on the skin can promote irritation, an alternative is the use of hydrogenated phosphatidylcholine (HPC), a phospholipid that can form a lamellar structure similar to the skin barrier. This research aims to investigate the effect of composition on the rheological and tribological characteristics in complex systems containing HPC. For tribology experiments we used a soft model contacts made of polydimethylsiloxane (PDMS), while for bulk rheology studies we used dynamic and steady shear experiments. We examine how the addition of polymer, HPC and oil affects friction coefficients, lubrication regimes, viscoelasticity, yield stress, and gel formation. The bulk rheology shows that the studied systems are shear thinning and have gel-like behavior. The effect of each component was investigated by going from simple to more complex systems. The Stribeck curves obtained are related to the bulk rheology results to obtain physical insights into these complex systems. The results suggest that the polymer and phospholipids are being adsorbed onto the PDMS surface, reducing the friction coefficient at lower entrainment speeds.

  19. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  20. Fullerene surfactants and their use in polymer solar cells

    DOEpatents

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  1. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  2. The Infant Skin Barrier: Can We Preserve, Protect, and Enhance the Barrier?

    PubMed Central

    Telofski, Lorena S.; Morello, A. Peter; Mack Correa, M. Catherine; Stamatas, Georgios N.

    2012-01-01

    Infant skin is different from adult in structure, function, and composition. Despite these differences, the skin barrier is competent at birth in healthy, full-term neonates. The primary focus of this paper is on the developing skin barrier in healthy, full-term neonates and infants. Additionally, a brief discussion of the properties of the skin barrier in premature neonates and infants with abnormal skin conditions (i.e., atopic dermatitis and eczema) is included. As infant skin continues to mature through the first years of life, it is important that skin care products (e.g., cleansers and emollients) are formulated appropriately. Ideally, products that are used on infants should not interfere with skin surface pH or perturb the skin barrier. For cleansers, this can be achieved by choosing the right type of surfactant, by blending surfactants, or by blending hydrophobically-modified polymers (HMPs) with surfactants to increase product mildness. Similarly, choosing the right type of oil for emollients is important. Unlike some vegetable oils, mineral oil is more stable and is not subject to oxidation and hydrolysis. Although emollients can improve the skin barrier, more studies are needed to determine the potential long-term benefits of using emollients on healthy, full-term neonates and infants. PMID:22988452

  3. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China.

    PubMed

    Chen, Hua-xing; Tang, Hong-ming; Duan, Ming; Liu, Yi-gang; Liu, Min; Zhao, Feng

    2015-01-01

    In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.

  4. Efficient demulsification of oil-in-water emulsions using a zeolitic imidazolate framework: Adsorptive removal of oil droplets from water.

    PubMed

    Lin, Kun-Yi Andrew; Chen, Yu-Chien; Phattarapattamawong, Songkeart

    2016-09-15

    To demulsify oil-in-water (O/W) emulsions, a zinc-based zeolitic imidazolate framework (ZIF-8) was employed for the first time to remove oil droplets from water. ZIF-8 exhibits a high surface area and positive surface charges, making it a suitable adsorbent to adsorb negatively-charged oil droplets. Adsorption behaviors of oil droplets to ZIF-8 were studied by analyzing the adsorption kinetics and isotherm with theoretical models. The activation energy of adsorption of oil droplets to ZIF-8 was determined as 24.1kJmol(-1). The Langmuir-Freundlich (L-F) model was found to be most applicable to interpret the isotherm data and the predicated maximum adsorption capacity of ZIF-8 can reach 6633mgg(-1), revealing a promising capability of ZIF-8 for demulsification. Factors influencing the adsorption of oil droplets to ZIF-8 were investigated including temperature, pH, salt and surfactants. The adsorption capacity of ZIF-8 for oil was improved at elevated temperatures, whereas alkaline condition was unfavorable for the adsorption of oil droplets due to the electrostatic repulsion at high pH. The adsorption capacity of ZIF-8 remained similar in the presence of NaCl but it was reduced in the presence of surfactants. ZIF-8 was regenerated by a simple ethanol-washing method; the regenerated ZIF-8 exhibited more than 85% of regeneration efficiency over six cycles. Its crystalline structure also remained intact after the regeneration. These characteristics indicate that ZIF-8 can be a promising and effective adsorbent to remove oil droplets for demulsification of O/W emulsions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The synthesis and characterization of environmentally-responsive water-swellable and water-soluble polymers for wastewater remediation

    NASA Astrophysics Data System (ADS)

    Armentrout, Rodney Scott

    The primary research goal is the development of new polymeric materials that demonstrate the environmentally-responsive sequestration of common water foulants, including surfactants and oils. Water-swellable and water-soluble polymers have been synthesized, structurally characterized, and their physical properties have been determined. In addition, the ability of the materials to sequester model water foulants has been evaluated. Anionic crosslinked polymer networks of 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylamide, and methylene bisacrylamide have been synthesized and characterized by determining the equilibrium water contents as a function of ionic content of the polymer network. The molar ratio of bound surfactant to ionic group was determined to be less than one for all hydrogels studied, indicating an ion-exchange binding mechanism with minimal hydrophobic interactions between bound and unbound surfactant molecules is responsible for surfactant binding. Cationic crosslinked cyclopolymer networks of N,N-diallyl- N-methyl amine (DAMA) and N,N,N,N-tetraallyl ammonium chloride (TAAC) have been synthesized and characterized by determining the equilibrium water content as a function of pH. A maximum in the equilibrium water content is observed for pH-6 when the polymer is fully ionized. The solubilization of a model water foulant, p-cresol, by the polymeric surfactant, Pluronic F127, has been studied via equilibrium dialysis, dynamic light scattering and ultrafiltration experiments. It has been shown that at 25°C p-cresol is readily solubilized by F127 since the polymeric surfactant exists in a multimer conformation. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Copolymers of the zwitterionic monomer, 3-(N,N-diallyl- N-methyl ammonio) propane sulfonate (DAMAPS) and N,N-diallyl- N,N-dimethylammonium chloride (DADMAC) (the DADS series) or the pH-responsive hydrophobic monomer, N,N-diallyl-N-methyl amine (DAMA) (the DAMS series) have been prepared in a 0.5 M NaCl aqueous solution using 2-hydroxy-1-[4-(hydroxy-ethoxy)phenyl]-2-methyl-1-propanone (Irgacure 2959) as the free-radical photoinitiator. 13C NMR data indicate that the resulting polymers maintain the five-membered ring structure in the cis conformation common to diallylammonium salts. Equilibrium dialysis experiments demonstrate that pH-responsive hydrophobic microdomain formation may be utilized to control the solubilization of the organic solute, p-cresol. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Macromolecular aggregates of the poly( N,N-diallyl-N-methyl amine)/p-cresol complexes lead to fouling of the ultrafiltration membrane. However, incorporation of the sulfobetaine moiety hinders the formation of the macroscopic structures and higher permeate flux rates are achieved. (Abstract shortened by UMI.)

  6. Volatile chemical reagent detector

    DOEpatents

    Chen, Liaohai; McBranch, Duncan; Wang, Rong; Whitten, David

    2004-08-24

    A device for detecting volatile chemical reagents based on fluorescence quenching analysis that is capable of detecting neutral electron acceptor molecules. The device includes a fluorescent material, a contact region, a light source, and an optical detector. The fluorescent material includes at least one polymer-surfactant complex. The polymer-surfactant complex is formed by combining a fluorescent ionic conjugated polymer with an oppositely charged surfactant. The polymer-surfactant complex may be formed in a polar solvent and included in the fluorescent material as a solution. Alternatively, the complex may be included in the fluorescent material as a thin film. The use of a polymer-surfactant complex in the fluorescent material allows the device to detect both neutral and ionic acceptor molecules. The use of a polymer-surfactant complex film allows the device and the fluorescent material to be reusable after exposing the fluorescent material to a vacuum for limited time.

  7. Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.

    2005-08-01

    The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.

  8. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    NASA Astrophysics Data System (ADS)

    Hou, Bao-feng; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  9. Development of cost-effective surfactant flooding technology, Quarterly report, October 1995--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1995-12-31

    The objective of this research is to develop cost-effective surfactant flooding technology by using simulation studies to evaluate and optimize alternative design strategies taking into account reservoir characteristics process chemistry, and process design options such as horizontal wells. Task 1 is the development of an improved numerical method for our simulator that will enable us to solve a wider class of these difficult simulation problems accurately and affordably. Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its risk and cost. In this quarter, we have continued working on Task 2 to optimizemore » surfactant flooding design and have included economic analysis to the optimization process. An economic model was developed using a spreadsheet and the discounted cash flow (DCF) method of economic analysis. The model was designed specifically for a domestic onshore surfactant flood and has been used to economically evaluate previous work that used a technical approach to optimization. The DCF model outputs common economic decision making criteria, such as net present value (NPV), internal rate of return (IRR), and payback period.« less

  10. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    PubMed

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  11. Stimuli-Responsive, Shape-Transforming Nanostructured Particles.

    PubMed

    Lee, Junhyuk; Ku, Kang Hee; Kim, Mingoo; Shin, Jae Man; Han, Junghun; Park, Chan Ho; Yi, Gi-Ra; Jang, Se Gyu; Kim, Bumjoon J

    2017-08-01

    Development of particles that change shape in response to external stimuli has been a long-thought goal for producing bioinspired, smart materials. Herein, the temperature-driven transformation of the shape and morphology of polymer particles composed of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers (BCPs) and temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) surfactants is reported. PNIPAM acts as a temperature-responsive surfactant with two important roles. First, PNIPAM stabilizes oil-in-water droplets as a P4VP-selective surfactant, creating a nearly neutral interface between the PS and P4VP domains together with cetyltrimethylammonium bromide, a PS-selective surfactant, to form anisotropic PS-b-P4VP particles (i.e., convex lenses and ellipsoids). More importantly, the temperature-directed positioning of PNIPAM depending on its solubility determines the overall particle shape. Ellipsoidal particles are produced above the critical temperature, whereas convex lens-shaped particles are obtained below the critical temperature. Interestingly, given that the temperature at which particle shape change occurs depends solely on the lower critical solution temperature (LCST) of the polymer surfactants, facile tuning of the transition temperature is realized by employing other PNIPAM derivatives with different LCSTs. Furthermore, reversible transformations between different shapes of PS-b-P4VP particles are successfully demonstrated using a solvent-adsorption annealing with chloroform, suggesting great promise of these particles for sensing, smart coating, and drug delivery applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microbial enhanced oil recovery and wettability research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is amore » significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.« less

  13. Shale Oil Value Enhancement Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is nowmore » ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.« less

  14. Controlled microfluidic emulsification of oil in a clay nanofluid: Role of salt for Pickering stabilization

    NASA Astrophysics Data System (ADS)

    Gholamipour-Shirazi, A.; Carvalho, M. S.; Fossum, J. O.

    2016-07-01

    Research on emulsions is driven by their widespread use in different industries, such as food, cosmetic, pharmaceutical and oil recovery. Emulsions are stabilized by suitable surfactants, polymers, solid particles or a combination of them. Microfluidic emulsification is the process of droplet formation out of two or more liquids under strictly controlled conditions, without pre-emulsification step. Microfluidic technology offers a powerful tool for investigating the properties of emulsions themselves. In this work stable oil in water emulsions were formed with hydrophilic Laponite RD® nanoparticles adsorbed at the interface of the oil phase and aqueous clay nanofluid in a T junction microfluidic chip. Emulsion stability up to at least 40 days could be observed.

  15. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    PubMed

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require surface modification during fabrication to control surface chemistry and protein adsorption.

  16. Current applications of foams formed from mixed surfactant-polymer solutions.

    PubMed

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor

    2015-08-01

    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Poly(ethylene oxide) surfactant polymers.

    PubMed

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  18. Development of epoxide compound from kapok oil for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Anam, M. K.; Supranto; Murachman, B.; Purwono, S.

    2017-06-01

    Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as {\\boldsymbol{k}}{\\boldsymbol{=}}{{124}}{\\boldsymbol{,}}{{82}} {{\\exp }} {\\boldsymbol{\\bigg(}}\\frac{{\\boldsymbol-}{{24}}{\\boldsymbol{,}}{{14}}}{{\\boldsymbol{R}}{\\boldsymbol{T}}}{\\boldsymbol{\\bigg)}}. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2 m N/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3 m N/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

  19. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  20. Microcapsules and Methods for Making

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    1998-01-01

    Methods of forming multi-lamellar microcapsules having alternating layers of hydrophilic and hydrophobic immiscible liquid phases have been developed using different polymer/solvent systems. The methods use liquid-liquid diffusion and simultaneous lateral phase separation, controlled by proper timed-sequence exposures of immiscible phases and low shear mixing, to form narrow size distributions of spherical, multilamellar microcapsules. The use of special formulations of solubilized drugs, surfactants, and polymeric co-surfactants in aqueous vehicles which are dispersed in hydrocarbon solvents containing small quantities of oil, low molecular weight co-surfactants and glycerides that are aqueous insoluble enables the formation of unique microcapsules which can carry large amounts of pharmaceuticals in both aqueous and non-aqueous solvent compartments. The liquid microcapsules are quickly formed in a single step and can include a polymeric outer 'skin' which protects the microcapsules during physical manipulation or exposure to high shear forces. Water-in-oil and oil-in-water microcapsules have been formed both in 1 x g and in microgravity, which contain several types of drugs co-encapsulated within different fluid compartments inside the same microcapsule. Large, spherical multi-lamellar microcapsules have been formed including a cytotoxic drug co-encapsulated with a radiocontrast medium which has advantages for chemoembolization of vascular tumors. In certain cases, crystals of the drug form inside the microcapsules providing zero-order and first order, sustained drug release kinetics.

  1. Annex 2: Reservoir characterization and enhanced oil recovery research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Schecter, R.S.

    1989-01-01

    The objective of this project is to increase our understanding of EOR processes as they relate to realistic settings for increased efficiencies and decreased risks in known reservoirs in the State of Texas. The primary activities of the Project will include (1) systematic reservoir characterizations, (2) modeling and scaleup of chemical flooding techniques, (3) gaining a broader understanding and providing fundamental information on CO{sub 2}-surfactant phase behavior. This quarter's tasks include: (a) Use of geochemical flow to determine the geometric patterns in porosity and permeability that result from diagenetic processes; and, to define the patterns of permeability in carbonate formationsmore » and the occurrence of calcite cement inclusions caused by both bacterial action and thermochemical processes; (b) Fine-mesh simulations of first-contact miscible displacements have been performed using UTCHEM. The results match the production history of a laboratory-scale core flood. An empirical viscous fingering model has also been implemented and tested. The model can successfully match the recovery curve of a first-contact miscible linear unstable displacement. Better results can be obtained by adjusting the viscosity mixing parameter; and (c) A study of CO{sub 2}-surfactant-water interactions as a means of developing a thermodynamic model to predict conditions of precipitation and the chemical potential of surfactants in aqueous solutions. 16 refs., 5 figs., 2 tabs.« less

  2. Properties of a Soybean Oil-based Surfactant and Its Application in Microbubble Preparation

    USDA-ARS?s Scientific Manuscript database

    Since microbubbles are thermodynamically unstable, surfactants are usually added to improve their stability. Demand for the use of vegetable oil-based surfactants has been increasing due to safety and environmental concerns. This work investigates a soybean oil-based surfactant and its application...

  3. Suppression of the Saffman-Taylor instability through injection of a finite slug of polymer

    NASA Astrophysics Data System (ADS)

    Beeson-Jones, Timothy H.; Woods, Andrew W.

    2014-11-01

    During secondary oil recovery, relatively mobile water can channel through oil owing to the Saffman-Taylor instability. Injection of a finite slug of polymer solution from a central well prior to the water flood suppresses the growth of the instability by reducing the adverse mobility ratio at the leading interface. A linear stability analysis of an axisymmetric base state identifies how perturbations on the leading and trailing interfaces become coupled. It also reveals the dependence of the long-time algebraic growth of each mode on the mobility ratios across the two interfaces. The viscosity of the polymer solution which minimizes the growth rate of the instability is identified, and the impact of different slug sizes on this growth is described. Funded by EPSRC & BP.

  4. Responsive copolymers for enhanced petroleum recovery. Quarterly progress report, March 21, 1995--June 22, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    Advanced polymer systems that possess microstructural features that are responsive to temperature, electrolyte concentration, and shear conditions are being synthesized which will be superior to polymers presently used for mobility control in enhanced oil recovery. Improved polymer performance is accomplished by controlling hydrophobic or ampholytic interactions between individual polymer chains in solution. Of special interest to our group have been (1) the elucidation of the mechanism of associative thickening and (2) the tailoring of thickeners with reversible associations responsive to changes in pH, ionic strength, temperature, or shear stress. A polymerization technique, termed ``micellar`` polymerization utilizes a surfactant to solubilizemore » a relatively low mole percent of a hydrophobic monomer in water for copolymerization with a hydrophilic monomer. In this report, we examine the role of surfactant-to-monomer ratio (SMR) in the reaction medium on microstructure utilizing the N-[(1- pyrenylsulfonamido)ethyl] acrylamide (APS) monomer as a fluorescent label. Comparison is made with previously reported terpolymers of identical AM/AA compositions with N-(4-decyl)phenylacrylamide as the hydrophobic monomer. Unlike the uncharged copolymer of AM/APS, however, the AM/AA/APS terpolymers of this study do not show intermolecular associative thickening, apparently due to insufficient liaisons of hydrophobic microdomains even at high concentrations of terpolymer.« less

  5. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  6. Lamellar Biogels: Fluid-Membrane Based Hydrogels Containing Polymer-Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Davidson, P.; Slack, N. L.; Idziak, S. H. J.; Schmidt, H. W.; Safinya, C. R.

    1996-03-01

    A new class of lamellar biogels containing low molecular weight (MW 5181, 2053 and 576 g/mole) polyethylene glycol-surfactants is described (H. Warriner et. al., Science, (in press)). The gels were formed in 7 different systems using two types of polymer-surfactants: (i) polymer-lipids based on the lipid DMPE covalently attached to the different MW of PEG (ii) polymer-surfactants of the two largest PEG MW covalently attached to double-tailed phenyl surfactants with 14 or 18 carbon tails. Unlike isotropic hydrogels of polymer networks, these membrane-based liquid crystalline biogels, labeled L_α,g, form through the addition of water to a liquid-like L_α phase. The signature of the L_α,g regime in these systems is a dramatic increase in layer-dislocation defects, stabilized by aggregation of the PEG-surfactants to the high curvature defect regions. These regions connect and "entangle" the membranes, causing gelation. A simple model describing these phenomena is that the inclusion of the polymer-surfactants in lamellar membranes softens the free energy of high curvature line-defects, leading to proliferation and gelation.

  7. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  8. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  9. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    PubMed Central

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  10. Improvement of Sweep Efficiency in Gasflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore Mohanty

    2008-12-31

    Miscible and near-miscible gasflooding has proven to be one of the few cost effective enhance oil recovery techniques in the past twenty years. As the scope of gas flooding is being expanded to medium viscosity oils in shallow sands in Alaska and shallower reservoirs in the lower 48, there are questions about sweep efficiency in near-miscible regions. The goal of this research is to evaluate sweep efficiency of various gas flooding processes in a laboratory model and develop numerical tools to estimate their effectiveness in the field-scale. Quarter 5-spot experiments were conducted at reservoir pressure to evaluate the sweep efficiencymore » of gas, WAG and foam floods. The quarter 5-spot model was used to model vapor extraction (VAPEX) experiments at the lab scale. A streamline-based compositional simulator and a commercial simulator (GEM) were used to model laboratory scale miscible floods and field-scale pattern floods. An equimolar mixture of NGL and lean gas is multicontact miscible with oil A at 1500 psi; ethane is a multicontact miscible solvent for oil B at pressures higher than 607 psi. WAG improves the microscopic displacement efficiency over continuous gas injection followed by waterflood in corefloods. WAG improves the oil recovery in the quarter 5-spot over the continuous gas injection followed by waterflood. As the WAG ratio increases from 1:2 to 2:1, the sweep efficiency in the 5-spot increases, from 39.6% to 65.9%. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly higher amount of oil can be recovered with just 0.1 PV solvent injection over just waterflood. Use of a horizontal production well lowers the oil recovery over the vertical production well during WAG injection phase in this homogeneous 5-spot model. Estimated sweep efficiency decreases from 61.5% to 50.5%. In foam floods, as surfactant to gas slug size ratio increases from 1:10 to 1:1, oil recovery increases. In continuous gasflood VAPEX processes, as the distance between the injection well and production well decreases, the oil recovery and rate decreases in continuous gasflood VAPEX processes. Gravity override is observed for gas injection simulations in vertical (X-Z) cross-sections and 3-D quarter five spot patterns. Breakthrough recovery efficiency increases with the viscous-to-gravity ratio in the range of 1-100. The speed up for the streamline calculations alone is almost linear with the number of processors. The overall speed up factor is sub-linear because of the overhead time spent on the finite-difference calculation, inter-processor communication, and non-uniform processor load. Field-scale pattern simulations showed that recovery from gas and WAG floods depends on the vertical position of high permeability regions and k{sub v}/k{sub h} ratio. As the location of high permeability region moves down and k{sub v}/k{sub h} ratio decreases, oil recovery increases. There is less gravity override. The recovery from the field model is lower than that from the lab 5-spot model, but the effect of WAG ratio is similar.« less

  11. Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains.

