Science.gov

Sample records for alkalinity dissolved oxygen

  1. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  2. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang

    2011-03-15

    This paper reported an efficient method to significantly reduce nitrous oxide (N(2)O) and nitric oxide (NO) generation in anaerobic-aerobic (low dissolved oxygen) processes. It was found that by the use of waste-activated sludge alkaline fermentation liquid as the synthetic wastewater-carbon source, compared with the commonly used carbon source in the literature (e.g., acetic acid), the generation of N(2)O and NO was reduced by 68.7% and 50.0%, respectively, but the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) were improved. Both N(2)O and NO were produced in the low dissolved oxygen (DO) stage, and the use of sludge fermentation liquid greatly reduced their generation from the denitrification. The presences of Cu(2+) and propionic acid in fermentation liquid were observed to play an important role in the reduction of N(2)O and NO generation. The analysis of the activities of denitrifying enzymes suggested that sludge fermentation liquid caused the significant decrease of both nitrite reductase activity to NO reductase activity ratio and NO reductase activity to N(2)O reductase activity ratio, which resulted in the lower generation of NO and N(2)O. Fluorescence in situ hybridization analysis indicated that the number of glycogen accumulating bacteria, which was reported to be relevant to nitrous oxide generation, in sludge fermentation liquid reactor was much lower than that in acetic acid reactor. The quantitative detection of the nosZ gene, encoding nitrous oxide reductase, showed that the use of fermentation liquid increased the number of bacteria capable of reducing N(2)O to N(2). The feasibility of using sludge fermentation liquid to reduce NO and N(2)O generation in an anaerobic-low DO process was finally confirmed for a municipal wastewater. PMID:21322643

  3. The Measurement of Dissolved Oxygen

    ERIC Educational Resources Information Center

    Thistlethwayte, D.; And Others

    1974-01-01

    Describes an experiment in environmental chemistry which serves to determine the dissolved oxygen concentration in both fresh and saline water. Applications of the method at the undergraduate and secondary school levels are recommended. (CC)

  4. Dissolved Oxygen Data for Coos Estuary (Oregon)

    EPA Science Inventory

    The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...

  5. Wastewater treatment with zero dissolved oxygen

    SciTech Connect

    Hirl, P.J.

    1998-07-01

    Many wastewater treatment plants operate their biological reactors inefficiently because the aeration is not adjusted so that the oxygen supply rate equals the microbial oxygen demand in real times. Tapered aeration systems vary aeration based on the oxygen demand profile but these systems are static. Dynamic oxygen control systems have been successful but do not operate at low dissolved oxygen concentrations. The purpose of the research described is to develop a control system and reactor operating strategies to dynamically change the aeration rate to match the oxygen uptake rate while maintaining the dissolve oxygen concentration less than 0.5 mg/L. Though, low dissolved oxygen operation can reduce the rate of carbon degradation and/or promote filamentous bulking, it also maximizes the oxygen transfer rate and can promote simultaneous nitrification and denitrification. Development and testing of a control system and operating strategies at the bench scale is in progress.

  6. A Quantitative Evaluation of Dissolved Oxygen Instrumentation

    NASA Technical Reports Server (NTRS)

    Pijanowski, Barbara S.

    1971-01-01

    The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.

  7. Nutrient and dissolved oxygen studies at OTEC sites

    SciTech Connect

    Quinby-Hunt, M.S.; Fanning, K.; Ziemann, D.; Walsh, T.W.; Knauer, G.A.

    1981-07-01

    In order to adequately assess the impact of artificial upwelling and other possible ecological impacts of OTEC operations on the chemistry of the water column at OTEC sites, studies were initiated at several potential sites. At most sites,hydrocasts were taken at approximately noon and midnight to a depth of about 100 m; samples were collected from about 15 depths to be analyzed for nitrates, nitrites, reactive phosphate, silicate and dissolved oxygen. At some sites, samples were analyzed for various other parameters including ammonia, total organic phosphorus and carbonate alkalinity. Preliminary data on nitrates, phosphates, silicates and dissolved oxygen from several potential sites - off Hawaii, Oahu, Peurto Rico, and the Virgin Islands - are presented and compared. Significant differences between nutrient concentrations have been found at the Caribbean and Hawaiian sites. There is also evidence of seasonal variation at the Oahu site. (LEW)

  8. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  9. DISSOLVED OXYGEN IMPACT FROM URBAN STORM RUNOFF

    EPA Science Inventory

    The primary objective of the research reported here is to determine if on a national basis a correlation exists between strength of dissolved oxygen (DO) deficits and the presence of rainfall and/or storm runoff downstream of urban areas. A secondary objective is to estimate the ...

  10. Modeling Fish Growth in Low Dissolved Oxygen

    ERIC Educational Resources Information Center

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  11. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  12. [Effect of dissolved oxygen on mutanolysin fermentation].

    PubMed

    Liu, T J; Xu, W L; Sun, W B; Zhang, Y Z

    2000-03-01

    Effects of several parameters relating to dissolved oxygen(DO) on mutanolysin fermentation were studied. The experiment using shake flasks shows that the medium volume and shaker agitation speed affect the production of mutanolysin. At the same time, the agitation rate together with aeation rate has effects on DO in fermentor. Mutanolysin fermentation was affected by DO greatly. Oxygen is a key restricted factor in mutanolysin fermentation. It affects the metablism and physiological action of Streptomyces globisporus S186. Whatever the DO is excessive high or low, it won't benefit the mutanolysin production. If DO is super, S. globisporus S186 will grow luxuriantly but do not produce mutanolysin, while if DO is lower, the S. globisporus S186 won't grow well even not to produce mutanolysin. During the course of fermentation, the DO changed regularly. It is similar to many antibiotic fermentation and some amino acid fermentation. As S. globisporus S186 grow in exponential phase, DO begin to decrease rapidly from 6 h and get to the lowest point at 40 h or so. Subsequently mutanolysin starts to be produced. DO rises again from 90 h. The key technoloyg of oxygen control in the fermentation is to keep the DO at a suboptimum level. In order to get a high mutanolysin yield, during the culture in fermentor the agitation rate and aeration rate should be kept at 200 r/min and 1:0.8(V:V) respectively. PMID:10976334

  13. Biochemical Oxygen Demand and Dissolved Oxygen. Training Module 5.105.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the azide modification of the Winkler dissolved oxygen test and the electronic dissolved oxygen meter test procedures for determining the dissolved oxygen and the biochemical oxygen demand of a wastewater sample. Included are…

  14. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  15. Dissolved oxygen enhancement on the Provo River

    SciTech Connect

    Wahl, T.L.; Young, D.

    1995-12-31

    Dissolved oxygen (DO) enhancement activities have been underway for the past two years on the Provo River downstream of the U.S, Bureau of Reclamation`s Deer Creek Dam and Powerplant. A feasibility test during the summer of 1993 demonstrated that a combination of turbine aeration and weir aeration over the tailrace control gates could economically improve DO concentrations immediately downstream of the powerplant. During the summer of 1994 both aeration methods were implemented for two months during the most severe low-DO period. Biological studies were conducted before and during the aeration effort in an attempt to determine the fishery response to DO improvements. Unfortunately, the effectiveness of turbine aeration was limited by unusual powerplant operations prompted by very dry conditions in central Utah in 1994. Weir aeration was more effective. The response of fish populations to low DO levels varied. Marked fish exhibited movement throughout the study area prior, during, and after low-DO periods. Fish condition did not exhibit downward trends during low-DO periods. However, fish exposed to low DO were lethargic and unable to recover from handling stress. Invertebrate populations were dominated by four taxa tolerant to adverse water quality.

  16. Dissolved oxygen: method comparison with potentiometric stripping analysis

    SciTech Connect

    Fayyad, M.; Tutunji, M.; Ramakrishna, R.S.; Taha, Z.

    1987-04-01

    Three methods for determination of dissolved oxygen in samples of natural water are compared; potentiometric stripping analysis, PSA compares well with oxygen selective electrodes. Although potentiometric stripping analysis and oxygen selective electrode methods are found to be simple, rapid and of higher reproducibility than the usual Winkler procedure, the use of oxygen selective electrodes has many disadvantages.

  17. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  18. Scavenging dissolved oxygen via acoustic droplet vaporization.

    PubMed

    Radhakrishnan, Kirthi; Holland, Christy K; Haworth, Kevin J

    2016-07-01

    Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5-6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications. PMID:26964964

  19. Chapter A6. Section 6.2. Dissolved Oxygen

    USGS Publications Warehouse

    Revised by Lewis, Michael Edward

    2006-01-01

    Accurate data for the concentration of dissolved oxygen in surface and ground waters are essential for documenting changes in environmental water resources that result from natural phenomena and human activities. Dissolved oxygen is necessary in aquatic systems for the survival and growth of many aquatic organisms and is used as an indicator of the health of surface-water bodies. This section of the National Field Manual (NFM) includes U.S. Geological Survey (USGS) guidance and protocols for four methods to determine dissolved-oxygen concentrations: the amperometric, luminescent-sensor, spectrophotometric, and iodometric (Winkler) methods.

  20. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan. PMID:24078053

  1. DISSOLVED OXYGEN, TEMPERATURE, SURVIVAL OF YOUNG AT FISH SPAWNING SITES

    EPA Science Inventory

    Fluctuations of dissolved oxygen concentrations and water temperatures in their natural spawning sites were measured during embryo through larva stages of northern pike (Esox lucius), and during embryo and sac larva stages of bluegills (Lepomis macrochirus) and pumpkinseeds (Lepo...

  2. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF TECHNIQUES

    EPA Science Inventory

    The measurement and interpretation of geochemical redox parameters are key components of ground water remedial investigations. Dissolved oxygen (DO) is perhaps the most robust geochemical parameter in redox characterization; however, recent work has indicated a need for proper da...

  3. Aquatic insects in Montezuma Well, Arizona, USA: A travertine spring mound with high alkalinity and dissolved carbon dioxide

    SciTech Connect

    Blinn, D.W.; Sanderson, M.W. )

    1989-01-31

    An annotated list of aquatic insects from the high carbonate system of Montezuma Well, Arizona, USA, is presented for collections taken during 1976-1986. Fifty-seven taxa in 16 families are reported, including new distribution records for Arizona (Anacaena signaticollis, Laccobius ellipticus, and Crenitulus sp. (nr. debilis)) and the USA (Enochrus sharpi). Larval stages for Trichoptera, Lepidoptera, Megaloptera, Neuroptera, Chironomidae, and Anisoptera were absent even though the habitat lacks fish, and water temperature, dissolved oxygen, available food, and substrata appear adequate in Montezuma Well. The potential importance of alkalinity in restricting these insect groups is discussed.

  4. Reduction of Dissolved Oxygen at a Copper Rotating Disc Electrode

    ERIC Educational Resources Information Center

    Kear, Gareth; Albarran, Carlos Ponce-de-Leon; Walsh, Frank C.

    2005-01-01

    Undergraduates from chemical engineering, applied chemistry, and environmental science courses, together with first-year postgraduate research students in electrochemical technology, are provided with an experiment that demonstrates the reduction of dissolved oxygen in aerated seawater at 25°C. Oxygen reduction is examined using linear sweep…

  5. Dissolved-oxygen quenching of in-situ fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Chudyk, Wayne; Tonaszuck, David; Pohlig, Kenneth

    1993-04-01

    In-situ fluorescence measurements of aromatic organic ground water contaminants do not always agree with gas chromatographic methods. Dissolved oxygen quenching of fluorescence may be an interferant in field measurements. Two standard fluorescent aromatics, quinine sulfate and naphthalene, were evaluated in this study. Over the range of dissolved oxygen concentrations expected to be encountered in the field, no effects of oxygen quenching on fluorescence of these compounds was observed. Quenching of quinine sulfate fluorescence by sodium chloride was observed using this system. Sodium chloride quenching was shown to follow the Stern-Volmer relation.

  6. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    PubMed

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-01-01

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media. PMID:26287211

  7. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  8. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  9. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS

    EPA Science Inventory

    The ability to confidently measure the concentration of dissolved oxygen (D.O.) in ground water is a key aspect of remedial selection and assessment. Presented here is a comparison of the commonly practiced methods for determining D.O. concentrations in ground water, including c...

  10. MATHEMATICAL SIMULATION TOOLS FOR DEVELOPING DISSOLVED OXYGEN TMDLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents an extended abstract of a research paper describing four commonly used dissolved oxygen (DO) simulation models. The concentration of DO in surface waters is one of the most commonly used indicators of river and stream health. Regulators and other professionals are increasingly r...

  11. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  12. Modeling impact of storage zones on stream dissolved oxygen

    USGS Publications Warehouse

    Chapra, S.C.; Runkel, R.L.

    1999-01-01

    The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.The Streeter-Phelps dissolved oxygen model is modified to incorporate storage zones. A dimensionless number reflecting enhanced decomposition caused by the increased residence time of the biochemical oxygen demand in the storage zone parameterizes the impact. This result provides a partial explanation for the high decomposition rates observed in shallow streams. An application suggests that the storage zone increases the critical oxygen deficit and moves it closer to the point source. It also indicates that the storage zone should have lower oxygen concentration than the main channel. An analysis of a dimensionless enhancement factor indicates that the biochemical oxygen demand decomposition in small streams could be up to two to three times more than anticipated based on the standard Streeter-Phelps model without storage zones. For larger rivers, enhancements of up to 1.5 could occur.

  13. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  14. STREAM PRODUCTIVITY ANALYSIS WITH DORM (DISSOLVED OXYGEN ROUTING MODEL) - 2: PARAMETER ESTIMATION AND SENSITIVITY

    EPA Science Inventory

    The dissolved oxygen routing model DORM, which determines productivity and respiration of a stream biological community, requires in addition to stream geometry and stream flow, parameter values for reaeration coefficients and temperature and dissolved oxygen (DO) limitations on ...

  15. Simulation of hydrodynamics, temperature, and dissolved oxygen in Bull Shoals Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2003-01-01

    and dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries of the error between measured and simulated water column profile values.

  16. Variability in dissolved oxygen off Eastern Luzon, Philippines

    NASA Astrophysics Data System (ADS)

    San Diego-McGlone, M.; Escobar, M.; Jacinto, G.; Villanoy, C. L.

    2013-12-01

    The eastern coast and shelf of Luzon is a unique area encompassed by the bifurcation of the western boundary North Equatorial Current (NEC) into the Kuroshio and Mindanao Currents. This region is also productive and has become a rich fishing ground. Of interest is how biogeochemistry in this area is influenced by variability in the bifurcation driven by ENSO events, as well as by production and remineralization processes. Results from 2011 and 2012 oceanographic cruises show changes in dissolved oxygen (DO) off Eastern Luzon in both spatial and temporal scales. Between 2011 and 2012, there was a southern shift of the bifurcation latitude. Water masses from the NEC and the Kuroshio Recirculation Gyre (KRG) east of Luzon have inherent low and higher DO concentrations, respectively. A subsurface oxygen minimum layer was seen at 150-200m. Waters with this low dissolved oxygen signature comes from a 400m-deep sill basin (Lamon Deep) off Eastern Luzon. Apart from low ventilation rates, organic matter decomposition contributes to depletion of DO. Proximity of the basin to the coast is evident in the high particulate organic carbon concentration that is delivered from land through run-off and the nearby river. The low DO water is advected offshore and contributes to the spatial variability of DO in the area. Linear regression of particulate organic carbon, dissolved organic carbon, dissolved inorganic carbon, and nutrients with AOU strongly correlate organic matter remineralization to the change in DO with depth. The variability in DO off Eastern Luzon is analyzed with the large-scale variability offshore of source waters to determine the relative influence of biogeochemical cycling in the area.

  17. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions. PMID:26594871

  18. Improved Arterial Blood Oxygenation Following Intravenous Infusion of Cold Supersaturated Dissolved Oxygen Solution

    PubMed Central

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    BACKGROUND One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. METHODS Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer’s lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. RESULTS Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. CONCLUSIONS A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model. PMID:25249764

  19. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary.

    PubMed

    Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  20. A Dissolved Oxygen Threshold for Shifts in Bacterial Community Structure in a Seasonally Hypoxic Estuary

    PubMed Central

    Spietz, Rachel L.; Williams, Cheryl M.; Rocap, Gabrielle; Horner-Devine, M. Claire

    2015-01-01

    Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA−a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L-1. This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L-1), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems. PMID:26270047

  1. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams

    PubMed Central

    Dick, Jonathan J.; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry. PMID:27556278

  2. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams.

    PubMed

    Dick, Jonathan J; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe

    2016-01-01

    Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry. PMID:27556278

  3. Tolerance of Oncomelania hupensis quadrasi to varying concentrations of dissolved oxygen and organic pollution*

    PubMed Central

    Garcia, Rolando G.

    1972-01-01

    Ecological investigations were made of habitats containing natural populations of the snail Oncomelania hupensis quadrasi and of habitats free from the snail in the island of Leyte, Philippines. This species of snail is a vector of Schistosoma japonicum in the Philippines. Snail-infested habitats had dissolved oxygen levels of 3.8-9.85 ppm but snail-free habitats had levels of only 0.08-3.6 ppm. Snail-infested habitats were less polluted by organic matter than habitats that were snail-free. Larger numbers of chlorophyll-bearing algae were present in both the water and the soil of snail-infested habitats. Other factors, including temperature, pH, hydrogen carbonate alkalinity, and relative humidity, were also investigated. PMID:4538906

  4. Influence of dissolved oxygen convection on well sampling

    USGS Publications Warehouse

    Vroblesky, D.A.; Casey, C.C.; Lowery, M.A.

    2007-01-01

    Convective transport of dissolved oxygen (D.O.) from shallow to deeper parts of wells was observed as the shallow water in wells in South Carolina became cooler than the deeper water in the wells due to seasonal changes. Wells having a relatively small depth to water were more susceptible to thermally induced convection than wells where the depth to water was greater because the shallower water levels were more influenced by air temperature. The potential for convective transport of D.O. to maintain oxygenated conditions in a well screened in an anaerobic aquifer was diminished as ground water exchange through the well screen increased and as oxygen demand increased. Transport of D.O. to the screened interval can adversely affect the ability of passive samplers to produce accurate concentrations of oxygen-sensitive solutes such as iron, other redox indicators, and microbiological data. A comparison of passive sampling to low-flow sampling in a well undergoing convection, however, showed general agreement of volatile organic compound concentrations. During low-flow sampling, the pumped water may be a mixture of convecting water from within the well casing and aquifer water moving inward through the screen. This mixing of water during low-flow sampling can substantially increase equilibration times, can cause false stabilization of indicator parameters, can give false indications of the redox state, and can provide microbiological data that are not representative of the aquifer conditions. Data from this investigation show that simple in-well devices can effectively mitigate convective transport of oxygen. The devices can range from inflatable packers to simple, inexpensive baffle systems. ?? 2007 National Ground Water Association.

  5. Spatial variability of dissolved phosphorous concentrations and alkaline phosphatase activity in the East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chang, J.; Ho, T.; Gong, G.

    2010-12-01

    The concentrations of dissolved inorganic phosphorus (DIP) and alkaline phosphatase activity (APA) have been determined at about 25 sampling stations in the East China Sea since 2003. The stations are mainly distributed from the Changjiang river mouth to northern Taiwan and east to the shelf break. In addition to the Changjiang discharge, we have found a specific nutrient source around a coastal site (122° 2’30’’ E, 28° 40’ N). Elevated DIP and nitrate concentrations have been constantly observed around the sampling station for 8 years, where the surface DIP concentrations are generally around 0.3 µM. The nutrient source may either originate from ground water discharge or coastal upwelling, where lower temperature has been observed in the water column around the station. In general, APA has been negatively correlated with DIP concentrations in the studies sites, with lowest APA around the high DIP station and the Changjiang river mouth.

  6. Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater

    USGS Publications Warehouse

    Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron

    2012-01-01

    Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.

  7. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  8. PHYSICAL AND BIOLOGICAL CONTROLS ON DISSOLVED OXYGEN DYNAMICS IN PENSACOLA BAY, FL

    EPA Science Inventory

    Nutrient enrichment of estuaries and coastal waters can contribute to hypoxia (low dissolved oxygen) by increasing primary production and biological oxygen demand. Other factors, however, contribute to hypoxia and affect the susceptibility of coastal waters to hypoxia. Hypoxia fo...

  9. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  10. Dissolved oxygen conditions in northern Gulf of Mexico estuaries

    USGS Publications Warehouse

    Engle, V.D.; Kevin, Summers J.; Macauley, J.M.

    1999-01-01

    Because deficient dissolved oxygen (DO) levels may have severe detrimental effects on estuarine and marine life, DO has been widely used as an indicator of ecological conditions by environmental monitoring programs. The U.S. EPA's Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) monitored DO conditions in the estuaries of the Gulf of Mexico from 1991 to 1994. DO was measured in two ways: 1)instantaneous profiles from the surface to the bottom were taken during the day, and 2) continuous measurements were taken near the bottom at 15 min intervals for at least 12 h. This information was summarized to assess the spatial distribution and severity of DO conditions in these estuaries. Depending on the criteria used to define hypoxia (DO concentrations usually < 2 mg L-1 or 15 mg L-1) and the method by which DO is measured, we estimate that between 5.2 and 29.3% of the total estuarine area in the Louisianian Province was affected by low DO conditions.

  11. Dissolved oxygen in lower Hudson Estuary: 1978--93

    SciTech Connect

    Clark, J.F.; Simpson, H.J.; Bopp, R.F.; Deck, B.L.

    1995-10-01

    During summer months, dissolved oxygen (DO) concentrations in the lower Hudson estuary were usually lower than atmospheric equilibrium values. Distributions of DO along the axis of the estuary can be described by three general characteristics. Firstly, surface and bottom values lie on a single trend when plotted against salinity. Secondly, maximum DO concentrations were observed 50--75 km upstream of Manhattan at salinities off 5--15 ppt. Thirdly, the lowest DO concentrations were observed near Manhattan, New York, at salinities of 15--25 ppt and vary systematically with freshwater discharge rate. Minimum DO concentrations during times of similar freshwater discharge were substantially lower for water samples collected between 1978 and 1984 than for those collected between 1989 and 1993. These two periods were also distinguished by occurrences of intense phytoplankton blooms that produced supersaturated DO concentrations at salinities of 5--15 ppt for the period of 1989 to 1993. The increase in the minimum DO concentration in the water near Manhattan is probably in response to improved wastewater treatment at Passaic Valley, NJ; North River, NY; and other wastewater-treatment facilities.

  12. Interannual variability of Dissolved Oxygen values around the Balearic Islands

    NASA Astrophysics Data System (ADS)

    Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.

    2012-04-01

    Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate

  13. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    NASA Astrophysics Data System (ADS)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  14. Diurnal variations in, and influences on, concentrations of particulate and dissolved arsenic and metals in the mildly alkaline Wallkill River, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Wilson, T.P.; Szabo, Z.; Bonin, J.L.; Fischer, J.M.; Smith, N.P.

    2008-01-01

    Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 ??g/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 ??g/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity. ?? 2007 Springer-Verlag.

  15. Diurnal variations in, and influences on, concentrations of particulate and dissolved arsenic and metals in the mildly alkaline Wallkill River, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Barringer, Julia L.; Wilson, Timothy P.; Szabo, Zoltan; Bonin, Jennifer L.; Fischer, Jeffrey M.; Smith, Nicholas P.

    2008-01-01

    Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 μg/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 μg/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity.

  16. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    SciTech Connect

    Peterson, Mark J.; Cada, Glenn F.; Sale, Michael J.; Eddlemon, Gerald K.

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in

  17. Dissolved-oxygen regimen of the Willamette River, Oregon, under conditions of basinwide secondary treatment

    USGS Publications Warehouse

    Hines, Walter G.; McKenzie, S.W.; Rickert, D.A.; Rinella, F.A.

    1977-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  18. Steady-state dissolved oxygen model of the Willamette River, Oregon

    USGS Publications Warehouse

    McKenzie, Stuart W.; Hines, W.G.; Rickert, D.A.; Rinella, F.A.

    1979-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  19. Evaluation of planning alternatives for maintaining desirable dissolved-oxygen concentrations in the Willamette River, Oregon

    USGS Publications Warehouse

    Rickert, David A.; Rinella, F.A.; Hines, W.G.; McKenzie, S.W.

    1980-01-01

    For nearly half a century the Willamette River in Oregon experienced severe dissolved-oxygen problems related to large loads of organically rich waste waters from industries and municipalities. Since the mid-1950 's dissolved oxygen quality has gradually improved owing to low-flow augmentation, the achievement of basinwide secondary treatment, and the use of other waste-management practices. As a result, summer dissolved-oxygen levels have increased, salmon runs have returned, and the overall effort is widely regarded as a singular water-quality success. To document the improved dissolved-oxygen regimen, the U.S. Geological Survey conducted intensive studies of the Willamette during the summer low-flow seasons of 1973 and 1974. During each summer the mean daily dissolved-oxygen levels were found to be higher than 5 milligrams per liter throughout the river. Because of the basinwide secondary treatment, carbonaceous deoxygenation rates were low. In addition, almost half of the biochemical oxygen demand entering the Willamette was from diffuse (nonpoint) sources rather than outfalls. These results indicated that point-source biochemical oxygen demand was no longer the primary cause of dissolved-oxygen depletion. Instead, the major causes of deoxygenation were nitrification in a shallow ' surface active ' reach below Salem and an anomalous oxygen demand (believed to be primarily of benthal origin) in Portland Harbor. (Woodard-USGS)

  20. A study of trends in dissolved oxygen and fecal coliform bacteria at NASQAN stations

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.

    1982-01-01

    Most stations in the U.S. Geological Survey's National Stream Quality Accounting Network show no significant trend in either dissolved oxygen concentration or fecal coliform bacteria population for the period October 1974. through October 1981. Of the stations which do show trends, however, most show improved water quality: thirty-one of a total of 276 stations show rising dissolved oxygen concentrations, while only 17 show decreasing concentrations. Decreases in fecal coliform populations have occurred at 21 stations while increases have occurred at only 12 stations. Approximately half of the stations showing improving trends in dissolved oxygen and fecal coliform bacteria are in the Missouri-Mississippi-Ohio River system. Decreases in dissolved oxygen have occurred at scattered locations in the Western and South-Central States. Rising bacterial populations occur most frequently in the Eastern and Central States Trends in dissolved oxygen concentration resulting from temperature changes occurring during the study period can be separated from trends caused by chemical or biological processes by analyzing computed values of dissolved oxygen deficit. About half of the observed trends in dissolved oxygen appear to be the result of changes in water temperature.

  1. Fiber-optic dissolved oxygen and dissolved carbon dioxide sensors using fluorophores encapsulated in sol gel matrices

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeog-Chan

    Fiber optic chemical sensors (FOCS) for oxygen, dissolved oxygen (DO), and dissolved CO2 sensing using thin films of fluorophores encapsulated in sol-gel matrices were made and tested. The DO/O2 sensor used ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) perchlorate (Ru(Ph 2Phen)Cl2) as the oxygen sensitive fluorophore and methyltrimethoxysilane (MTMS) sol-gel as the encapsulating matrix material. For the DCO2 sensor, 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) co-doped with sodium bicarbonate was used as the DCO2 sensitive fluorophore-chemical system and diisobutoxy-alumino triethoxysilane (ASE) sol-gel was used as the encapsulating matrix material. It was found that oxygen quenches the excited state Ru(Ph2Phen)Cl 2 by diffusing through the MTMS matrix. Continuous excitation of Ru(Ph 2Phen)Cl2 during MTMS drying resulted in long, single exponential lifetimes of the metal complex and increased sensor sensitivity. When the sensor was field tested, it was found to have an excellent match compared to conventional titration method for determining dissolved oxygen concentrations and had fast response times. It was determined that this sensor measured the vapor pressure of oxygen rather than the absolute concentration of dissolved oxygen. For DCO2 sensing, it was found that the dynamic response of the senor could be tuned by varying the HPTS to NaHCO3 ratios. The sensor had fast response times compared to other fiber optic DCO 2 sensors reported which typically have response times of minutes.

  2. Biogeochemical controls on seasonal variations of the stable isotopes of dissolved oxygen and dissolved inorganic carbon in Castle Lake, CA

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Poulson, S. R.

    2010-12-01

    The purpose of this project is to perform a seasonal dissolved oxygen (DO) and dissolved inorganic carbon (DIC) stable isotope (δ18O, δ13C) study to assess the fluctuations in biogeochemical processes with depth in a lake. DO and DIC concentrations and stable isotope compositions (δ18O-DO, δ13C-DIC) have been used as a technique to study the systematics of diurnal freshwater biogeochemical processes, primarily photosynthesis, respiration, and gas-exchange (e.g. Quay et al. 1995, Trojanowska et al. 2008). For example, photosynthesis produces DO isotopically identical to the host water, typically light relative to atmospheric oxygen (+23.5‰), while respiration preferentially consumes isotopically light DO. Diel δ18O-DO and δ13C-DIC studies in rivers (e.g. Parker et al. 2005, Parker et al. 2010, Poulson & Sullivan 2010) have been used to determine the rates of biogeochemical processes over a 24h time scale. However, similar studies in lakes are rare, for either diel or seasonal time scales. The focus of this project is Castle Lake, 12km southwest of Mt. Shasta, CA, at an elevation of 1660m. Castle Lake is an alpine, meso-oligotrophic lake with a 19ha surface area and a maximum depth of up to 35m. This project consists of sampling profiles, 2-3 weeks apart, throughout the 2010 field season for monitoring seasonal depth trends, with measurements of DO concentration, temperature, pH, alkalinity, specific conductivity, PAR, chlorophyll concentration, δ18O-DO, δ13C-DIC, δ18O-H2O, and δD-H2O. Diel measurements of DO concentration, temperature, pH, specific conductivity, PAR, and chlorophyll concentration have also been performed at various depths. To date, the profile data collected at Castle Lake show various seasonal changes, starting after ice-out (late June 2010) through mid-August 2010. DO profiles display a positive heterograde trend with a maximum of 11.33mg/L at 12m in mid-August and minima of ≤0.12mg/L near the lake bottom. DIC concentrations increase

  3. Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters

    NASA Astrophysics Data System (ADS)

    Gemayel, E.; Hassoun, A. E. R.; Benallal, M. A.; Goyet, C.; Rivaro, P.; Abboud-Abi Saab, M.; Krasakopoulou, E.; Touratier, F.; Ziveri, P.

    2015-12-01

    A compilation of data from several cruises between 1998 and 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total dissolved inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross-validation results and revealed that second- and third-order polynomials fit the AT and CT data respectively. The AT surface fit yielded a root mean square error (RMSE) of ± 10.6 μmol kg-1, and salinity and temperature contribute to 96 % of the variability. Furthermore, we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ± 14.3 μmol kg-1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The identified empirical equations were applied on the 0.25° climatologies of temperature and salinity, available from the World Ocean Atlas 2013. The 7-year averages (2005-2012) showed that AT and CT have similar patterns with an increasing eastward gradient. The variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summer-winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations.

  4. Oxygen electrodes for rechargeable alkaline fuel cells. II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1990-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  5. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  6. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  7. DESIGN PROCEDURES FOR DISSOLVED OXYGEN CONTROL OF ACTIVATED SLUDGE PROCESSES

    EPA Science Inventory

    This report presents design procedures and guidelines for the selection of aeration equipment and dissolved (DO) control systems for activated sludge treatment plants. Aeration methods, equipment and application techniques are examined and selection procedures offered. Various DO...

  8. Field comparison of optical and clark cell dissolved-oxygen sensors

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.; Garcia, L.

    2005-01-01

    Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.

  9. COEUR D'ALENE LAKE, IDAHO. HYPOLIMNETIC CONCENTRATIONS OF DISSOLVED OXYGEN, NUTRIENTS, AND TRACE ELEMENTS, 1987

    EPA Science Inventory

    A reconnaissance study of Coeur dAlene Lake, Idaho (17010303) done from May through November 1987 assessed water quality throughout the lake. Particular emphasis was on hypolimnetic concentrations of dissolved oxygen, nutrients, and trace elements. Study results enabled refinem...

  10. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  11. Evaluation of sampling strategies to characterize dissolved oxygen conditions in northern Gulf of Mexico estuaries

    SciTech Connect

    Summers, J.K.; Engle, V.D.

    1993-01-01

    Dissolved oxygen was continuously monitored in eight sites of northern Gulf of Mexico estuaries in August, 1990. Monte Carlo analyses on subsamples of the data were used to evaluate several commonly used monitoring strategies. Monitoring strategies which involve single point sampling of dissolved oxygen may often misclassify an estuary as having good water quality. In the case of shallow, often well-mixed estuaries that experience diurnal cycles, such monitoring often does not occur at night, during the time of lowest dissolved oxygen concentration. The authors' objective was to determine the minimum sampling effort required to correctly classify a site in terms of the observed frequency of hypoxia. Tests concluded that the most successful classification strategy used the minimum dissolved oxygen concentration from a continuously sampled 24-hour period. (Copyright (c) 199e Kluwer Academic Publishers.)

  12. Dissolved oxygen and pH relationships in northern Australian mangrove waterways

    SciTech Connect

    Boto, K.G.; Bunt, J.S.

    1981-01-01

    Consistent, highly significant linear correlations (R2 greater than or equal to 0.8) between pH and dissolved oxygen levels have been found in northern Australian mangrove waterways. These properties seem to be influenced by dissolved organic matter, mainly polyphenolic compounds, present in the creeks and tidal channel waters.

  13. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  14. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  15. Measuring Spatial and Temporal Heterogeneity of Dissolved Oxygen in Streambed Sediments Using Pressure Sensitive Paint (PSP)

    NASA Astrophysics Data System (ADS)

    Huynh, K. T.; Salus, A.; Xie, M.; Roche, K. R.; Packman, A. I.

    2014-12-01

    Pressure sensitive paints (PSP) have been largely used in aerodynamic applications to measure pressure distributions on complex bodies such as aircraft. One common family of PSPs employ fluorescent pigments that are quenched in the presence of oxygen, yielding an inverse relationship between fluorescence intensity and oxygen concentration that is used to measure pressure in aerodynamic applications through the partial pressure of oxygen. These PSPs offer unexplored potential for visualizing dissolved oxygen (DO) concentration distributions on surfaces underwater. PSP was used to measure dissolved oxygen concentrations in streambed sediments in a laboratory flume. Two PSP-coated 2.5 cm diameter spheres were emplaced in a bed of similar material, and imaged under varying DO concentrations. Calibration curves relating fluorescence intensity to dissolved oxygen concentration were developed on a pixel-by-pixel basis, enabling spatial patterns of oxygen to be resolved in the sediment bed. This method of measuring dissolved oxygen concentration is advantageous because of its fast response time and ability to measure heterogeneous oxygen distributions in sediments. Future work will explore the combined effects of stream flow and biofilm growth on oxygen distributions in streambed sediments.

  16. An Optical Oxygen Sensor for Long-Term Continuous Monitoring of Dissolved Oxygen in Perfused Bioreactors

    NASA Technical Reports Server (NTRS)

    Gao, F. G.; Jeevarajan, A. S.; Anderson, M. M.

    2002-01-01

    For long-term growth of man1ITlalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to quantitate and control level of DO. Continuous measurement of the amount of DO in the cell culture medium in-line under sterile conditions in NASA's perfused bioreactor requires that the oxygen sensor provide increased sensitivity and be sterilizable and nontoxic. Additionally, long-term cell culture experiments require that the calibration be maintained several weeks or months. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An optical oxygen sensor (BOXY) based on dynamic fluorescent quenching and a pulsed blue LED light source was developed in our laboratory to address these requirements. Tris( 4,7 -diphenyl-l, 1 O-phenanthroline )ruthenium(II) chloride is employed as the fluorescent dye indicator. The sensing element consists of a glass capillary (OD 4.0 mm; ID 2.0 mm) coated internally with a thin layer of the fluorescent dye in silicone matrix and overlayed with a black shielding layer. Irradiation of the sensing element with blue light (blue LED with emission maximum at 475 nm) generates a red fluorescence centered at 626 nm. The fluorescence intensity is correlated to the concentration of DO present in the culture medium, following the modified non-linear Stern-Volmer equation. By using a pulsed irradiating light source, the problem of dye-bleaching, which is often encountered in long-term continuous measurements of tIns type, 'is minimized. To date we achieved sensor resolution of 0.3 mmHg at 50 mmHg p02, and 0.6 mmHg at 100 mmHg p02, with a response time of about one minute. Calibration was accomplished in sterile phosphate-buffered saline with a blood-gas analyzer (BGA) measurement as reference. Stand-alone software was also developed to control the sensor and bioreactor as well as to

  17. Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media.

    PubMed

    Morozan, Adina; Donck, Simon; Artero, Vincent; Gravel, Edmond; Doris, Eric

    2015-11-01

    A carbon nanotube-gold nanohybrid was used as catalyst for the reduction of molecular oxygen in acidic and alkaline media, the relevant cathode reaction in fuel cells. In alkaline medium, the nanohybrid exhibits excellent activity with a dominant 4e(-) reduction of O2 and low overpotential requirement compared to previously reported nano-gold materials. This property is linked to its capability to efficiently mediate HO2(-) dismutation. PMID:26439282

  18. Refining the Use of Sodium Azide to Counteract Nitrite Interference in Dissolved Oxygen Analysis of Seawater

    NASA Astrophysics Data System (ADS)

    Miller, M. T.

    2014-12-01

    High nitrite concentrations are known to interfere with the analysis of dissolved oxygen in seawater samples, though the affected range has yet to be defined. This error can be counteracted by the addition of sodium azide to the hydroxide-iodide pickling reagent. The 2013 US GEOTRACES zonal transect included stations off the coast of Peru with nitrite values up to 10μmol/kg in the upper 400 meters of the water column. Low concentrations of dissolved oxygen were also present in the upper 800 meters, providing an opportunity to study the effect of high nitrite levels on dissolved oxygen analysis over a range of concentrations. Without the addition of azide, the error in dissolved oxygen measurement increased linearly with nitrite concentration. The interference was only significant in samples with nitrite concentrations higher than 1.5 μmol/kg, all of which also had low dissolved oxygen concentrations (<45μmol/kg). The unique combination of high nitrite and low dissolved oxygen is present in such well known and relatively small areas of the world's oceans that the addition of azide is not necessary as a standard procedure for the vast majority of oceanographic measurements.

  19. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  20. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water.

    PubMed

    Hocaoglu, S Murat; Insel, G; Cokgor, E Ubay; Orhon, D

    2011-03-01

    Effect of low dissolved oxygen on simultaneous nitrification and denitrification was evaluated in a membrane bioreactor treating black water. A fully aerobic membrane bioreactor was operated at a sludge age of 60 days under three low dissolved oxygen (DO) levels below 0.5mg/L. It sustained effective simultaneous nitrification/denitrification for the entire observation period. Nitrification was incomplete due to adverse effects of a number of factors such as low DO level, SMPs inhibition, alkalinity limitation, etc. DO impact was more significant on denitrification: Nitrate was fully removed at low DO level but the removal was gradually reduced as DO was increased to 0.5mg/L. Nitrogen removal remained optimal within the DO range of 0.15-0.35 mg/L. Experimental results were calibrated and simulated by model evaluation with the same model coefficients. The model defined improved mass transfer with lower affinity coefficients for oxygen and nitrate as compared to conventional activated sludge. PMID:21239168

  1. Remote Sensing of Dissolved Oxygen and Nitrogen in Water using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    De Young, R.; Ganoe, R.

    2013-12-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle experiment has demonstrated the ability to remotely detect dissolved oxygen and nitrogen in pure water (also Chesapeake Bay water) using a 355nm Nd:YAG laser and a simple monochromater to detect the shifted Raman oxygen and nitrogen backscattered signals at 376.2 and 387.5 nm respectively. The theoretical basis for the research, components of the experimental system, and key findings are presented. A 1.3-m water cell had an attached vertical column to house a Troll 9500 dissolved oxygen in-situ monitor (In-Situ Inc Troll 9500). The Raman oxygen signal could be calibrated with this devise. While Raman backscattered water signals are low a potential aircraft remote system was designed and will be presented.

  2. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  3. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  4. MODEL SIMULATIONS OF DISSOLVED OXYGEN CHARACTERISTICS OF MINNESOTA LAKES: PAST AND FUTURE

    EPA Science Inventory

    A deterministic, one-dimensional, unsteady numerical model has been developed, tested, and applied to simulate mean daily dissolved oxygen (DO) characteristics in 27 lake classes in the state of Minnesota. eaeration and photosynthesis are the oxygen sources, while respiration, se...

  5. Experimental study of dissolved oxygen transport by regular waves through a perforated breakwater

    NASA Astrophysics Data System (ADS)

    Yin, Zegao; Yu, Ning; Liang, Bingchen; Zeng, Jixiong; Xie, Shaohua

    2016-02-01

    The perforated breakwater is an environmentally friendly coastal structure, and dissolved oxygen concentration levels are an important index to denote water quality. In this paper, oxygen transport experiments with regular waves through a vertical perforated breakwater were conducted. The oxygen scavenger method was used to reduce the dissolved oxygen concentration of inner water body with the chemicals Na2SO3 and CoCl2. The dissolved oxygen concentration and wave parameters of 36 experimental scenarios were measured with different perforated arrangements and wave conditions. It was found that the oxygen transfer coefficient through wave surface, K1 a 1, is much lower than the oxygen transport coefficient through the perforated breakwater, K2 a 2. If the effect of K1 a 1 is not considered, the dissolved oxygen concentration computation for inner water body will not be greatly affected. Considering the effect of a permeable area ratio a, relative location parameter of perforations δ and wave period T, the aforementioned data of 30 experimental scenarios, the dimensional analysis and the least squares method were used to derive an equation of K2 a 2 (K2 a 2=0.0042 a 0.5 δ 0.2 T -1). It was validated with 6 other experimental scenarios data, which indicates an approximate agreement. Therefore, this equation can be used to compute the DO concentration caused by the water transport through perforated breakwater.

  6. Production Responses of Channel Catfish to Minimum Daily Dissolved Oxygen Concentrations in Earthen Ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the effects of the minimum daily dissolved oxygen (DO) concentration on production parameters of channel catfish Ictalurus punctatus in earthen ponds. Fifteen one-acre ponds (5 ponds per treatment) were managed as High Oxygen (minimum DO concentrations aver...

  7. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel.

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  8. Patterns of dissolved oxygen dynamics in a Pacific Northwest slough and tide channel - CERF 2015

    EPA Science Inventory

    Pacific Northwest (PNW) estuaries and tide channels are habitats or migratory corridors for societally prized salmonids. These fish have high oxygen requirements, and an adequate level of dissolved oxygen is considered an important gauge of a PNW water body’s condition. W...

  9. Evaluation parameters for the alkaline fuel cell oxygen electrode

    NASA Technical Reports Server (NTRS)

    Singer, J.; Srinivasan, V.

    1985-01-01

    Studies were made of Pt- and Au-catalyzed porous electrodes, designed for the cathode of the alkaline H2/O2 fuel cell, employing cyclic voltammetry and the floating half-cell method. The purpose was to obtain parameters from the cyclic voltammograms which could predict performance in the fuel cell. It was found that a satisfactory relationship between these two types of measurement could not be established; however, useful observations were made of relative performance of several types of carbon used as supports for noble metal catalysts and of some Au catalysts. The best half-cell performance with H2/O2 in a 35 percent KOH electrolyte at 80 C was given by unsupported fine particle Au on Teflon; this electrode is used in the Orbiter fuel cell.

  10. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  11. Simulation of hydrodynamics, temperature, and dissolved oxygen in Norfork Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Galloway, Joel M.; Green, W. Reed

    2002-01-01

    Outflow from Norfork Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in north-central Arkansas and south-central Missouri. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Norfork Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of increased minimum flows on temperature and dissolved-oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model was developed and calibrated for Norfork Lake, located on the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flow from 1.6 cubic meter per second (the existing minimum flow) to 8.5 cubic meters per second (the increased minimum flow). Simulations included assessing the impact of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevation of 1.1 meter in Norfork Lake on outflow temperatures and dissolved-oxygen concentrations. The increased minimum flow simulation (without increasing initial water-surface elevation) appeared to increase the water temperature and decrease dissolved-oxygen concentration in the outflow. Conversely, the increased minimum flow and initial increase in water-surface elevation (1.1 meter) simulation appeared to decrease outflow water temperature and increase dissolved-oxygen concentration through time. However, results from both scenarios for water temperature and dissolved-oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  12. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  13. Use of pore-water composition to reconstruct past dissolved inorganic carbon concentration and alkalinity in Pacific bottom water

    NASA Astrophysics Data System (ADS)

    Sauvage, J. F.; Spivack, A. J.; D'Hondt, S. L.; Integrated Ocean Drilling Program Expedition 329 shipboard scientific party

    2011-12-01

    The carbonate system is a crucial component in controlling the pH of the world's oceans and the distribution of CO2 within the ocean, as well as between the ocean and atmosphere. Consequently, dissolved inorganic carbon (DIC) and alkalinity reconstructions bear lots of promise for improving understanding of the ocean's role in the global carbon cycle and climate. We propose and test a method to quantify in situ concentrations of deep-sea carbonate-system components (DIC, alkalinity, CO32-, Ca2+, and minor component concentrations) in pore fluid of deep-sea sediment cores. These concentrations can in turn be used to reconstruct deep-sea carbonate-system chemistry of the geologic past. Alkalinity, DIC and Ca2+ concentrations measured on research vessels differ from in situ values because temperature and pressure changes during core recovery, storage and extraction induce calcium carbonate precipitation and in this way alter the original composition. To reconstruct in situ values, we developed a method that takes advantage of the mathematically over-determined state of the system if three components are measured, given that CaCO3 is saturated and the dissolved carbonate system is at equilibrium in situ. As a result, based on the measured alkalinity, DIC and Ca2+ concentrations, in situ CO2aq, HCO3-, CO32-, and minor species concentrations are calculated by applying an iteration process. This approach allows us to calculate the amount of CaCO3 precipitated during sediment recovery from the seafloor, and hence in situ carbonate system components. We apply our model to pore-water data from two SPG sites rich in calcium carbonate and drilled by Integrated Ocean Drilling Program Expedition 329 (Sites 1367 and 1368). We compared two sample types for this study, (i) samples squeezed and processed within minutes of recovery (rapidly processed) and (ii) samples processed in the following hours/days, and as consequence prone to some substantial alteration (slowly processed

  14. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  15. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method.

    PubMed

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  16. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    NASA Astrophysics Data System (ADS)

    Yu, Huihui; Chen, Yingyi; Hassan, Shahbazgul; Li, Daoliang

    2016-06-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds.

  17. Dissolved oxygen content prediction in crab culture using a hybrid intelligent method

    PubMed Central

    Yu, Huihui; Chen, Yingyi; Hassan, ShahbazGul; Li, Daoliang

    2016-01-01

    A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. The uncertainties in the data from multiple sensors are a significant factor when building a dissolved oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen content forecasting model based on the radial basis function neural networks (RBFNN) data fusion method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the comparison of the prediction results of different traditional models validates the effectiveness and accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in outdoor crab ponds. PMID:27270206

  18. Dissolved oxygen control of mechanical aerators at the Rensselaer county wastewater treatment plant. Final report

    SciTech Connect

    Wurtenberger, F.J.; Biski, W.K.; Guagno, J.A.

    1994-02-01

    The report describes the results of testing dissolved oxygen analyzers to control operation of mechanical aerators at the Rensselaer County Sewer District Wastewater Treatment Plant and reduce the amount of energy uses while maintaining or enhancing biological treatment. Current electricity costs are more than $300,000 annually for aeration in the activated sludge process. Motors for the aerators are manually controlled between high and low speed. It is expected that energy consumption will be reduced by using automatic controllers that change the speed of the aerators in response to the concentration of dissolved oxygen in the aeration basins. The project had three objectives; to test several manufacturers` dissolved oxygen analyzers at various locations within the aeration basins at the Rensselaer County Sewer District Wastewater Treatment Plant for accuracy, reliability, response time, and maintenance requirements; to install one manufacturer`s equipment in the aeration basins and operate the aerators either automatically or manually in response to dissolved oxygen readings; and to record plant operating and energy use data to determine whether the dissolved oxygen analyzers and controls were cost-effective and saved energy.

  19. Assessing the Effects of Water Rights Purchases on Dissolved Oxygen, Stream Temperatures, and Fish Habitat

    NASA Astrophysics Data System (ADS)

    Mouzon, N. R.; Null, S. E.

    2014-12-01

    Human impacts from land and water development have degraded water quality and altered the physical, chemical, and biological integrity of Nevada's Walker River. Reduced instream flows and increased nutrient concentrations affect native fish populations through warm daily stream temperatures and low nightly dissolved oxygen concentrations. Water rights purchases are being considered to maintain instream flows, improve water quality, and enhance habitat for native fish species, such as Lahontan cutthroat trout. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate streamflows, temperatures, and dissolved oxygen concentrations in the Walker River. We simulate thermal and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that water purchases most enhance native trout habitat. Stream temperatures and dissolved oxygen concentrations are proxies for trout habitat. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach currently acts as a water quality barrier for fish passage.

  20. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  1. EFFECT OF DISSOLVED OXYGEN ON PHENOLS BREAKTHROUGH FROM GAC ADSORBERS

    EPA Science Inventory

    This study demonstrates that molecular oxygen plays an important role in the adsorption of organic compounds from water by activated carbon. It was determined that the adsorptive capacity of granular activated carbon (GAC) for o-cresol can increase by almost 200% as a result of...

  2. Oxygen reduction reaction on stepped platinum surfaces in alkaline media.

    PubMed

    Rizo, Ruben; Herrero, Enrique; Feliu, Juan M

    2013-10-01

    The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules. PMID:23936903

  3. Measurement in a marine environment using low cost sensors of temperature and dissolved oxygen

    USGS Publications Warehouse

    Godshall, F.A.; Cory, R.L.; Phinney, D.E.

    1974-01-01

    Continuous records of physical parameters of the marine environment are difficult as well as expensive to obtain. This paper describes preliminary results of an investigative program with the purpose of developing low cost time integrating measurement and averaging devices for water temperature and dissolved oxygen. Measurements were made in an estuarine area of the Chesapeake Bay over two week periods. With chemical thermometers average water temperature for the two week period was found to be equal to average water temperature measured with thermocouples plus or minus 1.0 C. The slow diffusion of oxygen through the semipermiable sides of plastic bottles permitted the use of water filled bottles to obtain averaged oxygen measurements. Oxygen measurements for two week averaging times using 500 ml polyethylene bottles were found to vary from conventionally measured and averaged dissolved oxygen by about 1.8 mg/l. ?? 1974 Estuarine Research Federation.

  4. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  5. Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Zhu, Huie; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-04-01

    Fluorinated polymer nanoparticle films were prepared by dissolving amphiphilic fluorinated polymer, poly (N-1H, 1H-pentadecafluorooctylmethacrylamide) (pC7F15MAA) in two miscible solvents (AK-225 and acetic acid). A superhydrophobic and porous film was obtained by dropcasting the solution on substrates. With higher ratios of AK-225 to acetic acid, pC7F15MAA was densified around acetic acid droplets, leading to the formation of pC7F15MAA nanoparticles. The condition of the nanoparticle film preparation was investigated by varying the mixing ratio or total concentration. A highly sensitive dissolved oxygen sensor system was successfully prepared utilizing a smart surface of superhydrophobic and porous pC7F15MAA nanoparticle film. The sensitivity showed I0/I40 = 126 in the range of dissolved oxygen concentration of 0 ~ 40 mg L-1. The oxygen sensitivity was compared with that of previous reports.

  6. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  7. Simulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.; Guimaraes, Wladmir B.; Sanders, Curtis L., Jr.; Bales, Jerad D.

    2003-01-01

    Time-series plots of dissolved-oxygen concentrations were determined for various simulated hydrologic and point-source loading conditions along a free-flowing section of the Catawba River from Lake Wylie Dam to the headwaters of Fishing Creek Reservoir in South Carolina. The U.S. Geological Survey one-dimensional dynamic-flow model, BRANCH, was used to simulate hydrodynamic data for the Branched Lagrangian Transport Model. Waterquality data were used to calibrate the Branched Lagrangian Transport Model and included concentrations of nutrients, chlorophyll a, and biochemical oxygen demand in water samples collected during two synoptic sampling surveys at 10 sites along the main stem of the Catawba River and at 3 tributaries; and continuous water temperature and dissolved-oxygen concentrations measured at 5 locations along the main stem of the Catawba River. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to watertemperature boundary data due to the effect of temperature on reaction kinetics and the solubility of dissolved oxygen. Of the model coefficients, the simulated dissolved-oxygen concentration was most sensitive to the biological oxidation rate of nitrite to nitrate. To demonstrate the utility of the Branched Lagrangian Transport Model for the Catawba River, the model was used to simulate several water-quality scenarios to evaluate the effect on the 24-hour mean dissolved-oxygen concentrations at selected sites for August 24, 1996, as simulated during the model calibration period of August 23 27, 1996. The first scenario included three loading conditions of the major effluent discharges along the main stem of the Catawba River (1) current load (as sampled in August 1996); (2) no load (all point-source loads were removed from the main stem of the Catawba River; loads from the main tributaries were not removed); and (3

  8. Simulation of hydrodynamics, temperature, and dissolved oxygen in Table Rock Lake, Missouri, 1996-1997

    USGS Publications Warehouse

    Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.

    2003-01-01

    Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.

  9. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  10. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  11. Study on kinetics of cathodic reduction of dissolved oxygen in 3.5% sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Li, Yongjuan; Zhang, Dun; Wu, Jiajia

    2010-09-01

    Electrochemical reduction of dissolved oxygen in seawater on metals is of great importance for corrosion studies. The present paper studied cathodic reduction of dissolved oxygen on Q235 carbon steel in 3.5% sodium chloride (NaCl) solutions by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE). The cyclic voltammetric results demonstrated the cathodic process on Q235 carbon steel in O2-saturated 3.5% NaCl solution contains three reactions: dissolved oxygen reduction, iron oxides reduction and hydrogen evolution. The peak potential of oxygen reduction reaction (ORR) is -0.85 V vs Ag/AgCl, 3 molL-1 KCl. The EIS results indicated that the ORR occurring on Q235 carbon steel is a 4-electron process and that no finite diffusion is caused by the intermediate of H2O2 produced by ORR. The RDE and RRDE voltammograms confirmed the EIS results and it was found that the number of transferred electrons for ORR was nearly 4, i.e., dissolved oxygen reduced to water.

  12. New instrumentation for optical measuring of oxygen in gas or dissolved in liquids

    NASA Astrophysics Data System (ADS)

    Trettnak, W.; Gruber, W.; Reininger, F.; O'Leary, P.; Klimant, I.

    The optical oxygen sensor is a novel device for the determination of oxygen in gases or dissolved in liquids. It is based on the measurement principle of fluorescence quenching, which is completely different from that of polarographic oxygen sensors (today the most widespread devices for oxygen detection). The new instrument offers features and advantages, which render it not only a realistic alternative, but, for specific applications, make it superior to existing electrochemical methods. The system is based on low-cost semiconductor devices (light-emitting diodes, photodiodes, low-cost analogue and digital components) and new LED-compatible oxygen-sensitive membranes. The flow cell of the instrument may be thermostatted and the sensor can be calibrated by a simple two-point calibration procedure. The optical oxygen sensor is particularly suitable for measuring dissolved oxygen in respirometry, since no oxygen is consumed by the device and the signal is independent of sample flowrate or stirring speed. Typical fields of application are monitoring of oxygen in ground and drinking water, in process controll in bioreactors and in breath gas and blood gas analysis.

  13. Oxygen Reduction on Ag(100) in Alkaline Solutions--A Theoretical Study.

    PubMed

    Goduljan, Aleksej; de Campos Pinto, Leandro Moreira; Juarez, Fernanda; Santos, Elizabeth; Schmickler, Wolfgang

    2016-02-16

    Silver is much more reactive to oxygen than gold; nevertheless, in alkaline solutions, the rates of oxygen reduction on both metals are similar. To explain this phenomenon, the first, rate-determining step of oxygen reduction on Ag(100) is determined by a combination of DFT, molecular dynamics, and electrocatalysis theory. In vacuum, oxygen is adsorbed on Ag(100), but in the electrochemical environment, the adsorption energy is offset by the loss of hydration energy as the molecule approaches the surface. As a result, the first electron transfer should take place in an outer-sphere mode. Previously, the same mechanism for oxygen reduction on Au(100) has been predicted, and these calculations have been repeated by using a more advanced version of the electrocatalysis theory discussed herein to confirm previous conclusions. The theoretical results compare well with experimental data. PMID:26698629

  14. Dissolved oxygen sensing using an optical fibre long period grating coated with hemoglobin

    NASA Astrophysics Data System (ADS)

    Partridge, M.; James, S. W.; Tatam, R. P.

    2015-09-01

    A method for the preparation of a sensor consisting of an optical fibre long period grating coated with human hemoglobin is described. The utility of this sensor in detecting dissolved oxygen in phosphate buffered saline solution, by the conversion of the coated hemoglobin from deoxyhemoglobin to oxyhemoglobin, is described. The sensor shows good repeatability with a %CV of less than 1% for oxygenated and deoxygenated states and no drift or hysteresis with repeated cycling.

  15. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  16. INFLUENCE OF PH, DISSOLVED OXYGEN, SUSPENDED SOLIDS OR DISSOLVED SOLIDS UPON VENTILATORY AND COUGH FREQUENCIES IN THE BLUEGILL 'LEPOMIS MACROCHIRUS' AND BROOK TROUT 'SALVELINUS FONTINALIS'

    EPA Science Inventory

    Conservative no-effect concentration ranges were estimated for ventilatory and coughing responses of bluegill sunfish Lepomis macrochirus and brook trout Salvelinus fontinalis exposed to altered pH, or to changes in dissolved oxygen (DO), suspended solids, or dissolved solids con...

  17. High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer.

    PubMed

    Greer, K D; Molson, J W; Barker, J F; Thomson, N R; Donaldson, C R

    2010-10-21

    A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O₂/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3mg/L limit), within a radius of 2-4m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation. PMID:20727615

  18. High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer

    NASA Astrophysics Data System (ADS)

    Greer, K. D.; Molson, J. W.; Barker, J. F.; Thomson, N. R.; Donaldson, C. R.

    2010-10-01

    A field experiment was completed at a fractured dolomite aquifer in southwestern Ontario, Canada, to assess the delivery of supersaturated dissolved oxygen (supersaturated with respect to ambient conditions) for enhanced bioremediation of petroleum hydrocarbons in groundwater. The injection lasted for 1.5 h using iTi's gPro® oxygen injection technology at pressures of up to 450 kPa and at concentrations of up to 34 mg O 2/L. A three-dimensional numerical model for advective-dispersive transport of dissolved oxygen within a discretely-fractured porous medium was calibrated to the observed field conditions under a conservative (no-consumption) scenario. The simulation demonstrated that oxygen rapidly filled the local intersecting fractures as well as the porous matrix surrounding the injection well. Following injection, the local fractures were rapidly flushed by the natural groundwater flow system but slow back-diffusion ensured a relatively longer residence time in the matrix. A sensitivity analysis showed significant changes in behaviour with varying fracture apertures and hydraulic gradients. Applying the calibrated model to a 7-day continuous injection scenario showed oxygen residence times (at the 3 mg/L limit), within a radius of 2-4 m from the injection well, of up to 100 days. This study has demonstrated that supersaturated dissolved oxygen can be effectively delivered to this type of a fractured and porous bedrock system at concentrations and residence times potentially sufficient for enhanced aerobic biodegradation.

  19. Ventilation and dissolved oxygen cycle in Lake Superior: Insights from a numerical model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Katsumi; Tokos, Kathy S.; Gregory, Chad

    2015-09-01

    Ventilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation and dissolved O2 cycle. Our results indicate that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturning following a very cold winter does not completely ventilate the lake interior. While this is unexpected for a dimictic lake, no part of the lake remains isolated from the atmosphere for more than 300 days. Our results also show that Lake Superior's oxygen cycle is dominated by solubility changes; as a result, the expected relationship between biological consumption of dissolved O2 and ventilation age does not manifest.

  20. A unit for collection of dissolved oxygen and water column temperature at multiple depths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2004 field study conducted during actual channel catfish Ictalurus punctatus harvests, and a small-scale research study conducted in 2005, required continuous collection of dissolved oxygen concentration and temperature at two depths in the water column. The on-farm study required data collection...

  1. DIEL DISSOLVED OXYGEN MONITORING OF THE SPOKANE RIVER DURING EXTREME LOW FLOW. KOOTENAI COUNTY, IDAHO, 1992

    EPA Science Inventory

    Diel monitoring of dissolved oxygen and temperature was conducted on an impounded and free-flowing reach of the Spokane River, in north Idaho (17010303) on 2 occasions during an extreme low flow event in water year 1992. The objective was to document excursions from water qualit...

  2. Effect of Dissolved Oxygen Concentration on Development and Hatching of Channel Catfish Ictalurus punctatus Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommendations on required dissolved oxygen (DO) concentrations in channel catfish hatcheries vary widely. This study was conducted to determine effects of DO concentration on development and hatching success of channel catfish eggs. Five channel catfish spawns were collected from a pond at the T...