    PubMed

    Tian, Wei; Yao, Jun; Liu, Ruiping; Zhu, Mijia; Wang, Fei; Wu, Xiaoying; Liu, Haijun

    2016-07-01

    Hydrocarbon pollution is a worldwide problem. In this study, five surfactants containing SDS, LAS, Brij 30, Tween 80 and biosurfactant were used to evaluate their effect on crude oil biodegradation. Hydrocarbon degrading bacteria were isolated from oil production water. The biosurfactant used was a kind of cyclic lipopeptide produced by Bacillus subtilis strain WU-3. Solubilization test showed all the surfactants could apparently increase the water solubility of crude oil. The microbial adhesion to the hydrocarbon (MATH) test showed surfactants could change cell surface hydrophobicity (CSH) of microbiota, depending on their species and concentrations. Microcalorimetric experiments revealed these surfactants exhibited toxicity to microorganisms at high concentrations (above 1 CMC), except for SDS which showed low antibacterial activity. Surfactant supplementation (about 0.1 and 0.2 CMC) could improve degradation rate of crude oil slightly, while high surfactant concentration (above 1 CMC) may decrease the degradation rate from 50.5% to 28.9%. Those findings of this work could provide guidance for the application of surfactants in bioremediation of oil pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Performance of mesoporous organosilicates on the adsorption of heavy oil from produced water

    NASA Astrophysics Data System (ADS)

    Twaiq, Farouq A.; Nasser, Mustafa S.; Al-Ryiami, Samyia; Al-Ryiami, Hanan

    2012-09-01

    The performance of mesoporous organosilicate materials in removal of soluble oil from wastewater is investigated. The aim of the study is to evaluate the oil adsorption over organosilicate prepared using pre-synthesis methods and compare the results with adsorption over pure siliceous mesoporous material. The materials were prepared using sol-gel technique using Dodecylamine (D) and Cetyltrimethylammonium bromide (CTAB) as surfactant templates, and Tetraethylorthosilicate (TEOS) as silica precursor. The as-synthesized mesoporous materials were treated using three different methods to remove the surfactant from the mesoporous silica including calcinations method for total removal of the surfactant, the water vapor stripping and ethanol vapor stripping were used for partial removal of the surfactants. The synthesized materials were characterized using X-ray diffraction (XRD) and nitrogen adsorption. The materials were tested for heavy oils removal from oil-water solution. The results showed that neutral surfactant organosilicates have less adsorption compare to cationic surfactant organosilicates. The results also showed that among organosilicates prepared using neutral surfactant, treated organosilicate by ethanol vapor have the highest activity in removing the oil from the oil-water solution.

  13. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.

    PubMed

    Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-20

    Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.

  14. Interfaces Charged by a Nonionic Surfactant.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2018-05-24

    Highly hydrophobic, water-insoluble nonionic surfactants are often considered irrelevant to the ionization of interfaces at which they adsorb, despite observations that suggest otherwise. In the present study, we provide unambiguous evidence for the participation of a water-insoluble surfactant in interfacial ionization by conducting electrophoresis experiments for surfactant-stabilized nonpolar oil droplets in aqueous continuous phase. It was found that the surfactant with amine headgroup positively charged the surface of oil suspended in aqueous continuous phase (oil/water interface), which is consistent with its basic nature. In nonpolar oil continuous phase, the same surfactant positively charged the surface of solid silica (solid/oil interface) which is often considered acidic. The latter observation is exactly opposite to what the traditional acid-base mechanism of surface charging would predict, most clearly suggesting the possibility for another charging mechanism.

  15. Application of Sodium Ligno Sulphonate as Surfactant in Enhanced Oil Recovery and Its Feasibility Test for TPN 008 Oil

    NASA Astrophysics Data System (ADS)

    Prakoso, N. I.; Rochmadi; Purwono, S.

    2018-04-01

    One of enhanced oil recovery (EOR) methods is using surfactants to reduce the interfacial tension between the injected fluid and the oil in old reservoir. The most important principle in enhanced oil recovery process is the dynamic interaction of surfactants with crude oil. Sodium ligno sulphonate (SLS) is a commercial surfactant and already synthesized from palm solid waste by another researcher. This work aimed to apply SLS as a surfactant for EOR especially in TPN 008 oil from Pertamina Indonesia. In its application as an EOR’s surfactant, SLS shall be passed feasibility test like IFT, thermal stability, compatibility, filtration, molecular weight, density, viscosity and pH tests. The feasibility test is very important for a preliminary test prior to another advanced test. The results demonstrated that 1% SLS solution in formation water (TPN 008) had 0.254 mN/M IFT value and was also great in thermal stability, compatibility, filtration, molecular weight, viscosity and pH test.

  16. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.

    PubMed

    Matsaridou, Irini; Barmpalexis, Panagiotis; Salis, Andrea; Nikolakakis, Ioannis

    2012-12-01

    Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic-lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C(8)-C(10)) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.

  17. Spatial and Temporal Control of Surfactant Systems

    PubMed Central

    Liu, Xiaoyang; Abbott, Nicholas L.

    2011-01-01

    This paper reviews some recent progress on approaches leading to spatial and temporal control of surfactant systems. The approaches revolve around the use of redox-active and light-sensitive surfactants. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous surfactant systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of surfactants with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive surfactants containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive surfactants that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of surfactant systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of surfactants with biomolecules to modulate their transport into cells. PMID:19665723

  18. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  19. Surfactant-Enhanced Aquifer Remediation (SEAR) Implementation Manual

    DTIC Science & Technology

    2003-04-01

    UTCHEM University of Texas Chemical Flooding Simulator VOC volatile organic compound wt% weight percent iv Section 1.0: INTRODUCTION 1.1...proper sample spacing that captures the peak breakthrough curve and tailing concentrations caused by post- surfactant water flooding. UTCHEM design...90 100 110 120 130 140 Time Since Surf. Injection, days D iss ol ve d PC E C on c. , m g/ l Field data UTCHEM (Run ISA26m) End of surfactant

  20. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    PubMed

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.

    PubMed

    Ueno, Naoko; Banno, Taisuke; Asami, Arisa; Kazayama, Yuki; Morimoto, Yuya; Osaki, Toshihisa; Takeuchi, Shoji; Kitahata, Hiroyuki; Toyota, Taro

    2017-06-06

    We evaluated the speed profile of self-propelled underwater oil droplets comprising a hydrophobic aldehyde derivative in terms of their diameter and the surrounding surfactant concentration using a microfluidic device. We found that the speed of the oil droplets is dependent on not only the surfactant concentration but also the droplet size in a certain range of the surfactant concentration. This tendency is interpreted in terms of combination of the oil and surfactant affording spontaneous emulsification in addition to the Marangoni effect.

  2. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  3. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters

    NASA Astrophysics Data System (ADS)

    Vu, Tuan V.; Papavassiliou, Dimitrios V.

    2018-05-01

    In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.

  4. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  5. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; S.A. Bailey

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated frommore » produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.« less

  6. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design.

    PubMed

    Mnif, Inès; Sahnoun, Rihab; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2014-01-01

    Low solubility of certain hydrophobic soil contaminants limits remediation process. Surface-active compounds can improve the solubility and removal of hydrophobic compounds from contaminated soils and, consequently, their biodegradation. Hence, this paper aims to study desorption efficiency of oil from soil of SPB1 lipopeptide biosurfactant. The effect of different physicochemical parameters on desorption potency was assessed. Taguchi experimental design method was applied in order to enhance the desorption capacity and establish the best washing parameters. Mobilization potency was compared to those of chemical surfactants under the newly defined conditions. Better desorption capacity was obtained using 0.1% biosurfacatnt solution and the mobilization potency shows great tolerance to acidic and alkaline pH values and salinity. Results show an optimum value of oil removal from diesel-contaminated soil of about 87%. The optimum washing conditions for surfactant solution volume, biosurfactant concentration, agitation speed, temperature, and time were found to be 12 ml/g of soil, 0.1% biosurfactant, 200 rpm, 30 °C, and 24 h, respectively. The obtained results were compared to those of SDS and Tween 80 at the optimal conditions described above, and the study reveals an effectiveness of SPB1 biosurfactant comparable to the reported chemical emulsifiers. (1) The obtained findings suggest (a) the competence of Bacillus subtilis biosurfactant in promoting diesel desorption from soil towards chemical surfactants and (b) the applicability of this method in decontaminating crude oil-contaminated soil and, therefore, improving bioavailability of hydrophobic compounds. (2) The obtained findings also suggest the adequacy of Taguchi design in promoting process efficiency. Our findings suggest that preoptimized desorption process using microbial-derived emulsifier can contribute significantly to enhancement of hydrophobic pollutants' bioavailability. This study can be complemented with the investigation of potential role in improving the biodegradation of the diesel adsorbed to the soil.

  7. A Study of the Effect of Surfactants on the Aggregation Behavior of Crude Oil Aqueous Dispersions through Steady-State Fluorescence Spectrometry.

    PubMed

    Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge

    2017-07-01

    Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.

  8. Oil recovery test using bio surfactants of indigenous bacteria in variation concentration of carbon source

    NASA Astrophysics Data System (ADS)

    Yudono, B.; Purwaningrum, W.; Estuningsih, S. P.; Kaffah, S.

    2017-05-01

    Recovery tests of crude oil by using bio surfactant of indigenous bacteria Pseudomonas peli, Pseudomonas citronellolis, Burkholderia glumae and Bacillus firmus. The bio surfactants were prepared with the variation concentrations of molasses carbon source; 0, 5, 10, 15, 20, and 25 %. The results showed that 10 g samples, which concentration 18.64% TPH could be dissolved in the bio surfactant 10%. Optimally in the molasses carbon source concentrations for each bacterium at 5, 10, 20 and 15 % with oil recovery as much as 31.92, 17.65, 22.32, and 14.38 % respectively. Oil components which extracted by bio surfactant were analyzed by using GLC (Gas Liquid Chromatography). The bio surfactants of Pseudomonas peli could dissolve oil fraction temperatures; 139.85; 144.69; 149.98; 1.55.03: 174.22 °C, Pseudomonas citronellolis could dissolve oil fraction temperatures; 139.13; 142.64;147.99; 155.03; 159.85; 164.50 °C, Burkholderia glumae could dissolve oil fraction temperatures 144.69; 149.98; 155.03; 159.85; 164.50 °C, and Bacillus firmus could dissolve oil fraction temperatures; 149.98; 155.03; 158.46; 164.50 °C.

  9. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  10. Development of a microbial process for the recovery of petroleum oil from depleted reservoirs at 91-96°C.

    PubMed

    Arora, Preeti; Ranade, Dilip R; Dhakephalkar, Prashant K

    2014-08-01

    A consortium of bacteria growing at 91°C and above (optimally at 96°C) was developed for the recovery of crude oil from declining/depleted oil reservoirs having temperature of more than 91°C. PCR-DGGE-Sequencing analysis of 16S rRNA gene fragments of NJS-4 consortium revealed the presence of four strains identified as members of the genus Clostridium. The metabolites produced by NJS-4 consortium included volatile fatty acids, organic acids, surfactants, exopolysaccarides and CO2, which reduced viscosity, emulsified crude oil and increased the pressure that facilitated displacement of emulsified oil towards the surface. NJS-4 enhanced oil recovery by 26.7% and 10.1% in sand pack trials and core flood studies respectively in optimized nutrient medium comprised of sucrose and sodium acetate as carbon/energy source and urea as nitrogen source (pH 7-9, 96°C, and 4% salinity). Nutrient medium for MEOR was constituted using commercial grade cheap nutrients to improve the economic viability of MEOR process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increasemore » in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.« less

  12. TOXICITY COMPARISON OF BIOSURFACTANTS AND SYNTHETIC SURFACTANTS USED IN OIL SPILL REMEDIATION TO TWO ESTUARINE SPECIES

    EPA Science Inventory

    The relative environmental toxicities of synthetic and biogenic surfactants used in oil spill remediation efforts are not well understood. Acute and chronic toxicities of three synthetic surfactants and three microbially produced surfactants were determined and compared in this s...

  13. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  14. Development of cost-effective surfactant flooding technology. Annual report for the period, September 30, 1993--September 29, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.; Sepehrnoori, K.

    1995-08-01

    This research consists of the parallel development of a new chemical flooding simulator and the application of our existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher-order finite-difference methods, flux limiters, and implicit algorithms. Results indicate that this approach has significant advantages in some problems and will likely enable us to simulate much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code, and it has been applied to the study ofmore » stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the second year of this contract, we have already made significant progress on both of these tasks and are ahead of schedule on both of them.« less

  15. Interface Defect States and Charge Transport Properties in Low-Cost Photovoltaic Devices made from Scalable Deposition Methods

    NASA Astrophysics Data System (ADS)

    Marin, Andrew; Munoz-Rojas, David; Iza, Diana; Gershon, Talia; MacManus-Driscoll, Judith

    2011-03-01

    In-plane (parallel to the substrate) polymer diffusion at and near interfaces has significant implications for polymeric surfactants used in tertiary oil recovery, exfoliation of clay sheets in polymer nano-composites, and several other high technology applications. Here, we report a study on the in-plane diffusion of whole polymer chains confined between interfaces using fluorescence recovery after photobleaching. Adapted from quantitative biology, FRAP provides a platform to independently study the effect of temperature, molecular weight, and film thickness on in-plane diffusion of polymers confined between interfaces. Fluorescently labeled polymers were synthesized, spin coated onto quartz substrates and the self-diffusion coefficient was measured by irreversibly photobleaching fluorophores in a pre-defined pattern and monitoring recovery of fluorescence over time. Preliminary results indicate that for thick films the diffusion coefficient is consistent with bulk values. The authors would like to thank the Gates-Cambridge Trust and the International Copper Association.

  16. Coverage area and fading time of surfactant-amended herbicidal droplets on cucurbitaceous leaves

    USDA-ARS?s Scientific Manuscript database

    Proper use of appropriate surfactants to control droplet behaviors on leaf surfaces is critical to improve herbicide application efficacy for controlling paddy melons. An esterified seed oil surfactant and a petroleum oil surfactant were investigated to modify spread areas and fading times of water ...

  17. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    NASA Astrophysics Data System (ADS)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  18. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant concentrations and structures on CNT interactions in water were investigated at room conditions. CNT interactions in polymer solution were also investigated with polyethylene oxide (PEO) polymer and water as a solvent. In all cases, the atomic arrangement of molecules was discussed in detailed. Simulations revealed that CNT orientation, length, diameter, and addition of surfactant and its structures can significantly affect CNT interactions (i.e., PMFs varied significantly) and in-turn the degree of CNT dispersion in aqueous solution. For all simulation cases, a uniform sampling was achieved by using the ABF method to calculate the governing PMF between CNTs indicating the effectiveness and convergence of the adaptive sampling scheme. The surfactant molecules were shown to adsorb at the CNT surface and contribute to weaker interactions between CNTs which resulted less CNT aggregate size at the mesoscale. Surfactant consisting with a benzene ring contributed much weaker interactions between CNTs as compared with that of without benzene ring. The increase in CNT length contributed the stronger CNT interactions where the increase in CNT diameter caused weaker CNT interactions in water. The interfacial characteristics between the CNT, surfactant and the polymer were also predicted and discussed. The model can be expanded for more solvents, surfactants, and polymers.

  19. Influence of polyethylene glycol on percolation dynamics of reverse microemulsions

    NASA Astrophysics Data System (ADS)

    Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.

    2018-04-01

    We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.

  20. Crystallization kinetics of cocoa butter in the presence of sorbitan esters.

    PubMed

    Sonwai, Sopark; Podchong, Pawitchaya; Rousseau, Dérick

    2017-01-01

    Cocoa butter crystallization in the presence of sorbitan mono- and triesters or canola oil was investigated. Solid-state surfactant esters accelerated early-stage cocoa butter solidification while suppressing later growth. Sorbitan tristearate showed the strongest effect, followed by sorbitan monostearate and sorbitan monopalmitate. Liquid-state surfactants suppressed cocoa butter crystallization at all time points, with sorbitan trioleate showing a stronger effect than sorbitan monooleate, which behaved in a similar fashion to canola oil. Via DSC, the palmitic and stearic-based surfactants only associated with cocoa butter's high-melting fraction, with the oleic acid-based surfactants and canola oil showing little influence. All sorbitan esters had little effect on polymorphism, whereas canola oil accelerated the form II-to-III-to-IV transition. The palmitic and stearic-based surfactants greatly reduced cocoa butter crystal size whereas the oleic acid-based surfactants and canola showed no notable effect. Overall, sorbitan esters impacted cocoa butter crystallization kinetics, though this depended on surfactant structure and concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS,more » gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.« less

  2. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    PubMed Central

    Kielmann, Udo; Jeschke, Gunnar; García-Rubio, Inés

    2014-01-01

    Polymer-clay nanocomposites (PCNCs) containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural) suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR) techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid) or the clay surface (labeled catamine). Continuous-wave (CW) EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack. PMID:28788520

  3. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  4. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-01-24

    Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.

  5. Development of cost-effective surfactant flooding technology. First annual report for the period, September 30, 1992--September 29, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1994-08-01

    This research consists of the parallel development of a new chemical flooding simulator and the application of existing UTCHEM simulation code to model surfactant flooding. The new code is based upon a completely new numerical method that combines for the first time higher order finite difference methods, flux limiters, and implicit algorithms. Early results indicate that this approach has significant advantages in some problems and will likely enable simulation of much larger and more realistic chemical floods once it is fully developed. Additional improvements have also been made to the UTCHEM code and it has been applied for the firstmore » time to the study of stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and risk of surfactant flooding. During the first year of this contract, significant progress has been made on both of these tasks. The authors have found that there are indeed significant differences between the performance predictions based upon the traditional layered reservoir description and the more realistic and flexible descriptions using geostatistics. These preliminary studies of surfactant flooding using horizontal wells shows that although they have significant potential to greatly reduce project life and thus improve the economics of the process, their use requires accurate reservoir descriptions and simulations to be effective. Much more needs to be done to fully understand and optimize their use and develop reliable design criteria.« less

  6. ATR-FTIR membrane-based sensor for the simultaneous determination of surfactant and oil total indices in industrial degreasing baths.

    PubMed

    Lucena, Rafael; Cárdenas, Soledad; Gallego, Mercedes; Valcárcel, Miguel

    2006-03-01

    Monitoring the exhaustion of alkaline degreasing baths is one of the main aspects in metal mechanizing industrial process control. The global level of surfactant, and mainly grease, can be used as ageing indicators. In this paper, an attenuated total reflection-Fourier transform infrared (ATR-FTIR) membrane-based sensor is presented for the determination of these parameters. The system is based on a micro-liquid-liquid extraction of the analytes through a polymeric membrane from the aqueous to the organic solvent layer which is in close contact with the internal reflection element and continuously monitored. Samples are automatically processed using a simple, robust sequential injection analysis (SIA) configuration, on-line coupled to the instrument. The global signal obtained for both families of compounds are processed via a multivariate calibration technique (partial least squares, PLS). Excellent correlation was obtained for the values given by the proposed method compared to those of the gravimetric reference one with very low error values for both calibration and validation.

  7. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    PubMed

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions. Copyright © 2015. Published by Elsevier B.V.

  8. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-01

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.

  9. Wrapping with a splash: High-speed encapsulation with ultrathin sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan

    2018-02-01

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.

  10. Effects of the combination between bio-surfactant product types and washing times on the removal of crude oil in nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Triawan, Agus; Ni'matuzahroh, Supriyanto, Agus

    2017-06-01

    This research aimed to characterize bio-surfactants produced by Bacillus subtilis 3KP, Pseudomonas putida T1-8, Micrococcus sp. L II 61 and Acinetobacter sp. P 2(1) and to investigate its combination's effects on the removal of crude oil in nonwoven fabric with different washing times vary from 12, 24 to 36 hours. The production of bio-surfactants was done on Synthetic Mineral Water mixed with molasses 4% within four days. The bio-surfactant products were characterized by measuring the Surface Tension (ST) (mN/m) and Emulsion Activity (EA) (%). Oil removal experiment was done by mixing 10 mL bio-surfactant with nonwoven fabric that contains crude oil into 50 mL bottle inside a shaker. The removed crude oil was extracted with n-hexane and measured gravimetrically. The results were then being analyzed with two ways ANOVA and Duncan test. Bio-surfactant produced by four bacteria has variations of Surface Tension and Emulsion Activity values. Bio-surfactant produced by Bacillus subtilis 3KP and Pseudomonas putida T1-8 showed the increasing of crude oil removal as washing times increase, while bio-surfactant produced by Micrococcus sp. L II 61 and Acinetobacter sp. P2(1) showed the decreasing result at 36 hours. However, the combination that showed the best result was Acinetobacter sp. P 2(1) at 24 hours valued 65,3%.

  11. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  12. Influence of polymer-surfactant aggregates on fluid flow.

    PubMed

    Malcher, Tadeusz; Gzyl-Malcher, Barbara

    2012-10-01

    This paper describes the influence of interactions of poly(ethylene oxide) (PEO) with cationic cetyltrimethylammonium bromide (CTAB) micelles on drag reduction. Since the interactions between PEO and CTAB micelles alone are weak, salicylate ions were used as CTAB counterions. They facilitate formation of polymer-micelle aggregates by screening the electrostatic repulsions between the charged surfactant headgroups. The influence of polymer-surfactant interactions on drag reduction is of biomedical engineering importance. Drag reducing additives introduced to blood produce beneficial effects on blood circulation, representing a novel way to treat cardiovascular disorders. PEO is a blood-compatible polymer. However, it quickly mechanically degrades when subjected to high shear stresses. Thus, there is a need to search for other additives able to reduce drag, which would be more mechanically stable, e.g. polymer-surfactant aggregates. Numerical simulations of the flow were performed using the CFX software. Based on the internal structure of the polymer-surfactant solution, a hypothesis explaining the reason of increase of drag reduction and decrease in dynamic viscosity with increasing shear rate was proposed. It was suggested that the probable reason for the abrupt increase in friction factor, observed when the critical Reynolds number was exceeded, was the disappearance of the difference in the dynamic viscosity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Synthesis and evaluation of acryloylated starch-g-poly (Acrylamide/Vinylmethacrylate/1-Vinyl-2-pyrrolidone) crosslinked terpolymer functionalized by dimethylphenylvinylsilane derivative as a novel polymer-flooding agent.