  3. FIELD MEASUREMENT OF DISSOLVED OXYGEN: A COMPARISON OF METHODS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA- 00160 Wilkin*, R.T., McNeil*, M.S., Adair*, C.J., and Wilson*, J.T. Field Measurement of Dissolved Oxygen: A Comparison of Methods. Ground Water Monitoring and Remediation (Fall):124-132 (2001). EPA/600/J-01/403. The abili...

  4. A Simplified and Inexpensive Method for Measuring Dissolved Oxygen in Water.

    ERIC Educational Resources Information Center

    Austin, John

    1983-01-01

    A modified Winkler method for determining dissolved oxygen in water is described. The method does not require use of a burette or starch indicator, is simple and inexpensive and can be used in the field or laboratory. Reagents/apparatus needed and specific procedures are included. (JN)

  5. INCREASED TOXICITY OF AMMONIA TO RAINBOW TROUT 'SALMO GAIRDNERI' RESULTING FROM REDUCED CONCENTRATIONS OF DISSOLVED OXYGEN

    EPA Science Inventory

    The median lethal concentration (LC50) of aqueous ammonia at reduced dissolved oxygen (D.O.) concentrations was tested in acute toxicity tests with rainbow trout (Salmo gairdneri) fingerlings. Fifteen 96-h flow-through tests were conducted over the D.O. range 2.6-8.6 mg/L, the fo...

  6. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. The method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. Other permanent gases such as...

  7. Effect of daily minimum dissolved oxygen concentration on production of channel x blue hybrid catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to pond dissolved oxygen management strategies. The purpose of this study was to quantify the production and water quality responses of the cha...

  8. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  9. Effect of daily minimum pond dissolved oxygen concentration on hybrid striped bass fingerling yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. The purpose of this study was to quantify the production and water quality responses of hybrid striped ...

  10. Organic carbon and dissolved oxygen budgets for a commerical-size, in-pond raceway system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive production of Ictalurid catfish in the United States has increased over the past several years and a better understanding of the amount of organic carbon (OC) and dissolved oxygen (DO) in these culture environments is needed. Budgets for OC and DO were estimated over a production season (M...

  11. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  12. Miniature dissolved oxygen and turbulence optical sensor for river and coastal environmental applications

    NASA Astrophysics Data System (ADS)

    Carapezza, Edward M.; Lombardi, Gabrial; Butman, Jerry; Babb, Ivar

    2009-09-01

    This paper describes an innovative miniature optical sensor for predicting dissolved oxygen concentrations and measuring turbulence in river and littoral water columns. The dissolved oxygen and turbulence sensor consists of a single-frequency laser transmitter and a photodetector on which the scattered light from the turbulent water at the base of a dam or spillway is coherently mixed with a sample of the transmitted beam. This miniature sensor could be used both upstream and downsteam of dams and weirs to predict the amount of dissolved oxygen and turbulence in these waters. It could also be used on mobile platforms, such as unmanned underwater vehicles (UUV's), to monitor the edges of biological or chemical plumes or for wake follow platforms, schools of fish or marine mammals or on stationary unattended underwater sensors to monitor natural aeration and turbulence in littoral and riverine waters. Arrays of fixed unattended sensors could be used to detect the wake of transiting submerged vehicles, scuba divers, marine mammals or large schools of fish. A mobile platform equipped with a miniature sensor could to be cued to the general location and depth of an underwater target and then the platform could use this small aperture sensor to acquire and follow the wake. This dissolved oxygen and turbulence sensor system could be miniaturized and packaged into a very small volume; approximately the size of a wristwatch.

  13. RESEARCH AT THE GULF ECOLOGY DIVISION ON THE EFFECTS OF LOW DISSOLVED OXYGEN ON ESTUARINE ANIMALS

    EPA Science Inventory

    Concerns about hypoxia and its effects on saltwater organisms are increasing as environmental conditions in the inshore and nearshore marine environments are better understood. Along the Gulf of Mexico coast, periods of very low dissolved oxygen (D.O.) concentrations have been re...

  14. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series

    EPA Science Inventory

    In aquatic systems, time series of dissolved oxygen (DO) have been used to compute estimates of ecosystem metabolism. Central to this open-water method is the assumption that the DO time series is a Lagrangian specification of the flow field. However, most DO time series are coll...

  15. USE OF SEDIMENT PROFILE IMAGERY TO ESTIMATE NEAR-BOTTOM DISSOLVED OXYGEN REGIMES

    EPA Science Inventory

    The U.S. EPA, Atlantic Ecology Division is developing empirical stressor-response models for nitrogen pollution in partially enclosed coastal systems using dissolved oxygen (DO) as one of the system responses. We are testing a sediment profile image camera as a surrogate indicat...

  16. DISSOLVED OXYGEN AND METHANE IN WATER BY A GC HEADSPACE EQUILIBRATION TECHNIQUE

    EPA Science Inventory

    An analytical procedure is described for the determination of dissolved oxygen and methane in groundwater samples. he method consists of generating a helium gas headspace in a water filled bottle, and analysis of the headspace by gas chromatography. ther permanent gases such as n...

  17. Dissolved oxygen in two Oregon estuaries: Importance of the ocean-estuary connection - March 2011

    EPA Science Inventory

    We examined the role of the ocean–estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO w...

  18. SIMULATED CLIMATE CHANGE EFFECTS ON DISSOLVED OXYGEN CHARACTERISTICS IN ICE-COVERED LAKES. (R824801)

    EPA Science Inventory

    A deterministic, one-dimensional model is presented which simulates daily dissolved oxygen (DO) profiles and associated water temperatures, ice covers and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface ...

  19. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  20. ACUTE SENSITIVITY OF JUVENILE SHORTNOSE STURGEON TO LOW DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Campbell, Jed G. and Larry R. Goodman. 2004. Acute Sensitivity of Juvenile Shortnose Sturgeon to Low Dissolved Oxygen Concentrations. EPA/600/J-04/175. Trans. Am. Fish. Soc. 133(3):772-776. (ERL,GB 1155).

    There is considerable concern that factors such as eutrophication, ...

  1. Effects of Low Dissolved Oxygen on Organisms Used in Freshwater Sediment Toxicity Tests

    EPA Science Inventory

    This manuscript describes the results of tests to determine the tolerance of three benthic organisms to reduced dissolved oxygen (DO). These three organisms are those recommended by EPA for use in toxicity testing of contaminated sediments. The results of the exposures indicate ...

  2. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  3. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.

    PubMed

    Borrega, Marc; Tolonen, Lasse K; Bardot, Fanny; Testova, Lidia; Sixta, Herbert

    2013-05-01

    The potential of hot water extraction of birch wood to produce highly purified dissolving pulp in a subsequent soda-anthraquinone pulping process was evaluated. After intermediate extraction intensities, pulps with low xylan content (3-5%) and high cellulose yield were successfully produced. Increasing extraction intensity further decreased the xylan content in pulp. However, below a xylan content of 3%, the cellulose yield dramatically decreased. This is believed to be due to cleavage of glycosidic bonds in cellulose during severe hot water extractions, followed by peeling reactions during alkaline pulping. Addition of sodium borohydride as well as increased anthraquinone concentration in the pulping liquor increased the cellulose yield, but had no clear effects on pulp purity and viscosity. The low intrinsic viscosity of pulps produced after severe extraction intensities and soda-anthraquinone pulping corresponded to the viscosity at the leveling-off degree of polymerization, suggesting that nearly all amorphous cellulose had been degraded. PMID:23260272

  4. Oxygen isotope fractionation in phosphates: the role of dissolved complex anions in isotope exchange.

    PubMed

    Zheng, Yong-Fei

    2016-01-01

    Oxygen isotope fractionation factors for phosphates were calculated by means of the increment method. The results suggest that Ag3PO4 and BiPO4 are enriched in (18)O relative to AgPO4, and the three phosphates are consistently depleted in (18)O relative to Ba3[PO4]2; fluorapatite and chlorapatite exhibit a similar behaviour of oxygen isotope fractionation with consistent enrichment of (18)O relative to hydroxyapatite. The valence, radii and coordination of metal cations play a quantitative role in dictating the (18)O/(16)O partitioning in these phosphates of different compositions. The calculated fractionation factors for the Ag3PO4-H2O system are in agreement with experimental determinations derived from enzyme-catalysed isotope exchange between dissolved inorganic phosphate and water at the longest reaction durations at low temperatures. This demonstrates that the precipitated Ag3PO4 has completely captured the oxygen isotope fractionation in the dissolved inorganic phosphate. The calculated fractionation factors for the F/Cl-apatite-water systems are in agreement with the enzyme-catalysed experimental fractionations for the dissolved phosphate-water system at the longest reaction durations but larger than fractionations derived from bacteria-facilitated exchange and inorganic precipitation experiments as well as natural observations. For the experimental calibrations of oxygen isotope fractionation involving the precipitation of dissolved phosphate species from aqueous solutions, the fractionation between precipitate and water is primarily dictated by the isotope equilibration between the dissolved complex anions and water prior to the precipitation. Therefore, the present results provide a quantitative means to interpret the temperature dependence of oxygen isotope fractionation in inorganic and biogenic phosphates. PMID:25587823

  5. Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water

    NASA Astrophysics Data System (ADS)

    Khorolskaya, S. V.; Polyanskii, L. N.; Kravchenko, T. A.; Konev, D. V.

    2014-06-01

    The kinetics of the reduction of molecular oxygen dissolved in water with nanocomposites consisting of an ion-exchange matrix and copper nanoparticles deposited in it in various amounts was studied. As the metal content in the polymer increased, the amount of reduced oxygen initially increased and then reached the limiting value. At a certain metal content, ionization of individual particles with formation of metal counterions changes to the oxidation of particles assembly giving layers of oxide products. The mechanism changes at the percolation threshold of the electron conductivity of the nanocomposite and determines the maximum amount of absorbed oxygen.

  6. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  7. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions. PMID:18243280

  8. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  9. Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk

    SciTech Connect

    Coutant, C.C.

    1985-01-01

    Striped bass Morone saxatilis has a paradoxical record of distribution and abundance, including population declines in coastal waters and variable success of freshwater introductions. This record is analyzed for consistency with a hypothesis that striped bass are squeezed between their thermal and dissolved oxygen preferences or requirements. A commonality among diverse field and laboratory observations supports an inherent thermal niche for the species that changes to lower temperatures as fish age. This shift can cause local conditions, especially warm surface strata and deoxygenated deep water, to be incompatible with the success of large fish. Crowding due to temperature preferences alone or coupled with avoidance of low oxygen concentrations can lead to pathology and overfishing, which may contribute to population declines. Through a mixture of evidence and conjecture, the thermal niche-dissolved oxygen hypothesis is proposed as a unified perspective of the habitat requirements of the species that can aid in its study and management. 139 references, 12 figures.

  10. Effect of Dissolved Oxygen on Cu Corrosion in Single Wafer Cleaning Process

    NASA Astrophysics Data System (ADS)

    Imai, Masayoshi; Yamashita, Yukinari; Futatsuki, Takashi; Shiohara, Morio; Kondo, Seiichi; Saito, Shuichi

    2009-04-01

    We investigated Cu corrosion at the via bottom of multi-layered Cu interconnects that occurred after post-etching wet cleaning and caused via open failures. We found that oxygen was dissolved into de-ionized water (DIW) on the wafer edge from the air atmosphere during the rinse step after chemical cleaning and that Cu was oxidized due to the high oxidation-reduction potential (ORP) of the rinse DIW. To prevent Cu interconnects from being corroded, control of the dissolved oxygen and the ORP of the rinse DIW by decreasing the oxygen concentration of the atmosphere in the cleaning machine as well as by using H2 water is required. This will become indispensable in the cleaning process of the next generation Cu interconnects.

  11. Dissolved Oxygen and Sulfide Define the Boundaries of Thermophilic Microbial Iron Mats

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Shock, E.

    2014-12-01

    Microbial iron cycling can be found in hot springs throughout Yellowstone National Park, where the process is often visibly apparent as red iron oxyhydroxide staining. We measured rates of microbial and abiotic iron oxidation and reduction in systems ranging from pH 2 to 6 and 40° to 90°C. Measurements of numerous solutes, including oxygen, sulfide, and iron, were also made on outflow channels of springs containing apparent iron metabolism. In all cases, > 16 μM dissolved oxygen was required for visible iron oxidation products to occur. Oxygen concentrations below this level do not necessarily preclude microbial iron oxidation coupled to oxygen, only the accumulation of oxidation products. Kinetics experiments conducted at these iron mats suggest that the rate of microbial iron oxidation falls below the rate of microbial reduction when dissolved oxygen falls below this concentration. In outflow channels, this is often visibly apparent as a sharp boundary between the presence and lack of red iron oxidation products. Locations with changing temperature, pH, flow rate and other factors experience changing oxygen concentrations, which causes the boundary to shift from year to year. The boundaries of iron mats are also influenced in several locations by the concentration of total dissolved sulfide. Experiments with enrichment cultures and field observations show that sulfide is not toxic to iron oxidizers, but rather inhibits the accumulation of dissolved oxygen. Microbial and abiotic sulfide oxidation, leading to visible sulfur precipitation, together with degassing of hydrogen sulfide, contribute to keeping oxygen levels low. Typically, only where sulfide concentrations fall below 20 μM are iron mats able to form. Enrichment cultures of iron oxidizers, however, grow easily at levels exceeding 100 μM sulfide. Only a handful of field locations appear to have simultaneous sulfur and iron precipitation zones. Formation of iron oxidation mats occurs at highly

  12. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review.

    PubMed

    Liu, Huaqing; Hu, Zhen; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Fan, Jinlin; Lu, Shaoyong; Wu, Haiming

    2016-08-01

    Dissolved oxygen (DO) is one of the most important factors that can influence pollutants removal in constructed wetlands (CWs). However, problems of insufficient oxygen supply and inappropriate oxygen distribution commonly exist in traditional CWs. Detailed analyses of DO supply and distribution characteristics in different types of CWs were introduced. It can be concluded that atmospheric reaeration (AR) served as the promising point on oxygen intensification. The paper summarized possible optimizations of DO in CWs to improve its decontamination performance. Process (tidal flow, drop aeration, artificial aeration, hybrid systems) and parameter (plant, substrate and operating) optimizations are particularly discussed in detail. Since economic and technical defects are still being cited in current studies, future prospects of oxygen research in CWs terminate this review. PMID:27177713

  13. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    NASA Astrophysics Data System (ADS)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of

  14. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries

    USGS Publications Warehouse

    Batiuk, R.A.; Breitburg, D.L.; Diaz, R.J.; Cronin, T. M.; Secor, D.H.; Thursby, G.

    2009-01-01

    The Chesapeake 2000 Agreement committed its state and federal signatories to "define the water quality conditions necessary to protect aquatic living resources" in the Chesapeake Bay (USA) and its tidal tributaries. Hypoxia is one of the key water quality issues addressed as a result of the above Agreement. This paper summarizes the protection goals and specific criteria intended to achieve those goals for addressing hypoxia. The criteria take into account the variety of Bay habitats and the tendency towards low dissolved oxygen in some areas of the Bay. Stressful dissolved oxygen conditions were characterized for a diverse array of living resources of the Chesapeake Bay by different aquatic habitats: migratory fish spawning and nursery, shallow-water, open-water, deep-water, and deep-channel. The dissolved oxygen criteria derived for each of these habitats are intended to protect against adverse effects on survival, growth, reproduction and behavior. The criteria accommodate both spatial and temporal aspects of low oxygen events, and have been adopted into the Chesapeake Bay states - Maryland, Virginia, and Delaware - and the District of Columbia's water quality standards regulations. These criteria, now in the form of state regulatory standards, are driving an array of land-based and wastewater pollution reduction actions across the six-watershed.

  15. Dissolved oxygen and its response to eutrophication in a tropical black water river.

    PubMed

    Rixen, Tim; Baum, Antje; Sepryani, Harni; Pohlmann, Thomas; Jose, Christine; Samiaji, Joko

    2010-08-01

    The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between approximately 100 and 140 micromol l(-1). Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by approximately 20 micromol l(-1) during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 micromol l(-1), which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 micromol l(-1). PMID:20435403

  16. Fiber optic spectrophotometry for monitoring dissolved oxygen in a tropical ornamental fish tank environment

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    Using Fiber Optic Spectro-Photometry (FOSP) methodology, a set of high sensitivity fiber optic oxygen monitoring system performing NDT is developed for fish farming environment. The working principle of the sensor is based on the detection signal at a particular wavelength due to the fluorescence and quenching of coated dye (ruthenium complex) in response to oxygen concentration at the tip of the probe. This paper looks into the application of fiber optics oxygen sensor in an aquatic environment. A comparison study of the optical probe was made with a conventional electrochemical oxygen sensor. Both sensors were setup to monitor the dissolved oxygen of an aquatic system for a period of time. This new methodology offers an alternative choice for monitoring dissolved oxygen. Apart from the possibility to miniaturize the monitoring equipment for aquatic environment, it is also feasible to 'bundle' other chemical sensors together into one single cable, thus achieving compactness, effectiveness and yet without forgoing whatever the traditional electrochemical sensors could offer.

  17. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  18. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments.

    PubMed

    Wang, Meng; Zhang, Weimin; Wang, Jiazhao; Wexler, David; Poynton, Simon D; Slade, Robert C T; Liu, Huakun; Winther-Jensen, Bjorn; Kerr, Robert; Shi, Dongqi; Chen, Jun

    2013-12-11

    Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries. The electrocatalyst is finally examined in a H2/O2 alkaline anion exchange membrane fuel cell; the results show that such electrocatalysts could work in a real fuel cell application as a more efficient catalyst than state-of-the-art commercially available Pt/C. PMID:24199836

  19. Heterocarbon nanosheets incorporating iron phthalocyanine for oxygen reduction reaction in both alkaline and acidic media.

    PubMed

    Hyun, Koangyong; Ueno, Tomonaga; Panomsuwan, Gasidit; Li, Oi Lun; Saito, Nagahiro

    2016-04-28

    Heterocarbon nanosheets incorporating iron phthalocyanine (FP-NCNs-SP) have been successfully synthesized by a facile one-pot solution plasma process at high repetition frequency. It was found that the Fe-N4 catalytic active sites could be preserved on the FP-NCNs-SP without degradation. The FP-NCNs-SP also possessed large surface area, good conductivity and high degree of graphitization. Electrochemical evaluations demonstrated that NCNs-SP had excellent electrocatalytic activity and selectivity toward oxygen reduction reaction (ORR) in alkaline medium through a direct four-electron pathway. Although the significant improvement in ORR activity was clearly observed in acidic medium, it was much poorer than in alkaline medium. We believe that the results presented in this work will shed light on the advanced synthesis and design of ORR electrocatalysts at room temperature with an abundance of catalytically active sites and high ORR performance. PMID:27055883

  20. Wavelet characteristics of hydrological and dissolved oxygen time series in a lowland river

    NASA Astrophysics Data System (ADS)

    Rajwa-Kuligiewicz, Agnieszka; Bialik, Robert J.; Rowiński, Paweł M.

    2016-06-01

    In this study, we investigated the temporal variability of dissolved oxygen and water temperature in conjunction with water level fluctuations and river discharge in the Narew lowland river reach. For this purpose, high resolution hydrologic and water quality time series have been used. Spectral analyses of time series using continuous wavelet transform scheme have been applied in order to identify characteristic scales, its duration, and localisation in time. The results of wavelet analysis have shown a great number of periodicities in time series at the inter-annual time scale when compared to the classical Fourier analysis. Additionally, wavelet coherence revealed the complex nature of the relationship between dissolved oxygen and hydrological variables dependent on the scale and localisation in time. Hence, the results presented in this paper may provide an alternative representation to a frequency analysis of time series.

  1. Shallow Remineralization in the Sargasso Sea Estimated from Seasonal Variations in Oxygen and Dissolved Inorganic Carbon

    NASA Technical Reports Server (NTRS)

    Ono, S.; Ennyu, A.; Najjar, R. G.; Bates, N.

    1998-01-01

    A diagnostic model of the mean annual cycles of dissolved inorganic carbon (DIC) and oxygen below the mixed layer at the Bermuda Atlantic Time-series Study (BATS) site is presented and used to estimate organic carbon remineralization in the seasonal thermocline. The model includes lateral and vertical advection as well as vertical, diffusion. Very good agreement is found for the remineralization estimates based on oxygen and DIC. Net remineralization averaged from mid-spring to early fall is found to be a maximum between 120 and 140 in. Remineralization integrated between 100 (the compensation depth) and 250 m during this period is estimated to be about 1 mol C/sq m. This flux is consistent with independent estimates of the loss of particulate and dissolved organic carbon.

  2. Instrumentation for optical measurement of dissolved oxygen based on solid state technology

    NASA Astrophysics Data System (ADS)

    Gruber, Wolfgang R.; Klimant, Ingo; Wolfbeis, Otto S.

    1993-05-01

    A number of measurement schemes for the determination of dissolved or gaseous oxygen have been reported, most of them based on fluorescence quenching methods. They have the disadvantage of requiring large and heavy instrumentation and, therefore, are not suitable for micro-integrated technologies. As a result, the applicability is greatly limited. We introduce a system based on semiconductor devices (LEDs, photodiodes, low cost analogue and digital components) which is well suited for hybrid solutions, and represents a realistic alternative to existing micro integrated electrochemical probes. New LED-compatible sensor membranes were developed and characterized. The influence of straylight on the overall transfer function of the sensor system was investigated and possibilities for reduction or even elimination of this influence are presented. The overall performance of the instrument in terms of sensitivity, detection limits, long-term stability, and reproducibility is presented. The system was applied to the measurement of dissolved oxygen in drinking water and sea water.

  3. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, Valerie J.

    1997-01-01

    This report describes the capacity of the Tualatin River to assimilate oxygen-demanding material during winter streamflow conditions, with an emphasis on peak-flow and winter base-flow conditions. The study examined major processes governing concentrations of dissolved oxygen (DO) in the river under different streamflow conditions, as well as the effect of streamflow and temperature on these processes. Water-quality modeling was used to evaluate various wastewater treatment plant (WWTP) loading scenarios during winter based-flow conditions as an aid to management decisions in the basin.

  4. Hydrographic and dissolved oxygen variability in a seasonal Pacific Northwest estuary

    NASA Astrophysics Data System (ADS)

    Sutherland, David A.; O'Neill, Molly A.

    2016-04-01

    Hypoxia is an issue of growing concern for coastal communities. In the California Current System, a prototypical eastern boundary current, attention has been focused on explaining the trend of increasing shelf hypoxia. Despite the regional focus on hypoxia in eastern boundary regions, relatively few studies have examined smaller estuarine systems. Here, we present results from an observational study in Coos Bay, a small estuary on the southern Oregon coast, subject to seasonal upwelling/downwelling winds, strong tides, and wide fluctuations in freshwater input. Coos Bay exhibits characteristics of a salt-wedge type estuary under high river discharge conditions (>150 m3 s-1), a well-mixed estuary under low discharge conditions (0-30 m3 s-1), and partially-mixed estuary during times of moderate discharge (30-150 m3 s-1). The observed vertical stratification and along-estuary salinity gradients correlate significantly with river discharge and tidal forcing. Despite a strong coupling with coastal waters where hypoxia has been present, we do not find evidence for pervasive hypoxia in Coos Bay. We find that upwelling on the shelf advects low dissolved oxygen water into the estuary on synoptic timescales. Early in the upwelling season (April and May), dissolved oxygen minima are found at the estuary mouth, while later in the summer (September), dissolved oxygen minima are found at the riverine end, presumably due to decreased discharge and increased productivity. However, in a given year, the overall strength of the upwelling season is not a good predictor of low dissolved oxygen levels in the estuary.

  5. Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA

    USGS Publications Warehouse

    Curry, B. Brandon; Filippelli, G.M.

    2010-01-01

    Low dissolved oxygen during the summer and early fall controls profundal continental ostracode distribution in Crystal Lake (McHenry County), Illinois, favoring Cypria ophthalmica and Physocypria globula at water depths from 6 to 13 m. These species also thrived in the lake's profundal zone from 14,165 to 9600 calendar year before present (cal yr b.p.) during the late Boiling, Allerod, and Younger Dryas chronozones, and early Holocene. Characterized by sand, cemented tubules, large aquatic gastropod shells, and littoral ostracode valves, thin (1-6 cm) tempestite deposits punctuate thicker deposits of organic gyttja from 16,080 to 11,900 cal yr b.p. The succeeding 2300 yr (11,900-9600 cal yr b.p.) lack tempestites, and reconstructed water depths were at their maximum. Deposition of marl under relatively well-oxygenated conditions occurred during the remainder of the Holocene until the arrival of Europeans, when the lake returned to a pattern of seasonally low dissolved oxygen. Such conditions are also indicated in the lake sediment by the speciation of phosphorus, high concentrations of organic carbon, and abundant iron and manganese occluded to mineral grains. Initial low dissolved oxygen was probably caused by the delivery of dissolved P and Fe in shallow groundwater, the chemistry of which was influenced by Spodosol pedogenesis under a spruce forest. The triggering may have been regionally warm and wet conditions associated with retreat of the Lake Michigan lobe (south-central Laurentide Ice Sheet). ?? 2010, by the American Society of Limnology and Oceanography Inc.

  6. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    PubMed

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. PMID:26648388

  7. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    PubMed

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. PMID:25565074

  8. Enhanced alkalinity and dissolved inorganic carbon release in intertidal sands from the Oosterschelde (The Netherlands) induced by a natural macrofaunal community

    NASA Astrophysics Data System (ADS)

    Brenner, Heiko; Montserrat, Francesc; Meysman, Filip

    2014-05-01

    The influence of bioturbation and bioirrigation in intertidal sandflat sediments from the Oosterschelde (The Netherlands) on the rates and sources of benthic alkalinity (TA) and dissolved inorganic carbon (DIC) generation was examined using measurements of sediment-water fluxes of bromide, oxygen, nutrients, TA and DIC. Sediments from the Oosterschelde typically contain the deep-burrowing polychaete Arenicola marina, the sub-surface bioturbator Macoma balthica and the surface bioturbator Cerastoderma edule. Measurements were carried out in six tanks (106 cm x 87 cm x 20 cm). The sediment was collected in November 2012. Measurements were started in June 2013. Each tank was sampled twice for benthic fluxes over the course of one month. Prior measurements three tanks were defaunated by covering the sediment surface with a black plastic sheet. Benthic flux measurements were carried out in closed plastic chambers (diameter 66 cm). These chambers typically contained about 10 cm sediment and 20 cm overlying water. The tank was completely covered with opaque a black plastic sheet during measurements. The incubation time ranged from 6 to 8 hours. Here we present preliminary results from both experimental runs. High benthic fluxes of TA (10 - 70 mmol m-2 d-1) and DIC (35 - 150 mmol m-2 d-1) were observed in all tanks. Whereas benthic TA and DIC fluxes were significantly higher in faunated tanks, total oxygen uptake (TOU: 30 - 75 mmol m-2 d-1) did not show any meaningful trend between the two treatments. Therefore, the apparent community respiratory quotient (CRQ = DIC/TOU) varied between 0.9 and 3.3, with significant higher values in faunated tanks, suggesting enhanced flushing of DIC produced in deeper layers and released by bioirrigation. This DIC was either produced by anaerobic respiration or carbonate dissolution. To unravel the contribution of carbonate dissolution and anaerobic respiration on the observed TA and DIC fluxes, we further present estimations for relevant

  9. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  10. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-05-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH-->Ni(OH)2) and an anodic OH- oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion.

  11. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH(-) oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  12. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  13. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP

  14. Self-emulsification of alkaline-dissolved clove bud oil by whey protein, gum arabic, lecithin, and their combinations.

    PubMed

    Luo, Yangchao; Zhang, Yue; Pan, Kang; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2014-05-14

    Low-cost emulsification technologies using food ingredients are critical to various applications. In the present study, a novel self-emulsification technique was studied to prepare clove bud oil (CBO) emulsions, without specialized equipment or organic solvents. CBO was first dissolved in hot alkaline solutions, added at 1% v/v into neutral solutions with 1% w/v emulsifier composed of whey protein concentrate (WPC), gum arabic, lecithin, or their equal mass mixtures, and adjusted to pH 7.0. The self-emulsification process did not affect UV-vis absorption spectrum, reversed-phase HPLC chromatogram, or antimicrobial activity of CBO against Escherichia coli O157:H7, Listeria monocytogenes Scott A, and Salmonella Enteritidis. The entrapment efficiency after extraction by petroleum ether was determined to be about 80%. Most emulsions were stable during 7 days of storage. Emulsions prepared with WPC had smaller particles, whereas emulsions prepared with emulsifier mixtures had more stable particle dimensions. The studied self-emulsification technique may find numerous applications in the preparation of low-cost food emulsions. PMID:24758517

  15. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae

    PubMed Central

    Smith, Jennifer E.; Thompson, Melissa

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757

  16. Factors Controlling Dissolved Oxygen Concentration in the Hyporheic Zone Induced by Fish Egg Nests

    NASA Astrophysics Data System (ADS)

    Ford, A.; Cardenas, M. B.; Kaufman, M.; Zheng, L.; Kessler, A. J.

    2014-12-01

    There is currently limited research on the effects of bed depressions, such as those associated with fish nests, on hyporheic flow and biogeochemistry. A series of flume experiments are in progress, with the aim of understanding the effects of bed depressions on the hyporheic flow of oxygenated water. This study focuses on fish nests, also called redds, which represent a typical depression or scour feature. Previous research has shown that redd topography induces hyporheic circulation, but experiments regarding the oxygen concentration in and around the redds have not been conducted. We are determining the ways in which redds affect dissolved oxygen distribution and how this is controlled by hyporheic flow. The oxygen concentration across the cross-sectional plane of a fish nest is measured using a planar optode and microsensors. Hydraulic measurements include pressure measurements along the sediment-water interface and dye visualization. The redd design is based on a salmonid redd, which consists of a scour feature and a tailspin. The salmonid eggs are found in the tailspin. We hypothesize that the oxygen concentration will be greatest in close proximity to the gravel base of the redd and concentration will decrease with increasing depth and distance from the redd. Higher oxygen concentrations in the tailspin supports the placement of fish eggs within that area as opposed to a less oxygenated area of the streambed. Thus, fish nests are likely bio-engineered to optimize hyporheic flow and biogeochemistry to improve egg viability.

  17. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by

  18. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  19. Direct and dissolved oxygen involved photodegradation of MeO-PBDEs in water.