    PubMed

    El-Hoshoudy, A N; Desouky, S M

    2018-05-16

    Starch is a natural biopolymer that subjected to various chemical modifications through different industrial applications. Molecular structure of starch allow its grafting with different vinyl monomers in the presence of crosslinking agents to synthesize cross-linked hydrogels, which used in enhanced oil recovery (EOR) applications, water shutoff and drag reduction. Application of native starch in the field of petroleum reservoirs as a flooding agent suffer from some limitations concerned with microbial degradation, thermal and salinity resistance under harsh petroleum reservoir conditions. In the current research, we stated the synthesis of acryloylated starch then it's grafting with poly (Acrylamide/Vinylmethacrylate/1-Vinyl-2-pyrrolidone) terpolymer in presence of dimethylphenylvinylsilane through emulsification polymerization. Characterization and structure determination occur by different spectroscopic techniques as stated throughout the manuscript. Rheological and solution properties carried out as a function of shear rate, salinity and temperature at simulated reservoir conditions. Flooding tests carried out through linear-dimensional sandstone model at simulated reservoir conditions, and recovered oil amount calculated on volumetric basis. The obtained results indicate that the prepared starch-g-terpolymer can tolerate to severe flooding conditions of high temperature and salinity, moreover it can increase recovery factor up to 49% of residual oil saturation so considered as a promised EOR candidate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Approaching a flat boundary with a block copolymer coated emulsion drop: late stage drainage dynamics

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.

  15. A micro-reactor for preparing uniform molecularly imprinted polymer beads.

    PubMed

    Zourob, Mohammed; Mohr, Stephan; Mayes, Andrew G; Macaskill, Alexandra; Pérez-Moral, Natalia; Fielden, Peter R; Goddard, Nicholas J

    2006-02-01

    In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device. The diameter of the resulting products typically had a coefficient of variation (CV) below 2%. The specific binding sites that were created during the imprinting process were analysed via radioligand binding analysis. The molecularly imprinted microspheres produced in the liquid perfluorocarbon continuous phase had a higher binding capacity compared with the particles produced in the mineral oil continuous phase, though it should be noted that the aim of this study was not to optimize or maximize imprinting performance, but rather to demonstrate broad applicability and compatibility with known MIP production methods. The successful imprinting against a model compound using two very different continuous phases (one requiring a surfactant to stabilize the droplets the other not) demonstrates the generality of this current simple approach.

  16. Oil-in-water emulsion impregnated electrospun poly(ethylene terephthalate) fiber mat as a novel tool for optical fiber cleaning.

    PubMed

    Devlaminck, Dries J G; Rahman, Md Mahbubor; Dash, Mamoni; Samal, Sangram Keshari; Watté, Jan; Van Vlierberghe, Sandra; Dubruel, Peter

    2018-06-15

    The complete removal of remaining polymer debris after stripping of optical fiber cables is essential for high precision connection between two fibers. It can be anticipated that electrospun porous membranes as cleaning wipes are able to trap and retain polymer debris within their pores. Impregnation of an oil-in-water emulsion as cleaning agent lowers the interfacial tension between debris and the optical fiber thereby enabling the straightforward removal of polymer debris from the optical fiber. Electrospun membranes of poly(ethylene terephthalate) (PET) and cellulose acetate (CA) were obtained with fiber diameters of 0.430 μm and 2 μm respectively. The oil-in-water emulsion was formulated with 10 wt% medium chain triglyceride (MCT) and 10 wt% Tween 80 surfactant in an aqueous phosphate buffer solution. In a scoring range from 0 to 5 for which the score 0 indicated superior cleaning and the score 5 referred to the least efficient cleaning, the electrospun fiber mats (without emulsion) scored within the range of 2-4 while emulsion impregnated electrospun fiber mats revealed the best score of 0. A drastic improvement was thus clearly evident from the obtained results when the cleaning emulsion was applied. The materials developed herein thus represent a new class of soft cleaning agents for optical fibers. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Synthesis of palm oil fatty acid as foaming agent for firefighting application

    NASA Astrophysics Data System (ADS)

    Rivai, M.; Hambali, E.; Suryani, A.; Fitria, R.; Firmansyah, S.; Pradesi, J.

    2017-05-01

    Many factors including natural factor, human carelessness, new land clearance or agricultural burning/act of vandalism and ground fire are suspected as the causes of forest fire. Foam, which cools the fire down, covers the burning material/fuel, and avoids contact between burning materials with oxygen, is an effective material used to fight large-scale fires. For this purpose, surfactant which can facilitate foam formation and inhibit the spread of smoke is required. This study was aimed at producing prototype product of foaming agent from palm oil and its formulation as a fire fighting material. Before the formulation stage, the foaming agent was resulted from saponification process of oleic, lauric, and palmitic acids by using NaOH and KOH alkaline. Foam stability was used as the main indicator of foaming agent. Results showed that potassium palmitate had the highest foam stability of 82% until the 3rd day. The best potassium palmitate concentration was 7%.

  18. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine

    PubMed Central

    Chintalapudi, Ramprasad; Murthy, T. E. G. K.; Lakshmi, K. Rajya; Manohar, G. Ganesh

    2015-01-01

    Background: The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 22 factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Materials and Methods: Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 22 factorial designs. Results: The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Conclusion: Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology. PMID:26682191

  19. Behavior of microemulsion systems of virgin coconut oil (VCO) using igepal CO-520 and tween 80 surfactant

    NASA Astrophysics Data System (ADS)

    Safuan, A.; Hamdan, S.; Laili, C. R.

    2017-09-01

    Virgin Coconut Oil (VCO) has been applied in many application and products. Formation of microemulsion region with surfactant was investigated by using phase diagram. The surfactants used are igepal CO-520 and tween 80. The studies showed that formation of microemulsion region were dependent on the behaviour of the surfactant toward VCO. The result showed that microemulsion regions were present in igepal CO-520 system formed a larger water-in-oil microemulsion region compared to tween 80 system. Certain weight ratios of VCO to surfactants were studied by using evaporation test in order to study the water loss of the microemulsion in ambient condition. The evaporation rate of samples was varies depending their compositon of VCO, surfactant and water.

  20. Novel electrolyte chemistries for Mg-Ni rechargeable batteries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Diaz, Brenda; Kane, Marie; Au, Ming

    2010-10-01

    Commercial hybrid electric vehicles (HEV) and battery electric vehicles (BEV) serve as means to reduce the nation's dependence on oil. Current electric vehicles use relatively heavy nickel metal hydride (Ni-MH) rechargeable batteries. Li-ion rechargeable batteries have been developed extensively as the replacement; however, the high cost and safety concerns are still issues to be resolved before large-scale production. In this study, we propose a new highly conductive solid polymer electrolyte for Mg-Ni high electrochemical capacity batteries. The traditional corrosive alkaline aqueous electrolyte (KOH) is replaced with a dry polymer with conductivity on the order of 10{sup -2} S/cm, as measuredmore » by impedance spectroscopy. Several potential novel polymer and polymer composite candidates are presented with the best-performing electrolyte results for full cell testing and cycling.« less

  1. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    PubMed

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Effect of Foam on Liquid Phase Mobility in Porous Media

    NASA Astrophysics Data System (ADS)

    Eftekhari, A. A.; Farajzadeh, R.

    2017-03-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.

  3. Effect of Foam on Liquid Phase Mobility in Porous Media

    PubMed Central

    Eftekhari, A. A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795

  4. Nanoparticles as strengthening agents in polymer systems

    NASA Astrophysics Data System (ADS)

    Shahid, Naureen

    2005-11-01

    Carboxylate-substituted alumina nanoparticles are produced solvent free using mechanical shear. The general nature of this method has been demonstrated for L-lysine-, stearate, and p-hydroxybenzoate-derived materials. The reaction rate and particle size is controlled by a combination of temperature and shear rate. The nanoparticles are spectroscopically equivalent to those reported from aqueous syntheses, however, the average particle size can be decreased and the particle size distribution narrowed depending on the reaction conditions. Lysine and p-hydroxybenzoato alumoxanes have been introduced in carbon fiber reinforced epoxide resin composites. Different preparation conditions have been studied to obtain composite with enhanced performances that are ideal for the motor sports and aerospace industries. A new composite material has been fabricated utilizing surface-modified carboxylate alumoxane nanoparticles and the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA). For this study, composites were prepared using various functional groups including: a surfactant alumoxane to enhance nanoparticle dispersion into the polymer; an activated-alumoxane to enhance nanoparticle interaction with the polymer matrix; a mixed alumoxane containing both activated and surfactant groups. Nanocomposites prepared with all types of alumoxane, as well as blank polymer resin and unmodified boehmite, underwent mechanical testing and were characterized by SEM and microprobe analysis. A nanocomposite composed of mixed alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited increased flexural modulus compared to polymer resin alone, and a significant enhancement over both the activated and surfacted alumoxanes. Boric acid is used as the cross-linking agent in oil well drilling industry even though the efficacy of the borate ion, [B(OH)4]- , as a cross-linking agent is poor. The reaction product of boric acid and the polysaccharide guaran (the major component of guar gum) has been investigated by 11B NMR spectroscopy. By comparison with the 11B NMR of boric acid and phenyl boronic acid complexes of 1,2-diols [HOCMe2CMe2OH, cis-C6H 10(OH)2, trans-C6H10(OH) 2, o-C6H4(OH)2], 1,3-diols (neol-H2), monosaccharides (L-fucose, mannose and galactose) and disaccharides (celloboise and sucrose) it is found that the guaran polymer is cross-linked via a borate complex of two 1,2-diols both forming chelate 5-membered ring cycles, this contrasts with previous proposals. (Abstract shortened by UMI.)

  5. Application of diethanolamide surfactant derived from palm oil to improve the performance of biopesticide from neem oil

    NASA Astrophysics Data System (ADS)

    Nisya, F. N.; Prijono, D.; Nurkania, A.

    2017-05-01

    The purpose of this research was to improve the performance of organic pesticide derived from neem plant using diethanolamide surfactant (DEA) derived from palm oil in controlling armyworms. The pesticide was made of neem oil. Neem oil is a neem plant product containing several active components, i.e. azadirachtin, salanin, nimbin, and meliantriol which act as a pesticide. DEA surfactant acts as a wetting, dispersing and spreading agent in neem oil pesticide. The neem oil was obtained by pressing neem seeds using a screw press machine and a hydraulic press machine. DEA surfactant was synthesized from methyl esters of palm oil olein. Pesticide formulation was conducted by stirring the ingredients by using a homogenizer at 5,000 rpm for 30 minutes. Surfactant was added to the formulation by up to 5%. Glycerol, as an emulsifier, was added in to pesticide formulations of neem oil. The efficacy of the pesticides in controlling armyworms fed soybean leaves in laboratory was measured at six concentrations, i.e. 10, 13, 16, 19, 22, and 25 ml/L. Results showed that the neem oil used in this study had a density of 0.91 g/cm3, viscosity of 58.94 cPoise, refractive index of 1.4695, surface tension of 40.69 dyne/cm, azadirachtin content of 343.82-1.604 ppm. Meanwhile, the azadirachtin content of neem seed cake was 242.20 ppm. It was also found that palmitic (31.4%) and oleic (22.5%) acids were the main fatty acids contained in neem oil. As the additive material used in neem oil in this study, diethanolamide surfactant had a pH of 10.6, density of 0.9930 g/cm3, viscosity of 708.20 cP, and surface tension of 25.37 dyne/cm. Results of CMC, contact angle, and droplet size analyzes showed that diethanolamide surfactant could be added into insecticide formulation by 5%. Results of LC tests showed that on Spodoptera litura the LC50 and LC95 values were 13 and 22 ml/L, respectively. Neem oil was found to inhibit the development of Spodoptera litura and its larval molting process.

  6. Comparison of a solid SMEDDS and solid dispersion for enhanced stability and bioavailability of clopidogrel napadisilate.

    PubMed

    Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2014-12-19

    The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

    NASA Astrophysics Data System (ADS)

    Ramly, N. H.; Zakaria, R.; Naim, M. N.

    2016-06-01

    Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.

  8. Solid Dispersion of Curcumin as Polymeric Films for Bioenhancement and Improved Therapy of Rheumatoid Arthritis.

    PubMed

    Mande, Prashant P; Bachhav, Sagar S; Devarajan, Padma V

    2016-08-01

    The aim of our study was development of advanced third generation Curcumin self microemulsifying composition solid dispersion (Cur SMEC-SD) with high drug loading, improved stability, rapid in-vitro dissolution and enhanced bioavailability for improved therapy of rheumatoid arthritis. The Cur SMEC-SD comprising polymers (KollidonVA64[KVA], Eudragits, HPMC and Soluplus) and self microemulsifying composition of surfactant:co-surfactant:oil were coated onto rapidly disintegrating inert tablet core. SDs evaluated for stability, in-vitro release and bioenhancement. Cur SMEC-SDs exhibited high Cur loading of 45% w/w and microemulsion formation with globule size (~100 nm) irrespective of polymers. Among the polymers, SD with KVA revealed exceptionally low contact angle (7°C) and rapid in-vitro release (t50%-6.45 min). No crystallization was evident as confirmed by SEM, DSC and XRD and is attributed to SMEC aided solubilization/amorphisation, and interaction of KVA with Cur seen in the FTIR spectra. Stability was confirmed as per ICH guidelines. Remarkable bioenhancement with Cur SMEC-SD was confirmed by the > four fold and a two fold compared to Cur and Cur-SD without SMEC respectively. High efficacy ~ 80% compared to Indomethacin, seen with rheumatoid arthritis (RA) induced rats coupled with no adverse toxicity. The advanced third generation Cur SMEC-SD presents a practical technological advancement and suggests Cur SMEC-SD as promising alternative for RA therapy.

  9. Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures - implications for cultural heritage conservation.

    PubMed

    Baglioni, M; Montis, C; Brandi, F; Guaragnone, T; Meazzini, I; Baglioni, P; Berti, D

    2017-09-13

    The removal of hydrophobic polymer films from surfaces is one of the top priorities of modern conservation science. Nanostructured fluids containing water, good solvents for polymers, either immiscible or partially miscible with water, and surfactants have been used in the last decade to achieve controlled removal. The dewetting of the polymer film is often an essential step to achieve efficient removal; however, the role of the surfactant throughout the process is yet to be fully understood. We report on the dewetting of a methacrylate/acrylate copolymer film induced by a ternary mixture of water, propylene carbonate (PC) and C 9-11 E 6 , a nonionic alcohol ethoxylate surfactant. The fluid microstructure was characterised through small angle X-ray scattering and the interactions between the film and water, water/PC and water/PC/C 9-11 E 6 , were monitored through confocal laser-scanning microscopy (CLSM) and analised both from a thermodynamic and a kinetic point of view. The presence of a surfactant is a prerequisite to induce dewetting of μm-thick films at room temperature, but it is not a thermodynamic driver. The amphiphile lowers the interfacial energy between the phases and favors the loss of adhesion of the polymer on glass, decreasing, in turn, the activation energy barrier, which can be overcome by the thermal fluctuations of polymer film stability, initiating the dewetting process.

  10. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves.

    PubMed

    Hamida, Tarek; Babadagli, Tayfun

    2007-09-01

    Numerous studies done in the last four decades have demonstrated that acoustic stimulation may enhance recovery in oil reservoirs. This technology is not only technically feasible, but also serves as an economical, environmentally friendly alternative to currently accepted enhanced oil recovery (EOR) method. It requires low capital expenditure, and yields almost immediate improvement without any additional EOR agents. Despite a vast body of empirical and theoretical support, this method lacks sufficient understanding to make meaningful and consistent engineering predictions. This is in part due to the complex nature of the physical processes involved, as well as due to a shortage of fundamental/experimental research. Much of what the authors believe is happening within acoustically stimulated porous media is speculative and theoretical. This paper focuses on the effects of ultrasound on the interfacial forces between immiscible fluids. Capillary (spontaneous) imbibition of an aqueous phase into oil (or air)-saturated Berea sandstone and Indiana limestone samples experiments were conducted. Solutions of water, brine (15,000 and 150,000 ppm NaCl), anionic surfactant (sodium dodecyl diphenyloxide disulfonate), nonionic surfactant (alcohol ethoxylate) and polymer (xanthan gum) were prepared as the aqueous phase. Both counter-current and co-current geometries were tested. Due to the intrinsically unforced, gentle nature of the process, and their strong dependence on wettability, interfacial tension, viscosity and density, such experiments provide valuable insight into some of the governing mechanisms behind ultrasonic stimulation.

  11. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    NASA Astrophysics Data System (ADS)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  12. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology.

    PubMed

    Mehmood, Tahir

    2015-09-15

    The objective of the present study was to prepare canola oil based vitamin E nanoemulsions by using food grade mixed surfactants (Tween:80 and lecithin; 3:1) to replace some concentration of nonionic surfactants (Tween 80) with natural surfactant (soya lecithin) and to optimize their preparation conditions. RBD (Refined, Bleached and Deodorized) canola oil and vitamin E acetate were used in water/vitamin E/oil/surfactant system due to their nutritional benefits and oxidative stability, respectively. Response surface methodology (RSM) was used to optimize the preparation conditions. The effects of homogenization pressure (75-155MPa), oil concentrations (4-12% w/w), surfactant concentrations (3-11% w/w) and vitamin E acetate contents (0.4-1.2% w/w) on the particle size and emulsion stability were studied. RSM analysis has shown that the experimental data could be fitted well into second-order polynomial model with the coefficient of determinations of 0.9464 and 0.9278 for particle size and emulsion stability, respectively. The optimum values of independent variables were 135MPa homogenization pressure, 6.18% oil contents, 6.39% surfactant concentration and 1% vitamin E acetate concentration. The optimized response values for particle size and emulsion stability were 150.10nm and 0.338, respectively. Whereas, the experimental values for particle size and nanoemulsion stability were 156.13±2.3nm and 0.328±0.015, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Response surface methodology approach for the optimisation of adsorption of hydrolysed polyacrylamide from polymer-flooding wastewater onto steel slag: a good option of waste mitigation.

    PubMed

    Zhu, Mijia; Yao, Jun; Qin, Zhonghai; Lian, Luning; Zhang, Chi

    2017-08-01

    Wastewater produced from polymer flooding in oil production features high viscosity and chemical oxygen demand because of the residue of high-concentration polymer hydrolysed polyacrylamide (HPAM). In this study, steel slag, a waste from steel manufacturing, was studied as a low-cost adsorbent for HPAM in wastewater. Optimisation of HPAM adsorption by steel slag was performed with a central composite design under response surface methodology (RSM). Results showed that the maximum removal efficiency of 89.31% was obtained at an adsorbent dosage of 105.2 g/L, contact time of 95.4 min and pH of 5.6. These data were strongly correlated with the experimental values of the RSM model. Single and interactive effect analysis showed that HPAM removal efficiency increased with increasing adsorbent dosage and contact time. Efficiency increased when pH was increased from 2.6 to 5.6 and subsequently decreased from 5.6 to 9.3. It was observed that removal efficiency significantly increased (from 0% to 86.1%) at the initial stage (from 0 min to 60 min) and increased gradually after 60 min with an adsorbent dosage of 105.2 g/L, pH of 5.6. The adsorption kinetics was well correlated with the pseudo-second-order equation. Removal of HPAM from the studied water samples indicated that steel slag can be utilised for the pre-treatment of polymer-flooding wastewater.

  14. Effect of surfactants on dielectric strength of crude oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunusov, A.A.

    1995-09-01

    In all the methods used for crude oil demulsification, including electrodemulsification, surfactants are used to aid the demulsification. Therefore, the present work has been aimed at studying the character and degree of influence of surfactants on the dielectric strength of crude oil. Our experiments were performed with a standard discharger at an AC frequency of 50 Hz. The high-voltage source was a universal breakdown unit of the UPU-1 type.

  15. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    PubMed

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOEpatents

    Heller, John P.; Dandge, Dileep K.

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  17. Limiting solubilizing capacity of some nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, L.S.C.

    1980-12-01

    This report gives an account of the attempts to solubilize corn oil. A fixed quantity of corn oil or oily dispersion containing corn oil and a sorbitan ester was added to a series of 25 ml of polysorbate solutions of increasing concentration. This investigation showed that corn oil is not solubilized by either aqueous solutions of polyoxyethylene sorbitan esters or by a combination of these surfactants with sorbitan esters. The findings suggest that nonionic surfactants of the polyoxyethylene sorbitan ester type as well as the sorbitan esters have limiting capacities to solubilize extremely hydrophobic substances such as corn oil. 19more » references.« less

  18. Phase-transfer catalysis and ultrasonic waves II: saponification of vegetable oil.

    PubMed

    Entezari, M H; Keshavarzi, A

    2001-07-01

    Saponification of oils which is a commercially important heterogeneous reaction, can be speeded up by the application of ultrasound in the presence of phase-transfer catalyst (PTC). This paper focuses on the ability of ultrasound to cause efficient mixing of this liquid-liquid heterogeneous reaction. Castor oil was taken as a model oil and the kinetic of the reaction was followed by the extent of saponification. The hydrolysis of castor oil was carried out with different PTC such as cetyl trimethyl ammonium bromide (CTAB), benzyl triethyl ammonium chloride (BTAC) and tetrabutyl ammonium bromide (TBAB) in aqueous alkaline solution. As hydroxyl anion moves very slowly from aqueous to oil phase, the presence of a PTC is of prime importance. For this purpose, cationic surfactants are selected. The sonication of biphasic system were performed by 20 kHz (simple horn and cup horn) and 900 kHz. It was found that CTAB was better than the two others and this could be related to the molecular structure of the PTCs. The effect of temperature was also studied on the saponification process. By increasing the temperature, the yield was also increased and this could be explained by intermolecular forces, interfacial tension and mass transfer. Saponification of three different vegetable oils shows that the almond oil is saponified easier than the two others and this could be related to their properties such as surface tension, viscosity and density.

  19. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    NASA Astrophysics Data System (ADS)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  20. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  1. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  2. Novel approaches to microbial enhancement of oil recovery.

    PubMed

    Kryachko, Yuriy

    2018-01-20

    Microbially enhanced oil recovery (MEOR) was shown to be feasible in a number of laboratory experiments and field trials. However, it has not been widely used in the oil industry because necessary conditions cannot always be easily established in an oil reservoir. Novel approaches to MEOR, which are based on newly discovered biosurfactant-mediated MEOR-mechanisms, are discussed in this review. Particularly, the possibility of combining MEOR with chemical enhancement of oil recovery in heterogeneous oil reservoirs, which involves rock surface wettability shifts and emulsion inversions, is discussed. In wider (centimeter/millimeter-scale) rock pores, the activity of (bio)surfactants and microbial cells attached to oil may allow releasing trapped oil blobs through oil-in-water emulsification. After no more oil can be emulsified, the addition of alkali or surfactants, which turn rock surface oil-wet, may help release oil droplets trapped in narrow (micrometer-scale) pores through coalescence of the droplets and water-in-oil emulsification. Experiments demonstrating the possibility of (bio)surfactant-mediated enhancement of immiscible gas-driven oil recovery are also reviewed. Interestingly, very low (bio)surfactant concentrations were shown to be needed for enhancement of immiscible gas-driven oil recovery. Some possible side effects of MEOR, such as unintended bioplugging and microbially influenced corrosion (MIC), are discussed as well. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. Study of Water-Oil Emulsion Breaking by Stabilized Solution Consisting of Anionic Surface Acting Agent - Soda Ash - Polymer (ASP)

    NASA Astrophysics Data System (ADS)

    Kulichkov, S. V.; Avtomonov, E. G.; Andreeva, L. V.; Solomennik, S. F.; Nikitina, A. V.

    2018-01-01

    The paper provides a laboratory research of breaking natural water-oil emulsions: - by non-stabilized ASP; by stabilized ASP; by mixture of stabilized and non-stabilized ASP in different proportions and production of refinery water of the required quality with the use of IronGuard 2495 as flocculant. Oil-in-water emulsion is stable. Classic methods are not suitable for residual water treatment: sediment gravity flow; filtration; centrifuge test. Microemulsion formed after ASP application has low boundary tension and high pH. It contributes to transfer of oil phase into a water one, forming oil-in-water emulsion. Alkaline condition has adverse effect on demulsifying ability of agents, flocculation and boundary tension. For breaking of water-oil emulsion at EBU before the interchanger water or water-oil emulsion from the wells that were not APS-treated in ratio of 1:9 shall be delivered. Residual water after EBU must be prepared in water tanks by dilution in great volume.

  4. Eco-friendly aqueous core surface-modified nanocapsules.

    PubMed

    Carbone, C; Musumeci, T; Lauro, M R; Puglisi, G

    2015-01-01

    In this work, positively charged nanocapsules have been developed for potential ocular delivery exploiting the deposition of PLA onto the droplet surface of a W/O nanoemulsion prepared by the reversed procedure of the PIT method. PLA in combination with different amounts of various oils and surfactants have been studied in order to select the best formulation for polymeric nanocapsule preparation. The traditional visual observation together with the Turbiscan(®) technology were exploited in order to identify the best combination of polymer/oil for nanocapsule preparation. Two different primary surfactants (Span(®) 60 and Span(®) 80) have been tested to select their influence on the field of existence of the nanoemulsion by the construction of the pseudoternary phase diagrams. Cationic hybrid NC have been prepared by the addition of a coating layer of DDAB. The physico-chemical and morphological properties of all the prepared nanocapsules have been evaluated and compared by PCS, DSC and AFM. Therefore, positively charged nanocapsules can be easily prepared by a simple eco-friendly technique that exploits biocompatible materials avoiding a large input of mechanical energy as a potential ocular delivery systems for hydrophilic compounds or gene materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Characterization of potent anticholinesterase plant oil based microemulsion.

    PubMed

    Chaiyana, Wantida; Saeio, Kiattisak; Hennink, Wim E; Okonogi, Siriporn

    2010-11-30

    In the present study, essential oils of three edible Thai plants, Cymbopogon citratus (Gramineae), Citrus hystrix (Rutaceae) and Zingiber cassumunar (Zingiberaceae) were comparatively tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities using Ellman's colorimetric method. C. citratus oil exhibited the highest activity with IC(50) values of 0.34±0.07μl/ml and 2.14±0.18μl/ml against BChE and AChE activity, respectively. It was further investigated whether microemulsions of this oil could be obtained. The effects of type of surfactant and co-surfactant as well as pH and ionic strength on the phase behavior of the oil/water system were investigated. Brij 97, Triton X-114, Tween 20 and Tween 85 were employed as surfactant whereas ethanol and hexanol were used as cosurfactants. The size analysis, electrical conductivity measurements and cholinesterase inhibition assays were done in selected microemulsion. The results revealed that the type and concentration of surfactant and co-surfactant exhibited a distinct influence on the C. citratus oil microemulsions. Moreover, the inhibitory activities of the microemulsion formulation were remarkable. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Nonionic Cellulose Ethers as Potential Drug Delivery Systems for Periodontal Anesthesia.

    PubMed

    Scherlund; Brodin; Malmsten

    2000-09-15

    Nonionic cellulose ethers displaying a lower consolute temperature, or cloud-point, close to body temperature were investigated as potential carrier systems for the delivery of local anesthetic agents to the periodontal pocket. The interaction between the polymers, i.e., ethyl(hydroxyethyl)cellulose (EHEC) and hydrophobically modified EHEC (HM-EHEC), and ionic surfactants was determined in the absence and in the presence of the local anesthetic agents lidocaine and prilocaine. The cloud-point and rheology data indicate interactions between the polymer and both anionic and cationic surfactants. More precisely, a number of ionic surfactants were found to result in an increase in cloud-point at higher surfactant concentrations, a surfactant-concentration-dependent thickening, and a temperature-induced gelation upon heating. Upon addition of the local anesthetic agents lidocaine and prilocaine in their uncharged form to EHEC and HM-EHEC, in the absence of surfactants, only minor interaction with the polymer could be inferred. However, these substances were found to affect the polymer-surfactant interaction. In particular, the drug release rate in vitro as well as the stability and temperature-dependent viscosity were followed for an EHEC/SDS system and EHEC/myristoylcholine bromide system upon addition of lidocaine and prilocaine. The data indicate a possibility of formulating a local anesthetic drug delivery system suitable for administration into the periodontal pocket where at least small amounts of active ingredients can be incorporated into the system without severely affecting the gelation behavior. The results found for the cationic myristoylcholine bromide system are particularly interesting for the application in focus here since this surfactant is antibacterial and readily biodegradable. Copyright 2000 Academic Press.

  7. Enhanced photophysics of conjugated polymers

    DOEpatents

    Chen, Liaohai [Darien, IL

    2007-06-12

    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  8. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  9. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  10. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  11. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  12. 40 CFR 417.162 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.015 .005 Surfactants 0.39 .13 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.20 COD 1.80 .60 TSS 0.015 .005 Surfactants 0.39 .13 Oil and....15. TSS 0.002. Surfactants 0.04. Oil and grease 0.002. pH Within the range 6.0 to 9.0. English units...

  13. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    PubMed

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  15. Effects of anthropogenic surfactants on the conversion of marine dissolved organic carbon and microgels.

    PubMed

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-04-15

    The possible impact of three types of anthropogenic surfactants on the ability of marine dissolved organic carbon (DOC) to form self-assembled microgels was evaluated. The behavior of existing native microgels was also examined in the presence of surfactants. These results reveal that the release of surfactants even at low concentrations into the aquatic environment could effectively hinder the self-assembly of DOC polymers. The extent of the size reduction had the following order: anionic, cationic, and non-ionic. Furthermore, charged surfactants can disrupt existing native microgels, converting large assemblies into smaller particles. One possible mechanisms is that surfactants are able to enhance the stability of DOC polymers and disrupt aggregates due to their surface charges and protein-denaturing activities. These findings suggest that the ecological system is altered by anthropogenic surfactants, and provide useful information for ecological assessments of different types of surfactants and raise warnings about surfactant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  17. NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Khalili Nezhad, Seyyed Shahram; Kamari, Mosayyeb; Hemmati, Mahmood; Masihi, Mohsen; Bazgir, Saeed

    2014-07-01

    Nanotechnology has been used in many applications and new possibilities are discovered constantly. Recently, a renewed interest has risen in the application of nanotechnology for the upstream petroleum industry, such as exploration, drilling, production and distribution. In particular, adding nanoparticles to fluids may significantly benefit enhanced oil recovery and improve well drilling, such as changing the properties of the fluid, wettability alternation of rocks, advanced drag reduction, strengthening sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary-trapped oil. In this study, we focus on the roles of clay and silica nanoparticles in adsorption process on reservoir rocks. Polymer-flooding schemes for recovering residual oil have been in general less satisfactory due to loss of chemicals by adsorption on reservoir rocks, precipitation, and resultant changes in rheological properties. Adsorption and rheological property changes are mainly determined by the chemical structure of the polymers, surface properties of the rock, composition of the oil and reservoir fluids, the nature of the polymers added and solution conditions such as salinity, pH and temperature. Because this method relies on the adsorption of a polymer layer onto the rock surface, a deeper understanding of the relevant polymer-rock interactions is of primary importance to develop reliable chemical selection rules for field applications. In this paper, the role of nanoparticles in the adsorption of water-soluble polymers onto solid surfaces of carbonate and sandstone is studied. The results obtained by means of static adsorption tests show that the adsorption is dominated by the nanoclay and nanosilica between the polymer molecules and the solid surface. These results also show that lithology, brine concentration and polymer viscosity are critical parameters influencing the adsorption behavior at a rock interface. On the other hand, in this study, the focus is on viscosity, temperature and salinity of solutions of polyacrylamide polymers with different nanoparticle degrees and molecular weight. The adsorption of nanopolymer solution is always higher in carbonated stones than in sandstones, and polymer solutions containing silica nanoparticles have less adsorption based on weight percent than similar samples containing clay. Based on the area of contact for stone, this behavior is the same regarding adsorption.

  18. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  20. Responsive copolymers for enhanced petroleum recovery. Second annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilicmore » sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.« less

  1. Chemicals for enhanced oil recovery. Quarterly report, October 1-December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.S. Jr.

    1980-10-01

    Studies on the salinity range in which three liquid phases are observed for systems containing a tall oil ethoxylate or related nonionic surfactant, a cosurfactant, aqueous NaCl, and a hydrocarbon were extended. Increasing hydrophile-lipophile balance, HLB, causes an increase in the salinity needed to effect the transition of the surfactant from the lower to the upper phase. However, other factors besides HLB seem to be involved. Addition of the nonionic surfactant increases optimal salinity by an amount which depends on its hydrophilic character. Sodium-2-methyloleate,-2-butyloleate, -2-hexyloleate, -2,2-dimethyloleate, and -2,2-diethyloleate were synthesized and its phase behavior in aqueous/hydrocarbon systems studied. Adsorption ofmore » a commercial petroleum sulfonate from 0.1 M NaCl on the sodium form of montmorillonite was reduced a factor of ten by caustic extract from bleaching of wood pulp. In a comparison of several pulping wastes or byproducts as sacrificial agents, caustic extract and weak black liquor appeared most effective, and lignosulfonate only slightly less effective. Plugging tests of the filtrates obtained in the biomass-polymer separations indicated that polish filtration probably would be required. The microscreen is the most economical of the biomass separation methods. Small fermenter tests indicate that Sclerotium rolfsii cultures are able to tolerate salinity of 2 to 4% w/v NaCl in the fermentation broth makeup water; however, the organism was unable to grow in 6% w/v NaCl.« less

  2. Preparation of microemulsions with soybean oil-based surfactants

    USDA-ARS?s Scientific Manuscript database

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  3. Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants.

    PubMed

    Urum, Kingsley; Pekdemir, Turgay; Ross, David; Grigson, Steve

    2005-07-01

    This study investigated the removal of crude oil from soil using air sparging assisted stirred tank reactors. Two surfactants (rhamnolipid and sodium dodecyl sulfate, SDS) were tested and the effects of different parameters (i.e. temperature, surfactant concentrations, washing time, volume/mass ratio) were investigated under varying washing modes namely, stirring only, air sparging only and the combination of stirring and air sparging. The results showed that SDS removed more than 80% crude oil from non-weathered soil samples, whilst rhamnolipid showed similar oil removal at the third and fourth levels of the parameters tested. The oil removal ability of the seawater prepared solutions were better than those of the distilled water solutions at the first and second levels of temperature and concentration of surfactant solutions. This approach of soil washing was noted to be effective in reducing the amount of oil in soil. Therefore we suggested that a field scale test be conducted to assess the efficiency of these surfactants.

  4. Antifouling performance of polytetrafluoroethylene and polyvinylidene fluoride ultrafiltration membranes during alkali/surfactant/polymer flooding wastewater treatment: Distinctions and mechanisms.

    PubMed

    Zhu, Youbing; Yu, Shuili; Zhang, Bing; Li, Jianfeng; Zhao, Dongsheng; Gu, Zhengyang; Gong, Chao; Liu, Guicai

    2018-06-18

    Alkali/surfactant/polymer (ASP) flooding wastewater is highly caustic, and membrane fouling is the main obstacle during ASP ultrafiltration (UF) treatment. To maintain favorable filtration performance, polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes were implemented here, and their antifouling properties and mechanisms were investigated based on the threshold flux theory. Compared with the PVDF membranes, the PTFE membranes exhibited superior antifouling properties with lower reductions in flux and smaller hydraulic resistance, and they presented a nearly identical pseudo-stable fouling rate at a later time point. In the fouling layers of the PTFE and PVDF membranes, anion polyacrylamide (APAM) was observed along with divalent/trivalent metal ions. The thermodynamic and molecular mechanisms of membrane fouling by APAM were elucidated using the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM), respectively. The calculated total interfacial free energy (mJ/m 2 ) of adhesion between the APAM and PTFE membranes was positive, and the value between the APAM and PVDF membranes was negative. Furthermore, the values and interaction distances of the measured intermolecular rupture and approaching forces were larger for APAM-PTFE than for APAM-PVDF. For the PTFE membranes, the positive free energies and smaller intermolecular interaction resulted in weaker APAM-PTFE adhesion and adsorption and therefore the lower levels of flux decline and the later achievement of the pseudo-stable fouling rate. Additionally, the total flux recoveries observed after physical cleaning reached 0.78-0.80 and 0.32-0.39 for the PTFE and PVDF membranes, respectively, which showed that the PTFE membranes can be cleaned easily. The PTFE membranes have considerable potential for extensive application in UF treatments for ASP wastewater. These results should promote understanding the essence of the threshold flux and the fouling control of UF membranes. Copyright © 2018. Published by Elsevier B.V.

  5. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  6. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  7. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1... per 1,000 kg of anhydrous product) BOD5 0.12 0.06 COD 0.50 .25 TSS 0.14 .07 Surfactants 0.20 .10 Oil...

  8. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  9. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  10. 40 CFR 417.153 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1... per 1,000 kg of anhydrous product) BOD5 0.12 0.06 COD 0.50 .25 TSS 0.14 .07 Surfactants 0.20 .10 Oil...

  11. 40 CFR 417.163 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... per 1,000 kg of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil....05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .005 Oil and grease 0.01 .005 pH (1) (1) 1 Within the... (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02. Oil and...

  12. Extracellular Enzyme Activity Profile in a Chemically Enhanced Water Accommodated Fraction of Surrogate Oil: Toward Understanding Microbial Activities After the Deepwater Horizon Oil Spill

    PubMed Central

    Kamalanathan, Manoj; Xu, Chen; Schwehr, Kathy; Bretherton, Laura; Beaver, Morgan; Doyle, Shawn M.; Genzer, Jennifer; Hillhouse, Jessica; Sylvan, Jason B.; Santschi, Peter; Quigg, Antonietta

    2018-01-01

    Extracellular enzymes and extracellular polymeric substances (EPS) play a key role in overall microbial activity, growth and survival in the ocean. EPS, being amphiphilic in nature, can act as biological surfactant in an oil spill situation. Extracellular enzymes help microbes to digest and utilize fractions of organic matter, including EPS, which can stimulate growth and enhance microbial activity. These natural processes might have been altered during the 2010 Deepwater Horizon oil spill due to the presence of hydrocarbon and dispersant. This study aims to investigate the role of bacterial extracellular enzymes during exposure to hydrocarbons and dispersant. Mesocosm studies were conducted using a water accommodated fraction of oil mixed with the chemical dispersant, Corexit (CEWAF) in seawater collected from two different locations in the Gulf of Mexico and corresponding controls (no additions). Activities of five extracellular enzymes typically found in the EPS secreted by the microbial community – α- and β-glucosidase, lipase, alkaline phosphatase, leucine amino-peptidase – were measured using fluorogenic substrates in three different layers of the mesocosm tanks (surface, water column and bottom). Enhanced EPS production and extracellular enzyme activities were observed in the CEWAF treatment compared to the Control. Higher bacterial and micro-aggregate counts were also observed in the CEWAF treatment compared to Controls. Bacterial genera in the order Alteromonadaceae were the most abundant bacterial 16S rRNA amplicons recovered. Genomes of Alteromonadaceae commonly have alkaline phosphatase and leucine aminopeptidase, therefore they may contribute significantly to the measured enzyme activities. Only Alteromonadaceae and Pseudomonadaceae among bacteria detected here have higher percentage of genes for lipase. Piscirickettsiaceae was abundant; genomes from this order commonly have genes for leucine aminopeptidase. Overall, this study provides insights into the alteration to the microbial processes such as EPS and extracellular enzyme production, and to the microbial community, when exposed to the mixture of oil and dispersant. PMID:29740422

  13. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rationalizing lipid nanoemulsion formation for utilization in the food and beverage industry

    NASA Astrophysics Data System (ADS)

    Rao, Jiajia

    There is growing interest in the use of nanoemulsions as delivery systems for lipophilic functional agents in food and beverage products due to their high optical clarity, physical stability and bioavailability. The goal of this research is to establish quantitative structure-function relationships to allow rational formulation of food-grade nanoemulsions for food and beverage applications. Initially, formation of oil-in-water nanoemulsions using a low energy method was examined. Nanoemulsions were formed using the phase inversion temperature (PIT) method, which involves heating a surfactant, oil, water (SOW) systems near the PIT, and then cooling rapidly with stirring. Preliminary experiments were carried out using a model system consisting of a non-ionic surfactant (C12E4), hydrocarbon oil (tetradecane), and water. Nanoemulsions were formed by holding SOW mixtures near their PIT (38.5 °C) and then cooling them rapidly to 10 °C. The PIT was measured using electrical, conductivity and turbidity methods. The optimum storage temperature for PIT-nanoemulsions was about 27 °C lower than the PIT. The stability of PIT-nanoemulsions at ambient temperatures can be improved by adding either Tween 80 (0.2 wt%) or SDS (0.1 wt%) to displace the C12E4 (Brij 30) from the nano-droplet surfaces. Experiments were then carried out to establish if stable nanoemulsions could be formed using the PIT method from food-grade ingredients. Nanoemulsions were fabricated from a non-ionic surfactant (Tween 80) and flavor oil (lemon oil) by heat treatment. Different types of colloidal dispersion could be formed by simple heat treatment (90 °C, 30 minutes) depending on the surfactant-to-oil ratio (SOR): emulsions at SOR < 1; nanoemulsions at 1 < SOR < 2; microemulsions at SOR > 2. The results suggested that there was a kinetic energy barrier in the SOW system at ambient temperature that prevented it from moving from a highly unstable system into a nanoemulsion system. The conditions where stable nanoemulsions could be fabricated were also established when sucrose monopalmitate (SMP) and lemon oil were used as the surfactant and oil phase. Nanoemulsions (r < 100 nm) were formed at low surfactant-to-oil ratios (SOR < 1) depending on homogenization conditions, whereas microemulsions (r < 10 nm) were formed at higher ratios (SOR > 1). Relatively stable nanoemulsions could be formed at pH 6 and 7, but extensive particle growth/aggregation occurred at lower and higher pH values. Flavor oil nanoemulsions were also formed using an emulsion titration method that involves titration of emulsion droplets into surfactant micelle solutions. In this study, the effectiveness of nanoemulsion formation using nonionic surfactants (sucrose monopalmitate (SMP) and/or Tween 80 (T80) was investigated. Lemon oil was transferred from emulsion droplets into the micelle phase until a critical lemon oil concentration (Csat ) was reached. The solubilization process was rapid (< few minutes), with the rate increasing with increasing surfactant concentration. The value of Csat increased with increasing surfactant concentration and was higher for SMP than Tween 80. The influence of lemon oil composition (1x, 3x, 5x, and 10x) on the formation and properties of oil-in-water nanoemulsions was also studied. Initially, the composition, molecular characteristics, and physicochemical properties of four lemon oils were established. The main constituents in 1-fold lemon oil were monoterpenes (> 90 %), whereas the major constituents in 10-fold lemon oil were monoterpenes (≈ 35%), sesquiterpenes (≈ 14%) and oxygenates (≈ 33%). The density, interfacial tension, viscosity, and refractive index of the lemon oils increased as the oil fold increased ( i.e., 1x < 3x < 5x < 10x). The stability of oil-in-water nanoemulsions produced by high pressure homogenization was strongly influenced by lemon oil composition. The lower fold oils were highly unstable to droplet growth during storage (1x, 3x, 5x) with the growth rate increasing with increasing storage temperature and decreasing oil fold. Oil fold also affected the solubilization and stability of lemon oil nanoemulsions titrated into a non-ionic surfactant (Tween 80) solution. The movement of oil molecules from nanoemulsion droplets to surfactant micelles increased with increasing lemon oil fold. Finally, nanoemulsions were used as delivery systems for beta-carotene, a bioactive lipophilic component. The influence of carrier oil composition (ratio of digestible to indigestible oil) on the physical stability, microstructure, and bioaccessibility of beta-carotene nanoemulsions was investigated using a simulated gastrointestinal tract model. The extent of free fatty acid production in the small intestine increased as the amount of digestible oil in the droplets increased. The bioaccessibility of beta-carotene also increased with increasing digestible oil content, ranging from ≈ 5% for the pure lemon oil system to ≈ 76% for the pure corn oil system.