    PubMed

    Xue, Weifeng; Chen, Jingwen; Xie, Qing

    2016-04-15

    Photodegradation has been proved to be a crucial way of elimination for polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs (HO-PBDEs). However, it is still unknown whether methoxylated PBDEs (MeO-PBDEs) can also undergo photodegradation. In this study, 4'-MeO-BDE-17, 5-MeO-BDE-47, 5'-MeO-BDE-99, 6-MeO-BDE-47 and 6-MeO-BDE-85 were selected as targets to investigate their photodegradation in water. Meanwhile, the effects of dissolved oxygen on the photoreactions of MeO-PBDEs were also unveiled. Simulated sunlight experiments indicate that 6-MeO-BDE-47 resisted photodegradation for 20h, while other MeO-PBDEs underwent relatively fast photodegradation, which was greatly susceptible to the substitution patterns of methoxyl and bromine. Photo-excited MeO-PBDEs (except 6-MeO-BDE-47) can sensitize dissolved oxygen to generate singlet oxygen ((1)O2) and superoxide anion radical (O2(-)). The generated (1)O2 cannot degrade the MeO-PBDEs, whereas O2(-) was reactive with MeO-PBDEs. The contribution of dissolved oxygen to the photodegradation of 4'-MeO-BDE-17 and 6-MeO-BDE-85 was negligible; while the negative contribution was observed for 5-MeO-BDE-47 and 5'-MeO-BDE-99. Hydrodebromination was a crucial photodegradation pathway for MeO-PBDEs (excluding 4'-MeO-BDE-17 and 6-MeO-BDE-47). Eventually, direct photolysis half-lives of MeO-PBDEs except 6-MeO-BDE-47 in the surface waters at 40 N latitude were calculated to be 1.35-3.46d in midsummer and 6.39-17.47d in midwinter. PMID:26802632

  20. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  1. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  2. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    EPA Science Inventory

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  3. Evaluating the Impact of Changes in Oceanic Dissolved Oxygen on Marine Nitrous Oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Schmidtko, Sunke; Andrews, Oliver; LeQuere, Corinne

    2013-04-01

    Emissions of the greenhouse gas nitrous-oxide (N2O) from oceanic oxygen minimum zones (OMZs) in the Equatorial Pacific and Northwest Indian Ocean are believed to provide a significant portion of the global oceanic flux to the atmosphere. Mechanisms of marine N2O production and consumption in these regions display significant sensitivity to ambient oxygen, with high yields at low oxygen levels (O2 < 50 micromol/L), and N2O depletion via denitrification in anoxic zones. These OMZ regions display large gradients in sub-surface N2O, and high rates of N2O turnover that far exceed those observed in the open ocean. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate, could lead to significant changes in N2O emissions from these zones. In this analysis we employ a global ocean biogeochemistry model (NEMO-PlankTOM), which includes representation of the marine N2O cycle, to explore the impact of changes in dissolved oxygen on the ocean-atmosphere N2O flux. We focus on the period 1960-2000, and evaluate the impact of estimated changes in ocean oxygen from two alternative sources : (a) the observationally-based upper-ocean oxygen distributions and trends of Stramma et al. [2012]; (b) simulated oxygen distributions and temporal variations from a set of CMIP5 Earth System models. We will inter-compare the oceanic N2O estimates derived from these alternative scenarios of ocean de-oxygenation. We will also discuss the implications of our results for the ability to reliably predict changes in N2O emissions under potential expansion of oceanic OMZs, particularly in view of the recently noted discrepancies between observed and modeled trends in oceanic oxygen by Stramma et al. [2012].

  4. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    USGS Publications Warehouse

    Feaster, Toby D.; Conrads, Paul A.

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  5. Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard soft acid base approach

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch; Kinkar Roy, Ram; Hirao, Kimihiko

    2000-12-01

    The basicity of framework oxygen atoms of alkali and alkaline earth-exchanged zeolites has been studied using reactivity descriptors based on a local hard-soft acid-base (HSAB) concept. We have calculated the `local softness' and the `relative nucleophilicity' values of the framework oxygen atoms of zeolite clusters as the measure of basicity. The local softness and relative nucleophilicity appear to be more reliable descriptors to predict the experimental basicity trend, compared to the negative charge on the oxygen atom.

  6. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  7. Dissolved oxygen regulation by logarithmic/antilogarithmic control to improve a wastewater treatment process.

    PubMed

    Flores, Victor R; Sanchez, Edgar N; Béteau, Jean-François; Hernandez, Salvador Carlos

    2013-01-01

    This paper presents the automation of a real activated sludge wastewater treatment plant, which is located at San Antonio Ajijic in Jalisco, Mexico. The main objective is to create an on-line automatic supervision system, and to regulate the dissolved oxygen concentration in order to improve the performances of the process treating municipal wastewater. An approximate mathematical model is determined in order to evaluate via simulations different control strategies: proportional integral (PI), fuzzy PI and PI Logarithm/Antilogarithm (PI L/A). The controlled variable is dissolved oxygen and the control input is the injected oxygen. Based on this evaluation, the PI L/A controller is selected to be implemented in the real process. After that, the implementation, testing and fully operation of the plant automation are described. With this system, the considered wastewater treatment plant save energy and improves the effluent quality; also, the process monitoring is done online and it is easily operated by the plant users. PMID:24617069

  8. How to minimize power in dissolved oxygen control... DSM in action

    SciTech Connect

    Skrentner, R.G.; Lutman, C.G.

    1994-12-31

    As part of the EPRI Municipal Water and Sewage Project, Demand-Side Energy Management, EPRI retained EMA to evaluate the life cycle cost of three alternatives for controlling low-pressure centrifugal compressors to reduce power costs. The alternatives included: inlet guide vanes, inlet butterfly valves, and adjustable speed drives. This paper contains the findings and identifies actions that could benefit wastewater treatment facilities. Many wastewater treatment plants use an activated sludge process to remove organic pollutants. In this process, a large mass of microbes consumes the organic matter in the wastewater. The microbes require diffused oxygen to metabolize the organic material. The diffused air mixes with the contents of the aeration basin and provides oxygen to the microbes. The basic activated sludge process has the following features: (1) An aeration basin with provisions for oxygenation and mixing of the mixed liquor, (2) A settling tank or clarifier to separate mixed liquor solids and liquid, (3) A sludge recycling system to return settled activated sludge to the aeration basin, and (4) A sludge wasting system to remove solids at the rate that it grows, thus maintaining the desired mass of solids in the process. The operator has three main control variables: (1) Aeration rate to control the dissolved oxygen concentration in the aeration basin. The operator sets the aeration rate to maintain dissolved oxygen at 1-2 mg/l. (2) Sludge recycle rate to control the concentration of the return sludge and the mass of solids in the clarifier. The operator sets the return rate to maintain the sludge blanket level at some predetermined depth. (3) Sludge wasting rate to control the solids retention time and mass of solids in the process. The operator sets the waste rate usually once per day to remove a pre-determined mass.

  9. [Effects of Hydraulic Retention Time and Dissolved Oxygen on a CANON Reactor with Haydite as Carrier].

    PubMed

    Wang, Hui-fang; Fu, Kun-ming; Zuo, Zao-rong; Qiu, Fu-guo

    2015-11-01

    One Completely Autotrophic Nitrogen Removal Over Nitrite ( CANON) reactor with haydite as carrier was investigated to study the effects of different hydraulic retention time ( HRT) and dissolved oxygen (DO) on CANON reactors by seeding sludge from another mature CANON reactor and using synthetic inorganic ammonia-rich waste water as influent. During the experiment, the concentration of influent ammonia nitrogen was basically unchanged, the HRT of the reactor were 9, 7, 5 h in turn and the range of DO was 1.16-3.20 mg x L(-1). The results showed that: (1) When DO was 1.20-1.75 mg x L(-1), despite the increase of DO can improve AOB's activity and matrix mass transfer in the system, NH4(+) -N and TN removal efficiency were still fell with the shortening of HRT for the CANON reactor, especially when DO was higher than 2.50 mg x L(-1), TN removal efficiency dropped sharply; (2) Under the condition that DO was 1.20-1.75 mg x L(-1), with the shortening of HRT, partial nitritation tended to be stable in the CANON process, and when DO was higher than 1.75 mg x L(-1), even if HRT was shorter, partial nitritation was still severely damaged; (3) Under the condition that DO was 1.20-1.75 mg x L(-1) and HRT was 7 h, for the CANON reactor, partial nitritation and total nitrogen removal efficiency kept well. Hydraulic retention time and dissolved oxygen both are important operational parameters for biological wastewater treatment process, which could directly affect the effect of biological treatment and effluent quality, so to choose appropriate hydraulic retention time and dissolved oxygen coordinately is very important to improve the effect of treatment of ammonium-rich wastewater by CANON process. PMID:26911004

  10. Effects of temperature and dissolved oxygen content on oxygen consumption rate of Chinese prawn, giant tiger prawn and giant freshwater prawn

    NASA Astrophysics Data System (ADS)

    Dai, Xi-Lin; Zang, Wei-Ling; Wang, Wei-Dong; Shi, Yong-Hai; Liu, Wen-Cui; Xu, Gui-Rong; Li, Shi-Hua

    1999-06-01

    Temperature and the dissolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn ( Penaeus chinensis), giant tiger prawn ( P. monodon) and giant freshwater prawn ( Macrobrachium rosenbergii). There is good correlation between the oxygen consumption rate ( V, mg/g·h) of the above three prawn species and the water temperature, and dissolved oxygen. In the range of test temperature, V increased with water temperature and dissolved oxygen content. The V of the above three prawn species increased 0.085 mg/g·h, 0.093 mg/g·h and 0.08 mg/g·h respectively with each °C of rising temperature. The comatose point and stifling point of the juveniles rose obviously at unsuitable temperature.

  11. Vertical mixing processes in Intermittently Closed and Open Lakes and Lagoons, and the dissolved oxygen response

    NASA Astrophysics Data System (ADS)

    Gale, Emma; Pattiaratchi, Charitha; Ranasinghe, Roshanka

    2006-08-01

    Intermittently Closed and Open Lakes and Lagoons (ICOLLs) are located on micro-tidal coasts (max. tidal range < 2 m) in temperate regions where the annual rainfall is non-seasonal. ICOLLs are generally shallow (<5 m depth) and are closed to the ocean due to the formation of an entrance bar for the majority of the year, when rainfalls are low. After periods of heavy rainfall, the super elevated water levels result in the natural or artificial breaching of the entrance bar. Due to their small size and absence of significant river inflows, ICOLLs exhibit strong temporal variations in their vertical density gradients, which can result in episodic density stratification. Such episodic stratification events may result in deterioration of the water quality including toxic algal blooms. This paper presents the results of field studies undertaken to determine the physical processes governing vertical mixing/stratification in ICOLLs and their implications on dissolved oxygen dynamics. Data from two contrasting ICOLLs located along the south-eastern coastline of Australia; (a) Wamberal Lagoon a small, shallower (˜2 m max. depth) frequently open ICOLL; and, (2) Smiths Lake, a larger, deeper (˜5 m max. depth) infrequently open ICOLL, are presented. The results indicated that Wamberal Lagoon was susceptible to periods of stratification during both the closed and the open states. During the closed state, periods of rainfall, low wind and/or high solar insolation led to short (<3 days) and irregular stratification events, whilst during the open state, stratification events occurred through a combination of rainfall, low winds and variations in tidal mixing. There was a tendency for dissolved oxygen to decrease, in the bottom waters, when the Buoyancy Frequency was >0.1 s -1. Smiths Lake demonstrated higher vertical stability and exhibited a tendency for persistent stratification, during both the closed and open states, primarily due to solar insolation (closed state) and

  12. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia

    USGS Publications Warehouse

    Jobson, Harvey E.

    1985-01-01

    As part of an intensive water-quality assessment of the Chattahoochee River, repetitive water-quality measurements were made at 12 sites along a 69-kilometer reach of the river downstream of Atlanta, Georgia. Concentrations of seven constituents (temperature, dissolved oxygen, ultimate carbonaceous biochemical oxygen demand (BOD), organic nitrogen, ammonia, nitrite, and nitrate) were obtained during two periods of 36 hours, one starting on August 30, 1976, and the other starting on May 31, 1977. The study reach contains one large and several small sewage outfalls and receives the cooling water from two large powerplants. An unsteady water-quality model of the Lagrangian type was calibrated using the 1977 data and verified using the 1976 data. The model provided a good means of interpreting these data even though both the flow and the pollution loading rates were highly unsteady. A kinetic model of the cascade type accurately described the physical and biochemical processes occurring in the river. All rate coefficients, except reaeration coefficients and those describing the resuspension of BOD, were fitted to the 1977 data and verified using the 1976 data. The study showed that, at steady low flow, about 38 percent of the BOD settled without exerting an oxygen demand. At high flow, this settled BOD was resuspended and exerted an immediate oxygen demand. About 70 percent of the ammonia extracted from the water column was converted to nitrite, but the fate of the remaining 30 percent is unknown. Photosynthetic production was not an important factor in the oxygen balance during either run.

  13. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts. PMID:25997179

  14. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhong, Ren-Sheng; Qin, Yuan-Hang; Niu, Dong-Fang; Tian, Jing-Wei; Zhang, Xin-Sheng; Zhou, Xin-Gui; Sun, Shi-Gang; Yuan, Wei-Kang

    2013-03-01

    Carbon nanofibers (CNFs) with different content of surface functional groups which are carboxyl groups (CNF-OX), carbonyl groups (CNF-CO) and hydroxyl groups (CNF-OH) and nitrogen-containing groups (CNF-ON) are synthesized, and their electrocatalytic activities toward oxygen reduction reaction (ORR) in alkaline solution are investigated. The result of X-ray photoelectron spectroscopy (XPS) characterization indicates that a higher concentration of carboxyl groups, carbonyl groups and hydroxyl groups are imported onto the CNF-OX, CNF-CO and CNF-OH, respectively. Cyclic voltammetry shows that both the oxygen- and nitrogen-containing groups can improve the electrocatalytic activity of CNFs for ORR. The CNF-ON/GC electrode, which has nitrogen-containing groups, exhibits the highest current density of ORR. Rotating disk electrode (RDE) characterization shows that the oxygen reduction on CNF-ON/GC electrode proceeds almost entirely through the four-electron reduction pathway, the CNF-OX/GC, CNF-CO/GC and CNF-OH/GC electrodes proceed a two-electron reduction pathway at low potentials (-0.2 V to -0.6 V) followed by a gradual four-electron reduction pathway at more negative potentials, while the untreated carbon nanofiber (CNF-P/GC) electrode proceeds predominantly by a two-electron reduction pathway within the whole range of potential studied.

  15. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Lipizer, M.; Partescano, E.; Rabitti, A.; Giorgetti, A.; Crise, A.

    2014-02-01

    An updated climatology, based on a comprehensive dataset (1911-2009) of temperature, salinity and dissolved oxygen, has been produced for the whole Adriatic Sea with the Variational Inverse Method using the DIVA software. Climatological maps were produced at 26 levels and validated with Ordinary Cross Validation and with real vs. synthetic Temperature-Salinity diagram intercomparison. The concept of Climatology-Observation Misfit (COM) has been introduced as an estimate of the physical variability associated with the climatological structures. In order to verify the temporal stability of the climatology, long-term variability has been investigated in the Mid Adriatic and the South Adriatic Pits, regarded as the most suitable records of possible long-term changes. Compared with previous climatologies, this study reveals a surface temperature rise (up to 2 °C), a clear deep dissolved oxygen minimum in the South Adriatic Gyre and a bottom summer oxygen minimum in the North Adriatic. Below 100 m all properties profoundly differ between the Middle and the South Adriatic. The South Adriatic Pit clearly shows the remote effects of the Eastern Mediterranean Transient, while no effect is observed in Middle Adriatic Pits. The deepest part of the South Adriatic seems now to be significantly saltier (+0.18 since the period 1911-1914, with an increase of +0.018 decade-1 since the late 1940s) and warmer (+0.54 °C since 1911-1914), even though a long-term temperature trend could not be statistically demonstrated. Conversely, the Middle Adriatic Pits present a long-term increase in apparent oxygen utilisation (+0.77 mL L-1 since 1911-1914, with a constant increase of +0.2 mL L-1 decade-1 after the 1970s).

  16. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    PubMed Central

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-01-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells. PMID:26100367

  17. Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Yang, Duangguang; Chen, Hongbiao; Gao, Yong; Li, Huaming

    2015-04-01

    A novel electrocatalyst for the oxygen reduction reaction (ORR) is fabricated by directly annealing oxidized carbon nanotubes and tripyrrolyl[1,3,5]triazine in nitrogen. The structural and chemical properties of the resultant N-doped carbon nanotubes (NCNTs) are systematically investigated. The electrocatalytic activity of the NCNTs towards ORR in O2-saturated 0.1 M KOH electrolyte is evaluated using rotating disk electrode voltammetry. The results demonstrate that the as-prepared NCNT-900 (annealed at 900 °C) exhibits excellent electrochemical performance towards ORR in alkaline medium with an onset potential of -0.038 V (vs Ag/AgCl), a high kinetic current density of 31.26 mA cm-2 at -0.25 V, a dominant four-electron transfer mechanism (n = 3.88 at -0.25 V), and excellent methanol tolerance and durability. The results obtained are significant for the development of N-doped carbon-based electrocatalysts for alkaline fuel cells.

  18. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte.

    PubMed

    Huang, K; Bi, K; Liang, C; Lin, S; Zhang, R; Wang, W J; Tang, H L; Lei, M

    2015-01-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells. PMID:26100367

  19. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M.

    2015-06-01

    A novel VN/C nanostructure consisting of VN nanoparticles and graphite-dominant carbon layers is synthesized by nitridation of V2O5 using melamine as reductant under inert atmosphere. High crystalline VN nanoparticles are observed to be uniformly distributed in carbon layers with an average size of ca13.45 nm. Moreover, the electrocatalytic performance of VN/C towards oxygen reduction reaction (ORR) in alkaline electrolyte is fascinating. The results show that VN/C has a considerable ORR activity, including a 75 percent value of the diffusion-limited current density and a 0.11 V smaller value about the onset potential with respect to Pt/C catalyst. Moreover, the excellent methanol-tolerance performance of VN/C has also been verified with 3 M methanol. Combined with the competitive prices, this VN/C nanocomposite can serve as an appropriate non-precious methanol-tolerant ORR catalyst for alkaline fuel cells.

  20. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations

  1. Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhou Peng; Liu, Zi Xuan; Zhu, Kun Ning; Li, Zhuo; Liu, Bin Hong

    2012-12-01

    A series of M-doped polypyrrole (PPy)-modified BP2000 catalysts (M = Mn, Fe, Co, Ni, and Cu) are synthesized using the hydrothermal method. The synergy among a transition element, nitrogen, and carbon for oxygen reduction reaction (ORR) in alkaline medium is discussed based on the physical characterization and electrochemical analyses of the Co-doped PPy-modified BP2000. PPy is found to adhere carbon black particles together to form a porous 3D network during the PPy modification on BP2000. PPy reconfiguration occurs during the hydrothermal treatment process. The individual interactions between BP and PPy, BP and Co, and Co and PPy exhibit insignificant effects on the enhancement of ORR. The cooperative interaction among Co, N, and C plays a very important role in the enhancement of ORR. The doping effect of transition-metal salt on ORR enhancement depends on the nature of the transition element and the corresponding anion.

  2. In situ bioreduction of uranium (VI) to submicromolar levels and reoxidation by dissolved oxygen.

    PubMed

    Wu, Wei-Min; Carley, Jack; Luo, Jian; Ginder-Vogel, Matthew A; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chiachi; Kelly, Shelly D; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Luo, Wensui; Fields, Matthew W; Gu, Baohua; Watson, David; Kemner, Kenneth M; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K; Jardine, Philip M; Criddle, Craig S

    2007-08-15

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 microM uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agengy maximum contaminant limit (MCL) for drinking water (< 30/microg L(-1) or 0.126 microM). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L(-1)) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from < 0.13 to 2.0 microM at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. Atthe completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 microM. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp

  3. In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chaichi; Kelly, Shelly D; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry J; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Carroll, Sue L; Luo, Wensui; Fields, Matthew Wayne; Gu, Baohua; Watson, David B; Kemner, Kenneth M; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Philip M; Criddle, Craig

    2007-01-01

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 {micro}M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water (<30 {micro}g L{sup -1} or 0.126 {micro}M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L{sup -1}) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 {micro}M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 {micro}M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species

  4. Temporal scale-induced uncertainty in load duration curves for instream-dissolved oxygen.

    PubMed

    Patil, Abhijit; Deng, Zhiqiang; Malone, Ronald F

    2013-02-01

    Load duration curves were developed using the Hydrological Simulation Program FORTRAN (HSPF) for dissolved oxygen (DO) for the Amite River in Louisiana, USA. The concept of 'dissolved oxygen reserve', defined as the total quantity of DO, is introduced. The effect of temporal resolution on duration curves of DO reserve was examined using duration curves developed based on daily, weekly, biweekly, and monthly average data. Duration curves for DO exhibited high variability in the load estimated using daily data as compared to those based on biweekly and monthly data. A seasonal analysis revealed the trend in the DO reserve. The daily DO reserve for the Amite River at Port Vincent was 44,049.31 kg when daily summer data were used and 74,255.15 kg for daily annual data. A surplus of 10,691 kg of DO reserve was shown in the monthly data during critical summer months. The coefficient of variation (CV), used to define the temporal scale-induced uncertainty, was found to be linearly and inversely correlated with the logarithm of the time scale. Regression equations were developed to extrapolate near real-time flow and water quality data, greatly simplifying flow and water quality monitoring and reducing the cost involved in flow and water quality monitoring. PMID:22623167

  5. Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp.

    PubMed

    Miller Neilan, Rachael; Rose, Kenneth

    2014-02-21

    Individuals are commonly exposed to fluctuating levels of stressors, while most laboratory experiments focus on constant exposures. We develop and test a mathematical model for predicting the effects of low dissolved oxygen (hypoxia) on growth, reproduction, and survival using laboratory experiments on fish and shrimp. The exposure-effects model simulates the hourly reductions in growth and survival, and the reduction in reproduction (fecundity) at times of spawning, of an individual as it is exposed to constant or hourly fluctuating dissolved oxygen (DO) concentrations. The model was applied to seven experiments involving fish and shrimp that included constant and fluctuating DO exposures, with constant exposures used for parameter estimation and the model then used to simulate the growth, reproduction, and survival in the fluctuating treatments. Cumulative effects on growth, reproduction, and survival were predicted well by the model, but the model did not replay the observed episodic low survival days. Further investigation should involve the role of acclimation, possible inclusion of repair effects in reproduction and survival, and the sensitivity of model predictions to the shape of the immediate effects function. Additional testing of the model with other taxa, different patterns of fluctuating exposures, and different stressors is needed to determine the model's generality and robustness. PMID:24269807

  6. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Labiosa, Rochelle G.; Kim, Taeyun

    2010-11-30

    The Washington State Department of Ecology contracted with Pacific Northwest National Laboratory to develop an intermediate-scale hydrodynamic and water quality model to study dissolved oxygen and nutrient dynamics in Puget Sound and to help define potential Puget Sound-wide nutrient management strategies and decisions. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or dominate human impacts to dissolved oxygen levels in the sensitive areas. In this study, an intermediate-scale hydrodynamic model of Puget Sound was developed to simulate the hydrodynamics of Puget Sound and the Northwest Straits for the year 2006. The model was constructed using the unstructured Finite Volume Coastal Ocean Model. The overall model grid resolution within Puget Sound in its present configuration is about 880 m. The model was driven by tides, river inflows, and meteorological forcing (wind and net heat flux) and simulated tidal circulations, temperature, and salinity distributions in Puget Sound. The model was validated against observed data of water surface elevation, velocity, temperature, and salinity at various stations within the study domain. Model validation indicated that the model simulates tidal elevations and currents in Puget Sound well and reproduces the general patterns of the temperature and salinity distributions.

  7. Time Series Stream Temperature And Dissolved Oxygen Modeling In The Lower Flint River Basin

    NASA Astrophysics Data System (ADS)

    Li, G.; Jackson, C. R.

    2004-12-01

    The tributaries of the Lower Flint River Basin (LFRB) are incised into the upper Floridan semi-confined limestone aquifer, and thus seepage of relatively old groundwater sustains baseflows and provides some control over temperature and dissolved oxygen fluctuations. This hydrologic and geologic setting creates aquatic habitat that is unique in the state of Georgia. Groundwater withdrawals and possible water supply reservoirs threaten to exacerbate low flow conditions during summer droughts, which may force negative impacts to stream temperature and dissolved oxygen (DO). To evaluate the possible effects of human modifications to stream habitat, summer time series (in 15 min interval) of stream temperature and DO were monitored over the last three years along these streams, and a Continuously Stirred Tank Reactor (CSTR) model was developed and calibrated with these data. The driving forces of the diel trends and the overall levels of stream temperature and DO were identified by this model. Simulations were conducted with assumed managed flow conditions to illustrate potential effects of various stream flow regimes on stream temperature and DO time series. The goal of this research is to provide an accurate simulation tool to guide management decisions.

  8. A Simple Approach to Manipulate Dissolved Oxygen for Animal Behavior Observations.

    PubMed

    Grant, Christopher J; McLimans, Christopher J

    2016-01-01

    The ability to manipulate dissolved oxygen (DO) in a laboratory setting has significant application to investigate a number of ecological and organismal behavior questions. The protocol described here provides a simple, reproducible, and controlled method to manipulate DO to study behavioral response in aquatic organisms resulting from hypoxic and anoxic conditions. While performing degasification of water with nitrogen is commonly used in laboratory settings, no explicit method for ecological (aquatic) application exists in the literature, and this protocol is the first to describe a protocol to degasify water to observe organismal response. This technique and protocol were developed for direct application for aquatic macroinvertebrates; however, small fish, amphibians, and other aquatic vertebrates could be easily substituted. It allows for easy manipulation of DO levels ranging from 2 mg/L to 11 mg/L with stability for up to a 5 min animal-observation period. Beyond a 5 min observation period water temperatures began to rise, and at 10 min DO levels became too unstable to maintain. The protocol is scalable to the study organism, reproducible, and reliable, allowing for rapid implementation into introductory teaching labs and high-level research applications. The expected results of this technique should relate dissolved oxygen changes to behavioral responses of organisms. PMID:27403727

  9. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.

    PubMed

    Nagashima, Aya; Tsuji, Tsubasa; Kondo, Tetsuo

    2016-01-01

    An aerobic, Gram-negative bacterium, Gluconacetobacter xylinus, was successfully employed to produce a stretchable cellulose nanofiber pellicle using dissolved oxygen in a conventional cultured medium. The obtained nanofibers were highly crystalline with the metastable cellulose Iα phase being apparently the dominant phase by more than 90%. The obtained pellicle could be stretched by up to 1.5 times to provide oriented crystalline nanofibrous films. Low heating of the nanofibrous film induced the transformation of the dominant cellulose Iα crystalline phase into the Iβ crystalline phase without a loss of crystallinity or the high Young's modulus. The film also exhibited unique and anisotropic viscoelastic and mechanical properties as well as superior thermal stability compared with conventional high-performance synthetic polymeric materials. In addition, when G. xylinus cells were transferred to the oriented surface after stretched, they started to synthesize cellulose ribbons that parallel the nanofiber orientation of the substrate. This function as a template was evidenced by direct video imaging of the motion of the bacteria. The application of a bacterial culture using dissolved oxygen in the medium offers the fabrication of novel anisotropic and nanofibrous scaffold of cellulose Iα. PMID:26453871

  10. Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply.

    PubMed

    Huang, Wei E; Oswald, Sascha E; Lerner, David N; Smith, Colin C; Zheng, Chunmiao

    2003-05-01

    A novel combination of noninvasive imaging with an oxygen sensitive fluorescent indicator was developed to investigate the biodegradation processes occurring at the fringe of a solute plume, where the supply of oxygen was limited. A thin transparent porous matrix (156 x 120 x 3 mm) was made from quartz plates and quartz sand (212-300 microm) and enriched with acetate-degrading bacteria. A degrading plume developed from a continuous acetate source in the uniform flow field containing dissolved oxygen. Ruthenium (II)-dichlorotris(1,10-phenanthroline) (Ru(phen)3Cl2), a water-soluble fluorescent dye, was used as an indicator of dissolved oxygen. The fluorescence intensity was dependent on the concentration of oxygen because the dissolved oxygen acted as collisional quencher. The oxygen distribution was interpreted from images recorded by a CCD camera. These two-dimensional experimental results showed quantitatively how the oxygen concentrations decreased strongly at the narrow plume fringe and that oxygen was depleted at the core of the plume. Separately, dispersivity was measured in a series of nonreactive transport experiments, and biodegradation parameters were evaluated by batch experiments. Two-dimensional numerical simulations with MT3D/RT3D used these parameters, and the predicted oxygen distributions were compared with the experimental results. This measurement method provides a novel approach to investigate details of solute transport and biodegradation in porous media. PMID:12775064

  11. Laboratory and marine study of photoluminescent sensors of oxygen dissolved in seawater

    NASA Astrophysics Data System (ADS)

    Vlasov, V. L.; Konovalov, B. V.; Mosharov, V. E.; Radchenko, V. N.; Khanaev, S. A.; Khlebnikov, D. V.

    2010-02-01

    The laboratory and marine study of photoluminescent sensors developed at the TsAGI has been conducted to create a highly sensitivity gauge of the oxygen dissolved in seawater. The advantages of the photoluminescent gauge over the electrochemical ones are the following: zero sensitivity to electromagnetic fields, the pH of the water, and the hydrogen sulphide and ions of heavy metals in the water; zero oxygen consumption; and no need for the water to be pumped through the device. A breadboard model of the photoluminescent gauge with LED excitation of the luminescence has been built. The laboratory tests of the model demonstrated the accuracy of the gauge to be as high as 0.05 ml/1 in air at a response time of 0.3 s for 63% relaxation. Comparative field tests of the breadboard model and the SBE 43 electrochemical oxygen gauge (Sea-Bird Electronics Corp.) have shown good agreement of the estimates of the oxygen content in the water and clarified the prospects of model’s performance improvement.

  12. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect

    NASA Astrophysics Data System (ADS)

    Sippo, James Z.; Maher, Damien T.; Tait, Douglas R.; Holloway, Ceylena; Santos, Isaac R.