  15. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  16. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  17. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  18. 40 CFR 417.156 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Pollutant or pollutant property Pretreatment standard BOD5 No limitations. COD Do. TSS Do. Surfactants Do... No limitations. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. (3) For fast turnaround.... Surfactants Do. Oil and grease Do. pH Do. [40 FR 27454, June 30, 1975, as amended at 60 FR 33955, June 29...

  19. The influence of size, structure and hydrophilicity of model surfactants on the adsorption of lysozyme to oil-water interface--interfacial shear measurements.

    PubMed

    Baldursdottir, Stefania G; Jorgensen, Lene

    2011-10-01

    The flexibility and aggregation of proteins can cause adsorption to oil-water interfaces and thereby create challenges during formulation and processing. Protein adsorption is a complex process and the presence of surfactants further complicates the system, in which additional parameters need to be considered. The purpose of this study is to scrutinize the influence of surfactants on protein adsorption to interfaces, using lysozyme as a model protein and sorbitan monooleate 80 (S80), polysorbate 80 (T80), polyethylene-block-poly(ethylene glycol) (PE-PEG) and polyglycerol polyricinoleate (PG-PR) as model surfactants. Rheological properties, measured using a TA AR-G2 rheometer equipped with a double wall ring (DWR) geometry, were used to compare the efficacy of the surfactant in hindering lysozyme adsorption. The system consists of a ring and a Delrin® trough with a circular channel (interfacial area=1882.6 mm(2)). Oscillatory shear measurements were conducted at a constant frequency of 0.1 Hz, a temperature of 25°C, and with strain set to 1%. The adsorption of lysozyme to the oil-water interface results in the formation of a viscoelastic film. This can be prevented by addition of surfactants, in a manner depending on the concentration and the type of surfactant. The more hydrophilic surfactants are more effective in hindering lysozyme adsorption to oil-water interfaces. Additionally, the larger surfactants are more persistent in preventing film formation, whereas the smaller ones eventually give space for the lysozyme on the interface. The addition of a mixture of two different surfactants was only beneficial when the two hydrophilic surfactants were mixed, in which case a delay in the multilayer formation was detected. The method is able to detect the interfacial adsorption of lysozyme and thus the hindering of film formation by model surfactants. It can therefore aid in processing of any delivery systems for proteins in which the protein is introduced to oil-water interfaces. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  1. Characterization and mosquito repellent activity of citronella oil nanoemulsion.

    PubMed

    Sakulku, Usawadee; Nuchuchua, Onanong; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha

    2009-05-08

    Encapsulated citronella oil nanoemulsion prepared by high pressure homogenization at varying amounts of surfactant and glycerol, was studied in terms of the droplet size, stability, release characteristics and in vivo mosquito protection. Transparent nanoemulsion can be obtained at optimal concentration of 2.5% surfactant and 100% glycerol. Physical appearance and the stability of the emulsion were greatly improved through an addition of glycerol, owing to its co-solvent and highly viscous property. The increasing emulsion droplet increased the oil retention. The release behavior could be attributed to the effect of droplet size and concentrations of surfactant and glycerol. By fitting to Higuchi's equation, an increase in glycerol and surfactant concentrations resulted in slow release of the oil. The release rate related well to the protection time where a decrease in release rate can prolong mosquito protection time.

  2. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  3. Amphiphilic Soft Janus Particles as Interfacial Stabilizers

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Niu, Sunny; Sosa, Chris; Prud'Homme, Robert; Priestley, Rodney; Priestley Polymer Group Team; Prud'homme Research Group Team

    Janus particles, which incorporate two or more ``faces'' with different chemical functionality, have attracted great attention in scientific research. Amphiphilic Janus particles have two faces with distinctly different hydrophobicity. This can be thought of as colloidal surfactants. Theoretical studies on the stabilization of emulsions using Janus particles have confirmed higher efficiency. Herein we synthesize the narrow distributed amphiphilic polymeric Janus particles via Precipitation-Induced Self-Assembly (PISA). The efficiency of the amphiphilic Janus particles are tested on different oil/water systems. Biocompatible polymers can also be used on this strategy and may potentially have wide application for food emulsion, cosmetics and personal products.

  4. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material

    USDA-ARS?s Scientific Manuscript database

    Packed column experiments were conducted to investigate the transport and blocking behavior of surfactant- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated natural aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...

  5. Surfactant-assisted liquefaction of particulate carbonaceous substances

    NASA Technical Reports Server (NTRS)

    Hsu, G. C. (Inventor)

    1978-01-01

    A slurry of carbonaceous particles such as coal containing an oil soluble polar substituted oleophilic surfactant, suitably an amine substituted long chain hydrocarbon, is liquefied at high temperature and high hydrogen presence. The pressure of surfactant results in an increase in yield and the conversion product contains a higher proportion of light and heavy oils and less asphaltene than products from other liquefaction processes.

  6. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow

    2004-05-01

    We report on progress in three areas. In part one, the wetting effects of synthetic base oils are reported. Part two reports progress in understanding the effects of surfactants of known chemical structures, and part three integrates the results from surface and core tests that show the wetting effects of commercial surfactant products used in synthetic and traditional oil-based drilling fluids. An important difference between synthetic and traditional oil-based muds (SBM and OBM, respectively) is the elimination of aromatics from the base oil to meet environmental regulations. The base oils used include dearomatized mineral oils, linear alpha-olefins, internal olefins, andmore » esters. We show in part one that all of these materials except the esters can, at sufficiently high concentrations, destabilize asphaltenes. The effects of asphaltenes on wetting are in part related to their stability. Although asphaltenes have some tendency to adsorb on solid surfaces from a good solvent, that tendency can be much increased near the onset of asphaltene instability. Tests in Berea sandstone cores demonstrate wetting alteration toward less water-wet conditions that occurs when a crude oil is displaced by paraffinic and olefinic SBM base oils, whereas exposure to the ester products has little effect on wetting properties of the cores. Microscopic observations with atomic forces microscopy (AFM) and macroscopic contact angle measurements have been used in part 2 to explore the effects on wetting of mica surfaces using oil-soluble polyethoxylated amine surfactants with varying hydrocarbon chain lengths and extent of ethoxylation. In the absence of water, only weak adsorption occurs. Much stronger, pH-dependent adsorption was observed when water was present. Varying hydrocarbon chain length had little or no effect on adsorption, whereas varying extent of ethoxylation had a much more significant impact, reducing contact angles at nearly all conditions tested. Preequilibration of aqueous and oleic phases appeared to have little influence over surfactant interactions with the mica surface; the solubility in water of all three structures appeared to be very limited. Commercial emulsifiers for both SBM and OBM formulations are blends of tall oil fatty acids and their polyaminated derivatives. In part three of this report, we integrate observations on smooth surfaces with those in Berea sandstone cores to show the effects of low concentrations of these products with and without the added complexity of adsorbed material from crude oils. Unlike the polyethoxylated amines studied in part two, there are significant non-equilibrium effects that can occur when water first contacts oil with dissolved surfactant. Very oil-wet conditions can be produced on first contact. Surfactant dissolved in oil had less effect on wetting alteration for one combination of crude oil and surfactant, although the generality of this observation can only be assessed by additional tests with crude oils of different composition. The wettability-altering effect of surfactants on both mica and Berea sandstone was most significant when they contacted surfaces after adsorption of crude oil components. Tests without crude oil might underestimate the extent of wetting change possible with these SBM and OBM emulsifiers.« less

  7. Detection of Vegetable Oil Variance Using Surface Plasmon Resonance (SPR) Technique

    NASA Astrophysics Data System (ADS)

    Supardianningsih; Panggabean, R. D.; Romadhon, I. A.; Laksono, F. D.; Nofianti, U.; Abraha, K.

    2018-05-01

    The difference between coconut oil, corn oil, olive oil, and palm oil has been detected using surface plasmon resonance (SPR) technique. This is a new method in material characterization that can be used to identify vegetable oil variance. The SPR curve was measured by SPR system consisting of optical instruments, mechanical instruments, Main UNIT, and user interface (computer). He-Ne laser beam of wavelength 633 nm was used as light source, while gold (Au) thin film evaporated on half cylinder prism was used as the base so that surface plasmon polariton (SPP) waves propagate at the interface. Tween-80 and PEG-400 are used as surfactant and co-surfactant to make water-oil emulsion from each sample. The sample was prepared with the ratio of oil: surfactant: co-surfactant as 1:2:1 and then stirred on the water to make emulsions. The angle shift was measured by the change of SPR angle from prism/Au/air system to prism/Au/water-oil emulsion. The different SPR angle of each sample has been detected in the various number of spray, a method that was used for depositing the emulsion. From this work, we conclude that the saturated fatty acid component was the most significant component that changes the refractive index in the vegetable oil in water emulsion that can be used to characterize the vegetable oil variance.

  8. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The bridging conformations of double-end anchored polymer-surfactants destabilize a hydrogel of lipid membranes

    NASA Astrophysics Data System (ADS)

    Slack, N. L.; Davidson, P.; Chibbaro, M. A.; Jeppesen, C.; Eiselt, P.; Warriner, H. E.; Schmidt, H.-W.; Pincus, P.; Safinya, C. R.

    2001-10-01

    Double-end-anchored poly-ethylene-glycol-surfactants (DEA-PEG-surfactants) induce the gelation of lyotropic lamellar Lα phases stabilized by undulation forces. The physical hydrogel (Lα,g) derives its viscoelasticity from the proliferation of defects at a mesoscopic level. The DEA-PEG-surfactants assume both looping and bridging conformations. The existence of novel bridging conformations is indicated by the coexistence of two lamellar phases and the limited swelling of the Lα and Lα,g phases. Modeling of the polymer decorated membranes demonstrates the existence of bridging and yields a rapidly decreasing density of bridging conformations with increasing interlayer spacing.

  10. Modelling and scale-up of chemical flooding: First annual report for the period October 1985-September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Sepehrnoori, K.

    1987-07-01

    This report consists of three parts. Part A describes the development of our chemical flood simulator UTCHEM during the past year, simulation studies, and physical property modelling and experiments. Part B is a report on the optimization and vectorization of UTCHEM on our Cray supercomputer to speed it up. Part C describes our use of UTCHEM to investigate the use of tracers for interwell reservoir tests. Part A of this Annual Report consists of five sections. In the first section, we give a general description of the simulator and recent changes in it along with a test case for amore » slightly compressible fluid. In the second section, we describe the major changes which were needed to add gel and alkaline reactions and give preliminary simulation results for these processes. In the third section, comparisons with a surfactant pilot field test are given. In the fourth section, process scaleup and design simulations are given and also our recent mesh refinement results. In the fifth section, experimental results and associated physical property modelling studies are reported. Part B gives our results on the speedup of UTCHEM on a Cray supercomputer. Depending on the size of the problem, this speedup factor was at least tenfold and resulted from a combination of a faster solver, vectorization, and code optimization. Part C describes our use of UTCHEM for field tracer studies and gives the results of a comparison with field tracer data on the same field (Big Muddy) as was simulated and compared with the surfactant pilot reported in section 3 of Part A. 120 figs., 37 tabs.« less

  11. The neutral oil in commercial linear alkylbenzenesulfonate and its effect on organic solute solubility in water

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.

    1991-01-01

    Apparent water solubilities of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 2,4,5,2???,5???-penta-chlorobiphenyl (PCB), and 1,2,3-trichlorobenzene (TCB) were determined at room temperature in aqueous solutions of commercial linear alkylbenzenesulfonate (LAS), oil-free (solvent-extracted) LAS, and single-molecular 4-dodecyl-benzenesulfonate. The extent of solute solubility enhancement by commercial LAS is markedly greater than that by other ionic surfactants below the measured critical micelle concentration (CMC); above the CMC, the enhancement data with LAS are comparable with other surfactants as micelles. The small amount of neutral oils in commercial LAS (1.7%), comprising linear alkylbenzenes (LABs) and bis(alkylphenyl) sulfones, contributes significantly to the enhanced solubility of DDT and PCB below the CMC; the effect is ascribed to formation of oil-surfactant emulsions. The oil-surfactant emulsion formed corresponds to ???9-10% of the commercial LAS below the CMC. The data suggest that discharge of wastewater containing a significant level of oils and surface-active agents could lead to potential mobilization of organic pollutants and LABs in aquatic environments.

  12. Preparation and physicochemical properties of surfactant-free emulsions using electrolytic-reduction ion water containing lithium magnesium sodium silicate.

    PubMed

    Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi

    2013-04-01

    Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.

  13. Spontaneous emulsification and self-propulsion of oil droplets induced by the synthesis of amino acid-based surfactants.

    PubMed

    Nagasaka, Yuriko; Tanaka, Shinpei; Nehira, Tatsuo; Amimoto, Tomoko

    2017-09-27

    It is well known that oil droplets in or on water exhibit spontaneous movement induced by surfactants, and this self-propulsion is regarded as an important factor in droplet-based models for a living cell. We report here an oil-droplet system spontaneously producing amino acid-based surfactants, which are then utilized for the droplets' self-propulsion. Thus this system is an active system capable of producing the fuel for the propulsion by itself, which can be used as a conceptual model for cell metabolism.

  14. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  15. Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.

    PubMed

    Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily

    2016-06-01

    Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Single chain structure of a poly(N-isopropylacrylamide) surfactant in water.

    PubMed

    Abbott, Lauren J; Tucker, Ashley K; Stevens, Mark J

    2015-03-05

    We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.

  17. A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

    PubMed Central

    Hu, Zhenhua; Liao, Meiling; Chen, Yinghui; Cai, Yunpeng; Meng, Lele; Liu, Yajun; Lv, Nan; Liu, Zhenguo; Yuan, Weien

    2012-01-01

    Background Silicone oil, as a major component in conditioner, is beneficial in the moisture preservation and lubrication of hair. However, it is difficult for silicone oil to directly absorb on the hair surface because of its hydrophobicity. Stable nanoemulsions containing silicone oil may present as a potential solution to this problem. Methods Silicone oil nanoemulsions were prepared using the oil-in-water method with nonionic surfactants. Emulsion particle size and distribution were characterized by scanning electron microscopy. The kinetic stability of this nanoemulsion system was investigated under accelerated stability tests and long-term storage. The effect of silicone oil deposition on hair was examined by analyzing the element of hair after treatment of silicone oil nanoemulsions. Results Nonionic surfactants such as Span 80 and Tween 80 are suitable emulsifiers to prepare oil-in-water nanoemulsions that are both thermodynamically stable and can enhance the absorption of silicone oil on hair surface. Conclusion The silicone oil-in-water nanoemulsions containing nonionic surfactants present as a promising solution to improve the silicone oil deposition on the hair surface for hair care applications. PMID:23166436

  18. Production of xanthan gum from a chemically defined medium introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisrock, W.P.; Klein, H.S.

    1983-02-22

    Heteropolysaccharides produced by the action of Xanthomonas bacteria on carbohydrate media have a potential application as film forming agents, as thickeners in oil field drilling fluids and fracturing liquids and as emulsifying, stabilizing, and sizing agents. Heteropolysaccharides, particularly, xanthan gum, have a significant potential as mobility control agents in micellar polymer flooding. Xanthan gum has excellent viscosifying properties at low concentration, is resistant to shear degradation and exhibits only minimal losses in viscosity as a function of temperature, pH, and ionic strength. For these reasons, xanthan gum is an attractive alternative to synthetic polyacrylamides for enhanced oil recovery operations. 15more » claims.« less

  19. Self-Nanoemulsifying Drug Delivery System of Coenzyme (Q10) with Improved Dissolution, Bioavailability, and Protective Efficiency on Liver Fibrosis.

    PubMed

    Khattab, Abeer; Hassanin, Lobna; Zaki, Nashwah

    2017-07-01

    The aim of our investigation is to develop and characterize self-nanoemulsifying drug delivery systems (SNEDDS) of CoQ 10 to improve its water solubility, dissolution rate, and bioavailability, and then evaluate its biochemical and physiological effect on liver cirrhosis in rats compared with CoQ 10 powder. SNEDDS are isotropic and thermodynamically stable mixture of oil, surfactant, co-surfactant, and drug that form an oil/water nanoemulsion when added to aqueous phases with soft agitation. Upon administration, self-nanoemulsifying system becomes in contact with gastrointestinal fluid and forms o/w nanoemulsion by the aid of gastrointestinal motility. When the nanoemulsion is formed in the gastrointestinal tract, it presents the drug in a solubilized form inside small nano-sized droplets that provide a large surface area for enhancing the drug release and absorption. Solubility of CoQ 10 in various oils, surfactants, and co-surfactants were studied to identify the components of SNEDDS; pseudo-ternary phase diagrams were plotted to identify the efficient self-emulsifying regions. CoQ 10 -loaded SNEDDS were prepared using isopropyl myristate as oil; Cremophor El, Labrasol, or Tween80 as surfactant; and Transcutol as co-surfactant. The amount of CoQ 10 in each vehicle was 3%. The formulations that passed thermostability evaluation test were assessed for particle size analysis, morphological characterization, refractive index, zeta potential, viscosity, electroconductivity, drug release profile, as well as ex vivo permeability. Pharmacokinetics and hepatoprotective efficiency of the optimized SNEDDS of CoQ 10 compared with CoQ 10 suspension were performed. Results showed that all optimized formulae have the ability to form a good and stable nanoemulsion when diluted with water; the mean droplet size of all formulae was in the nanometric range (11.7-13.5 nm) with optimum polydispersity index values (0.2-0.21). All formulae showed negative zeta potential (-11.3 to -17.2), and maximum drug loading efficiency. One hundred percent of CoQ 10 was released from most formulae within 30 min. One hundred percent of CoQ 10 was permeated from all formulae through 10 h. The pharmacokinetic study in rabbits revealed a significant increase in bioavailability of CoQ 10 SNEDDS to 2.1-fold compared with CoQ 10 suspension after oral administration. Comparative effect of the optimized formulae on acute liver injury compared with CoQ 10 powder was also studied; it was found that all the liver biochemical markers as alanine transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), total protein (TP), and albumin were significantly improved at p < 0.05. Also, histochemical and histopthological studies confirm the biochemical results. Our results suggest the potential use of SNEDDS to increase the solubility of liphophilic drug as poorly water-soluble CoQ 10 and improve its oral absorption, so it can be more efficient to improve liver damage compared to CoQ 10 powder. These results demonstrated that CoQ 10 SNEDDS inhibited thioacetamide (TAA)-induced liver fibrosis mainly through suppression of collagen production.

  20. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    PubMed Central

    2011-01-01

    Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C). The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry), was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment PMID:22078466

  1. Jet A fuel recovery using micellar flooding: Design and implementation.

    PubMed

    Kostarelos, Konstantinos; Lenschow, Søren R; Stylianou, Marinos A; de Blanc, Phillip C; Mygind, Mette Marie; Christensen, Anders G

    2016-09-01

    Surfactants offer two mechanisms for recovering NAPLs: 1) to mobilize NAPL by reducing NAPL/water interfacial tension, and; 2) to increase the NAPL's aqueous solubility-called solubilization-as an enhancement to pump & treat. The second approach has been well-studied and applied successfully in several pilot-scale and a few full-scale tests within the last 15years, known as Surfactant Enhanced Aquifer Remediation (SEAR). A useful source of information for this second approach is the "Surfactant-enhanced aquifer remediation (SEAR) design manual" from the U.S. Navy Facilities Engineering Command. Few attempts, however, have been made at recovering NAPLs using the mobilization approach presented in this paper. Now, a full-scale field implementation of the mobilization approach is planned to recover an LNAPL (Jet A fuel) from a surficial sand aquifer located in Denmark using a smaller amount of surfactant solution and fewer PVs of throughput compared with the SEAR approach. The approach will rely on mobilizing the LNAPL so that it is recovered ahead of the surfactant microemulsion, also known as a micellar flood. This paper will review the laboratory work performed as part of the design for a full-scale implementation of a micellar flood. Completed lab work includes screening of surfactants, phase behavior and detailed salinity scans of the most promising formulations, and generating a ternary diagram to be used for the numerical simulations of the field application. The site owners and regulators were able to make crucial decisions such as the anticipated field results based on this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.

    PubMed

    Chávez-Miyauchi, Tomás E; Firoozabadi, Abbas; Fuller, Gerald G

    2016-03-08

    Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.