    2016-05-01

    Mangrove forests are hot spots in the global carbon cycle, yet the fate for a majority of mangrove net primary production remains unaccounted for. The relative proportions of alkalinity and dissolved CO2 [CO2*] within the dissolved inorganic carbon (DIC) exported from mangroves is unknown, and therefore, the effect of mangrove DIC exports on coastal acidification remains unconstrained. Here we measured dissolved inorganic carbon parameters over complete tidal and diel cycles in six pristine mangrove tidal creeks covering a 26° latitudinal gradient in Australia and calculated the exchange of DIC, alkalinity, and [CO2*] between mangroves and the coastal ocean. We found a mean DIC export of 59 mmol m-2 d-1 across the six systems, ranging from import of 97 mmol m-2 d-1 to an export of 85 mmol m-2 d-1. If the Australian transect is representative of global mangroves, upscaling our estimates would result in global DIC exports of 3.6 ± 1.1 Tmol C yr-1, which accounts for approximately one third of the previously unaccounted for mangrove carbon sink. Alkalinity exchange ranged between an import of 1.2 mmol m-2 d-1 and an export of 117 mmol m-2 d-1 with an estimated global export of 4.2 ± 1.3 Tmol yr-1. A net import of free CO2 was estimated (-11.4 ± 14.8 mmol m-2 d-1) and was equivalent to approximately one third of the air-water CO2 flux (33.1 ± 6.3 mmol m-2 d-1). Overall, the effect of DIC and alkalinity exports created a measurable localized increase in coastal ocean pH. Therefore, mangroves may partially counteract coastal acidification in adjacent tropical waters.

  13. Interactions Between Dissolved Oxygen, pH, and Temperature at Lake Merritt, Oakland, CA

    NASA Astrophysics Data System (ADS)

    Guzman, A.; Liang, J.; Mack, T.; Majors, A.; Ngilbus, K.; Pratt, D.; Unigarro, A.

    2006-12-01

    Lake Merritt is a saltwater tidal lagoon that forms a portion of a wildlife refuge in downtown Oakland, California. In the evening, a series of lamps strewn along its perimeter dubbed poetically a "Necklace of Lights" illuminates the night sky. By contrast, local residents describe the lake's water as having a foul odor, peculiar appearance, and being full of debris. Thus, our team has investigated many areas in and around Lake Merritt in the interest of assessing Lake Merritt's water quality. We made measurements of dissolved oxygen, pH, and temperature at twelve sites along the edge of the lake and six additional locations throughout the open waters. We then used these measurements to formulate a water quality index (WQI) using guidelines provided by the U.S. Geological Survey (U.S.G.S.). Because we focus on three measures, our water quality index is weighted differently from the U.S.G.S. index. Our index is weighted as follows: 0.5 for dissolved oxygen, 0.3 for pH, and 0.2 for temperature. The index is based on a 100-point scale that allows us to compare sites and determine the relative quality of the water. In addition, we used a special device to create digital images of columns of sampled water, which were then analyzed to determine the degree of water coloration due to dissolved material and algae content. We then used results of this analysis technique to determine the relationship between the color profile and the physical and chemical characteristic of the water. We devised this new strategy to measure water turbidity because we could not use Secchi discs, given the shallowness of the lake. Overall, preliminary analysis of our data indicates that the WQIs tend to be higher near tidal gates, where the lake receives water from the San Francisco Bay via an inlet. These results raise the immediate concern that water is not effectively being circulated throughout the entire lake.

  14. Simulation of oil bioremediation in a tidally influenced beach: Spatiotemporal evolution of nutrient and dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Geng, Xiaolong; Pan, Zhong; Boufadel, Michel C.; Ozgokmen, Tamay; Lee, Kenneth; Zhao, Lin

    2016-04-01

    Numerical experiments of oil bioremediation of tidally influenced beach were simulated using the model BIOMARUN. Nutrient and dissolved oxygen were assumed present in a solution applied on the exposed beach face, and the concentration of these amendments was tracked throughout the beach for up to 6 months. It was found that, in comparison to natural attenuation, bioremediation increased the removal efficiency by 76% and 65% for alkanes and aromatics, respectively. Increasing the nutrient concentration in the applied solution did not always enhance biodegradation as oxygen became limiting even when the beach was originally oxygen-rich. Therefore, replenishment of oxygen to oil-contaminated zone was also essential. Stimulation of oil biodegradation was more evident in the upper and midintertidal zone of the beach, and less in the lower intertidal zone. This was due to reduced nutrient and oxygen replenishment, as very little of the amendment solution reached that zone. It was found that under continual application, most of the oil biodegraded within 2 months, while it persisted for 6 months under natural conditions. While the difference in duration suggests minimal long-term effects, there are situations where the beach would need to be cleaned for major ecological functions, such as temporary nesting or feeding for migratory birds. Biochemical retention time map (BRTM) showed that the duration of solution application was dependent upon the stimulated oil biodegradation rate. By contrast, the application rate of the amendment solution was dependent upon the subsurface extent of the oil-contaminated zone. Delivery of nutrient and oxygen into coastal beach involved complex interaction among amendment solution, groundwater, and seawater. Therefore, approaches that ignore the hydrodynamics due to tide are unlikely to provide the optimal solutions for shoreline bioremediation.

  15. Influence of dissolved oxygen conditions on toxicity of ammonium nitrate to larval natterjack toads.

    PubMed

    Ortiz-Santaliestra, Manuel E; Marco, Adolfo

    2015-07-01

    Temporary ponds, where many amphibians from temperate regions breed, show an annual cycle with a maximum water volume in spring followed by a progressive desiccation throughout late spring and summer. This desiccation leads to a decrease in dissolved oxygen and an increase in nitrogen levels, which can additionally increase because of anthropogenic sources such as chemical fertilizers. We analyzed the toxicity posed by environmentally relevant levels of a common nitrogenous fertilizer, ammonium nitrate, at different conditions of oxygen availability to Bufo calamita tadpoles, which typically develop in ephemeral ponds. Ammonium nitrate (90.3 mg N-NO3NH4/l) and hypoxic conditions (initial dissolved oxygen 4.53 ± 0.40 mg/l) caused significant lethal effects after 7 and 12 days of exposure, respectively. At the end of experiment (16 days), mortality rates were 32.5 % in individuals exposed to the fertilizer and 15 % in those growing under hypoxic conditions. When both stressors were combined, they showed an additive effect on tadpole survival. Malformations, such as oedemas and spinal curvatures, and locomotory abnormalities, were detected after 12 days of experiment in >90 % of individuals exposed to 45.2 mg N-NO3NH4/l under hypoxic conditions, whereas none of these stressors by separate related to abnormality rates >35 %. Delayed development was also observed in tadpoles exposed to ammonium nitrate with hypoxia affecting developmental rate only after 12 days of exposure. The results are discussed in terms of potential mechanisms linking negative effects of both factors as well as in terms of potential alterations of the ecological plasticity that often allows amphibians to survive in unpredictable environments. PMID:25586169

  16. Effects of bottom water dissolved oxygen variability on copper and lead fractionation in the sediments across the oxygen minimum zone, western continental margin of India.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender

    2016-10-01

    This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. PMID:27267721

  17. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  18. Hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-2008

    USGS Publications Warehouse

    De Lanois, Jeanne L.; Green, W. Reed

    2011-01-01

    Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report

  19. Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms

    NASA Astrophysics Data System (ADS)

    de Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2015-04-01

    Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation

  20. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Antanasijević, Davor; Pocajt, Viktor; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2014-11-01

    This paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.

  1. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

    PubMed Central

    Pensieri, Sara; Bozzano, Roberto; Schiano, M. Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-01-01

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented. PMID:27196908

  2. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications.

    PubMed

    Pensieri, Sara; Bozzano, Roberto; Schiano, M Elisabetta; Ntoumas, Manolis; Potiris, Emmanouil; Frangoulis, Constantin; Podaras, Dimitrios; Petihakis, George

    2016-01-01

    In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented. PMID:27196908

  3. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.

    PubMed

    Najah, A; El-Shafie, A; Karim, O A; El-Shafie, Amr H

    2014-02-01

    We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events. PMID:23949111

  4. Controls on aquatic carbon cycling in a carbonate dominated groundwater catchment using dissolved oxygen dynamics

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Parker, S. J.

    2015-12-01

    Carbon cycling in aquatic systems is increasingly seen as playing an important role in global carbon budgets and hence on potential impacts and controls on global warming. However, determining the partitioning within and transfer between different carbon stores is a major challenge, particularly where there are multiple sources and controls on carbon utilisation. Dissolved oxygen, DO, provides a proxy for investigating the dynamics of carbon utilisation in aquatic systems. High temporal resolution monitoring of DO at multiple site on the Hampshire Avon, a chalk dominated permeable catchment in southern England, UK, has been investigated using a dynamic DO model in order to investigate the biochemical cycling of carbon. Gross primary production, governed by photosynthetically active radiation, is determined through inverse modelling. Model simplification though parameter reduction is achieved through investigating controls on aeration (the transfer of oxygen across the atmosphere-river interface) and respiration. Seasonal changes in biomass affect long term oxygen dynamics, which are compounded by episodic hydrological events that control the partitioning of surface water and groundwater in the stream channel and consequently the sources of carbon and DO in the river channel. Using variations in surface geology across the catchment the impacts of varying baseflow characteristics on carbon cycling within the catchment is demonstrated.

  5. Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2012-04-01

    The influence of dissolved oxygen availability on cell growth and lactobionic acid production from whey by Pseudomonas taetrolens has been investigated for the first time. Results from pH-shift bioreactor cultivations have shown that high agitation rate schemes stimulated cell growth, increased pH-shift values and the oxygen uptake rate by cells, whereas lactobionic acid production was negatively affected. Conversely, higher aeration rates than 1.5 Lpm neither stimulated cell growth nor lactobionic acid production (22% lower for an aeration rate of 2 Lpm). Overall insights into bioprocess performance enabled the implementation of 350 rpm as the optimal agitation strategy during cultivation, which increased lactobionic productivity 1.2-fold (0.58-0.7 g/Lh) compared to that achieved at 1000 rpm. Oxygen supply has been shown to be a key bioprocess parameter for enhanced overall efficiency of the system, representing essential information for the implementation of lactobionic acid production at a large scale. PMID:22310213

  6. Assessment of water quality and factors affecting dissolved oxygen in the Sangamon River, Decatur to Riverton, Illinois, summer 1982

    USGS Publications Warehouse

    Schmidt, A.R.; Stamer, J.K.

    1987-01-01

    Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)

  7. Closed-loop identification and control application for dissolved oxygen concentration in a full-scale coke wastewater treatment plant.

    PubMed

    Yoo, C K; Cho, J H; Kwak, H J; Choi, S K; Chun, H D; Lee, I

    2001-01-01

    The objective of this paper is to apply a closed-loop identification to actual dissolved oxygen control system in the coke wastewater treatment plant. It approximates the dissolved oxygen dynamics to a high order model using the integral transform method and reduces it to the first-order plus time delay (FOPTD) or second-order plus time delay (SOPTD) for the PID controller tuning. To experiment the process identification on the real plant, a simple set-point change of the speed of surface aerator under the closed-loop control without any mode change was used as an activation signal of the identification. The full-scale experimental results show a good identification performance and a good tracking ability for set-point change. As a result of improved control performance, the fluctuation of dissolved oxygen concentration variation has been decreased and the electric power saving has been accomplished. PMID:11385849

  8. Luminescent sensing of dissolved oxygen based on Ru(II) complex embedded in sol-gel matrix

    NASA Astrophysics Data System (ADS)

    Bi, Yubing; Tao, Wei; Hu, Yanli; Mao, Yimei; Zhao, Hui

    2015-11-01

    In biological cells and tissues environment, real-time monitoring and controlling dissolved oxygen (DO) provides critical information for studying cellular metabolism process, health status and pathological features. This paper developed an optical DO sensor based on fluorescence quenching principle, prepared tris(4,7-diphenyl-1,10- phenanthroline)ruthenium(II) dichloride complex sol-gel sensing film, and studied its sensing performance. The principle of this sensor is that dissolved oxygen has quenching effect towards the fluorescence emitted by ruthenium complex. So the fluorescence intensity is reduced due to the existence of DO. The measurement limit of DO was 10- 100%, the response time was 20s, and the resolution was 0.02. Compared to traditional dissolved oxygen electrode probe, this luminescent fiber had many advantages, such as smaller size, shorter response time and higher stability.

  9. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  10. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  11. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell.

    PubMed

    Tao, Qinqin; Luo, Jingjing; Zhou, Juan; Zhou, Shaoqi; Liu, Guangli; Zhang, Renduo

    2014-07-01

    Performance of a two-chamber microbial fuel cell (MFC) was evaluated with the influence of cathodic dissolved oxygen (DO). The maximum voltage, coulombic efficiency and maximum power density outputs of MFC decreased from 521 to 303 mV, 52.48% to 23.09% and 530 to 178 mW/m(2) with cathodic DO declining. Furthermore, a great deal of total phosphorus (TP) was removed owing to chemical precipitation (about 80%) and microbial absorption (around 4-17%). COD was first removed in anode chamber (>70%) then in cathode chamber (<5%). Most of nitrogen was removed when the cathodic DO was at low levels. Chemical precipitates formed in cathode chamber were verified as phosphate, carbonate and hydroxyl compound with the aid of scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:24880930

  12. Dissolved oxygen prediction using a possibility theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, Usman T.; Valeo, Caterina

    2016-06-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic factors (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predicting low DO events in the Bow River. Model performance is compared with a fuzzy neural network with crisp inputs, as well as with a traditional neural network. Model output and a defuzzification technique are used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  13. Iodine-mediated etching of gold nanorods for plasmonic sensing of dissolved oxygen and salt iodine.

    PubMed

    Zhang, Zhiyang; Chen, Zhaopeng; Cheng, Fangbin; Zhang, Yaowen; Chen, Lingxin

    2016-05-10

    Here, we have carefully investigated iodine-mediated etching of gold nanorods (AuNRs) in the presence of iodate and applied this phenomenon to on-site detection of dissolved oxygen (DO). Under given conditions, the quantitative conversion of target analytes DO to iodine leads to the etching of AuNRs along the longitudinal direction with the aid of cetyltrimethylammonium. As a result, the longitudinal localized surface plasmon resonance shifts to a short wavelength. The peak-shift can be used for quantitative determination of DO and iodate by a spectrophotometer. The satisfactory results from DO detection in different water samples and iodate detection in table salt indicate the feasibility of the proposed methods. Moreover, the as-prepared colorimetric test paper would make the detection more economical and simpler. PMID:27049138

  14. Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rinella, F.A.; McKenzie, S.W.; Wille, S.A.

    1981-01-01

    During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)

  15. Influence of solid corrosion by-products on the consumption of dissolved oxygen in copper pipes

    SciTech Connect

    Vargas, Ignacio T.; Alsina, Marco A.; Pastén, Pablo A.; Pizarro, Gonzalo E.

    2009-06-12

    Research on corrosion of copper pipes has given little consideration to the influence of solid corrosion by-products on the processes occurring at the metal-liquid interface. Consequently, the effect of such solid phases on the rate of dissolved oxygen (DO) consumption remains poorly understood. In-situ experiments were performed in copper pipes under different carbonate concentrations and ageing times. Our results show that the amount of solid corrosion by-products and concentration of hydrogen ions affect the rate of DO consumption during stagnation. Furthermore, our findings support the existing hypothesis that the available concentration of hydrogen ions, rather than DO, is the limiting factor for copper release into drinking water.

  16. Determination of Trophic State Changes with Diel Dissolved Oxygen: A Case Study in a Shallow Lake.

    PubMed

    Xu, Zhen; Xu, Y Jun

    2015-11-01

    Current trophic state indices (TSI) have been reported to have limitations in assessing changes in eutrophication status of shallow waters. This study aimed to use intensive measurements on dissolved oxygen (DO) to improve the determination of tropic state changes. The authors deployed an environment monitoring buoy in a eutrophic shallow lake and recorded water temperature, DO, and chlorophyll-a concentrations at 15-minute intervals for two 1-year periods: from August 2008 to July 2009 and from August 2013 to July 2014. In addition, they recorded water levels over the same periods and collected water samples for nutrient analysis. The authors analyzed the high-time resolution DO records, compared the diel DO trends between the two 1-year periods, and proposed a new TSI using DO. They found that analyzing the change in diel DO ranges can improve commonly used methods for classifying trophic states and assessing the change of eutrophication status of waterbodies. PMID:26564585

  17. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    PubMed

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking. PMID:19837583

  18. Forest clearfelling effects on dissolved oxygen and metabolism in peatland streams.

    PubMed

    O'Driscoll, Connie; O'Connor, Mark; Asam, Zaki-Ul-Zaman; de Eyto, Elvira; Brown, Lee E; Xiao, Liwen

    2016-01-15

    Peatlands cover ∼3% of the world's landmass and large expanses have been altered significantly as a consequence of land use change. Forestry activities are a key pressure on these catchments increasing suspended sediment and nutrient export to receiving waters. The aim of this study was to investigate stream dissolved oxygen (DO) and metabolic activity response following clearfelling of a 39-year-old lodgepole pine and Sitka spruce forestry in an upland peat catchment. Significant effects of clearfelling on water temperature, flows, DO and stream metabolic (photosynthesis, respiration) rates were revealed. Stream temperature and discharge significantly increased in the study stream following clearfelling. Instream ecosystem respiration increased significantly following clearfelling, indicating an increase in the net consumption of organic carbon. PMID:26513323

  19. Dissolved oxygen prediction using a possibility-theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, U. T.; Valeo, C.

    2015-11-01

    A new fuzzy neural network method to predict minimum dissolved oxygen (DO) concentration in a highly urbanised riverine environment (in Calgary, Canada) is proposed. The method uses abiotic (non-living, physical and chemical attributes) as inputs to the model, since the physical mechanisms governing DO in the river are largely unknown. A new two-step method to construct fuzzy numbers using observations is proposed. Then an existing fuzzy neural network is modified to account for fuzzy number inputs and also uses possibility-theory based intervals to train the network. Results demonstrate that the method is particularly well suited to predict low DO events in the Bow River. Model output and a defuzzification technique is used to estimate the risk of low DO so that water resource managers can implement strategies to prevent the occurrence of low DO.

  20. Modification of Graphene on Ultramicroelectrode Array and Its Application in Detection of Dissolved Oxygen

    PubMed Central

    Wang, Jinfen; Bian, Chao; Tong, Jianhua; Sun, Jizhou; Li, Yang; Hong, Wen; Xia, Shanhong

    2015-01-01

    This paper investigated two different modification methods of graphene (GN) on ultramicroelectrode array (UMEA) and applied the GN modified UMEA for the determination of dissolved oxygen (DO). The UMEAs were fabricated by Micro Electro-Mechanical System (MEMS) technique and the radius of each ultramicroelectrode is 10 μm. GN-NH2 and GN-COOH were modified on UMEA by using self-assembling method. Compared with GN-NH2 modified UMEA, the GN-COOH modified UMEA showed better electrochemical reduction to DO, owing to better dispersing and more active sites. The GN-COOH on UMEA was electroreduced to reduced GN-COOH (rGN-COOH) to increase the conductivity and the catalysis performance. Finally, the palladium nanoparticles/rGN-COOH composite was incorporated into DO microsensor for the detection of DO. PMID:25549176

  1. Benthic Primary Production in a Saltmarsh Pond: Insights from Fluxes of Dissolved Inorganic Carbon and Oxygen

    NASA Astrophysics Data System (ADS)

    Karolewski, J. S.; Stanley, R. H.; Howard, E. M.; Spivak, A. C.

    2014-12-01

    Salt marshes are important carbon sinks that exist at continental margins and act as mediators in the exchange of nutrients and carbon between terrestrial and marine environments. Within salt marshes, 10-20% of total surface area is covered by marshtop ponds. The fractional area of marshtop ponds is predicted to increase as sea level rises. Despite their potential importance, the balance between autotrophic and heterotrophic processes within such ponds remain poorly understood. To quantify the balance of metabolic fluxes within salt marsh ponds, chemical fluxes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) were measured in July, 2014 in benthic flux chambers inserted into a salt marsh pond in the Plum Island Estuary Long-Term Ecosystem Research (PIE-LTER) site. Light and dark chambers were used to enable separation of rates of photosynthesis and respiration. Separate chambers were used to enclose sediment covered by primarily benthic microalgae and primarily benthic macroalgae. Net ecosystem metabolism in the microalgae was ~10 and in the macroalgae ~15 mmol C/m2/hour. Respiration rates were ~10 mmol C/m2/ hour for both microalgae and macroalgae. The resulting fluxes of net ecosystem production in the ponds will be compared with overall marsh net ecosystem flux as measured by an eddy flux tower that was located 100 meters from the pond. Additionally, concurrent measurements of DIC and DO allow quantification of the C:O ratio during respiration (i.e. respiratory quotient) in this system.

  2. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation. PMID:26773612

  3. Relationship between ecosystem respiration and aeration constant in open channel dissolved oxygen analysis

    NASA Astrophysics Data System (ADS)

    Parker, S. J.; Butler, A. P.; Heppell, C. M.

    2015-12-01

    Using the open channel diel method of Odum (1956) and the night-time regression method (Hornberger and Kelly, 1985), we analysed a time series of dissolved oxygen (DO) in two slow flowing streams for a two month period in summer 2014 and obtained values for ecosystem respiration and the aeration constant for each day in the period. We then used the standard dissolved oxygen lumped model to generate a DO time series behaviour for one of those rivers selecting respiration and aeration parameters by randomly sampling from the values obtained from the data. Two synthetic time series were created, one where respiration and aeration were independent of temperature and a second where respiration and aeration were affected by temperature according to the modified Arrhenius relationship. With these two synthetic time series, we again recovered the respiration and aeration input parameters using the night- time regression method and compared those recovered parameters with the input parameters. Because the simulations were conducted with parameters that were known, the values recovered using the night-time regression method (i.e post-simulation) could be compared with parameters driving the simulation (i.e. pre-simulation input values). For values based on data, we found a strong correlation between the aeration constant and respiration for both rivers. For the synthetic time series, no such correlation was found, either with the temperature independent or temperature dependent time series. The night-time regression method also recovered perfectly the input parameters, so the correlation was not brought about as a result of implementing the method itself. We are currently investigating the cause of the correlation.

  4. Non-Linear Time Series Analysis of Dissolved Oxygen in Five Diverse Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Simpson, K. E.; Barton, C. C.; Smigelski, J. R.; Tebbens, S. F.

    2008-12-01

    Temporal variations in the concentration of Dissolved oxygen (DO) can create catastrophic conditions for organisms that rely on aerobic metabolic processes for survival. Dissolved oxygen (DO) is an aquatic parameter whose concentration is controlled by physical, biological, and chemical processes. The concentration of DO in an aquatic system is important to organisms that rely on aerobic metabolic processes for survival. A power-spectral-density analysis of time series of DO concentration is used to quantify persistence (the degree of internal correlation) over durations of 3 months to 19 years. The interval between data points was either 15 minutes or one hour. The data are from ten different water bodies throughout the United States. Four of these sites are large, slow moving bodies of water including three estuaries: Chesapeake Bay (Virginia), Winyah Bay (North Carolina) and Elkhorn Slough (California); and one reservoir: the Cheney Reservoir in Kansas. The other six sites are small, fast moving water bodies. They included four rivers: Christina River (Delaware), St. Croix River (Maine), Ramapo River (New Jersey), and Passaic River, New Jersey; one stream: Green Pond Brook (New Jersey); and one man-made channel: Reynolds Channel (New York). The analysis quantifies persistence as the power scaling exponent (β), which for all ten water bodies β ranges between 1.2 and 1.6 meaning that the signal is persistent and non-stationary. Rivers and streams, exhibit higher β-values of 1.5 < β<1.6 (greater persistence) than estuaries and lakes, which have β-values of 1.2< β <1.4t.

  5. Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks.

    PubMed

    Spiessl, S M; MacQuarrie, K T B; Mayer, K U

    2008-01-28

    In the crystalline rocks of the Canadian Shield, geochemical conditions are currently reducing at depths of 500-1000 m. However, during future glacial periods, altered hydrologic conditions could potentially result in enhanced recharge of glacial melt water containing a relatively high concentration of dissolved oxygen (O2). It is therefore of interest to investigate the physical and geochemical processes, including naturally-occurring redox reactions, that may control O2 ingress. In this study, the reactive transport code MIN3P is used in combination with 2k factorial analyses to identify the most important parameters controlling oxygen migration and attenuation in fractured crystalline rocks. Scenarios considered are based on simplified conceptual models that include a single vertical fracture, or a fracture zone, contained within a rock matrix that extends from the ground surface to a depth of 500 m. Consistent with field observations, Fe(II)-bearing minerals are present in the fractures (i.e. chlorite) and the rock matrix (biotite and small quantities of pyrite). For the parameter ranges investigated, results indicate that for the single fracture case, the most influential factors controlling dissolved O2 ingress are flow velocity in the fracture, fracture aperture, and the biotite reaction rate in the rock matrix. The most important parameters for the fracture zone simulations are flow velocity in the individual fractures, pO2 in the recharge water, biotite reaction rate, and to a lesser degree the abundance and reactivity of chlorite in the fracture zone, and the fracture zone width. These parameters should therefore receive increased consideration during site characterization, and in the formulation of site-specific models intended to predict O2 behavior in crystalline rocks. PMID:17935829

  6. Thermal and dissolved oxygen characteristics of a South Carolina cooling reservoir

    USGS Publications Warehouse

    Oliver, James L.; Hudson, Patrick L.

    1987-01-01

    Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.

  7. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  8. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys.

    PubMed

    Nakagawa, Masaharu; Matsuya, Shigeki; Udoh, Koichi

    2002-06-01

    The effects of dissolved-oxygen concentration and fluoride concentration on the corrosion behaviors of commercial pure titanium, Ti-6Al-4V and Ti-6Al-7Nb alloys and experimentally produced Ti-0.2Pd and Ti-0.5Pt alloys were examined using the corrosion potential measurements. The amount of dissolved Ti was analyzed by inductively coupled plasma mass spectroscopy. A decrease in the dissolved-oxygen concentration tended to reduce the corrosion resistance of Ti and Ti alloys. If there was no fluoride, however, corrosion did not occur. Under low dissolved-oxygen conditions, the corrosion of pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys might easily take place in the presence of small amounts of fluoride. They were corroded by half or less of the fluoride concentrations in commercial dentifrices. The Ti-0.2Pd and Ti-0.5Pt alloys did not corrode more, even under the low dissolved-oxygen conditions and a fluoride-containing environment, than pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys. These alloys are expected to be useful as new Ti alloys with high corrosion resistance in dental use. PMID:12238790

  9. Modeling the dynamics of metabolism in montane streams using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Birkel, Christian; Soulsby, Chris; Malcolm, Iain; Tetzlaff, Doerthe

    2013-09-01

    We inferred in-stream ecosystem processes in terms of photosynthetic productivity (P), system respiration (R), and reaeration capacity (RC) from a five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, and stream depth. This was calibrated to high-resolution (15 min), long-term (2.5 years) dissolved oxygen (DO) time series for moorland and forest reaches of a third-order montane stream in Scotland. The model was multicriteria calibrated to continuous 24 h periods within the time series to identify behavioral simulations representative of ecosystem functioning. Results were evaluated using a seasonal regional sensitivity analysis and a colinearity index for parameter sensitivity. This showed that >95 % of the behavioral models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for around 40% and 32% of the time period, respectively. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). We conclude that such process-based oxygen mass balance models may be transferable tools for investigating other systems; specifically, well-oxygenated upland channels with high hydraulic roughness and lacking reaeration measurements.

  10. Effect of Dissolved Oxygen on the Filterability of Jet Fuels for Temperatures Between 300 Degrees and 400 Degrees F

    NASA Technical Reports Server (NTRS)

    Mckeown, Anderson B; Hibbard, Robert R

    1955-01-01

    The effect of dissolved oxygen in the filter-clogging characteristics of three JP-4 and two JP-5 fuels was studied at 300 degrees to 400 degrees F in a bench- scale rig, employing filter paper as the filter medium. The residence time of the fuel at the high temperature was approximately 6 seconds. For these conditions, the clogging characteristics of the fuels increased with both increasing temperature and increasing concentration of dissolved oxygen. The amount of insoluble material formed at high temperatures necessary to produce clogging of filters was very small, of the order of 1 milligram per gallon of fuel.

  11. Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Xie, Lian; Pietrafesa, Len J.; Shen, Jian; Mallin, Michael A.; Durako, Michael J.

    2006-11-01

    The controlling physical factors for vertical oxygen stratification in micro-tidal, partially-mixed estuaries are discussed in this paper. A theoretical deduction shows that vertical stratification of dissolved oxygen (DO) concentration can be explained by the extended Hansen and Rattray's Central Region theory, which suggests that in addition to biological factors such as photosynthesis, biochemical oxygen demand (BOD), sediment oxygen demand (SOD), vertical DO profiles are mainly controlled by physical factors such as surface re-aeration, river flow, and estuarine gravitational circulation. Vertical mixing of DO from surface re-aeration and photosynthesis sets a DO profile of higher concentration near the surface and lower near the bottom. With a positive seaward longitudinal DO gradient, strong river flow and estuarine gravitational circulation can cause lower DO concentrations near the surface and higher near the bottom. The actual vertical oxygen profile is then determined by the relative magnitude of the above-mentioned mechanisms. It is sensitive to two parameters: (1) the strength of the gravitational circulation ( uE); and (2) the relative importance between biochemical oxygen demand and vertical diffusivity ( α). Vertical DO stratification usually becomes weaker as uE increases. The impact of gravitational circulation on vertical oxygen distribution becomes more important for a larger α. The impact of α on oxygen stratification is profound. As uE (and river flow) increases, DO stratification appears to be less sensitive to the value of α. Surface-to-bottom differences in DO concentrations (ΔDO) is negligible when α is small ( α < 0.5). As α increases, ΔDO increases under a weak to moderate gravitational circulation mode ( uE ≤ 5 cm s -1). Under a strong gravitational circulation mode, ΔDO becomes negative with a small α ( α < 2), and as α continues to increase, ΔDO becomes positive. The newly-deduced governing equation for vertical oxygen

  12. Factors initiating phytoplankton blooms and resulting effects on dissolved oxygen in Duwamish River estuary, Seattle, Washington

    USGS Publications Warehouse

    Welch, Eugene Brummer

    1969-01-01

    Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because

  13. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  14. Long-term variations in the dissolved oxygen budget of an urbanized tidal river: The upper Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Tomaso, Daniel J.; Najjar, Raymond G.

    2015-06-01

    The dissolved oxygen budget in the upper Delaware Estuary between 1970 and 2014 was inferred from oxygen concentration measurements using a box model approach. The region was found to be a net biogeochemical sink of oxygen, with net oxygen consumption greater in the tidal fresh portion than in the oligohaline portion. Net oxygen consumption decreased from the 1970s to the 1990s by roughly a factor of 2 before increasing slightly in the 2000s. The dramatic decline in oxygen consumption was presumably due to improvements in wastewater treatment, though a comparison with biological oxygen demand measurements in wastewater was equivocal. Nonalgal oxygen consumption (i.e., oxygen consumption due to heterotrophic respiration and nitrification) was computed as the sum of the estimated net oxygen consumption and historical measurements of primary production. Nonalgal oxygen consumption was found to be highly seasonal and positively correlated with temperature, with Q10 values ranging between 1.4 and 2.3. Annual nonalgal oxygen consumption was found to be several times annual primary production. Exchange with the atmosphere is the main process that balances the net oxygen consumption throughout the study region, with advection also an important process in the tidal fresh portion. Decadal scale variability in oxygen concentration, including the recent decline in the 2000s, appears to be mainly driven by biological, not physical, processes.