  3. The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation.

    PubMed

    Kaczorek, E; Urbanowicz, M; Olszanowski, A

    2010-11-01

    In this study the capacity of the newly isolated environmental strain Aeromonas hydrophila was evaluated. The influence of three surfactants: rhamnolipides, saponins and Triton X-100 on cell surface properties of the A. hydrophila environmental strain and the biodegradation process of diesel oil was studied. The surface activities in water, a mineral salts medium and in the biological system of all considered surfactants were estimated by means of equilibrium surface tension experiments. The obtained results indicated that critical micellar concentration in the biological system is twice higher for saponins and Triton X-100, and three times higher for rhamnolipides. Our results indicated also, that cell surface hydrophobicity (CSH) of bacteria is correlated with carbon sources in broth medium. The mechanism of surfactant action seems to be dependent on the type and concentration of surfactant used in the studies. The best effect of saponins on diesel oil biodegradation was observed using the A. hydrophila strain, diesel oil biodegradation after 21 days was 78%. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    NASA Astrophysics Data System (ADS)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  5. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  6. Mathematical modeling heat and mass transfer processes in porous media

    NASA Astrophysics Data System (ADS)

    Akhmed-Zaki, Darkhan

    2013-11-01

    On late development stages of oil-fields appears a complex problem of oil-recovery reduction. One of solution approaches is injecting of surfactant together with water in the form of active impurities into the productive layer - for decreasing oil viscosity and capillary forces between ``oil-water'' phases system. In fluids flow the surfactant can be in three states: dissolved in water, dissolved in oil and adsorbed on pore channels' walls. The surfactant's invasion into the reservoir is tracked by its diffusion with reservoir liquid and mass-exchange with two phase (liquid and solid) components of porous structure. Additionally, in this case heat exchange between fluids (injected, residual) and framework of porous medium has practical importance for evaluating of temperature influences on enhancing oil recovery. Now, the problem of designing an adequate mathematical model for describing a simultaneous flowing heat and mass transfer processes in anisotropic heterogeneous porous medium -surfactant injection during at various temperature regimes has not been fully researched. In this work is presents a 2D mathematical model of surfactant injections into the oil reservoir. Description of heat- and mass transfer processes in a porous media is done through differential and kinetic equations. For designing a computational algorithm is used modify version of IMPES method. The sequential and parallel computational algorithms are developed using an adaptive curvilinear meshes which into account heterogeneous porous structures. In this case we can evaluate the boundaries of our process flows - fronts (``invasion'', ``heat'' and ``mass'' transfers), according to the pressure, temperature, and concentration gradient changes.

  7. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  8. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  9. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  10. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  11. 40 CFR 417.166 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant property Pretreatment standard BOD5 No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease... No limitation. COD Do. TSS Do. Surfactants Do. Oil and grease Do. pH Do. [40 FR 27455, June 30, 1975...

  12. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    PubMed

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-03

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.

  13. Biological enhancement of hydrocarbon extraction

    DOEpatents

    Brigmon, Robin L [North Augusta, SC; Berry, Christopher J [Aiken, SC

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  14. Wrapping with a splash: High-speed encapsulation with ultrathin sheets.

    PubMed

    Kumar, Deepak; Paulsen, Joseph D; Russell, Thomas P; Menon, Narayanan

    2018-02-16

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Green synthesis of amphipathic graphene aerogel constructed by using the framework of polymer-surfactant complex for water remediation

    NASA Astrophysics Data System (ADS)

    Cao, Jingjing; Wang, Ziyuan; Yang, Xianhou; Tu, Jing; Wu, Ronglan; Wang, Wei

    2018-06-01

    Graphene aerogels have been extensively studied in water treatment and oil remediation. We report a mild and green method to prepare a 3D-columnar graphene aerogel. The aerogel was synthesized by using polyvinyl alcohol (PVA) and stearic acid (SA) as crosslinking agents to construct a framework of reduced graphene oxide (RGO). The interaction between PVA, SA, and stacked RGO sheets created a mechanically very robust aerogel. The aerogel possesses ultra-light performance with the destiny ranging from 4.9 to 10 mg cm-3. The aerogel also demonstrated ultrafast oil absorption, good fire-resistance, and excellent mechanical properties. The adsorptive capacities are in the range of 105-250 times of its original weight for various organic liquids after the absorption. The aerogel also exhibited a strong durability and reusability, and after ten cycles of absorbing-squeezing, the adsorptive capacity is nearly unchanged, indicating potential application in practical oil remediation.

  16. Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension

    NASA Astrophysics Data System (ADS)

    Leite Pinto, Rodrigo; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud

    2018-02-01

    We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that the oil-water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation—located at the surfactant deposition point—decreases with the oil-layer thickness. We also observe a critical oil-layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity. We then provide an analytical modelization that explains quantitatively all these experimental features. In particular, our analysis allows us to derive an analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially resolved tensiometry technique.

  17. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  18. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    PubMed

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.

  19. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducreaux, J.; Baviere, M.; Seabra, P.

    1995-12-31

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and inmore » an experimental pool, located at the Institut Franco-Allemand de Recherche sur l`Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested.« less

  20. Search for the source of an apparent interfacial resistance to mass transfer of CnEm surfactants to the water/oil interface.

    PubMed

    Huston, Kyle J; Kiemen, Ashley; Larson, Ronald G

    2018-06-12

    Experiments have shown that relaxation of oil/water interfacial tension by adsorption of alkyl ethoxylate surfactants from water onto an oil droplet is delayed relative to diffusion-controlled adsorption. We examine possible causes of this delay, and we show that several are implausible. We find that re-dissolution of the surfactant in the oil droplet cannot explain the apparent interfacial resistance at short times, because the interface will preferentially fill before any such re-dissolution occurs. We also perform umbrella sampling with molecular dynamics simulation and do not find any evidence of a free energy barrier or low-diffusivity zone near the interface. Nor do we find evidence from simulation that pre-micellar aggregation slows diffusion enough to cause the observed resistance to interfacial adsorption. We are therefore unable to pinpoint the cause of the resistance, but we suggest that "dead time" associated with the experimental method could be responsible - specifically a local depletion of surfactant by the ejected droplet when creating the fresh interface between the oil and water.

  1. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    PubMed

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 40 CFR 417.155 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.08 .04 TSS 0.04 .02 Surfactants 0.04 .02... Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  3. Functional nanocomposites prepared by self-assembly and polymerization of diacetylene surfactants and silicic acid

    NASA Technical Reports Server (NTRS)

    Yang, Yi; Lu, Yunfeng; Lu, Mengcheng; Huang, Jinman; Haddad, Raid; Xomeritakis, George; Liu, Nanguo; Malanoski, Anthony P.; Sturmayr, Dietmar; Fan, Hongyou; hide

    2003-01-01

    Conjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material. The nanostructured inorganic host altered the diacetylene polymerization behavior, and the resulting nanocomposites show unique thermo-, mechano-, and solvatochromic properties. Polymerization of the incorporated surfactants resulted in polydiacetylene (PDA)/silica nanocomposites that were optically transparent and mechanically robust. Molecular modeling and quantum calculations and (13)C spin-lattice relaxation times (T(1)) of the PDA/silica nanocomposites indicated that the surfactant monomers can be uniformly organized into precise spatial arrangements prior to polymerization. Nanoindentation and gas transport experiments showed that these nanocomposite films have increased hardness and reduced permeability as compared to pure PDA. Our work demonstrates polymerizable surfactant/silica self-assembly to be an efficient, general approach to the formation of nanostructured conjugated polymers. The nanostructured inorganic framework serves to protect, stabilize, and orient the polymer, mediate its performance, and provide sufficient mechanical and chemical stability to enable integration of conjugated polymers into devices and microsystems.

  4. Influence of alkyl chain length compatibility on microemulsion structure and solubilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, V.K.; O'Connell, J.P.; Shah, D.O.

    1980-06-01

    The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less

  5. The effect of amphiphilic polymers with a continuous amphiphilicity profile on the membrane properties in a bicontinuous microemulsions studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Klemmer, Helge F. M.; Frielinghaus, Henrich; Allgaier, Jürgen; Ohl, Michael; Holderer, Olaf

    2017-06-01

    Microemulsion systems consisting of oil, water and surfactant have been studied with neutron scattering techniques. The amount of surfactant needed to form a microemulsion can be dramatically reduced by the addition of small amounts of amphiphilic block copolymers (boosting effect). Here, we studied the influence of block copolymers with gradually changing amphiphilicity from hydrophilic to hydrophobic. Small angle neutron scattering (SANS), neutron spin echo spectroscopy (NSE) and phase diagram measurements in combination give access to the elastic properties of the membrane. The underlying NSE experiments for this interpretation rely on smallest changes of the relaxation curves (of ca. 1% steps) for still small changes of the bending rigidity (of ca. 10% steps). This high reliability of the experiments conducted at the SNS-NSE displays the accuracy of the instrument itself and the latest developments of the evaluation software, which were necessary to interpret such tiny changes of the bending rigidity reliably.

  6. Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-08-01

    Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.

  7. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  8. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    PubMed

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  9. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants.

    PubMed

    Couto, Camila Rattes de Almeida; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-12-15

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may pose problems of toxicity themselves; therefore, biosurfactants are considered to constitute an environmentally friendly and effective alternative. Nevertheless, the putative effects of such agents on the microbiomes of oil-contaminated and uncontaminated marine environments have not been sufficiently evaluated. Here, we studied the effects of the surfactant Ultrasperse II ® and the surfactin (biosurfactant) produced by Bacillus sp. H2O-1 on the bacterial communities of marine water. Specifically, we used quantitative PCR and genetic fingerprint analyses to study the abundance and structure of the bacterial communities in marine water collected from two regions with contrasting climatic conditions. The addition of either chemical surfactant or biosurfactant influenced the structure and abundance of total and oil-degrading bacterial communities of oil-contaminated and uncontaminated marine waters. Remarkably, the bacterial communities responded similarly to the addition of oil and/or either the surfactant or the biosurfactant in both set of microcosms. After 30 days of incubation, the addition of surfactin enhanced the oil-degrading bacteria more than the chemical surfactant. However, no increase of hydrocarbon biodegradation values was observed, irrespective of the dispersant used. These data contribute to an increased understanding of the impact of novel dispersants on marine bacteriomes before commercial release into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The National Shipbuilding Research Program. Trailer Mounted Water Recovery and Reuse System

    DTIC Science & Technology

    2000-11-30

    surfactants, and stabilize oil emulsions. • Sequestering or chelating agents bind problematic ions such as calcium or iron, which tend to form deposits on...cleaned parts. • Wetting/emulsifying agents (surfactants) help remove oil from dirty parts and stabilize the removed oil, preventing it from redepositing...neutralized; • The metal-loading can overcome the sequestering agents ’ capacity to keep the metals in solution; and • Oil and grease, if held in the emulsified

  11. Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus.

    PubMed

    Anjali, C H; Sharma, Yamini; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-02-01

    Nanoemulsion composed of neem oil and non-ionic surfactant Tween 20, with a mean droplet size ranging from 31.03 to 251.43 nm, was formulated for various concentrations of the oil and surfactant. The larvicidal effect of the formulated neem oil nanoemulsion was checked against Culex quinquefasciatus. O/W emulsion was prepared using neem oil, Tween 20 and water. Nanoemulsion of 31.03 nm size was obtained at a 1:3 ratio of oil and surfactant, and it was found to be stable. The larger droplet size (251.43 nm) shifted to a smaller size of 31.03 nm with increase in the concentration of Tween 20. The viscosity of the nanoemulsion increased with increasing concentration of Tween 20. The lethal concentration (LC50) of the nanoemulsion against Cx. quinquefasciatus was checked for 1:0.30, 1:1.5 and 1:3 ratios of oil and surfactant respectively. The LC50 decreased with droplet size. The LC50 for the ratio 1:3 nanoemulsions was 11.75 mg L(-1). The formulated nanoemulsion of 31.03 nm size was found to be an effective larvicidal agent. This is the first time that a neem oil nanoemulsion of this droplet size has been reported. It may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus. Copyright © 2011 Society of Chemical Industry.

  12. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  13. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets, which were eventually washed away by the continuous flow process. The greater wettability alteration caused by microemulsions resulted in a lower threshold capillary pressure, which in turn promoted the mobilization of NAPL ganglia more than surfactant alone.

  14. Structure and oil responsiveness of viscoelastic fluids based on mixed anionic/cationic wormlike surfactant micelles

    NASA Astrophysics Data System (ADS)

    Shibaev, A. V.; Makarov, A. V.; Aleshina, A. L.; Rogachev, A. V.; Kuklin, A. I.; Philippova, O. E.

    2017-05-01

    In this work, a combination of small-angle neutron scattering, dynamic light scattering and rheometry was applied in order to investigate the structure and oil responsiveness of anionic/cationic wormlike surfactant micelles formed in a mixture of potassium oleate and n-octyltrimethylammonium bromide (C8TAB). A new facile method of calculating the structure factor of charged interacting wormlike micelles was proposed. It was shown that the mean distance between the micelles decreases upon the increase of the amount of cationic co-surfactant and lowering of the net micellar charge. It was demonstrated that highly viscous fluids containing mixed anionic/cationic wormlike micelles are highly responsive to oil due to its solubilization inside the micellar cores, which leads to the disruption of micelles and formation of microemulsion droplets. Experimental data suggest that solubilization of oil proceeds differently in the case of mixed anionic/cationic micelles in the absence of salt, and anionic micelles of the same surfactant in the presence of KCl.

  15. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: A response surface methodology approach.

    PubMed

    Mehmood, Tahir; Ahmad, Asif; Ahmed, Anwaar; Ahmed, Zaheer

    2017-08-15

    The present study was conducted to prepare co-surfactant free, olive-oil based alpha tocopherol nanoemulsions, using a food grade non-ionic surfactant. Response surface methodology (RSM) was used to determine the effects of independent variables (ultrasonic homogenization time, olive oil concentrations and surfactant contents) on different physico-chemical characteristics of O/W nanoemulsions. This study was carried out using a central composite design. The coefficients of determination were greater than 0.900 for all response variables and there were significant effects of independent variables on all responses. The optimum levels of independent variables for the preparation of nanoemulsions were 3min. ultrasonic homogenization time, 4% olive oil content and 2.08% surfactant concentration. The physico-chemical responses at these levels were 151.68nm particle size, 7.17% p-anisidine and 88.64% antioxidant activity. These results will help in design of nanoemulsions with optimum independent variables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  18. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  19. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  20. Effect of microemulsions on cell viability of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  1. Altering Reservoir Wettability to Improve Production from Single Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. W. Weiss

    2006-09-30

    Many carbonate reservoirs are naturally fractured and typically produce less than 10% original oil in place during primary recovery. Spontaneous imbibition has proven an important mechanism for oil recovery from fractured reservoirs, which are usually weak waterflood candidates. In some situations, chemical stimulation can promote imbibition of water to alter the reservoir wettability toward water-wetness such that oil is produced at an economic rate from the rock matrix into fractures. In this project, cores and fluids from five reservoirs were used in laboratory tests: the San Andres formation (Fuhrman Masho and Eagle Creek fields) in the Permian Basin of Texasmore » and New Mexico; and the Interlake, Stony Mountain, and Red River formations from the Cedar Creek Anticline in Montana and South Dakota. Solutions of nonionic, anionic, and amphoteric surfactants with formation water were used to promote waterwetness. Some Fuhrman Masho cores soaked in surfactant solution had improved oil recovery up to 38%. Most Eagle Creek cores did not respond to any of the tested surfactants. Some Cedar Creek anticline cores had good response to two anionic surfactants (CD 128 and A246L). The results indicate that cores with higher permeability responded better to the surfactants. The increased recovery is mainly ascribed to increased water-wetness. It is suspected that rock mineralogy is also an important factor. The laboratory work generated three field tests of the surfactant soak process in the West Fuhrman Masho San Andres Unit. The flawlessly designed tests included mechanical well clean out, installation of new pumps, and daily well tests before and after the treatments. Treatments were designed using artificial intelligence (AI) correlations developed from 23 previous surfactant soak treatments. The treatments were conducted during the last quarter of 2006. One of the wells produced a marginal volume of incremental oil through October. It is interesting to note that the field tests were conducted in an area of the field that has not met production expectations. The dataset on the 23 Phosphoria well surfactant soaks was updated. An analysis of the oil decline curves indicted that 4.5 lb of chemical produced a barrel of incremental oil. The AI analysis supports the adage 'good wells are the best candidates.' The generally better performance of surfactant in the high permeability core laboratory tests supports this observation. AI correlations were developed to predict the response to water-frac stimulations in a tight San Andres reservoir. The correlations maybe useful in the design of Cedar Creek Anticline surfactant soak treatments planned for next year. Nuclear Magnetic Resonance scans of dolomite cores to measure porosity and saturation during the high temperature laboratory work were acquired. The scans could not be correlated with physical measurement using either conventional or AI methods.« less

  2. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  3. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  4. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  5. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  6. 40 CFR 417.165 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.10 0.05 COD 0.44 .22 TSS 0.01 .005 Surfactants 0.10 .05 Oil and grease 0.01 .005 pH (1) (1... units (kilograms per 1,000 kg of anhydrous product) BOD5 0.02. COD 0.07. TSS 0.002. Surfactants 0.02...

  7. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    PubMed

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.

  8. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  9. Creating biocompatible oil-water interfaces without synthesis: direct interactions between primary amines and carboxylated perfluorocarbon surfactants.

    PubMed

    DeJournette, Cheryl J; Kim, Joonyul; Medlen, Haley; Li, Xiangpeng; Vincent, Luke J; Easley, Christopher J

    2013-11-05

    Currently, one of the most prominent methods used to impart biocompatibility to aqueous-in-oil droplets is to synthesize a triblock copolymer surfactant composed of perfluoropolyether and polyether blocks. The resulting surfactants (EA surfactant, KryJeffa, etc.) allow generation of highly biocompatible droplet surfaces while maintaining the heat stability of the starting material. However, production of these surfactants requires expertise in synthetic organic chemistry, creating a barrier to widespread adoption in the field. Herein, we describe a simple alternative to synthetic modification of surfactants to impart biocompatibility. We have observed that aqueous-in-oil droplet surfaces can be made biocompatible and heat stable by merely exploiting binding interactions between polyetherdiamine additives in the aqueous phase and carboxylated perfluorocarbon surfactants in the oil phase. Droplets formed under these conditions are shown to possess biocompatible surfaces capable of supporting picoliter-scale protein assays, droplet polymerase chain reaction (PCR), and droplet DNA amplification with isothermal recombinase polymerase amplification (RPA). Droplets formed with polyetherdiamine aqueous additives are stable enough to withstand temperature cycling during PCR (30-40 cycles at 60-94 °C) while maintaining biocompatibility, and the reaction efficiency of RPA is shown to be similar to that with a covalently modified surfactant (KryJeffa). The binding interaction was confirmed with various methods, including FT-IR spectroscopy, NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and fluorescence microscopy. Overall, our results suggest that, by simply introducing a commercially-available, polyetherdiamine additive (Jeffamine ED-900) to the aqueous phase, researchers can avoid synthetic methods in generating biocompatible droplet surfaces capable of supporting DNA and protein analysis at the subnanoliter scale.

  10. PolSAR-Ap: Exploitation of Fully Polarimetric SAR Data for Sea Oil Slick Monitoring

    NASA Astrophysics Data System (ADS)

    Migliaccio, M.; Nunziata, F.

    2013-08-01

    In this study, some of the most up-to-dated polarimetric approaches for sea oil slick observation are reviewed and their performance is discussed using actual C-band RadarSAT-2 SAR data where both oil slicks, related to the Deepwater Horizon accident, and oil seeps are present.Results demonstrate the unique benefits of polarimetric SAR data in: a) characterizing the scattering mechanism of sea surface with and without surfactants; b) providing information on the damping properties of the surfactant.

  11. Understanding Protein-Interface Interactions of a Fusion Protein at Silicone Oil-Water Interface Probed by Sum Frequency Generation Vibrational Spectroscopy.

    PubMed

    Li, Yaoxin; Pan, Duohai; Nashine, Vishal; Deshmukh, Smeet; Vig, Balvinder; Chen, Zhan

    2018-02-01

    Protein adsorbed at the silicone oil-water interface can undergo a conformational change that has the potential to induce protein aggregation on storage. Characterization of the protein structures at interface is therefore critical for understanding the protein-interface interactions. In this article, we have applied sum frequency generation (SFG) spectroscopy for studying the secondary structures of a fusion protein at interface and the surfactant effect on protein adsorption to silicone oil-water interface. SFG and chiral SFG spectra from adsorbed protein in the amide I region were analyzed. The presence of beta-sheet vibrational band at 1635 cm -1 implies the protein secondary structure was likely perturbed when protein adsorbed at silicone oil interface. The time-dependent SFG study showed a significant reduction in the SFG signal of preadsorbed protein when polysorbate 20 was introduced, suggesting surfactant has stronger interaction with the interface leading to desorption of protein from the interface. In the preadsorbed surfactant and a mixture of protein/polysorbate 20, SFG analysis confirmed that surfactant can dramatically prevent the protein adsorption to silicone oil surface. This study has demonstrated the potential of SFG for providing the detailed molecular level understanding of protein conformation at interface and assessing the influence of surfactant on protein adsorption behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of a New Lipase from Staphylococcus sp. for Detergent Additive Capability

    PubMed Central

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase. PMID:24106703

  13. Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability.

    PubMed

    Chauhan, Mamta; Chauhan, Rajinder Singh; Garlapati, Vijay Kumar

    2013-01-01

    Lipases are the enzymes of choice for laundry detergent industries owing to their triglyceride removing ability from the soiled fabric which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In the present study, a partially purified bacterial lipase from Staphylococcus arlettae JPBW-1 isolated from the rock salt mine has been assessed for its triglyceride removing ability by developing a presoak solution so as to use lipase as an additive in laundry detergent formulations. The effects of selected surfactants, commercial detergents, and oxidizing agents on lipase stability were studied in a preliminary evaluation for its further usage in the industrial environment. Partially purified lipase has shown good stability in presence of surfactants, commercial detergents, and oxidizing agents. Washing efficiency has been found to be enhanced while using lipase with 0.5% nonionic detergent than the anioinic detergent. The wash performance using 0.5% wheel with 40 U lipase at 40°C in 45 min results in maximum oil removal (62%) from the soiled cotton fabric. Hence, the present study opens the new era in enzyme-based detergent sector for formulation of chemical-free detergent using alkaline bacterial lipase.

  14. Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system.