  15. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    SciTech Connect

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.; Cullinan, Valerie I.; Chandler, James A.; Groves, Philip

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days of incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation and up to

  16. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors.

    PubMed

    Willow, Mark A; Cohen, Ronald R H

    2003-01-01

    Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity. PMID:12931874

  17. Effect of dissolved oxygen concentration on iron efficiency: Removal of three chloroacetic acids.

    PubMed

    Tang, Shun; Wang, Xiao-mao; Mao, Yu-qin; Zhao, Yu; Yang, Hong-wei; Xie, Yuefeng F

    2015-04-15

    The monochloroacetic, dichloroacetic and trichloroacetic acid (MCAA, DCAA and TCAA) removed by metallic iron under controlled dissolved oxygen conditions (0, 0.75, 1.52, 2.59, 3.47 or 7.09 mg/L DO) was investigated in well-mixed batch systems. The removal of CAAs increased first and then decreased with increasing DO concentration. Compared with anoxic condition, the reduction of MCAA and DCAA was substantially enhanced in the presence of O2, while TCAA reduction was significantly inhibited above 2.59 mg/L. The 1.52 mg/L DO was optimum for the formation of final product, acetic acid. Chlorine mass balances were 69-102%, and carbon mass balances were 92-105%. With sufficient mass transfer from bulk to the particle surface, the degradation of CAAs was limited by their reduction or migration rate within iron particles, which were dependent on the change of reducing agents and corrosion coatings. Under anoxic conditions, the reduction of CAAs was mainly inhibited by the available reducing agents in the conductive layer. Under low oxic conditions, the increasing reducing agents and thin lepidocrocite layer were favorable for CAA dechlorination. Under high oxic conditions, the redundant oxygen competing for reducing agents and significant lepidocrocite growth became the major restricting factors. Various CAA removal mechanisms could be potentially applied to explaining the effect of DO concentration on iron efficiency for contaminant reduction in water and wastewater treatment. PMID:25697696

  18. Multi-pollutant treatment of crystalline cellulosic effluent: Function of dissolved oxygen on process control.

    PubMed

    Shanthi Sravan, J; Naresh Kumar, A; Venkata Mohan, S

    2016-10-01

    Treatment of crystalline cellulose based wastewater was carried out in periodic discontinuous batch reactor (PDBR). Specific influence of dissolved oxygen on treatment of crystalline cellulosic (CC) wastewater was evaluated in three different microenvironments such as aerobic, anoxic and anaerobic. PDBR-aerobic biosystem documented relatively higher substrate degradation [2.63kgCOD/m(3)-day (92%)] in comparison to PDBR-anoxic [2.12kgCOD/m(3)-day (71%)] and PDBR-anaerobic [1.81kgCOD/m(3)-day (63%)], which is in accordance with the observed DO levels. Similarly, multipollutants viz., phosphates and nitrates removal was observed to be higher in aerobic followed by anoxic and anaerobic operations. Higher nitrate removal in aerobic operation might be attributed to the efficient denitrification carried out by the biocatalyst, which utilizes both nitrates and oxygen as oxidizing agents. Multiscan spectral profiles depicted reduction in color intensity in all three microenvironments that correlated with the substrate degradation observed. Despite the high organic load, PDBR functioned well without exhibiting process inhibition. PMID:27005787

  19. A recent occurrence of thermal stratification and low dissolved oxygen in western Lake Erie

    USGS Publications Warehouse

    Carr, John F.; Applegate, Vernon C.; Keller, Myrl

    1965-01-01

    Instances of thermal stratification have been detected only occasionally in western Lake Erie during the past 40 years, but when it does occur it is of considerable importance because of associated dissolved oxygen (DO) depletion in the hypolimnion. Data collected in June of 1963 give an indication of the meteorological conditions necessary to produce this thermal stratification. These conditions are: daily wind speed of less than 3.1 m/sec (7 mph); highest wind speed of less than 6.7 m/sec (15 mph); and an average daily temperature of more than 18.5 C for approximately 5 consecutive days. Weather records for Sandusky, Ohio, show these conditions to have occurred on 33 separate occasions between 1953 and 1963. These data suggest stable thermal stratification occurs more frequently than heretofore suspected. The 1963 data also show that in only 5 days of stratification DO in the hypolimnion was reduced to less than 3 ppm, whereas 28 days were required in 1953. This increased rate of DO depletion is probably due to an increase in the oxygen demand of the bottom sediment in recent years.

  20. Variation in oxygen isotope ratio of dissolved orthophosphate induced by uptake process in natural coral holobionts

    NASA Astrophysics Data System (ADS)

    Ferrera, Charissa M.; Miyajima, Toshihiro; Watanabe, Atsushi; Umezawa, Yu; Morimoto, Naoko; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo

    2016-06-01

    A model incubation experiment using natural zooxanthellate corals was conducted to evaluate the influence of phosphate uptake by coral holobionts on oxygen isotope ratio of dissolved PO4 3- (δ18Op). Live coral samples of Acropora digitifera, Porites cylindrica, and Heliopora coerulea were collected from coral reefs around Ishigaki Island (Okinawa, Japan) and Bolinao (northern Luzon, Philippines) and incubated for 3-5 d after acclimatization under natural light conditions with elevated concentrations of PO4 3-. Phosphate uptake by corals behaved linearly with incubation time, with uptake rate depending on temperature. δ18Op usually increased with time toward the equilibrium value with respect to oxygen isotope exchange with ambient seawater, but sometimes became higher than equilibrium value at the end of incubation. The magnitude of the isotope effect associated with uptake depended on coral species; the greatest effect was in A. digitifera and the smallest in H. coerulea. However, it varied even within samples of a single coral species, which suggests multiple uptake processes with different isotope effects operating simultaneously with varying relative contributions in the coral holobionts used. In natural environments where concentrations of PO4 3- are much lower than those used during incubation, PO4 3- is presumably turned over much faster and the δ18Op easily altered by corals and other major primary producers. This should be taken into consideration when using δ18Op as an indicator of external PO4 3- sources in coastal ecosystems.

  1. Tidal fluxes of dissolved oxygen at the North Inlet-Winyah Bay National Estuarine Research Reserve

    NASA Astrophysics Data System (ADS)

    Gardner, L. R.; Kjerfve, B.; Petrecca, D. M.

    2006-04-01

    Advective, dispersive and total dissolved oxygen (DO) fluxes from 1297 complete tidal cycles were analyzed to test the "outwelling" hypothesis as it pertains to DO. A 910 day time series of meteorological and water quality data (approximately 35,000 half-hourly observations) was used to assess DO fluxes and dynamics at Crab Haul Creek, a small (1.1 km 2) tidal salt marsh basin at North Inlet, South Carolina, within the North Inlet-Winyah Bay National Estuarine Research Reserve. A basin storage curve, derived from water velocity measurements made across a permanent transect in the tidal creek every half hour for eight semidiurnal tidal cycles, enabled water discharges to be estimated from tide height readings in the 910 day time series. The discharges along with DO concentration measurements were used to calculate DO fluxes for each tidal cycle in the series. The long-term mean dispersive and advective DO fluxes were -0.281 g O 2 s -1 and -0.375 g O 2 s -1, respectively. Based on " t" tests both means are significantly less than zero ( p < 0.02), indicating exports. Furthermore a significant correlation was found between the dispersive DO export and the tidal mean solar radiation, indicating that photosynthesis is the principal process driving the dispersive export of DO. On the other hand no significant correlations were found between the advective export of DO and solar radiation or between the dispersive fluxes of DO and salt. The absence of such correlations indicates that the advective export of DO is simply an artifact of a slight ebb sampling bias in our computation of the tidal mean discharge. On a unit area basis the average annual dispersive export of DO is 8.9 g m -2 yr -1 or 0.28 mol DO m -2 yr -1. This is a small fraction of the oxygen produced in the basin by phytoplankton (18 mol DO m -2 yr -1) and its contribution to the DO resources of the receiving waters is far exceeded by the oxygen demand associated with the concurrent export of dissolved

  2. Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Song, Yang; Chen, Shaowei

    2014-12-01

    Stable alkyne-capped copper nanoparticles were prepared by chemical reduction of copper acetate with sodium borohydride in the presence of alkyne ligands. Transmission electron microscopic measurements showed that nanoparticles were well dispersed with a diameter in the range of 4-6 nm. FTIR and photoluminescence spectroscopic measurements confirmed the successful attachment of the alkyne ligands onto the nanoparticle surface most likely forming Cu-Ctbnd interfacial bonds. XPS measurements indicated the formation of a small amount of CuO in the nanoparticles with a satellite peak where the binding energy red-shifted with increasing Cu(II) concentration. Cu2O was also detected in the nanoparticles. Similar results were observed with commercial CuO nanoparticles. Electrochemical studies showed that the as-prepared alkyne-capped copper nanoparticles exhibited apparent electrocatalytic activity in oxygen reduction in alkaline media, a performance that was markedly better than those reported earlier with poly- or single-crystalline copper electrodes; and the fraction of peroxides in the final products decreased with decreasing concentration of oxide components in the nanoparticles.

  3. Segregated Pt on Pd nanotubes for enhanced oxygen reduction activity in alkaline electrolyte.

    PubMed

    St John, Samuel; Atkinson, Robert W; Dyck, Ondrej; Sun, Cheng-Jun; Zawodzinski, Thomas A; Papandrew, Alexander B

    2015-12-01

    Nanoscaled Pt domains were integrated with Pd nanotubes via vapor deposition to yield a highly active electrocatalyst for the oxygen reduction reaction (ORR) in alkaline media. The surface-area-normalized ORR activity of these bi-metallic Pt-on-Pd nanotubes (PtPdNTs) was nearly 6× the corresponding carbon-supported Pt nanoparticle (Pt/C) activity at 0.9 V vs. RHE (1.5 vs. 0.24 mA cmmetal(-2), respectively). Furthermore, the high specific activity of the PtPdNTs was achieved without sacrificing mass-normalized activity, which is more than twice that of Pt/C (0.333 A mgPtPdNT(-1)vs. 0.141 A mgPt/C(-1)) and also greater than that of Pd/C (0.221 A mgPd/C(-1)). We attribute the enhancements in specific and mass activity to modifications of the segregated Pt electronic structure and to nanoscale porosity, respectively. PMID:26553367

  4. Oxygen and Sulfur Isotope Composition of Dissolved Sulfate in Interstitial Waters of the Great Australian Bight, ODP Leg 182.

    NASA Astrophysics Data System (ADS)

    Bernasconi, S. M.; Böttcher, M. E.; Wormann, U. G.

    2005-12-01

    We measured the sulfur and oxygen isotope composition of dissolved sulfides and sulfate at ODP Sites 1129, 1130, 1131 and 1132 in the Great Australian Bight (GAB). At all Sites, a saline brine is present in the subsurface as indicated by increasing chloride concentrations with depth to reach contents up to 3 times seawater. Sulfate also increases with depth but the concentrations are reduced by intense microbial sulfate reduction. The sulfur isotope fractionation between coexisting dissolved sulfate and sulfide is very large and reaches up to 70 ‰ at all studied Sites. Due to the high sulfide concentrations and the lack of a significant source of oxidants we consider that the large sulfur isotope fractionations are induced by sulfate reducing bacteria alone without a significant contribution of elemental sulfur disproportionation and sulfide oxidation processes. The oxygen isotope composition of dissolved sulfate reaches maximum values of approximately +27 ‰ vs. VSMOW at all sites, close to the equilibrium isotope fractionation between sulfate and water. The oxygen isotope composition of dissolved sulfate positively correlates with the sulfur isotope fractionation between sulfate and sulfide. These oxygen isotope data thus support the hypothesis that that the high sulfur isotope fractionation are related to a single step fractionation by sulfate reducing bacteria and do not involve significant sulfide oxidation reactions and/or elemental sulfur disproportionation. Sulfide oxidation processes would lead to a lowering of the oxygen isotope composition of residual sulfate. Elemental sulfur disproportionation has been shown to increase the oxygen isotope composition of sulfate but to a smaller extent than that that observed in the GAB. The patterns of the oxygen isotope increase with progressive sulfate reduction indicate a predominant influence of isotope exchange rather than a kinetic isotope fractionation controlling the oxygen isotope composition of sulfate

  5. Characterization of a dissolved oxygen sensor made of plastic optical fiber coated with ruthenium-incorporated solgel.

    PubMed

    Chu, Fenghong; Yang, Junjie; Cai, Haiwen; Qu, Ronghui; Fang, Zujie

    2009-01-10

    A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. PMID:19137045

  6. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Lipizer, M.; Partescano, E.; Rabitti, A.; Giorgetti, A.; Crise, A.

    2014-10-01

    An updated climatology, based on a comprehensive data set (1911-2009) of temperature, salinity and dissolved oxygen, has been produced for the whole Adriatic Sea with the variational inverse method using the DIVA (Data-Interpolating Variational Analysis) software. Climatological maps were produced at 26 levels and validated with ordinary cross-validation and with a real vs. synthetic temperature-salinity diagram intercomparison. The concept of climatology-observation misfit (COM) has been introduced as an estimate of the physical variability associated with the climatological structures. In order to verify the temporal stability of the climatology, long-term variability has been investigated in the Middle Adriatic and the South Adriatic pits, regarded as the most suitable records of possible long-term changes. Compared with previous climatologies, this study allows a clear identification of the seasonal dynamic of the southern Adriatic, where a clear oxygen minimum is typically observed in the centre of the South Adriatic Gyre. New and better resolved features emerged from this analysis: (1) below 100 m all properties profoundly differ between the central and the southern Adriatic and seem characterized by different biogeochemical dynamics; (2) the South Adriatic Pit clearly shows the remote effects of the Eastern Mediterranean Transient, while no effect is observed in the Middle Adriatic Pit; (3) the deepest part of the southern Adriatic seems now to be significantly saltier (+0.18 psu since the period 1910-1914, with an increase of +0.018 decade-1 since the late 1940s) and warmer (+0.54 °C since 1910-1914) even though a long-term temperature trend could not be statistically demonstrated; (4) the Middle Adriatic Pit shows a long-term increase in apparent oxygen utilization (+0.77 mL L-1 since 1910-1914, with a constant increase of +0.2 mL L-1 decade-1 after the 1970s).

  7. Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores

    USGS Publications Warehouse

    Karlsen, A.W.; Cronin, T. M.; Ishmans, S.E.; Willard, D.A.; Kerhin, R.; Holmes, C.W.; Marot, M.

    2000-01-01

    Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by 210Pb, 137Cs, 14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay. Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO = 0.47 and 1.72 ml l-1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show that A. parkinsoniana was absent prior to the late 17th century, increased to 10-25% relative frequency between approximately 1670-1720 and 1810-1900, and became the dominant (60-90%) benthic foraminiferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests of A. parkinsoniana occur in all cores (10-20% of Ammonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO = 0.1-1.0 ml l-1), perhaps short-term anoxic (DO < 0.1 ml l-1) conditions developed. The most extensive (spatially and temporally) anoxlc conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.

  8. Baicalin inhibits the fenton reaction by enhancing electron transfer from Fe (2+) to dissolved oxygen.

    PubMed

    Nishizaki, Daisuke; Iwahashi, Hideo

    2015-01-01

    Sho-saiko-to is an herbal medicine that is known to have diverse pharmacological activities and has been used for the treatment of various infectious diseases. Here, we examined the effects of baicalin, a compound isolated from Sho-saiko-to, and the effects of the iron chelator quinolinic acid on the Fenton reaction. The control reaction mixture contained 0.1 M 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 0.2 mM H 2 O 2, 0.2 mM FeSO 4( NH 4)2 SO 4, and 40 mM sodium phosphate buffer (pH 7.4). Upon the addition of 0.6 mM baicalin or quinolinic acid to the control reaction mixture, the ESR peak heights of DMPO/OH radical adducts were measured as 32% ± 1% (baicalin) and 166% ± 27% (quinolinic acid) of that of the control mixture. In order to clarify why baicalin and quinolinic acid exerted opposite effects on the formation of hydroxyl radicals, we measured oxygen consumption in the presence of either compound. Upon the addition of 0.6 mM baicalin (or quinolinic acid) to the control reaction mixture without DMPO and H 2 O 2, the relative oxygen consumption rates were found to be 449% ± 40% (baicalin) and 18% ± 9% (quinolinic acid) of that of the control mixture without DMPO and H 2 O 2, indicating that baicalin facilitated the transfer of electrons from Fe (2+) to dissolved oxygen. Thus, the great majority of Fe (2+) turned into Fe (3+), and the formation of hydroxyl radicals was subsequently inhibited in this reaction. PMID:25640849

  9. Bulk Dissolution Rates of Cadmium and Bismuth Tellurides As a Function of pH, Temperature and Dissolved Oxygen.

    PubMed

    Biver, Marc; Filella, Montserrat

    2016-05-01

    The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly. PMID:27043466

  10. Modeling dissolved oxygen dynamics in blackwater rivers: The importance of site-specific data and carbon flux parameter complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The validity of models predicting parameters of ecosystem health may be limited by the resolution of data available for target river reaches. Here we test the ability of the Environmental Fluid Dynamics Code (EFDC) model to accurately predict dissolved oxygen (DO) concentrations in two reaches of s...

  11. The Effect of Increased Temperatures and Ultraviolet Radiation on Dissolved Oxygen in Ecosystems Primarily Comprised of "Euglena"

    ERIC Educational Resources Information Center

    Carpenter, Matt

    2009-01-01

    The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…

  12. GROWTH AND SURVIVAL OF CHANNEL CATFISH AND YELLOW PERCH EXPOSED TO LOWERED CONSTANT AND DIURNALLY FLUCTUATING DISSOLVED OXYGEN CONCENTRATIONS

    EPA Science Inventory

    Growth and survival were determined for duplicate lots of juvenile channel catfish (Ictalurus punctatus) and yellow perch (Perca flavescens) exposed for 69 and 67 days, respectively, to nearly constant dissolved oxygen (DO) concentrations at near air saturation (control), 6.5, 5....

  13. PRELIMINARY STUDY OF THE NATURAL CONDITION OF DISSOLVED OXYGEN IN BLACKWATER STREAMS IN THE SEA ISLAND FLATWOODS ECOREGION, 75(F)

    EPA Science Inventory

    The limited availability of data pertaining to naturally occurring levels of dissolved oxygen (DO) in blackwater stream reduces the ability of both EPA and the States to make assessment decisions and evaluate the appropriateness of the existing criteria for blackwater streams. Th...

  14. A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater.

    PubMed

    Horstkotte, Burkhard; Alonso, Juan Carlos; Miró, Manuel; Cerdà, Víctor

    2010-01-15

    An integrated analyzer based on the multisyringe flow injection analysis approach is proposed for the automated determination of dissolved oxygen in seawater. The entire Winkler method including precipitation of manganese(II) hydroxide, fixation of dissolved oxygen, dissolution of the oxidized manganese hydroxide precipitate, and generation of iodine and tri-iodide ion are in-line effected within the flow network. Spectrophotometric quantification of iodine and tri-iodide at the isosbestic wavelength of 466nm renders enhanced method reliability. The calibration function is linear up to 19mgL(-1) dissolved oxygen and an injection frequency of 17 per hour is achieved. The multisyringe system features a highly satisfying signal stability with repeatabilities of 2.2% RSD that make it suitable for continuous determination of dissolved oxygen in seawater. Compared to the manual starch-end-point titrimetric Winkler method and early reported automated systems, concentrations and consumption of reagents and sample are reduced up to hundredfold. The versatility of the multisyringe assembly was exploited in the implementation of an ancillary automatic batch-wise Winkler titrator using a single syringe of the module for accurate titration of the released iodine/tri-iodide with thiosulfate. PMID:20006097

  15. Periodical bubble formation and the oscillatory change in dissolved oxygen concentration in a catalase-hydrogen peroxide system.

    PubMed

    Sasaki, Satoshi

    2006-06-01

    The relationship between the periodical bubble forming and the oscillatory change in the dissolved oxygen (DO) concentration in a catalase-hydrogen peroxide system was studied. Photographs of the bubbles and the responses from the DO electrode indicated that large bubbles were generated periodically, and that the DO profile depended on the geometrical relationship between the electrode and the bubbles. PMID:16772694

  16. Historic and recent patterns in dissolved oxygen within the Yaquina Estuary (Oregon, USA): Importance of anthropogenic activities and oceanic conditions

    EPA Science Inventory

    Spatial and temporal patterns of dissolved oxygen (DO) in Yaquina Estuary, Oregon (USA) are examined using historic and recent data. There was a significant increasing trend in DO in the upstream portion of the estuary during the years 1960–1985. Historically, minimum dry season ...

  17. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  18. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series-Abstract

    EPA Science Inventory

    Continuous time series of dissolved oxygen (DO) have been used to compute estimates of metabolism in aquatic ecosystems. Central to this open water or "Odum" method is the assumption that the DO time is not strongly affected by advection and that effects due to advection or mixin...

  19. Production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...

  20. Dissolved oxygen in two Oregon estuaries: The importance of the ocean-estuary connection - May 16, 2011

    EPA Science Inventory

    We examined the role of the ocean –estuary connection in influencing periodic reductions in dissolved oxygen (DO) levels in Yaquina and Yachats estuaries, Oregon, USA. In the Yaquina Estuary, there is close coupling between the coastal ocean and the estuary. As a result, low DO ...

  1. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  2. Model development for prediction and mitigation of dissolved oxygen sags in the Athabasca River, Canada.

    PubMed

    Martin, Nancy; McEachern, Preston; Yu, Tong; Zhu, David Z

    2013-01-15

    Northern rivers exposed to high biochemical oxygen demand (BOD) loads are prone to dissolved oxygen (DO) sags in winter due to re-aeration occurring within limited open water leads. Additionally, photosynthesis is reduced by decreased daylight hours, inability of solar radiation to pass through ice, and slower algal growth in winter. The low volumetric flow decreases point-source dilution while their travel time increases. The Athabasca River in Alberta, Canada, has experienced these sags which may affect the aquatic ecosystem. A water quality model for an 800 km reach of this river was customized, calibrated, and validated specifically for DO and the factors that determine its concentration. After validation, the model was used to assess the assimilative capacity of the river and mitigation measures that could be deployed. The model reproduced the surface elevation and water temperature for the seven years simulated with mean absolute errors of <15 cm and <0.9 °C respectively. The ice cover was adequately predicted for all seven winters, and the simulation of nutrients and phytoplankton primary productivity were satisfactory. The DO concentration was very sensitive to the sediment oxygen demand (SOD), which represented about 50% of the DO sink in winter. The DO calibration was improved by implementing an annual SOD based on the BOD load. The model was used to estimate the capacity of the river to assimilate BOD loads in order to maintain a DO concentration of 7 mg/L, which represents the chronic provincial guideline plus a buffer of 0.5 mg/L. The results revealed the maximum assimilative BOD load of 8.9 ton/day at average flow conditions, which is lower than the maximum permitted load. In addition, the model predicted a minimum assimilative flow of about 52 m(3)/s at average BOD load. Climate change scenarios could increase the frequency of this low flow. A three-level warning-system is proposed to manage the BOD load proactively at different river discharges

  3. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  4. Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2015-01-01

    is instructive and essential to decouple the effects of biological and physical processes on the dissolved oxygen condition, in order to understand their contribution to the interannual variability of hypoxia in Chesapeake Bay since the 1980s. A conceptual bottom DO budget model is applied, using the vertical exchange time scale (VET) to quantify the physical condition and net oxygen consumption rate to quantify biological activities. By combining observed DO data and modeled VET values along the main stem of the Chesapeake Bay, the monthly net bottom DO consumption rate was estimated for 1985-2012. The DO budget model results show that the interannual variations of physical conditions accounts for 88.8% of the interannual variations of observed DO. The high similarity between the VET spatial pattern and the observed DO suggests that physical processes play a key role in regulating the DO condition. Model results also show that long-term VET has a slight increase in summer, but no statistically significant trend is found. Correlations among southerly wind strength, North Atlantic Oscillation index, and VET demonstrate that the physical condition in the Chesapeake Bay is highly controlled by the large-scale climate variation. The relationship is most significant during the summer, when the southerly wind dominates throughout the Chesapeake Bay. The seasonal pattern of the averaged net bottom DO consumption rate (B'20) along the main stem coincides with that of the chlorophyll-a concentration. A significant correlation between nutrient loading and B'20 suggests that the biological processes in April-May are most sensitive to the nutrient loading.

  5. Preferential flow characterization in fractured aquifer by injecting dissolved oxygen in boreholes

    NASA Astrophysics Data System (ADS)

    Vurro, Michele; Donnaloia, Mietta; Masciopinto, Costantino; Pennetta, Luigi; Robbins, Gary; Vitale, Sarah

    2016-04-01

    A new approach to identify contributing fractures and wellbore flow in fractured and karst aquifers is presented. It is time efficient, low cost and based on a benign tracer: the dissolved oxygen (DO). The method was already applied by other scientists to test fractured crystalline rock wells. The DO method consists in elevating water DO concentration in a borehole by bubbling air at assigned water depths using a porous polypropylene tube (bubbler) connected to a compressed air tank with tubing. After the aeration, the resulting profile should be a linear increase in DO with depth due to the effects of water pressure on oxygen solubility. Any changes in the DO profile will be then observed when water flows into and through the well. DO dilution can be used to locate inflowing fractures and to define active flow zones in wells. If there is no change in the DO profile, a "dead zones" in the well is present, that is to say no flow is taking place or can be identified. The DO tests in this work have been carried out in the industrial area of Bari, at the experimental station, constituted by five wells drilled at the CNR-IRSA. The wells penetrate karstic limestone. Results show enhanced flow through at depths between 32 and 37 meters below the water level: DO concentrations decrease until they reach values close to 0 mg/l. DO curves show also the presence of inflowing fractures, as testified by the decrease in the DO concentrations due to the effects of water dilution, at depths of 4 and 9 meters (below the water table) in the north well, at 4 and 10 meters in the central well, and at 30 meters in the south well. The benefits of utilizing DO as a tracer include ease of accessibility, low cost and time-efficiency as well as non-toxic nature of the tracer and no impact on flow conditions.

  6. Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice.

    PubMed

    Fede, Alexis; Grannas, Amanda M

    2015-11-01

    Dissolved natural organic matter (DOM) is a ubiquitous component of natural waters and an important photosensitizer. A variety of reactive oxygen species (ROS) are known to be produced from DOM photochemistry, including singlet oxygen, 1O2. Recently, it has been determined that humic-like substances and unknown organic chromophores are significant contributors to sunlight absorption in snowpack; however, DOM photochemistry in snow/ice has received little attention in the literature. We recently showed that DOM plays an important role in indirect photolysis processes in ice, producing ROS and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin.1 ROS scavenger experiments indicated that 1O2 played a significant role in the indirect photodegradation of aldrin. Here we quantitatively examine 1O2 photochemically produced from DOM in frozen and liquid aqueous solutions. Steady-state 1O2 production is enhanced up to nearly 1000 times in frozen DOM samples compared to liquid samples. 1O2 production is dependent on the concentration of DOM, but the nature of the DOM source (terrestrial vs microbial) does not have a significant effect on 1O2 production in liquid or frozen samples, with different source types producing similar steady-state concentrations of 1O2. The temperature of frozen samples also has a significant effect on steady-state 1O2 production in the range of 228-262 K, with colder samples producing more steady-state 1O2. The large enhancement in 1O2 in frozen samples suggests that it may play a significant role in the photochemical processes that occur in snow and ice, and DOM could be a significant, but to date poorly understood, oxidant source in snow and ice. PMID:26460930

  7. Climatology of temperature, salinity and dissolved oxygen in a changing Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Lipizer, Marina; Crise, Alessandro; Partescano, Elena; Rabitti, Anna; Giorgetti, Alessandra

    2015-04-01

    A new climatology, based on a comprehensive dataset (1911-2009) of temperature, salinity and dissolved oxygen, is presented for the whole Adriatic Sea, by using Data-Interpolating Variational Analysis (DIVA). Climatological maps were produced at 26 levels and validated with Ordinary Cross Validation. The approximation error and the uncertainty degree associated to the updated climatology have been estimated in order to provide information on the reliability of the products obtained. The concept of Climatology-Observation Misfit (COM) has been introduced as an estimate of the uncertainty of the patterns revealed in the climatology, which is induced by the dynamical variability associated with the climatological structures. The uncertainty associated with the climatology, higher in the upper layer and in the northern and shallower part of the basin, underlines the importance of mesoscale processes in the Adriatic Sea. Lastly, in order to identify possible temporal trends, long-term variability has been investigated in the Mid Adriatic and the South Adriatic Pits. New or better resolved features emerged from this analysis: (1) below 100 m all properties profoundly differ between the Middle and the South Adriatic and seem characterized by different biogeochemical dynamics; (2) the South Adriatic Pit clearly shows the remote effects of the Eastern Mediterranean Transient, while no effect is observed in Middle Adriatic Pits; (3) the deepest part of the South Adriatic seems now to be significantly saltier (+0.18 since the period 1910-1914, with an increase of +0.018 decade-1 since the late 1940s) and warmer (+0.54°C since 1910-1914),; (4) the Middle Adriatic Pits present a long-term increase in Apparent Oxygen Utilisation (+0.77 ml l-1 since 1910-1914, with a constant increase of +0.2 ml l-1 decade-1 after the 1970s).

  8. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  9. A SIMPLE PHOTOMETER FOR PRECISE DETERMINATION OF DISSOLVED OXYGEN CONCENTRATION BY THE WINKLER METHOD WITH RECOMMENDATIONS FOR IMPROVING RESPIRATION RATE MEASUREMENTS IN AQUATIC ORGANISMS

    EPA Science Inventory

    A simple inexpensive photometer designed for Winkler titration end-point detection is described. The precision of replicate dissolved oxygen measurements using this instrument was 0.06-0.22%. This high precision is needed to measure the small changes in dissolved oxygen concentra...

  10. A Dissolved Oxygen Model to Help Manage Water Use in Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Binning, E. A.; White, D. M.; Kotlovenko, A.; Lilly, M. R.; Chambers, M. K.; Hilton, K. M.; Reichardt, D. A.

    2006-12-01

    Dissolved oxygen (DO) in arctic lakes is a key factor for winter survival of fish. Management of water use from lakes indirectly attempts to manage DO through volume limitations of water used on an annual basis, or during the winter ice-cover season. The relationship between water volume, DO budgets, and extraction of water through pumping has historically not been well understood or taken into account for managing water-extraction volumes and timing of extraction. DO budget modeling tools can be used to help predict the amount of DO available at the end of winter. Factors such as bathymetry, DO consumption in the water column and lake sediments, and timing of recharge should be taken into account in using a DO management model for regulating lake water use. The model being presented was developed to describe DO concentrations as they are affected by bacterial respiration, and freezing exclusion. Further development will include metals reduction and removal of water during periods of ice cover. The model was developed with data taken from 2 natural arctic thaw-lakes and 2 flooded gravel mine-site locations on the North Slope of Alaska.

  11. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    SciTech Connect

    Sardesai, Neha; Rao, Govind; Kostov, Yordan

    2015-07-15

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.

  12. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    SciTech Connect

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  13. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Sardesai, Neha; Rao, Govind; Kostov, Yordan

    2015-07-01

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.

  14. An economic analysis of selected strategies for dissolved-oxygen management; Chattahoochee River, Georgia

    USGS Publications Warehouse

    Schefter, John E.; Hirsch, Robert M.

    1980-01-01

    A method for evaluating the cost-effectiveness of alternative strategies for dissolved-oxygen (DO) management is demonstrated, using the Chattahoochee River, GA., as an example. The conceptual framework for the analysis is suggested by the economic theory of production. The minimum flow of the river and the percentage of the total waste inflow receiving nitrification are considered to be two variable inputs to be used in the production of given minimum concentration of DO in the river. Each of the inputs has a cost: the loss of dependable peak hydroelectric generating capacity at Buford Dam associated with flow augmentation and the cost associated with nitrification of wastes. The least-cost combination of minimum flow and waste treatment necessary to achieve a prescribed minimum DO concentration is identified. Results of the study indicate that, in some instances, the waste-assimilation capacity of the Chattahoochee River can be substituted for increased waste treatment; the associated savings in waste-treatment costs more than offset the benefits foregone because of the loss of peak generating capacity at Buford Dam. The sensitivity of the results to the estimates of the cost of replacing peak generating capacity is examined. It is also demonstrated that a flexible approach to the management of DO in the Chattahoochee River may be much more cost effective than a more rigid, institutional approach wherein constraints are placed on the flow of the river and(or) on waste-treatment practices. (USGS)

  15. Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki

    2008-01-01

    Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  16. Incorporating both physical and kinetic limitations in quantifying dissolved oxygen flux to aquatic sediments

    USGS Publications Warehouse

    O'Connor, B.L.; Hondzo, Miki; Harvey, J.W.

    2009-01-01

    Traditionally, dissolved oxygen (DO) fluxes have been calculated using the thin-film theory with DO microstructure data in systems characterized by fine sediments and low velocities. However, recent experimental evidence of fluctuating DO concentrations near the sediment-water interface suggests that turbulence and coherent motions control the mass transfer, and the surface renewal theory gives a more mechanistic model for quantifying fluxes. Both models involve quantifying the mass transfer coefficient (k) and the relevant concentration difference (??C). This study compared several empirical models for quantifying k based on both thin-film and surface renewal theories, as well as presents a new method for quantifying ??C (dynamic approach) that is consistent with the observed DO concentration fluctuations near the interface. Data were used from a series of flume experiments that includes both physical and kinetic uptake limitations of the flux. Results indicated that methods for quantifying k and ??C using the surface renewal theory better estimated the DO flux across a range of fluid-flow conditions. ?? 2009 ASCE.

  17. Lake number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen

    USGS Publications Warehouse

    Robertson, Dale M.; Imberger, Jorg

    1994-01-01

    Lake Number, LN, values are shown to be quantitative indicators of deep mixing in lakes and reservoirs that can be used to estimate changes in deep water dissolved oxygen (DO) concentrations. LN is a dimensionless parameter defined as the ratio of the moments about the center of volume of the water body, of the stabilizing force of gravity associated with density stratification to the destabilizing forces supplied by wind, cooling, inflow, outflow, and other artificial mixing devices. To demonstrate the universality of this parameter, LN values are used to describe the extent of deep mixing and are compared with changes in DO concentrations in three reservoirs in Australia and four lakes in the U.S.A., which vary in productivity and mixing regimes. A simple model is developed which relates changes in LN values, i.e., the extent of mixing, to changes in near bottom DO concentrations. After calibrating the model for a specific system, it is possible to use real-time LN values, calculated using water temperature profiles and surface wind velocities, to estimate changes in DO concentrations (assuming unchanged trophic conditions).

  18. Raising and controlling study of dissolved oxygen concentration in closed-type aeration tank.

    PubMed

    Chen, C K; Lo, S L

    2005-07-01

    This study investigated the promotion and control of dissolved oxygen (DO) concentration of the closed-type aeration tank via practical experiments in the wastewater treatment system of a 5-star hotel in Taipei. As with limited and treasured space in Taiwan, before the completion of the sewer system construction in cities, to utilize the mat foundation under large buildings as the space of sewage treatment plant still has been one of the alternatives of those sewage treatments. However, aeration tanks constructed in the mat foundation of buildings have smaller effective water depth, which will cause a lower total transfer amount of DO. Controlling the total exhaust gas flow rate can increase the pressure on such closed-type aeration tanks. The DO concentration thus may increase according to Henry's Law. Furthermore, it may enable operators to adjust the DO concentration of the aeration tank more precisely and thus sustain optimal operating conditions in these treatment facilities. Practical experiments indicated that the DO concentration of aeration tank maintains an average of 3.8 mg l(-1), obtaining the optimum operating conditions. The efficiency of the biological treatment facilities in the mat foundation could be markedly improved. PMID:16080335

  19. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    PubMed Central

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  20. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    PubMed

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-01-01

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176

  1. Enhanced nitrogen removal in constructed wetlands: effects of dissolved oxygen and step-feeding.

    PubMed

    Li, Fengmin; Lu, Lun; Zheng, Xiang; Ngo, Huu Hao; Liang, Shuang; Guo, Wenshan; Zhang, Xiuwen

    2014-10-01

    Four horizontal subsurface flow constructed wetlands (HSFCWs), named HSFCW1 (three-stage, without step-feeding), HSFCW2 (three-stage, with step-feeding), HSFCW3 (five-stage, without step-feeding) and HSFCW4 (five-stage, with step-feeding) were designed to investigate the effects of dissolved oxygen (DO) and step-feeding on nitrogen removal. High removal of 90.9% COD, 99.1% ammonium nitrogen and 88.1% total nitrogen (TN) were obtained simultaneously in HSFCW4 compared with HSFCW1-3. The excellent TN removal of HSFCW4 was due to artificial aeration provided sufficient DO for nitrification and the favorable anoxic environment created for denitrification. Step-feeding was a crucial factor because it provided sufficient carbon source (high COD: nitrate ratio of 14.3) for the denitrification process. Microbial activities and microbial abundance in HSFCW4 was found to be influenced by DO distribution and step-feeding, and thus improve TN removal. These results suggest that artificial aeration combined with step-feeding could achieve high nitrogen removal in HSFCWs. PMID:25069093

  2. The nitritation performance of biofilm reactor for treating domestic wastewater under high dissolved oxygen.

    PubMed

    Zheng, Zhaoming; Li, Zebing; Ma, Jing; Du, Jia; Chen, Guanghui; Bian, Wei; Li, Jun; Zhao, Baihang

    2016-04-01

    The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater. The reactor was operated in continuous feed mode from phases 1 to 3. The dissolved oxygen (DO) was controlled at 3.5-7 mg/L throughout the experiment. The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge, with the hydraulic retention time being reduced from 24 to 7 hr. Above 90% nitrite accumulation ratio (NAR) was maintained in phase 1. Afterwards, nitratation occurred with the low NH4(+)-N concentration in the reactor. The improvement of NH4(+)-N concentration to 20-35 mg/L had a limited effect on the recovery of nitritation. However, nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4, with the effluent NH4(+)-N concentration above 7 mg/L. The improvement of ammonia oxidizing bacteria (AOB) activity and the combined inhibition effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrite oxidizing bacteria (NOB) were two key factors for the rapid recovery of nitritation. Sludge activity was obtained in batch tests. The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor. PMID:27090719

  3. Versatile common instrumentation for optical detection of pH and dissolved oxygen.

    PubMed

    Sardesai, Neha; Rao, Govind; Kostov, Yordan

    2015-07-01

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring. PMID:26233397

  4. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  5. Simulation modeling of hydropower impacts on dissolved oxygen in the upper Ohio river basin

    SciTech Connect

    Railsback, S.F.; Jager, H.I.

    1988-09-01

    A model has been developed to assess the impacts of hydropower development at navigation dams on dissolved oxygen (DO) concentrations in the upper Ohio River basin. Field data were used to fit statistical models of aeration at each dam. The Streeter-Phelps equations were used to model DO concentrations between dams. Input data sources were compiled, and the design conditions used for assessment of hydropower impacts were developed. The model was implemented both as Lotus 1-2-3 spreadsheets and as a FORTRAN program. This report contains users' guides for both of these implementations. The sensitivities and uncertainty of the model were analyzed. Modeled DO concentrations are sensitive to water temperature and flow rates, and sensitivities to dam aeration are relatively high in reaches where dam aeration rates are high. Uncertainty in the model was low in reaches dominated by dam aeration and higher in reaches with low dam aeration rates. The 95% confidence intervals for the model range from about /+-/ 0.5 mg/L to about /+-/ 1.5 mg/L.

  6. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-01

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. PMID:27015296

  7. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  8. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide. PMID:25947245

  9. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. PMID:25441925

  10. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  11. A comparative study of the triple oxygen analyses of dissolved oxygen in a fresh water system (Feitsui reservoir) and South China Sea at SEATS station

    NASA Astrophysics Data System (ADS)

    Jurikova, H.; Guha, T.; Liang, M. C.

    2014-12-01

    We report the first insight into the stable isotopic composition of dissolved O2 from the Feitsui Reservoir, which supplies drinking water for millions of people living in Taipei, Taiwan. In addition, first observations on 17Δ from a cruise to South China Sea (the long-term station SEATS) in 2013 were also included for comparison. A regular sampling effort for collection of water samples from the Feitsui Reservoir was initiated in May 2014. The 17Δ of dissolved O2 from water samples was assessed to examine its spatial variations, variability over time and to estimate the gross oxygen production rates (GOP). Primary productivity estimated from the dissolved O2 will be compared to that from 14C. Results and implications will be presented and discussed.

  12. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  13. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics.

    PubMed

    Leppi, Jason C; Arp, Christopher D; Whitman, Matthew S

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish. PMID:26467673

  14. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  15. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    PubMed

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-01

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites. PMID:24716993

  16. Heat and dissolved oxygen exchanges between the sediment and water column in a shallow salty lagoon

    NASA Astrophysics Data System (ADS)

    Fuente, Alberto

    2014-04-01

    Dissolved oxygen (DO) and heat exchanges across the water-sediment interface (WSI) of a shallow lagoon are controlled by processes occurring on both sides of the WSI, particularly volumetric source and sink on the sediment side and turbulent transport on the waterside. This article presents and analyzes measurements of DO (Js) and heat (Hg) fluxes across the WSI in the extremely shallow lagoon of Salar del Huasco (20.274°S, 68.883°W, 3800 m above sea level), where volumetric source of DO and heat exists in the sediment layer, related to benthic primary production and absorption of solar radiation, respectively. Microprofiles of temperature and DO were measured, and they were used for measuring Js and Hg, and volumetric source/sink terms in the sediments. This information was used to propose and validate the simple theoretical framework to predict both the magnitude and direction of Js and Hg. On the one hand, Js can be predicted with a simple algebraic expression, where the diffusional mass transfer coefficient defines the magnitude of Js while the direction is controlled by the balance between DO production and consumption in the sediments. On the other hand, solar radiation is absorbed in the upper sediments, and this heat diffuses toward the water column and the sediments. The heat flux toward the water column also induces unstable convection that promotes vertical transport across the WSI. The theoretical framework proposed here will help to understand DO and heat budgets of shallow aquatic systems in which solar radiation reaches the WSI.

  17. Electrochemical dissolved oxygen removal from microfluidic streams for LOC sample pretreatment.

    PubMed

    Marei, Mohamed M; Roussel, Thomas J; Keynton, Robert S; Baldwin, Richard P

    2014-09-01

    Current water quality monitoring for heavy metal contaminants largely results in analytical snapshots at a particular time and place. Therefore, we have been interested in miniaturized and inexpensive sensors suitable for long-term, real-time monitoring of the drinking water distribution grid, industrial wastewater effluents, and even rivers and lakes. Among the biggest challenges for such sensors are the issues of in-field device calibration and sample pretreatment. Previously, we have demonstrated use of coulometric stripping analysis for calibration-free determination of copper and mercury. For more negatively reduced metals, O2 reduction interferes with stripping analysis; hence, most electroanalysis techniques rely on pretreatments to remove dissolved oxygen (DO). Current strategies for portable DO removal offer limited practicality, because of their complexity, and often cause inadvertent sample alterations. Therefore, we have designed an indirect in-line electrochemical DO removal device (EDOR), utilizing a silver cathode to reduce DO in a chamber that is fluidically isolated from the sample stream by an O2-permeable membrane. The resulting concentration gradient supports passive DO diffusion from the sample stream into the deoxygenation chamber. The DO levels in the sample stream were determined by cyclic voltammetry (CV) and amperometry at a custom thin-layer cell (TLC) detector. Results show removal of 98% of the DO in a test sample at flow rates approaching 50 μL/min and power consumption as low as 165 mW h L(-1) at steady state. Besides our specific stripping application, this device is well-suited for LOC applications where miniaturized DO removal and/or regulation are desirable. PMID:25082792

  18. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity.

    PubMed

    Li, Yang; Niu, Junfeng; Shang, Enxiang; Crittenden, John Charles

    2016-07-01

    The effect of humic acid (HA) or fulvic acid (FA) on reactive oxygen species (ROS) generation by six metal-oxide nanoparticles (NPs) and their toxicities toward Escherichia coli was investigated under UV irradiation. Dissolved organic matter (DOM) decreased OH generation by TiO2, ZnO, and Fe2O3, with FA inhibiting OH generation more than HA. The generated OH in NPs/DOM mixtures was higher than the measured concentrations because DOM consumes OH faster than its molecular probe. None of NPs/FA mixtures produced O2(-). The generated O2(-) concentrations in NPs/HA mixtures (except Fe2O3/HA) were higher than the sum of O2(-) concentrations that produced as NPs and HA were presented by themselves. Synergistic O2(-) generation in NPs/HA mixtures resulted from O2 reduction by electron transferred from photoionized HA to NPs. DOM increased (1)O2 generation by TiO2, CuO, CeO2, and SiO2, and FA promoted (1)O2 generation more than HA. Enhanced (1)O2 generation resulted from DOM sensitization of NPs. HA did not increase (1)O2 generation by ZnO and Fe2O3 primarily because released ions quenched (1)O2 precursor ((3)HA*). Linear correlation was developed between total ROS concentrations generated by NPs/DOM mixtures and bacterial survival rates (R(2) ≥ 0.80). The results implied the necessity of considering DOM when investigating the photoreactivity of NPs. PMID:27064207

  19. Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics

    NASA Astrophysics Data System (ADS)

    Leppi, Jason C.; Arp, Christopher D.; Whitman, Matthew S.

    2016-02-01

    Overwintering habitat for Arctic freshwater fish is essential, such that understanding the distribution of winter habitat quality at the landscape-scale is warranted. Adequate dissolved oxygen (DO) is a major factor limiting habitat quality in the Arctic region where ice cover can persist for 8 months each year. Here we use a mixed-effect model developed from 20 lakes across northern Alaska to assess which morphology and landscape attributes can be used to predict regional overwintering habitat quality. Across all lakes, we found that the majority of the variations in late winter DO can be explained by lake depth and littoral area. In shallow lakes (<4 m), we found evidence that additional variables such as elevation, lake area, ice cover duration, and snow depth were associated with DO regimes. Low DO regimes were most typical of shallow lakes with large littoral areas and lakes that had high DO regimes often were lakes with limited littoral areas and deeper water. Our analysis identifies metrics that relate to late winter DO regimes in Arctic lakes that can aid managers in understanding which lakes will likely provide optimum DO for overwintering habitat. Conversely, lakes which predicted to have marginal winter DO levels may be vulnerable to disturbances that could lower DO below critical thresholds to support sensitive fish. In regions where lakes are also used by humans for industrial winter water supply, such as ice-road construction for oil and gas development, these findings will be vital for the management of resources and protection of Arctic fish.

  20. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media

    NASA Astrophysics Data System (ADS)

    Zhong, Guoyu; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2015-07-01

    Nitrogen doped carbon nanotubes (NCNTs) with encapsulated Fe3C nanoparticles (Fe3C@NCNTs) are synthesized by a simple direct pyrolysis of melamine and ferric chloride. The characterization results reveal that Fe3C is mainly encapsulated in the interior of NCNTs and N species is mainly distributed on the outside surface of NCNTs. Iron and iron carbide catalyze the growth of NCNTs and are wrapped by carbon to form Fe3C@NCNTs. The as-prepared Fe3C@NCNTs catalyst exhibits superior oxygen reduction reaction (ORR) activity, excellent methanol tolerance and long-term stability in both acid and alkaline media. It is proven that the doped N is the main active site for ORR and the inner Fe3C with outside carbon form the synergetic active site to enhance ORR activity. The ORR mechanism of direct four electron transfer pathway is proved in acid and alkaline media.

  1. Maximizing biomass concentration in baker's yeast process by using a decoupled geometric controller for substrate and dissolved oxygen.

    PubMed

    Chopda, Viki R; Rathore, Anurag S; Gomes, James

    2015-11-01

    Biomass production by baker's yeast in a fed-batch reactor depends on the metabolic regime determined by the concentration of glucose and dissolved oxygen in the reactor. Achieving high biomass concentration in turn is dependent on the dynamic interaction between the glucose and dissolved oxygen concentration. Taking this into account, we present in this paper the implementation of a decoupled input-output linearizing controller (DIOLC) for maximizing biomass in a fed-batch yeast process. The decoupling is based on the inversion of 2×2 input-output matrix resulting from global linearization. The DIOLC was implemented online using a platform created in LabVIEW employing a TCP/IP protocol via the reactor's built-in electronic system. An improvement in biomass yield by 23% was obtained compared to that using a PID controller. The results demonstrate superior capability of the DIOLC and that the cumulative effect of smoother control action contributes to biomass maximization. PMID:26233328

  2. Regulation of responsiveness of phosphorescence toward dissolved oxygen concentration by modulating polymer contents in organic-inorganic hybrid materials.

    PubMed

    Okada, Hiroshi; Tanaka, Kazuo; Chujo, Yoshiki

    2014-06-15

    Platinum(II) octaethylporphyrin (PtOEP)-loaded organic-inorganic hybrids were obtained via the microwave-assisted sol-gel condensation with methyltrimethoxysilane and poly(vinylpyrrolidone). From transparent and homogeneous hybrid films, the strong phosphorescence from PtOEP was observed. Next, the resulting hybrids were immersed in the aqueous buffer, and the emission intensity was monitored by changing the dissolved oxygen level in the buffer. When the hybrid with relatively-higher amount of the silica element, the strong phosphorescence was observed even under the aerobic conditions. In contrast, the emission from the hybrids with lower amounts of the silica element was quenched under the hypoxic conditions. This is, to the best of our knowledge, the first example to demonstrate that the responsiveness of the phosphorescence intensity of PtOEP in hybrid films to the dissolved oxygen concentration in water can be modulated by changing the percentage of the contents in the material. PMID:24794749

  3. Modelling the migration opportunities of diadromous fish species along a gradient of dissolved oxygen concentration in a European tidal watershed

    NASA Astrophysics Data System (ADS)

    Maes, J.; Stevens, M.; Breine, J.

    2007-10-01

    The relationship between poor water quality and migration opportunities for fish remains poorly documented, although it is an essential research step in implementing EU water legislation. In this paper, we model the environmental constraints that control the movements of anadromous and catadromous fish populations that migrate through the tidal watershed of River Scheldt, a heavily impacted river basin in Western Europe. Local populations of sturgeon, sea lamprey, sea trout, Atlantic salmon, houting and allis shad were essentially extirpated around 1900. For remaining populations (flounder, three-spined stickleback, twaite shad, thinlip mullet, European eel and European smelt), a data driven logistic model was parameterized. The presence or absence of fish species in samples taken between 1995 and 2004 was modelled as a function of temperature, dissolved oxygen concentration, river flow and season. Probabilities to catch individuals from all diadromous species but three-spined stickleback increased as a function of the interaction between temperature and dissolved oxygen. The hypoxic zone situated in the freshwater tidal part of the estuary was an effective barrier for upstream migrating anadromous spawners since it blocked the entrance to historical spawning sites upstream. Similarly, habitat availability for catadromous fish was greatly reduced and restricted to lower brackish water parts of the estuary. The model was applied to infer preliminary dissolved oxygen criteria for diadromous fish, to make qualitative predictions about future changes in fish distribution given anticipated changes in water quality and to suggest necessary measures with respect to watershed management.

  4. Processes controlling dissolved oxygen and pH in the upper Willamette River basin, Oregon, 1994

    USGS Publications Warehouse

    Pogue, Ted R., Jr.; Anderson, Chauncey W.

    1995-01-01

    In July and August of 1994, the U. S. Geological Survey in cooperation with the Oregon Department of Environmental Quality (ODEQ) collected data to document the spatial extent and diel variability of dissolved oxygen (DO) concentrations and pH levels in selected reaches of streams in the upper Willamette River Basin. These data were also collected to identify primary factors that control DO concentrations downstream from major point sources as well as to provide ODEQ with data to refine calibration of their steady-state DO and nutrient models for the upper Willamette River Basin. All of the reaches studied had diel variations in DO and pH. The magnitude of the diel variations in DO ranged from 0.2 to 3.9 milligrams per liter (7 to 50 percent-saturation units based on ambient water temperature and barometric pressure) and in pH from 0.3 to 1.4 units. However, of the reaches studied, only the Coast Fork Willamette River from river mile (RM) 21.7 to 12.5 and the Willamette River from RM 151 to 141.6 had field measured violations of State standards for DO and pH. DO concentration and pH in water depend on many factors. Data were collected to examine several major factors, including BOD (biochemical oxygen demand), carbonaceous BOD, nitrogenous BOD, and measures of photosynthetic activity. Of the four study reaches, only a short stretch of the Coast Fork Willamette River has potential for important levels of oxygen consumption from BOD or nitrification. Additionally, water-column primary-productivity measurements indicated that respiration and photosynthesis by free-floating algae did not explain the observed diel variations in DO in the study reaches. Results from a simple mathematical model incorporating measures of community respiration and net primary productivities indicated that periphyton are capable of producing a diel variation of the order of magnitude observed during the August study period. In the Willamette River near Peoria, the combined periphyton DO

  5. A comparative ESR study of some paramagnetic materials as probes for the noninvasive measurement of dissolved oxygen in biological systems.

    PubMed

    Inoue, M; Utsumi, H; Kirino, Y

    1994-11-01

    The ESR properties of three types of paramagnetic material, active charcoal, fusinite and a stable nitroxide radical 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPONE), were examined in order to evaluate their suitability as probes to measure dissolved intra- and extra-cellular oxygen. Although, with changes in oxygen concentration, a greater change in the linewidth of ESR signals was observed with fusinite or active charcoal, it took a long time (15 min for active charcoal and more than 6 h for fusinite) for equilibrium to be achieved. On the other hand, equilibrium was reached very rapidly in the case of the TEMPONE spectra although the sensitivity to changes in oxygen concentration was only moderate. Furthermore, since lipid bilayers are permeable to TEMPONE, this compound can be used to measure intracellular oxygen concentration when employed in combination with membrane-impermeable spin-broadening reagents which act on ESR signals arising from extracellular probes. A perdeuterated derivative of TEMPONE is useful in that it gives a greater signal-to-noise ratio and greater sensitivity to changes in oxygen concentration. In conclusion, active charcoal is suitable as a probe for extracellular oxygen in a system where changes are slow, while nitroxide is a versatile probe for measuring rapidly changing intra- and extra-cellular oxygen concentrations. PMID:7859334

  6. Short-term dissolved oxygen patterns in sub-tropical mangroves

    NASA Astrophysics Data System (ADS)

    Knight, Jon M.; Griffin, Lachlan; Dale, Pat E. R.; Sheaves, Marcus

    2013-10-01

    Mangrove forests in subtropical areas are highly heterogeneous environments, influenced by diverse physical structures and tidal flushing regimes. An important component of tidal water is the concentration of dissolved oxygen (DO), as it affects aquatic organisms such as fish (directly: respiration and behaviour) and immature mosquitoes (directly: trigger for egg-hatch; indirectly: fish predation of larvae). Changes in DO may be important over relatively small time scales such as minutes and days, but, at such scales it has received little investigation. The aim of this study was to address this knowledge gap, monitoring DO at small time intervals (1 min) over tidal flooding events (hours - days) in two contrasting subtropical mangrove systems. These represented a range of mangrove tidal hydrology: a well-connected fringing mangrove forest in south-east Queensland and a more complex mangrove basin forest in northern New South Wales with impeded tidal connections. The results indicated that patterns of DO varied diurnally and by mangrove system. In the fringing forest, where the substrate was exposed before and after flooding, the highest mean DO concentration was during the day, followed by evening, with pre-dawn the lowest (6.8, 6.5 and 6.1 mg/l, respectively). DO patterns differed by tide stage and time of day with falling DO especially during late evening and pre-dawn as tides ebbed. In the mangrove basin forest the pattern was reversed, but also depended on the distance the tide had travelled across the basin. Before tidal incursion, standing water in the basin was anoxic (DO 0 mg/l). As tidal water flooded into the systems there was a greater increase in DO closer to the tide source than further away, with a DO concentration of 7.6 mg/l compared to 5.4 mg/l. The observations were interpreted in the light of processes and potential impacts on aquatic organisms (fish and immature mosquitoes). The most significant observation was that in the mangrove basin DO

  7. Modeling evaluation of integrated strategies to meet proposed dissolved oxygen standards for the Chicago waterway system.

    PubMed

    Melching, Charles S; Ao, Yaping; Alp, Emre

    2013-02-15

    The Chicago Waterway System (CWS) is a 113.8 km branching network of navigable waterways controlled by hydraulic structures in which the majority of flow is treated sewage effluent and there are periods of substantial combined sewer overflow. The Illinois Pollution Control Board (IPCB) designated the majority of the CWS as Secondary Contact and Indigenous Aquatic Life Use waters in the 1970s and made small alterations to these designations in 1988. Between 1988 and 2002 substantial improvements in the pollution control and water-quality management facilities were made in the Chicago area. The results of a Use Attainability Analysis led the Illinois Environmental Protection Agency (IEPA) to propose the division of the CWS into two new aquatic life use classes with appropriate dissolved oxygen (DO) standards. To aid the IPCB in their deliberations regarding the appropriate water use classifications and DO standards for the CWS, the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate integrated strategies of water-quality improvement facilities that could meet the proposed DO standards during representative wet (2001) and dry (2003) years. A total of 28 new supplementary aeration stations with a maximum DO load of 80 or 100 g/s and aerated flow transfers at three locations in the CWS would be needed to achieve the IEPA proposed DO standards 100% of the time for both years. A much simpler and less costly (≈one tenth of the cost) system of facilities would be needed to meet the IEPA proposed DO standards 90% of the time. In theory, the combinations of flow augmentation and new supplemental aeration stations can achieve 100% compliance with the IEPA proposed DO standards, however, 100% compliance will be hard to achieve in practice because of-(1) difficulties in determining when to turn on the aeration stations and (2) localized heavy loads of pollutants during storms that may yield

  8. Comparative study of CoFeNx/C catalyst obtained by pyrolysis of hemin and cobalt porphyrin for catalytic oxygen reduction in alkaline and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong; Chu, Deryn

    2014-01-01

    Comparative studies of the oxygen reduction kinetics and mechanisms of CoFeNx/C catalysts have been conducted with rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) in aqueous acid and alkaline solutions, as well as acidic and alkaline polymer electrolytes. The CoFeNx/C catalysts in this study were obtained by the pyrolysis of hemin and a cobalt porphyrin. In an alkaline electrolyte, a larger electron transfer coefficient (0.63) was obtained in comparison to that in an acidic electrolyte (0.44), signifying a lower free energy barrier for oxygen reduction. The kinetic rate constant (2.69 × 10-2 cm s-1) for catalytic oxygen reduction in alkaline solution at 0.6 V (versus RHE) is almost 4 times larger than that in acidic solution (7.3 × 10-3 cm s-1). A synergetic catalytic mechanism is proposed. The overall reduction is a 4-electron reduction of oxygen. The obtained CoFeNx/C catalyst was further evaluated as a cathode catalyst in single fuel cells with acidic, neutral and alkaline electrolyte membranes. The order of the single cell performances either for power density or for stability is acidic > neutral > alkaline. The different behaviors of the CoFeNx/C catalyst in half cell and single cell are discussed.

  9. Comparison of dissolved-organic-carbon residuals from air- and pure-oxygen-activated-sludge sequencing-batch reactors.

    PubMed

    Esparza-Soto, Mario; Fox, Peter; Westerhoff, Paul

    2006-03-01

    Literature shows that full-scale pure-oxygen activated sludge (O2-AS) wastewater treatment plants (WWTPs) generate effluents with higher dissolved-organic carbon (DOC) concentrations and larger high-molecular-weight fractions compared to air-activated-sludge (Air-AS) WWTP effluents. The purpose of this paper was to evaluate how gas supplied (air vs. pure oxygen) to sequencing-batch reactors affected DOC transformations. The main conclusions of this paper are (a) O2-AS effluent DOC is more refractory than air-AS effluent DOC; and (b) O2-AS systems may have higher five-day biochemical oxygen demand removals than air-AS systems; however, in terms of COD and DOC removal, air-AS systems are better than O2-AS systems. Analysis of a database from side-by-side O2- and air-AS pilot tests from literature supported these observations. PMID:16629273

  10. Dissolved-oxygen depletion and other effects of storing water in Flaming Gorge Reservoir, Wyoming and Utah

    USGS Publications Warehouse

    Bolke, E.L.