    PubMed

    Darvas, Mária; Gilányi, Tibor; Jedlovszky, Pál

    2011-02-10

    Competitive adsorption of a neutral amphiphilic polymer, namely poly(ethylene oxide) (PEO) and an ionic surfactant, i.e., sodium dodecyl sulfate (SDS), is investigated at the free water surface by computer simulation methods at 298 K. The sampled equilibrium configurations are analyzed in terms of the novel identification of the truly interfacial molecules (ITIM) method, by which the intrinsic surface of the aqueous phase (i.e., its real surface corrugated by the capillary waves) instead of an ideally flat surface approximating its macroscopic surface plane, can be taken into account. In the simulations, the surface density of SDS is gradually increased from zero up to saturation, and the structural, dynamical, and energetic aspects of the gradual squeezing out of the PEO chains from the surface are analyzed in detail. The obtained results reveal that this squeezing out occurs in a rather intricate way. Thus, in the presence of a moderate amount of SDS the majority of the PEO monomer units, forming long bulk phase loops in the absence of SDS, are attracted to the surface of the solution. This synergistic effect of SDS of moderate surface density on the adsorption of PEO is explained by two factors, namely by the electrostatic attraction between the ionic groups of the surfactant and the moderately polar monomer units of the polymer, and by the increase of the conformational entropy of the polymer chain in the presence of the surfactant. This latter effect, thought to be the dominant one among the above two factors, also implies the formation of similar polymer/surfactant complexes at the interface than what are known to exist in the bulk phase of the solution. Finally, in the presence of a large amount of SDS the more surface active surfactant molecules gradually replace the PEO monomer units at the interfacial positions, and squeezing out the PEO molecules from the surface in a monomer unit by monomer unit manner.

  15. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  16. Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65.

    PubMed

    Monte Blanco, S F M; Santos, J S; Feltes, M M C; Dors, G; Licodiedoff, S; Lerin, L A; de Oliveira, D; Ninow, J L; Furigo, A

    2015-12-01

    The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL(®) IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76% of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.

  17. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies.

    PubMed

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Cardoso, Stephani Araujo; Nicoli, Sara; Padula, Cristina; Santi, Patrizia; Rossi, Francesca; de Holanda E Silva, K Gyselle; Mansur, Claudia R Elias

    2017-07-01

    Nanoemulsions (NE) have attracted much attention due to their as dermal delivery systems for lipophilic drugs such as psoralens. However, NE feature low viscosity which might be unsuitable for topical application. In this work, we produced hydrogel-thickened nanoemulsions (HTN) using chitosan as thickening polymer to overcome the low viscosity attributed to NE. The aim of this study is to develop and characterize oil-in-water (o/w) HTN based on sweet fennel and clove essential oil to transdermal delivery of 8-methoxsalen (8-MOP). NE components (oil, surfactant) were selected on the basis of solubility and droplet size and processed in a high-pressure homogenizer (HPH). Drug loaded NE and HTN were characterized for particle size, stability under storage and centrifugation, rheological behavior, transdermal permeation and skin accumulation. Transdermal permeation of 8-MOP from HTN was determined by using Franz diffusion cell. Transdermal permeation from HTN using clove essential oil showed strong dependency chitosan molecular weight. On the other hand, HTN using sweet fennel oil showed an unexpected pH-dependent behavior not fully understood at the moment. These results need further investigation, nevertheless HTN revealed to be interesting and complex dermal delivery systems for poorly soluble drugs. Copyright © 2016. Published by Elsevier B.V.

  18. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    PubMed

    Zarai, Zied; Balti, Rafik; Sila, Assaâd; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-01

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface.

  19. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02... Surfactants 0.45 .15 Oil and grease 0.09 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  20. 40 CFR 417.152 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02 Oil and grease 0.015 .005 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.06 .02... Surfactants 0.45 .15 Oil and grease 0.09 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous...

  1. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) formore » existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated immobile gel within the fracture) was much narrower than the width of the fracture. The potential of various approaches were investigated for improving sweep in parts of the Daqing Oil Field that have been EOR targets. Possibilities included (1) gel treatments that are directed at channeling through fractures, (2) colloidal dispersion gels, (3) reduced polymer degradation, (4) more viscous polymer solutions, and (5) foams and other methods. Fractures were present in a number of Daqing wells (both injectors and producers). Because the fractures were narrow far from the wellbore, severe channeling did not occur. On the contrary, fractures near the wellbore aided reservoir sweep. In the February 2006 issue of the Journal of Petroleum Technology, a 'Distinguished-Author-Series' paper claimed that a process using aqueous colloidal dispersion gels (CDG gels) performed superior to polymer flooding. Unfortunately, this claim is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological development, should not be advocated as an improvement to, or substitute for, polymer flooding.« less

  2. Adsorption properties of the nanozirconia/anionic polyacrylamide system-Effects of surfactant presence, solution pH and polymer carboxyl groups content

    NASA Astrophysics Data System (ADS)

    Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa

    2016-05-01

    The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.

  3. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan McCool; Tony Walton; Paul Whillhite

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increasedmore » with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.« less

  4. Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants.

    PubMed

    Motoyoshiya, Jiro; Takigawa, Setsuko

    2014-11-01

    The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.

  5. EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS

    PubMed Central

    Voss, J. G.

    1963-01-01

    Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942

  6. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  7. Dietary Fat Feeding Alters Lipid Peroxidation in Surfactant-like Particles Secreted by Rat Small Intestine.

    PubMed

    Turan, Aasma; Mahmood, Akhtar; Alpers, David H

    2009-04-01

    Long-term feeding of fish oil (n-3) and corn oil (n-6) markedly enhances levels of lipid peroxidation within isolated rat enterocytes. The effect is 10-fold greater at the villus tip than in the crypt region, correlating with the distribution of deleterious oxidative systems (glutathione reductase) in the tip and beneficial systems (superoxide dismutase) at the base of the villus. Because of this vertical gradient of peroxidation, the process was thought to play a role in apoptosis of enterocytes at the villus tip. Surfactant-like particles (SLPs) are membranes secreted by the enterocyte and a component of these membranes is directed to the intestinal surface overlying villus tips. One suggested role for SLPs has been to protect the mucosal surface from the harsh luminal conditions that might enhance apoptotic loss of enterocytes. The hypothesis to be tested was whether SLP lipids, like those in enterocytes, were also peroxidized, although they were external to the cellular processes that seem to oxidize enterocyte lipids, or whether SLP were immune to these biological processes. Feeding with groundnut oil (n-9) was compared with fish oil (n-3) and corn oil (predominantly n-6) to determine whether oils with various lipid composition would affect peroxidation in both SLP and enterocytes. After an overnight fast, Wistar rats were fed 2 mL of dietary oil by gavage. Five hours later SLPs and underlying microvillus membranes (MVM) were isolated and analyzed for generation of thiobarbituric acid reactive substances (TBARS) and for hydrolase activities, at baseline and after addition of an Fe +2 /ascorbate system to induce peroxidation. In vitro lipid peroxidation using the Fe 2+ /ascorbate system produced greater peroxidation than in MVM. Intestinal alkaline phosphatase (IAP), sucrase and lactase activities were decreased in SLPs, but were unaltered in MVM except for IAP. The activities of maltase, trehalase, Leucine aminopeptidase and γ-glutamyltranspeptidase, were unaffected both in SLPs and MVM under these conditions. SLPs are more susceptible to oxidative damage than are the underlying MVMs. This may reflect results of a hostile luminal environment. It is not clear whether SLPs are acting as a lipid 'sink' to protect the MVM from greater oxidation, or are providing an initial stimulus for apoptosis of villus tip enterocytes, or both.

  8. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.

    2017-03-01

    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

  9. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  10. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    PubMed

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (<150 nm) and the presence of PEG 3350 did not interfere with the process of self-microemulsification.

  11. A PIV Study of Drop-interface Coalescence with Surfactants

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  12. Trace analysis of surfactants in Corexit oil dispersant formulations and seawater

    NASA Astrophysics Data System (ADS)

    Place, Benjamin J.; Perkins, Matt J.; Sinclair, Ewan; Barsamian, Adam L.; Blakemore, Paul R.; Field, Jennifer A.

    2016-07-01

    After the April 2010 explosion on the Deepwater Horizon oil rig, and subsequent release of millions of barrels of oil, two Corexit oil dispersant formulations were used in unprecedented quantities both on the surface and sub-surface of the Gulf of Mexico. Although the dispersant formulations contain four classes of surfactants, current studies to date focus on the anionic surfactant, bis-(2-ethylhexyl) sulfosuccinate (DOSS). Factors affecting the integrity of environmental and laboratory samples for Corexit analysis have not been systematically investigated. For this reason, a quantitative analytical method was developed for the detection of all four classes of surfactants, as well as the hydrolysis products of DOSS, the enantiomeric mixture of α- and β-ethylhexyl sulfosuccinate (α-/β-EHSS). The analytical method was then used to evaluate which practices for sample collection, storage, and analysis resulted in high quality data. Large volume, direct injection of seawater followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) minimized analytical artifacts, analysis time, and both chemical and solid waste. Concentrations of DOSS in the seawater samples ranged from 71 to 13,000 ng/L, while the nonionic surfactants including Span 80, Tween 80, Tween 85 were detected infrequently (26% of samples) at concentrations from 840 to 9100 ng/L. The enantiomers α-/β-EHSS were detected in seawater, at concentrations from 200 to 1900 ng/L, and in both Corexit dispersant formulations, indicating α-/β-EHSS were applied to the oil spill and may be not unambiguous indicator of DOSS degradation. Best practices are provided to ensure sample integrity and data quality for environmental monitoring studies and laboratory that require the detection and quantification of Corexit-based surfactants in seawater.

  13. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  14. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry.

    PubMed

    Wang, Yuzhou; Ma, Rui; Li, Shigui; Gong, Mingbo; Yao, Bin; Bai, Yingguo; Gu, Jingang

    2018-06-05

    Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0-10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.

  15. Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.

    PubMed

    Joshi, Nidhi; Rawat, Kamla; Bohidar, H B

    2016-05-12

    Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant.

  16. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly(styrene-alt-sodium maleate) and poly(diisobutylene- alt-sodium maleate) show the polyelectrolyte behavior as predicted. However, the viscosity as a function of concentration of sodium maleate based copolymers with 1-alkenes; 1-octene (C8), 1-decene (C10), 1-dodecene (C12) and 1-hexene (C14) exhibit an abnormal scaling power, which might be caused by aggregation of the alkene tails to form micelles. In the last chapter, we report the rheological properties of aqueous solutions of poly(acrylic acid) and oppositely charged surfactant, dodecyl trimethylammonium bromide (C12TAB). The solution viscosity decreases as surfactant is added, partly because the polyelectrolyte wraps around the surface of the spherical surfactant micelles, shortening the effective chain length. The effects of polymer molecular weight, polymer concentration, and polymer charge have been studied with no added salt. The results are compared with the predictions of a simple model based on the scaling theory for the viscosity of dilute and unentangled semidilute polyelectrolyte solutions in good solvent. This model takes into account two effects of added surfactant. The effective chain length of the polyelectrolyte is shortened when a significant fraction of the chain wraps around micelles. Another effect is the change of solution ionic strength resulting from surfactant addition that further lowers the viscosity. The parameters used in this model are independently determined, allowing the model to make a quantitative prediction of solution viscosity with no adjustable parameters. The model is also applied to predict the decrease in viscosity of various polyelectrolyte/oppositely charged surfactant systems reported in literature. The results are in good agreement with experimental data, proving that our model applies to all polyelectrolytes mixed with oppositely charged surfactants that form spherical micelles.

  17. Emulsification kinetics during quasi-miscible flow in dead-end pores

    NASA Astrophysics Data System (ADS)

    Broens, M.; Unsal, E.

    2018-03-01

    Microemulsions have found applications as carriers for the transport of solutes through various porous media. They are commonly pre-prepared in bulk form, and then injected into the medium. The preparation is done by actively mixing the surfactant, water and oil, and then allowing the mixture to stagnate until equilibrium is reached. The resulting microemulsion characteristics of the surfactant/oil/water system are studied at equilibrium conditions, and perfect mixing is assumed. But in applications like subsurface remediation and enhanced oil recovery, microemulsion formation may occur in the pore space. Surfactant solutions are injected into the ground to solubilize and/or mobilize the non-aqueous phase liquids (NAPLs) by in-situ emulsification. Flow dynamics and emulsification kinetics are coupled, which also contributes to in-situ mixing. In this study, we investigated the nature of such coupling for a quasi-miscible fluid system in a conductive channel with dead-end extensions. A microfluidic setup was used, where an aqueous solution of an anionic, internal olefin sulfonate 20-24 (IOS) surfactant was injected into n-decane saturated glass micromodel. The oil phase was coloured using a solvatochromatic dye allowing for direct visualization of the aqueous and oil phases as well as their microemulsions under fluorescent light. Presence of both conductive and stagnant dead-end channels in a single pore system made it possible to isolate different transport mechanisms from each other but also allowed to study the transitions from one to the other. In the conductive channel, the surfactant was carried with flow, and emulsification was controlled by the localized flow dynamics. In the stagnant zones, the driving force of the mass transfer was driven by the chemical concentration gradient. Some of the equilibrium phase behaviour characteristics of the surfactant/oil/water system were recognisable during the quasi-miscible displacement. However, the equilibrium tests alone were not sufficient to predict the emulsification process under dynamic conditions.

  18. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.

  19. Effects of solubilizing surfactants and loading of antiviral, antimicrobial, and antifungal drugs on their release rates from ethylene vinyl acetate copolymer

    PubMed Central

    Tallury, Padmavathy; Randall, Marcus K; Thaw, Khin L; Preisser, John S.; Kalachandra, Sid

    2013-01-01

    Objectives This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented. Method Polymer casting solutions were prepared by stirring EVA copolymer and nystatin (2.5 wt %) in dichloromethane. Nystatin and surfactants were added in ratios of (1:1), (1:2) and (1:3). Drug loading was studied with 2.5, 5.0, 7.5, and 10.0% wt. proportions of nystatin, chlorhexidine diacetate and acyclovir incorporated into a separate polymer. Three drug loaded polymer square films (3cm × 3cm × 0.08 cm) were cut from dry films to follow the kinetics of drug release at 37°C. 10 ml of either distilled water or PBS was used as the extracting medium that was replaced daily. PBS was used for nystatin release with addition of surfactants and water was used for the study on drug loading and surfactant release. The rate of drug release was measured by UV-spectrophotometer. The amount of surfactant released was determined by HPLC. Results The release of nystatin was low in PBS and its release rate increased with the addition of surfactants. Also, increasing surfactant concentrations resulted in increased drug release rates. The release rates of chlorhexidine diacetate (p<0.0001), acyclovir (p<0.0003) and nystatin (p<0.0017) linearly increased with increasing drug loads. The amount of surfactants released was above the CMC. Significance This study demonstrates that the three therapeutic agents show a sustained rate of drug release from EVA copolymer over extended periods of time. Nystatin release in PBS is low owing to its poor solubility. Its release rate is enhanced by addition of surfactants and increasing the drug load as well. PMID:17049593

  20. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  1. Study on improving viscosity of polymer solution based on complex reaction

    NASA Astrophysics Data System (ADS)

    Sun, G.; Li, D.; Zhang, D.; Xu, T. H.

    2018-05-01

    The current status of polymer flooding Technology on high salinity oil reservoir is not ideal. A method for increasing the viscosity of polymer solutions is urgently needed. This paper systematically studied the effect of ions with different mass concentrations on the viscosity of polymer solutions. Based on the theory of complex reaction, a countermeasure of increasing viscosity of polymer solution under conditions of high salinity reservoir was proposed. The results show that Ca2+ and Mg2+ have greater influence on the solution viscosity than K+ and Na+. When the concentration of divalent ions increases from 0 mg/L to 80 mg/L, the viscosity of the polymer solution decreases from 210 mPa·s to 38.6 mPa·s. The viscosity of the polymer solution prepared from the sewage treated with the Na2C2O4 increased by 25.3%. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity.

  2. Well logging evaluation of water-flooded layers and distribution rule of remaining oil in marine sandstone reservoirs of the M oilfield in the Pearl River Mouth basin

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Gao, Yunfeng; Fan, Hongjun

    2017-03-01

    In the marine sandstone reservoirs of the M oilfield the water cut is up to 98%, while the recovery factor is only 35%. Additionally, the distribution of the remaining oil is very scattered. In order to effectively assess the potential of the remaining oil, the logging evaluation of the water-flooded layers and the distribution rule of the remaining oil are studied. Based on the log response characteristics, the water-flooded layers can be qualitatively identified. On the basis of the mercury injection experimental data of the evaluation wells, the calculation model of the initial oil saturation is built. Based on conventional logging data, the evaluation model of oil saturation is established. The difference between the initial oil saturation and the residual oil saturation can be used to quantitatively evaluate the water-flooded layers. The evaluation result of the water-flooded layers is combined with the ratio of the water-flooded wells in the marine sandstone reservoirs. As a result, the degree of water flooding in the marine sandstone reservoirs can be assessed. On the basis of structural characteristics and sedimentary environments, the horizontal and vertical water-flooding rules of the different types of reservoirs are elaborated upon, and the distribution rule of the remaining oil is disclosed. The remaining oil is mainly distributed in the high parts of the structure. The remaining oil exists in the top of the reservoirs with good physical properties while the thickness of the remaining oil ranges from 2-5 m. However, the thickness of the remaining oil of the reservoirs with poor physical properties ranges from 5-8 m. The high production of some of the drilled horizontal wells shows that the above distribution rule of the remaining oil is accurate. In the marine sandstone reservoirs of the M oilfield, the research on the well logging evaluation of the water-flooded layers and the distribution rule of the remaining oil has great practical significance to the prediction of the distribution of the remaining oil and the optimization of well locations.

  3. Phosphorus dynamics in long-term flooded, drained and reflooded soils

    USDA-ARS?s Scientific Manuscript database

    In flooded areas, soils are often exposed to standing water and subsequent drainage, thus over fertilization can release excess phosphorus (P) into surface water and groundwater. To investigate P release and transformation processes in flooded alkaline soils, we flooded-drained-reflooded two soils f...

  4. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  5. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    PubMed Central

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide)/palygorskite (CMC-g-PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater. PMID:28642862

  6. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    PubMed

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue.

    PubMed

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  8. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    NASA Astrophysics Data System (ADS)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  9. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    PubMed Central

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  10. Thyme oil nanoemulsions coemulsified by sodium caseinate and lecithin.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-10-08

    Many nanoemulsions are currently formulated with synthetic surfactants. The objective of the present work was to study the possibility of blending sodium caseinate (NaCas) and lecithin to prepare transparent thyme oil nanoemulsions. Thyme oil was emulsified using NaCas and soy lecithin individually or in combination at neutral pH by shear homogenization. The surfactant combination improved the oil content in transparent/translucent nanoemulsions, from 1.0% to 2.5% w/v for 5% NaCas with and without 1% lecithin, respectively. Nanoemulsions prepared with the NaCas-lecithin blend had hydrodynamic diameters smaller than 100 nm and had significantly smaller and more narrowly distributed droplets than those prepared with NaCas or lecithin alone. Particle dimension and protein surface load data suggested the coadsorption of both surfactants on oil droplets. These characteristics of nanoemulsions minimized destabilization mechanisms of creaming, coalescence, and Ostwald ripening, as evidenced by no significant changes in appearance and particle dimension after 120-day storage at 21 °C.

  11. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    USDA-ARS?s Scientific Manuscript database

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  12. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  13. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  14. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  15. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  16. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  17. 40 CFR 417.133 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.04 .02 Surfactants 0.30 .15 Oil and grease 0.06 .03 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.15 COD 1.50 .75 TSS 0.04 .02 Surfactants 0.30 .15 Oil and grease 0...

  18. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  19. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  20. 40 CFR 417.123 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .48 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  1. 40 CFR 417.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.20 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.20 0.10 COD 0.90 .45 TSS 0.02 .01 Surfactants 0.20 .10 Oil and grease 0...

  2. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  3. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  4. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  5. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  6. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  7. 40 CFR 417.93 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.09 .03 Surfactants 0.09 .03 Oil and grease 0.21 .07 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.07 0.02 COD 0.27 .09 TSS 0.09 .03 Surfactants 0.09 .03 Oil and grease 0...

  8. 40 CFR 417.103 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.04 .02 Surfactants 0.36 .18 Oil and grease 0.08 .04 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.30 0.19 COD 1.10 .55 TSS 0.04 .02 Surfactants 0.36 .18 Oil and grease 0...

  9. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  10. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  11. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  12. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  13. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  14. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  15. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  16. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  17. 40 CFR 417.183 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  18. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  19. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  20. 40 CFR 417.193 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TSS 0.20 .10 Surfactants 0.40 .10 Oil and grease 0.04 .02 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.60 0.30 COD 2.70 1.35 TSS 0.20 .10 Surfactants 0.40 .10 Oil and...

  1. 40 CFR 417.173 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.02 .01 Surfactants 0.02 .01 Oil and grease 0.01 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.14 .07 TSS 0.02 .01 Surfactants 0.02 .01 Oil and grease 0...

  2. 40 CFR 417.143 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.06 .03 Surfactants 0.04 .02 Oil and grease 0.02 .01 pH (1) (1) English units (pounds per 1,000 lb of anhydrous product) BOD5 0.02 0.01 COD 0.10 .05 TSS 0.06 .03 Surfactants 0.04 .02 Oil and grease 0...

  3. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE PAGES

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; ...

    2016-10-19

    One important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water). This disrupts surfactant function and requires extensive use of undesirable and expensive chelating additives. We show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel–Crafts acylation within single layer (SPP) zeolite catalysts. Finally, these alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  4. Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura

    2016-11-23

    An important advance in fluid surface control was the amphiphilic surfactant comprised of coupled molecular structures (i.e. hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e. hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water whilemore » simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water.« less

  5. Removal of oil droplets from water using carbonized rice husk: enhancement by surface modification using polyethylenimine.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Chen, Shen-Yi

    2015-06-01

    Carbonized rice husk (CRH) is a promising material to separate oil from water owing to its abundance, low-cost, and environmentally benign characteristics. However, CRH's performance is somewhat limited by its similar surface charge to that of oil, leading to repulsive interactions. To improve the separation efficiency of CRH, CRH was modified via impregnation with a cationic biocompatible polymer, polyethlyenimine (PEI) to form PEI-CRH. The modified sample exhibits a remarkably higher (10-50 times) oil/water (O/W) separation efficiency than that of the unmodified one. Small PEI-CRH particles (about 64 μm) are found to adsorb oil droplets faster and larger quantities than bigger particles (about 113 and 288 μm). PEI-CRH exhibits higher separation efficiency at high temperatures owing to the destabilization of the emulsion. It is also found that the oil adsorption mechanism involves a chemical interaction between PEI-CRH and oil droplets. The addition of NaCl considerably improves the separation efficiency, while the addition of a cationic surfactant has the opposite effect. In acidic emulsions, PEI-CRH adsorbs more oil than in neutral or basic conditions owing to favorable attractive forces between oil droplets and the surface of PEI-CRH. PEI-CRH can be easily regenerated by washing with ethanol. These promising features of PEI-CRH indicate that PEI-CRH could be an efficient and low-cost adsorbent for the O/W separation applications.

  6. Thermally stable surfactants and compositions and methods of use thereof

    DOEpatents

    Chaiko, David J [Woodridge, IL

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  7. On the use of sodium lignosulphonate for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Azis, M. M.; Rachmadi, H.; Wintoko, J.; Yuliansyah, A. T.; Hasokowati, W.; Purwono, S.; Rochmadi, W.; Murachman, B.

    2017-05-01

    There has been large interest to utilize oil reservoirs in Indonesia by using Enhanced Oil Recovery (EOR) processes. Injection of surfactant as a part of chemical injection technique in EOR is known to aid the mobility and reduction in surface tension. One potential surfactant for EOR application is Sodium Lignosulphonate (SLS) which can be made from various sources particularly empty fruit bunch of oil palm and black liquor from kraft pulp production. Here, we will discuss a number of methods for SLS production which includes lignin isolation techniques and sulphonation reaction. The use of SLS alone as EOR surfactant, however, is often not feasible as the Interfacial Tension (IFT) value of SLS is typically above the order of 10-3 dyne/cm which is mandated for EOR application. Hence, brief discussion on SLS formulation screening is provided which illustrates an extensive labwork experience during the SLS development in our lab.

  8. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge densitymore » terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.« less

  9. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions.

    PubMed

    Li, Yan; McClements, David Julian

    2011-10-01

    The effect of low-molecular weight surfactants on the digestibility of lipids in protein-stabilized corn oil-in-water emulsions was studied using an in vitro digestion model. The impact of non-ionic (Tween 20, Tween 80, Brij35), anionic (SDS), and cationic (DTAB) surfactants on the rate and extent of lipid digestion was studied. All surfactants were found to inhibit lipid digestion at sufficiently high concentrations, with half-maximal inhibitory concentrations (IC50) of 1.2% for Tween 20, 0.7% for Tween 80, 2.8% for Brij35, 1.1% for SDS, and 1.4% for DTAB. The effectiveness of the surfactants at inhibiting lipid digestion was therefore not strongly correlated to the electrical characteristics of the surfactant head group, since the IC50 increased in the following order: Tween 80>SDS>Tween 20>DTAB>Brij35. The ability of these low-molecular weight surfactants to inhibit lipid digestion was attributed to a number of potential mechanisms: (i) prevention of lipase/co-lipase adsorption to the oil-water interface; (ii) formation of interfacial complexes; (iii) direct interaction and inactivation of lipase/co-lipase. Interestingly, DTAB increased the rate and extent of lipid digestion when present at relatively low concentrations. This may have been because this cationic surfactant facilitated the adsorption of lipase to the droplet surfaces through electrostatic attraction, or it bound directly to the lipase molecule thereby changing its structure and activity. A number of the surfactants themselves were found to be susceptible to enzyme digestion by pancreatic enzymes in the absence of lipids: Tween 20, Tween 80, Brij35, and DTAB. This work has important implications for the development of emulsion-based delivery systems for food and pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  11. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage.

    PubMed

    Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2018-06-18

    Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  13. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters

    NASA Astrophysics Data System (ADS)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.

    2017-07-01

    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  14. Co-surfactant free microemulsions: Preparation, characterization and stability evaluation for food application.

    PubMed

    Xu, Zhenbo; Jin, Jun; Zheng, Minying; Zheng, Yan; Xu, Xuebing; Liu, Yuanfa; Wang, Xingguo

    2016-08-01

    The aim of the study is to prepare co-surfactant free microalgal oil microemulsions and investigate their properties as well as processing stability for food application. The physicochemical characteristics of the microemulsions were investigated by dynamic light scattering (DLS), turbidity, conductivity, rheological measurements and transmission electron microscopy (TEM). Within the microemulsion region, when the surfactant to oil ratio was 9:1, the hydrodynamic diameter (Dh) was 18nm; when the surfactant to oil ratio was 7.5:1, the hydrodynamic diameter (Dh) was 50nm. Rheological studies proved that the microemulsion system was a pseudoplastic fluid, which followed a shear thinning flow behavior. The loss rate of docosahexaenoic acid (DHA) was less than 5%wt after ultra high temperature (UHT) and high temperature short time (HTST) thermal treatments. A high content of CaCl2 (10.0%wt) could not destroy the microemulsion system, and it could be stored at 4°C for two years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Novel CO 2 Foam Concepts and Injection Schemes for Improving CO 2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Quoc; Hirasaki, George; Johnston, Keith

    2015-02-05

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO 2 foams in EOR. We have examined the formation, texture, rheology and stability of CO 2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO 2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO 2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactantsmore » in reservoirs.« less

  16. Hydrologic reconnaissance of western Arctic Alaska, 1976 and 1977

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.; Loeffler, Robert M.

    1979-01-01

    Reconnaissance water-resource investigations were conducted on the western Alaskan Arctic Slope during April 1976 and August 1977; these months are times of winter and summer low flow. The information gathered is important for coordinated development in the area. Such development has been spurred by oil and gas discoveries on the North Slope, most notably at Prudhoe Bay. Little water resources information is currently available. The study area extended from the Colville River to the vicinity of Kotzebue. It included the western Arctic Slope and the western foothills of the Brooks Range. Nine springs, nine lakes and eleven rivers were sampled during the April 1976 reconnaissance trip. Its purpose was to locate winter flow and describe its quantity and quality. Field water-quality measurements made at these sites were: ice thickness, water depth, discharge (spring and streams), specific conductance, water temperature, dissolved oxygen, alkalinity (bicarbonate, HOC3), and pH. A followup summer trip was made in August 1977 to determine flood characteristics of twenty selected streams. Bankfull and maximum evident flood-peak discharges were determined by measuring channel geometry and estimating channel roughness. Aquatic invertebrate samples were collected at springs and flood survey sites visited during both reconnaissance trips. (Woodard-USGS)

  17. Distribution of naphthenic acids in tissues of laboratory-exposed fish and in wild fishes from near the Athabasca oil sands in Alberta, Canada.

    PubMed

    Young, Rozlyn F; Michel, Lorelei Martínez; Fedorak, Phillip M

    2011-05-01

    Naphthenic acids, which have a variety of commercial applications, occur naturally in conventional crude oil and in highly biodegraded petroleum such as that found in the Athabasca oil sands in Alberta, Canada. Oil sands extraction is done using a caustic aqueous extraction process. The alkaline pH releases the naphthenic acids from the oil sands and dissolves them into water as their soluble naphthenate forms, which are anionic surfactants. These aqueous extracts contain concentrations of naphthenates that are acutely lethal to fishes and other aquatic organisms. Previous research has shown that naphthenic acids can be taken up by fish, but the distribution of these acids in various tissues of the fish has not been determined. In this study, rainbow trout (Oncorhynchus mykiss) were exposed to commercial (Merichem) naphthenic acids in the laboratory. After a 10-d exposure to approximately 3mg naphthenic acids/L, the fish were dissected and samples of gills, heart, liver, kidney, muscle, and eggs were extracted and analyzed for free (unconjugated) naphthenic acids by a gas chromatography-mass spectrometry method. Each of the tissues contained naphthenic acids and non-parametric statistical analyses showed that gills and livers contained higher concentrations than the muscles and that the livers had higher concentrations than the hearts. Four different species of fish (two fish of each species) were collected from the Athabasca River near two oil sands mining and extraction operations. No free naphthenic acids were detected in the muscle or liver of these fish. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Numerical simulation of surfactant-enhanced remediation using UTCHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, G.A.; Fountain, J.C.; Pope, G.A.

    1995-12-31

    The UTCHEM multiphase compositional simulator was used to model the migration and surfactant-enhanced remediation of perchloroethylene (PCE) in a test cell at Canadian Forces Base Borden, Ontario. A line of five injection wells was installed on one side of the test cell and a line of five withdrawal wells was installed on the opposite side of the cell. The injection and withdrawal wells penetrated the entire depth of the sand aquifer. A total of 231 liters of PCE was injected into a shallow well in the center of the test cell. Prior to surfactant flushing, 47 liters of free-phase PCE,more » which flowed into the injection and withdrawal wells over a two week period, was removed using a small-diameter plastic tube and a peristaltic pump. One to two months of water flooding (pump-and-treat), using the injection-withdrawal well system, flushed an additional 12 liters of PCE. Following the water flooding, an aqueous surfactant solution of 1% nonyl phenol ethoxylate and 1% phosphate ester of the nonyl phenol ethoxylate was circulated through the test cell via the injection-withdrawal wells. Between November 11, 1990 and May 29, 1991, a total of 130,000 liters of surfactant solution were recirculated through the test cell, during which time 62 liters of PCE were recovered. This paper describes preliminary scoping simulations of the surfactant flushing process at the Borden test site to demonstrate the capability of UTCHEM to model surfactant-enhanced remediation of a non-aqueous-phase liquid (NAPL). A discussion of efforts to simulate PCE migration is also presented.« less

  19. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  20. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  1. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  2. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  3. 40 CFR 417.142 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anhydrous product) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.09 .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH... .03 Surfactants 0.06 .02 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR...

  4. Modification of surface and enzymatic properties of Achromobacter denitrificans and Stenotrophomonas maltophilia in association with diesel oil biodegradation enhanced with alkyl polyglucosides.

    PubMed

    Sałek, Karina; Zgoła-Grześkowiak, Agnieszka; Kaczorek, Ewa

    2013-11-01

    The article concerns the influence of selected alkyl polyglucosides on biodegradation, cell surface and enzymatic properties of Stenotrophomonas maltophilia and Achromobacter denitrificans. The biodegradation of diesel oil depends on several factors including type and the amount of surfactant as well as bacterial genera used in the process. Nevertheless, a careful selection of these variables must be made as some bacterial strains prefer to use surfactants as their carbon source. This leads to the lowered biodegradation of diesel oil as can be observed for the tested S. maltophilia strain. Alkyl polyglucosides influenced the cell surface properties of both of the tested strains in slightly different ways. Especially for A. denitrificans, for which the hydrophobicity increased with concentration of both--Lutensol GD 70 and Glucopon 215 in diesel oil-surfactant systems. Moreover, judging by the efficiency of biodegradation, the most effective process was observed in the presence of Lutensol GD 70 (240 and 360 mg L(-1)) with biodegradation rising from 32% (without surfactant) to 68%. No such relation was observed for S. maltophilia. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method.

    PubMed

    Gulotta, Alessandro; Saberi, Amir Hossein; Nicoli, Maria Cristina; McClements, David Julian

    2014-02-19

    Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.

  6. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  7. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  8. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  9. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  10. Recovering oil by injecting aqueous alkali, cosurfactant and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisberg, J.; Bielmowicz, L. J.; Thigpen, D. R.

    1985-01-15

    A process of recovering oil from a subterranean reservoir in which the oil is acidic but forms monovalent cation soaps of only relatively low interfacial activity when reacted with aqueous alkaline solutions, comprises displacing the oil toward a production location with a mixture of gas and cosurfactant-containing aqueous alkaline solution.

  11. 76 FR 32196 - Certain New Chemicals; Receipt and Status Information; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... use (S) 2-propenoic Inc. of this polymer is acid, 2-methyl-, 2- for refinishing hydroxyethyl ester, vehicles. through polymer with rel- the hydroxyl groups (1r,2r,4r)-1,7,7- on the polymer, the...)-, (t-4)-, polymers; polymer with 3- surfactant, flow, methyl-3-[(2,2,2- leveling, and trifluoroethoxy...

  12. Lamellar biogels comprising fluid membranes with a newly synthesized class of polyethylene glycol-surfactants

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Davidson, Patrick; Slack, Nelle L.; Schellhorn, Matthias; Eiselt, Petra; Idziak, Stefan H. J.; Schmidt, Hans-Werner; Safinya, Cyrus R.

    1997-09-01

    A series of four polymer-surfactant macromolecules, each consisting of a double-chain hydrophobic moiety attached onto a monofunctional polyethylene glycol (PEG) polymer chain, were synthesized in order to study their effect upon the fluid lamellar liquid crystalline (Lα) phase of the dimyristoylphosphatidylcholine/pentanol/water system. The main finding of this study is that the addition of these compounds induces a new lamellar gel, called Lα,g. We have determined the phase diagrams as a function of PEG-surfactant concentration, cPEG, and weight fraction water, ΦW. All phase diagrams are qualitatively similar and show the existence of the gel. Unlike more common polymer physical gels, this gel can be induced either by increasing cPEG or by adding water at constant cPEG. In particular, less polymer is required for gelation as water concentration increases. Moreover, the gel phase is attained at concentrations of PEG-surfactant far below that required for classical polymer gels and is stable at temperatures comparable to the lower critical solution temperature of free PEG-water mixtures. Small angle x-ray experiments demonstrate the lamellar structure of the gel phase, while wide angle x-ray scattering experiments prove that the structure is Lα, not Lβ' (a common chain-ordered phase which is also a gel). The rheological behavior of the Lα,g phase demonstrates the existence of three dimensional elastic properties. Polarized light microscopy of Lα,g samples reveals that the Lα,g is induced by a proliferation of defect structures, including whispy lines, spherulitic defects, and a nematiclike Schlieren texture. We propose a model of topological defects created by the aggregation of PEG-surfactant into highly curved regions within the membranes. This model accounts for both the inverse relationship between ΦW and cPEG observed along the gel transition line and the scaling dependence of the interlayer spacing at the gel transition with the PEG molecular weight. These Lα hydrogels could serve as the matrix for membrane-anchored peptides, proteins or other drug molecules, creating a "bioactive gel" with mechanical stability deriving from the polymer-lipid minority component.

  13. Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions

    NASA Astrophysics Data System (ADS)

    Jyothirmayee Aravind, S. S.; Ramaprabhu, S.

    2011-12-01

    Herein we report an entirely different route for the synthesis of graphene nanosheets (GNs) based nanofluids without surfactant or harsh chemical treatments, by reducing the alkaline graphite oxide suspension in ethylene glycol (EG) and de-ionized (DI) water based fluids by a simple thermal treatment. The thermal conductivity measurement after the reduction shows about 6.5 and 13.6% enhancements at 25 °C for the 0.14% volume fraction of GN in EG and DI water, respectively, which is ascribed to the high aspect ratio of the GNs. In addition, a large enhancement in the electrical conductivity of EG and DI water based reduced nanofluids is observed. This interesting result is attributed to the high electrical conductivity of reduced graphene nanosheets suspensions.

  14. Effect of citronella essential oil fractions as oil phase on emulsion stability

    NASA Astrophysics Data System (ADS)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  15. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates

    NASA Astrophysics Data System (ADS)

    Marquez, Maricel

    The subject of this work is the synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates, also termed Template Assisted Admicellar Polymerization (TAAP). The first chapter reviews some of the most current nanopatterning techniques (including both top-down and bottom-up approaches), with particular emphasis on the fabrication of organic and inorganic patterned nanostructures via particle lithography. In chapter 2, highly ordered hexagonal arrays of latex spheres were prepared on highly ordered pyrolytic graphite (HOPG) from a variation of the Langmuir Blodgett technique, using an anionic surfactant (SDS), and a low molecular weight (ca. 10000) polyacrylamide as spreading agents. When a nonionic polyethoxylated (EO = 9) surfactant was used as the spreading agent, no ordered arrays were observed. Based on the correlation found between the surface tension in the presence of the latex particles and the critical concentration at which hexagonal arrangements of latex spheres occurs; a model was proposed to explain the role of the spreading agent in forming stable monolayers at the air/liquid interface, which in turn are necessary for the formation of well-ordered monolayers on a solid substrate from the LB technique. According to this model, solid-like regions of small numbers of latex spheres form at the liquid-air interface, which are then transferred to the substrate. These ordered regions then act as nuclei for the formation of 2D arrays of latex spheres on the surface upon water evaporation. The role of other factors such as relative humidity, substrate and solvent choice, and pulling vs. compression speed were also found to affect the quality of the monolayers formed. Finally, a simple, easy to automate, yet effective surface tension method was proposed to predict the optimal conditions for the formation of ordered monolayers using a variation of the LB deposition method from any monodisperse set of spheres. In chapter 3, a novel method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic chain of the surfactant. Nanostructures with fewer defects were found for surfactants with the longest hydrophobic tails (i.e. 12 carbon atoms). The hydrophobic nature of the monomer also seemed to affect the morphology of the nanostructure; poly(methyl methacrylate) (PMMA) honeycombs showed thicker walls compared to polyaniline (PANI) and polypyrrole (Ppy). In general, HOPG seems to be a better choice of substrate for TAAP compared to gold-coated glass and SiO2 wafers. Preliminary results on the formation of layered polymer nanostructures via multiple TAAP sequences were also presented.

  16. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  17. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  18. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  19. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  20. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  1. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  2. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  3. 40 CFR 417.132 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  4. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  5. 40 CFR 417.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 3.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  6. 40 CFR 417.92 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.09 0.02 COD 0.40 .09 TSS 0.15 .03 Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1... Surfactants 0.15 .03 Oil and grease 0.25 .07 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  7. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  8. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  9. 40 CFR 417.102 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) BOD5 0.90 0.30 COD 4.05 1.35 TSS 0.09 .03 Surfactants 0.90 .30 Oil and grease 0.15 .05 pH (1) (1... Surfactants 0.90 .30 Oil and grease 0.10 .05 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  10. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  11. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  12. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  13. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  14. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  15. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  16. 40 CFR 417.182 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) BOD5 0.03 0.01 COD 0.15 .05 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.03 .01 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  17. 40 CFR 417.192 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 2.10 0.70 COD 9.90 3.30 TSS 0.60 .20 Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1... Surfactants 1.50 .50 Oil and grease 0.06 .50 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  18. 40 CFR 417.172 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) BOD5 0.03 0.01 COD 0.21 .07 TSS 0.03 .01 Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1... Surfactants 0.03 .01 Oil and grease 0.015 .005 pH (1) (1) 1 Within the range 6.0 to 9.0. [39 FR 13372, Apr. 12...

  19. Photophysical Diversity of Water-Soluble Fluorescent Conjugated Polymers Induced by Surfactant Stabilizers for Rapid and Highly Selective Determination of 2,4,6-Trinitrotoluene Traces.

    PubMed

    Alizadeh, Naader; Akbarinejad, Alireza; Ghoorchian, Arash

    2016-09-21

    The increasing application of fluorescence spectroscopy in development of reliable sensing platforms has triggered a lot of research interest for the synthesis of advanced fluorescent materials. Herein, we report a simple, low-cost strategy for the synthesis of a series of water-soluble conjugated polymer nanoparticles with diverse emission range using cationic (hexadecyltrimethylammonium bromide, CTAB), anionic (sodium dodecylbenzenesulfonate, SDBS), and nonionic (TX114) surfactants as the stabilizing agents. The role of surfactant type on the photophisical and sensing properties of resultant polymers has been investigated using dynamic light scattering (DLS), FT-IR, UV-vis, fluorescence, and energy dispersive X-ray (EDS) spectroscopies. The results show that the surface polarity, size, and spectroscopic and sensing properties of conjugated polymers could be well controlled by the proper selection of the stabilizer type. The fluorescent conjugated polymers exhibited fluorescence quenching toward nitroaromatic compounds. Further studies on the fluorescence properties of conjugated polymers revealed that the emission of the SDBS stabilized polymer, N-methylpolypyrrole-SDBS (NMPPY-SDBS), is strongly quenched by 2,4,6-trinitrotoluene molecule with a large Stern -Volmer constant of 59 526 M(-1) and an excellent detection limit of 100 nM. UV-vis and cyclic voltammetry measurements unveiled that fluorescence quenching occurs through a charge transfer mechanism between electron rich NMPPY-SDBS and electron deficient 2,4,6-trinitrotoluene molecules. Finally, the as-prepared conjugated polymer and approach were successfully applied to the determination of 2,4,6-trinitrotoluene in real water samples.

  20. Collagen and hyaluronic acid hydrogel in water-in-oil microemulsion delivery systems.

    PubMed

    Kupper, Sylwia; Kłosowska-Chomiczewska, Ilona; Szumała, Patrycja

    2017-11-01

    The increase in skin related health issues has promoted interest in research on the efficacy of microemulsion in dermal and transdermal delivery of active ingredients. Here, we assessed the water-in-oil microemulsion capacity to incorporate two natural polymers, i.e. collagen and hyaluronic acid with low and high molecular weight. Systems were extensively characterized in terms of conductivity, phase inversion studies, droplet diameter, polydispersity index and rheological properties. The results of this research indicate that the structure and extent of water phase in microemulsions is governed by ratio and amount of surfactant mixture (sorbitan ester derivatives). However, results have also shown that collagen, depending upon the weight of the molecule and its surface activity, influence the droplet size of the microemulsions. While the hyaluronic acid, especially with high molecular weight, due to the water-binding ability and hydrogel formation alters the rheological properties of the microemulsion, thus providing viscous consistency of the formulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top