    1979-01-01

    The circulation of water in Flaming Gorge Reservoir is caused chiefly by insolation, inflow-outflow relationships, and wind, which is significant due to the geographical location of the reservoir. During 1970-75, there was little annual variation in the thickness, dissolved oxygen, and specific conductance of the hypolimnion near Flaming Gorge Dam. Depletion of dissolved oxygen occurred simultaneously in the bottom waters of both tributary arms in the upstream part of the reservoir and was due to reservoir stratification. Anaerobic conditions in the bottom water during summer stratification eventually results in a metalimnetie oxygen minimum in the reservoir. The depletion of flow in the river below Flaming Gorge Dam due to evaporation and bank storage in the reservoir for the 1983-75 period was 1,320 cubic hectometers, and the increase of dissolved-solids load in the river was 1,947,000 metric tens. The largest annual variations in dissolved-solids concentration in the river was about 800 milligrams per liter before closure of the dam and about 200 milligrams per liter after closure. The discharge weighted-average dissolved-solids concentration for the 5 years prior to closure was 888 milligrams per liter and 512 milligrams per liter after closure. The most significant changes in the individual dissolved-ion loads in the river during 1973-75 were the increase in sulfate (0.48 million metric tons), which was probably derived from the solution of gypsum, and the decrease in bicarbonate (0.39 million metric tons), which can be attributed to chemical precipitation. The maximum range in temperature in the Green River below the reservoir prior to closure of the dam in 1982 was from 0?C in winter to 21?C in summer. After closure until 1970 the temperature ranged from 2 ? to 12?C, but since 1970 the range has been from 4 ? to 9?C. During September 1975, a massive algal bloom was observed in the upstream part of the reservoir. The bloom covered approximately 16 kilometers

  11. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen.

    PubMed

    Chen, Zhenguo; Wang, Xiaojun; Yang, YongYuan; Mirino, Markus W; Yuan, Yanlei

    2016-10-01

    Controlling of low dissolved oxygen (DO) levels (0.1-0.5mg/L), a cost-effective strategy, was applied to a pilot-scale anoxic-oxic-oxic-anoxic process for partial nitrification and denitrification of mature landfill leachate. High ammonium removal efficiency, stable nitrite accumulation rate and total nitrogen removal efficiency was higher than 95.0%, 90.0% and 66.4%, respectively, implying potential application of this process for nitrogen removal of mature landfill leachate. Efficient nitrite accumulation in the first oxic reactor depended on low DO conditions and sufficient alkalinity. However, operational limit was mainly decided by actual hydraulic retention time (AHRT) of the first oxic reactor and appeared with AHRT less than 13.9h under DO of 0.3-0.5mg/L. High-throughput sequencing analysis demonstrated significant change of bacterial diversity in the first oxic reactor after a long-term operation and dominant bacteria genus Nitrosomonas was shown to be responsible for NH4(+)-N removal and nitrite accumulation under low DO levels. PMID:27403860

  12. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  13. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions.

    PubMed

    Rosa, Inês C; Garrido, Rita; Ré, Ana; Gomes, João; Pereira, Joana L; Gonçalves, Fernando; Costa, Raquel

    2015-12-01

    The freshwater Corbicula fluminea is a major aquatic nuisance worldwide. Current pest control methods raise cost-effectiveness and environmental concerns, which motivate research into improved mitigation approaches. In this context, the susceptibility of the clams to chemicals under reduced oxygen conditions was examined. Biocides with different mechanisms of toxicity (niclosamide, polyDADMAC, ammonium nitrate, potassium chloride and dimethoate) were tested under normoxic (>7 mg L(-1) dissolved O2) and hypoxic (<2 mg L(-1) dissolved O2) conditions. Hypoxia was observed to potentiate chemical treatment, particularly when combined with non-overwhelming doses that would produce only intermediate responses by themselves. For niclosamide, ammonium nitrate and dimethoate, clam mortality enhancements up to 400% were observed under hypoxia as compared to dosing upon normal dissolved oxygen conditions. For polyDADMAC and potassium chloride, substantially lower mortality enhancements were found. The differences in the clams' sensitivity to the chemicals under hypoxia could be linked to the expected mechanisms of action. This suggests that judicious selection of the biocide is essential if optimized combined control treatments are to be designed and provides an insight into the interference of frequent hypoxia events in the response of natural clam populations to contaminant loads. PMID:26254082

  14. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment

    NASA Astrophysics Data System (ADS)

    Zhang, Litao; Wang, Jianqiu

    2014-03-01

    Stress corrosion crack growth tests of a cold worked nuclear grade 316L stainless steel were conducted in simulated pressurized water reactor (PWR) primary water environment containing various dissolved oxygen (DO) contents but no dissolved hydrogen. The crack growth rate (CGR) increased with increasing DO content in the simulated PWR primary water. The fracture surface exhibited typical intergranular stress corrosion cracking (IGSCC) characteristics.

  15. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  16. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  17. Changes in controlling factors of dissolved oxygen in the Eastern Equatorial Pacific from the past to the future

    NASA Astrophysics Data System (ADS)

    Shigemitsu, M.; Yamamoto, A.; Oka, A.; Yamanaka, Y.

    2014-12-01

    Variability of the volume of oceanic oxygen-deficient waters is critical for aerobic organisms. Several climate models consistently predict the decreasing oceanic oxygen inventory from the second half of the 20th to the 21st centuries. However, the projections about how the volume of oxygen-deficient waters in the future are not consistent with each other. In this study, we investigated the factors controlling the variability of volumes of oxygen-deficient waters in the Eastern Equatorial Pacific (EEP) where the largest oxygen-deficient zone exists in the ocean. Hindcast (from years 1850 to 2005) and forecast (from years 2006 to 2100) experiments with an offline global ocean biogeochemical model were performed by using outputs of physical field by the Earth System Model, MIROC-ESM, under the RCP4.5 and 8.5 scenarios. The model results illustrated that the volume of oxygen-deficient waters in EEP remains relatively constant from years 1850 to 1950, rapidly increases from years 1950 to 2000, and gradually declines from years 2000 to 2100. Available observations are consistent with the change of oxygen concentration from years 1950 to 2000. The budget analysis in EEP shows the following: (1) During 1850 to 1950, the horizontal advection via the Equatorial Undercurrent (EUC) is the major source of dissolved oxygen to the oxygen-deficient waters in EEP and that is almost consumed by the regeneration of organic matter. (2) During 1950 to 2000, the horizontal advection decreases and the declilne is not compensated by the reduction of regeneration of organic matter, which results in the expanding volume of oxygen-deficient waters. (3) In the 21st century, the horizontal advection declines further but the decrease in the regeneration of organic matter and increase in vertical advective supply are in excess of the decrease, leading to the shrink of oxygen-deficient water volume. Our model suggests that the key mechanisms controlling the oxygen-deficient water volume in EEP

  18. Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor.

    PubMed

    Käß, Friedrich; Hariskos, Ioanna; Michel, Andrea; Brandt, Hans-Jürgen; Spann, Robert; Junne, Stefan; Wiechert, Wolfgang; Neubauer, Peter; Oldiges, Marco

    2014-06-01

    Corynebacterium glutamicum is an important organism for industrial biotechnology; particularly, in amino acid production (e.g. L-lysine). Production scales often reach reactor working volumes of several hundred cubic meters, which triggers inhomogeneous distribution of substrates and dissolved gasses due to increasing mixing times. Individual cells which follow the flow profile through the reactor are experiencing oscillating microenvironments. Oscillations can have an influence on the process performance, which is a subject of scale-down experiments. In this work, L-lysine-producing C. glutamicum DM1933 was assessed for its robustness against continuous dissolved oxygen and substrate supply oscillation in two-compartment scale-down bioreactors. Aerobic, substrate-limited stirred tank and non-aerated, substrate-excess plug flow compartments were applied for oscillation. Inhomogeneity of substrate and oxygen supply was observed to cause rapid side product turnover, redistribution of oxygen uptake from oxygen limited into fully aerobic zones, and intermediate medium acidification. However, process inhomogeneity did not impair productivity or growth at plug flow residence times of several minutes. In a focused analysis of proteome, metabolome, transcriptome, and other physiological parameters, no changes were identified in response to process inhomogeneity. In conclusion, fed-batch processes with C. glutamicum DM1933 possess remarkable robustness against oxygen and substrate supply oscillation, which is a unique property in the field of published scale-down studies. Microbial physiology of C. glutamicum appears to be ideally adapted to both homogeneous and inhomogeneous conditions. This ensures exceptional suitability for cultivation at increased mixing times, which is suggested to constitute an important basis for the long-lasting success in large scale bioprocess application. PMID:24218302

  19. Effect of Pattern Layout and Dissolved Oxygen in CO2 Rinse Water on Cu Corrosion during Post-Etch Cleaning

    NASA Astrophysics Data System (ADS)

    Kentaro Tokuri,; Yukinari Yamashita,; Morio Shiohara,; Noriaki Oda,; Seiichi Kondo,; Shuichi Saito,

    2010-05-01

    When post-etch cleaning was carried out in Cu dual-damascene process, Cu at the bottom of isolated via was etched out especially in the wafer edge, and this would become a critical issue as device scale is shrunk. The corrosion was caused in the rinse step rather than chemical cleaning step because dissolved oxygen in rinse water from the air increased oxidation-reduction potential (ORP) and CO2 included in the rinse water for preventing wafer electrification decreased pH. The corrosion was found to be suppressed by increasing dummy pattern density and by controlling atmosphere and pH of the rinse water.

  20. Advances toward commercialization of a new generation of low cost (O)LED-based dissolved oxygen and bioanalyte monitors

    NASA Astrophysics Data System (ADS)

    Smith, Alex; Cai, Yuankun; Vengasandra, Srikanth; Shinar, Ruth; Shinar, Joseph

    2010-08-01

    Recent advances toward commercialization of a new generation of low-cost LED- and OLED-based monitors for dissolved oxygen (DO), and multiple (bio)analytes such as glucose, lactate, alcohol, and cholesterol are described. The design of the DO monitors, which contain no optical fibers, filters, mirrors, or lens, is significantly simpler and consequently lower-cost than that of commercial LED-based DO monitors. The multiple (bio)analyte monitors are based on a DO monitor and the oxidase enzyme specific to each analyte. The potential advantages and disadvantages of the OLED- vs LED-based monitors is also discussed.

  1. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for East Fork White River, Bartholomew County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, James G.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in East Fork White River, Bartholomew County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand and the headwater concentrations of carbonaceous biochemical-oxygen demand, nitrogenous biochemical-oxygen demand, and dissolved oxygen are the most significant factors affecting the dissolved-oxygen concentration of East Fork White River downstream from the Columbus wastewater-treatment facility. The effect of effluent from the facility on the water quality of East Fork White River was minimal. The model also indicates that, with a benthic-oxygen demand of approximately 0.65 gram per square meter per day, the stream has no additional waste-load assimilative capacity during summer low flows. Regardless of the quality of the Columbus wastewater effluent, the minimum 24-hour average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams, would not be met. Ammonia toxicity is not a limiting water-quality criterion during summer and winter low flows. During winter low flows, the current carbonaceous biochemical-oxygen demand limits for the Columbus wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard. (USGS)

  2. Predicted effects of proposed navigation improvements on residence time and dissolved oxygen of the salt wedge in the Duwamish River estuary, King County, Washington

    USGS Publications Warehouse

    Haushild, W.L.; Stoner, J.D.

    1973-01-01

    A model of the circulation and quality of water in the Duwamish River estuary has been sufficiently developed to allow prediction of the effects of a proposed widening and deepening of waterways on residence time and dissolved oxygen in the estuary's salt wedge. For a low river-discharge period in August 1970, use of the model yielded an estimated residence time of wedge water to be 6.3 days in the present waterways estuary and 8.6 days in the wider and deeper proposed-waterways estuary--a 37-percent increase. June-September 1970 and for the estuary about 4 miles upstream from its mouth, the model estimates indicate that dissolved-oxygen values in the wedge of the proposed-waterways estuary would be as much as 1.4 milligrams per liter lower and would average 0.4 milligram per liter lower than (average difference significant at 95-percent confidence level) dissolved-oxygen values in the wedge of the present-waterways estuary. Extrapolation to low dissolved-oxygen values of a regression between the predicted dissolved oxygen for both the proposed and present-waterways estuaries suggests that 4 miles upstream of the estuary mouth oxygen would be completely depleted from the proposed-waterways estuary wedge whereas there still would be 0.2 milligram of oxygen per liter of water in the wedge of the present-waterways estuary.

  3. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    NASA Astrophysics Data System (ADS)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA

  4. Net Subterranean Estuarine Export Fluxes of Dissolved Inorganic C, N, P, Si, and Total Alkalinity into the Jiulong River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wang, Z.; Zhai, W. D.; Moore, W. S.; Li, Q.; Yan, X.; Qi, D.; Jiang, Y.

    2014-12-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.24~0.51 in the spring, 0.56~1.16 in the summer, 0.38~0.79 in the fall, and 0.22~0.45 in the winter. This was equivalent to 6-16% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 51-89% of the concomitant riverine fluxes for DIC and TA, around 10-25% for DSi and DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source that spreads throughout the estuary in contrast to the major point sources of the river and the ocean for the estuary. Thus, despite apparent conservative mixing of DIC, DIN, and DSi, subterranean exports of these species into estuaries must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  5. Water removal studies on high power hydrogen-oxygen fuel cells with alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Kordesch, K.; Oliveira, J. C. T.; Gruber, Ch.; Winkler, G.

    1989-08-01

    Research in verification of bipolar fuel cell design, containing mass-produceable all-carbon electrodes which can be used in alkaline or acidic cells with liquid or immobilized (matrix) electrolytes, is described. Spin-offs from the research related to the Hermes manned spaceplane could be useful for applications on Earth. Peak-power plants, electric vehicles and storage devices used in combination with renewable energy sources could all benefit from the research. A subsequent investigation of water transpiration properties of carbon electrodes is described.

  6. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  7. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Song, Yang; Chen, Limei; Chen, Shaowei

    2015-05-01

    1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold concentrations. The self-assembly of 1-dodecyne ligands on the nanoparticle surface was manifested in infrared spectroscopic measurements. Importantly, the resulting nanoparticles exhibited apparent electrocatalytic activity for oxygen reduction in alkaline media, and the performance was found to show a volcano variation in the Au content in the alloy nanoparticles, with the best performance observed for the samples with ca. 35.5 at% Au. The enhanced catalytic activity, as compared to pure Ag nanoparticles or even commercial Pt/C catalysts, was accounted for by the unique metal-ligand interfacial bonding interactions as well as alloying effects that increased metal-oxygen affinity.1-Dodecyne-functionalized AgAu alloy nanoparticles were synthesized by chemical reduction of metal salt precursors at varied initial feed ratios. Transmission electron microscopic measurements showed that the nanoparticles were all rather well dispersed with the average core diameter in the narrow range of 3 to 5 nm. X-ray photoelectron spectroscopic studies confirmed the formation of AgAu alloy nanoparticles with the gold concentration ranging from approximately 25 at% to 55 at%. Consistent results were obtained in UV-vis spectroscopic measurements where the nanoparticle surface plasmon resonance red-shifted almost linearly with increasing gold

  8. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  9. A New Crosslinkable Oxygen Sensor Covalently Bonded into Poly(2-hydroxyethyl methacrylate)-CO-Polyacrylamide Thin Film for Dissolved Oxygen Sensing

    PubMed Central

    Tian, Yanqing; Shumway, Bradley R.; Meldrum, Deirdre R.

    2010-01-01

    A new oxygen sensor, compound 2, was synthesized through a chemical modification of a popularly used oxygen sensor of platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP). The new sensor compound 2 possesses four crosslinkable methacrylate functional moieties, enabling it to be polymerized and crosslinked with other monomers for polymer sensing film (also called membrane) preparation. Using this characteristic, compound 2 was covalently bonded to hydrophilic poly(2-hydroxyethyl methacrylate)-co-polyacrylamide (referred to as PHEMA to simplify) and hydrophobic polystyrene (PS) films. To better understand the advantages and disadvantages of chemical crosslinking approaches and the influence of polymer matrices on sensing performance, PtTFPP was physically incorporated into the same PHEMA and PS matrices to compare. Response to dissolved oxygen (DO), leaching of the sensor molecules from their matrices, photostability of the sensors, and response time to DO changes were studied. It was concluded that the chemical crosslinking of the sensor compound 2 in polymer matrices: (i) alleviated the leaching problem of sensor molecules which usually occurred in the physically doped sensing systems and (ii) significantly improved sensors’ photostability. The PHEMA matrix was demonstrated to be more suitable for oxygen sensing than PS, because for the same sensor molecule, the oxygen sensitivity in PHEMA film was higher than that in PS and response time to DO change in the PHEMA film was faster than that in PS. It was the first time oxygen sensing films were successfully prepared using biocompatible hydrophilic PHEMA as a matrix, which does not allow leaching of the sensor molecules from the polymer matrix, has a faster response to DO changes than that of PS, and does not present cytotoxicity to human lung adenocarcinoma epithelial cells (A549). It is expected that the new sensor compound 2 and its similar compounds with chemically crosslinking

  10. First-principles study of MnNiO3 as an alkaline oxygen-evolution photocatalyst

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Yan, Qimin; Chen, Wei; Jain, Anubhav; Neaton, Jeffrey; Persson, Kristin

    2015-03-01

    We present a first-principles study of MnNiO3, a promising oxygen-evolution photocatalyst. Using density functional theory with the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE), we compute and analyze the ground-state geometry and electronic structure. We find that MnNiO3 is a ferrimagnetic semiconductor with an indirect band gap, consistent with experimental observations. We also predict that MnNiO3 has promising band edge positions relative to the vacuum, with potential to straddle the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) redox potentials in aqueous solution. A detailed analysis of the band structure and density of states provides a clear explanation why MnNiO3 is promising for OER. Pourbaix diagram calculations suggest that MnNiO3 is stable in alkaline solution at potentials relevant for oxygen evolution. This work was supported by the Department of Energy through the Joint Center for Artificial Photosynthesis.

  11. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium.

    PubMed

    Zhu, Yansong; Zhang, Bingsen; Wang, Da-Wei; Su, Dang Sheng

    2015-12-01

    In alkaline medium, it seems that both metal-free and iron-containing carbon-based catalysts, such as nitrogen-doped nanocarbon materials, FeOx -doped carbon, and Fe/N/C catalysts, are active for the oxygen reduction reaction (ORR). However, the order of activity of these different active compositions has not been clearly determined. Herein, we synthesized nitrogen-doped carbon black (NCB), Fe3 O4 /CB, Fe3 O4 /NCB, and FeN4 /CB. Through the systematic study of the ORR catalytic activity of these four catalysts in alkaline solution, we confirmed the difference in the catalytic activity and catalytic mechanism for nitrogen, iron oxides, and Fe-N complexes, respectively. In metal-free NCB, nitrogen can improve the ORR catalytic activity with a four-electron pathway. Fe3 O4 /CB catalyst did not exhibit improved activity over that of NCB owing to the poor conductivity and spinel structure of Fe3 O4 . However, FeN4 coordination compounds as the active sites showed excellent ORR catalytic activity. PMID:26609795

  12. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    PubMed

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  13. Modelling algae growth and dissolved oxygen in the Seine River downstream the Paris urban area: contribution of high frequency measurements

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Escoffier, Nicolas; Groleau, Alexis; Poulin, Michel; Flipo, Nicolas

    2014-05-01

    Dissolved oxygen is a key variable in the hydro-ecological functioning of river systems. The accurate representation of the different biogeochemical processes affecting algal blooms and dissolved oxygen in the water column in hydro-ecological models is crucial for the use of these models as reliable management tools. This study focuses on the water quality of the Seine River along a 225 km stretch, from Paris to the Seine estuary. The study area is highly urbanized and located downstream France's largest agricultural area, and therefore receives large amounts of nutrients. During the last decades, nutrient inputs have been significantly reduced, especially with the implementation of new sewage water treatment technologies. Even though the frequency and the intensity of observed algal blooms have decreased, blooms were observed in 2011 and 2012. These blooms are generally followed by a period of high organic matter accumulation, leading to high mineralization fluxes and potential oxygen depletion. The hydrodynamics and the water quality of the Seine River are simulated for the 2011-2012 period with the distributed process-based hydro-ecological model ProSe (Even et al., 1998). The simulated chlorophyll a and dissolved oxygen concentrations are compared to high frequency measurements at the Bougival monitoring station (50 km downstream from Paris), which is part of the CarboSeine monitoring network. The high frequency continuous dataset allows calibrating of primary producers' physiological parameters. New growth parameters are defined for the diatom community. The blooms occur at the end of the winter period (march 2011 and march 2012) and the optimal temperature for diatom growth is calibrated at 10°C, based on an analysis of the physiological response of the diatom community. One of the main outcomes of the modelling exercise is that the precise identification of the constituting communities of algal blooms must be achieved prior to the modelling itself. With the

  14. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier.

    PubMed

    Luo, Guozhi; Li, Li; Liu, Qian; Xu, Guimei; Tan, Hongxin

    2014-11-01

    The effect of dissolved oxygen (DO) on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier was evaluated in a lab-scale experiment. Aerated, low-oxygen, and anoxic treatment groups were set up, which had average DO concentrations of 5.2±1.0, 1.4±1.2, and 0.5±0.3 mg L(-1), respectively. The NO3(-)-N and total nitrogen (TN) removal rates in the aerated group (37.44±0.24 and 36.24±0.48 g m(-3) d(-1), respectively) were higher than those in the other two groups. There was no significant difference between the low-oxygen and anoxic groups for the NO3(-)-N or TN removal rate. Accumulation of NO2(-)-N reached 5.0 mg L(-1) in the aerated group; no nitrite accumulation was found in the other two treatment groups. Bacterial communities of the low-oxygen and anoxic groups showed high similarity and were significantly different from those of the aerated group. PMID:25194264

  15. Simulation of dissolved oxygen and biochemical oxygen demand, Plantation Canal, Broward County, Florida with an evaluation of the QUAL-I model for use in south Florida

    USGS Publications Warehouse

    Russo, Thomas N.; McQuivey, Raul S.

    1975-01-01

    A mathematical model; QUAL-I, developed by the Texas Water Development Board, was evaluated as a management tool in predicting the spatial and temporal distribution of dissolved oxygen and biochemical oxygen demand in Plantation Canal. Predictions based on the QUAL-I model, which was verified only against midday summer-flow conditions, showed that improvement of quality of inflows from sewage treatment plants and use of at least 130 cubic feet per second of dilution water would improve water quality in the canal significantly. The model was not fully amenable to use on Plantation Canal because: (1) it did not consider photosynthetic production, nitrification, and benthic oxygen demand as sources and sinks of oxygen; (2) the model assumptions of complete mixing, transport, and steady state were not met; and (3) the data base was inadequate because it consisted of only one set of data for each case. However, it was felt that meaningful results could be obtained for some sets of conditions. (Woodard-USGS)

  16. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    PubMed Central

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio; Larsen, Morten; Borisov, Sergey M.; Revsbech, Niels-Peter; Glud, Ronnie N.; Canfield, Donald E.; Klimant, Ingo

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 μmol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized “sensing chemistry” that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded in a Hyflon AD 60 polymer matrix and has a KSV of 6.25 x 10-3 ppmv-1. The applicable measurement range is from 1000 nM down to a detection limit of 0.5 nM. A second sensor material based on the platinum(II) analogue of the porphyrin is spectrally compatible with the readout device and has a measurement range of 20 μM down to 10 nM. The LUMOS device is a dedicated system optimized for a high signal to noise ratio, but in principle any phase flourimeter can be adapted to act as a readout device for the highly sensitive and robust sensing chemistry. Vise versa, the LUMOS fluorimeter can be used for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used to measure nanomolar oxygen concentrations. Oxygen contamination in common sample containers has been investigated and microbial or enzymatic oxygen consumption at nanomolar concentrations is presented. PMID:26029920

  17. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  18. Modelling the seasonal cycle of dissolved oxygen in the upper ocean at ocean weather station P

    NASA Astrophysics Data System (ADS)

    Thomas, F.; Garcon, V.; Minster, J.-F.

    1990-03-01

    Three main processes regulate the variations of dissolved O 2 concentrations in the surface waters: gas exchange at the air-sea interface, vertical mixing and biological activity of marine organisms. A one-dimensional integral mixed layer model ( GASPAR, 1988) is used to study the temporal evolution of monthly averaged dissolved O 2 content of surface waters at Ocean Weather Station P, and to assess the relative importance of the various contributing mechanisms during 1969-1972. Production and consumption due to biological activity are taken into account as an input function of the model. A large part of the seasonal signal of dissolved O 2 in surface waters can be reproduced by the physical model without biological activity. However, kinetics of gas exchange, biological production and entrainment of sub-mixed layer water all contribute by the same order of magnitude to supersaturation during warming periods and undersaturation during cooling periods. Various shapes (over depth and time) of production-consumption function have been tested for the year 1970. Most of the evolution of monthly average dissolved O 2 in the surface waters can be obtained (1) with a total annual production rate of the order of 5 mol O 2 m -2 y -1, (2) with a constant production throughout the year and in the 0-50 m layer, and (3) with logarithmic decrease in consumption between 50 and 300 m. The relative influence of various parameters on the three processes supplying O 2 to the surface waters is investigated. Total annual production P seems to be the most influential. Vertical mixing and depth of photic zone, z 0, affect the gas exchange flux during the cooling season. Episodic events, like storms, modify the supersaturation of the mixed layer O 2 content by up to 4 mmol m -3, but gas exchange later draws back this content towards a smooth evolution curve. Finally, the sensitivity of the net annual gas exchange to various parameters is too large for the model to provide a reliable value.

  19. Dissolved Oxygen Dynamics in Coastal Pacific Northwest Rivers: Biological Controls and Management Options

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Foster, E.; Michie, R.; Waltz, D.

    2014-12-01

    In Oregon's Central Coast Range (OCR), dissolved O2 concentrations in at least 10% of stream length frequently dip below state standards set to ensure survival and reproduction of native salmonids. We examined O2 dynamics on 12 OCR rivers during times of the year when standards had been violated. Continuous dissolved O2 data were collected 15 minutes apart over a 24-hour period during spring (May - June) or fall (September - November) 2008 on each river. We modeled O2 dynamics for each river with parameters describing O2 exchange with the atmosphere, production of O2 from gross primary production (GPP), and consumption of O2 by ecosystem respiration (ER) fit to observed data. Average nighttime atmospheric O2 exchange and ER were estimated by regressing interval changes in dissolved O2 concentrations between measurements with corresponding O2 saturation deficits. GPP for each daytime sampling interval was calculated as the difference between O2 saturation deficit and the sum of temperature-corrected reaeration and ecosystem respiration. All regression models developed for estimating night-time reaeration and ER were highly significant (p<0.03; adjusted r2=0.17 - 0.77). GPP ranged from 0.62 to 14.95 mg O2 L-1 d-1, ER ranged from -1.21 mg O2 L-1 d-1, and net daily metabolism (NDM; net O2 flux controlled by biological processes) ranged from -11.64 to 3.75 mg O2 L-1 d-1 across all rivers and seasons. Increased aquatic productivity resulting from adjacent and upstream human activities likely altered dissolved O2 dynamics in these rivers. Through scenario analysis, we found that at one river (Alsea), GPP and ER would need to be reduced by 85 and 73%, respectively, to meet the state standard (95% saturation). Our modeling approach can be connected with management actions across a variety of spatial and temporal scales, ranging from local, riparian-scale manipulations of shading and organic matter input to watershed and regional nutrient and temperature management.

  20. The Role of Oxygen in the Copper-Catalyzed Decomposition of Phenylborates in Aqueous Alkaline Solutions

    SciTech Connect

    Hyder, M.L.

    1997-03-17

    The effect of oxygen on the copper-catalyzed hydrolysis of phenyl borates containing from one to four phenyl groups was studied in 1 M aqueous sodium hydroxide solution at 59 degrees C. The results are tentatively explained if the effective catalyst for each of the reactions is either cupric or cuprous ion, with the latter being present in significant concentration only in the absence of air.

  1. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step. PMID:27541005

  2. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Chen, F. Y.; Wu, X. Q.

    2015-07-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  3. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    PubMed Central

    Zhang, N.; Chen, F. Y.; Wu, X.Q.

    2015-01-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is −3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells. PMID:26148904

  4. Spatial and Temporal Monitoring of Dissolved Oxygen (DO) in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  5. Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  6. Spatial and Temporal Monitoring of Dissolved Oxygen in NJ Coastal Waters using AUVs (Presentation)

    EPA Science Inventory

    The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...

  7. DISTRIBUTION OF FINGERLING BROOK TROUT, SALVELINUS FONTINALIS (MITCHELL), IN DISSOLVED OXYGEN CONCENTRATION GRADIENTS

    EPA Science Inventory

    A self-recording linear gradient tank and procedures are described in which individual brook trout fingerlings unstressed by recent transfer, unaccustomed surroundings or the presence of an observer could move freely in 16 oxygen concentration gradients within the limits of 1 and...

  8. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Cedar Creek, Dekalb and Allen counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)

  9. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Wu, Yanzhuo; Zang, Jianbing; Dong, Liang; Zhang, Yan; Wang, Yanhui

    2016-02-01

    A bifunctional noble metal-free catalyst with a cobalt-embedded nitrogen doped graphitized carbon shell covering a nanodiamond (ND) core (Co-N-C/ND) is synthesized. The resulting Co-N-C/ND exhibits excellent catalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The average electron transfer number of ORR on the Co-N-C/ND is 3.82 between -0.4 and -0.7 V (vs. Hg/HgO), indicating a near four-electron transfer mechanism for ORR. Moreover, the catalytic activity of the Co-N-C/ND for ORR is comparable to the 20 wt% Pt reference catalyst supported on carbon black. The OER onset potential on the Co-N-C/ND is 0.43 V (vs. Hg/HgO) and the current density at 0.7 V is 3.19 mA cm-2, demonstrating excellent catalytic activity for OER. In comparison to the Co-N-C derived from carbon black, the Co-N-C/ND exhibits better durability. The superior electrocatalytic performance of the Co-N-C/ND could be attributed to the synergistic effect of the Co-N moieties in the carbon shell and the high stability could be ascribed to the ND core.

  10. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    PubMed

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs. PMID:26398030

  11. Quantitative Aspects of the Interfacial Catalytic Oxidation of Dithiothreitol by Dissolved Oxygen in the Presence of Carbon Nanoparticles.

    PubMed

    Sauvain, Jean-Jacques; Rossi, Michel J

    2016-01-19

    The catalytic nature of particulate matter is often advocated to explain its ability to generate reactive oxygen species, but quantitative data are lacking. We have performed molecular characterization of three different carbonaceous nanoparticles (NP) by 1. identifying and quantifying their surface functional groups based on probe gas-particle titration; 2. studying the kinetics of dissolved oxygen consumption in the presence of suspended NP's and dithiothreitol (DTT). We show that these NP's can reversibly change their oxidation state between oxidized and reduced functional groups present on the NP surface. By comparing the amount of O2 consumed and the number of strongly reducing sites on the NP, its average turnover ranged from 35 to 600 depending on the type of NP. The observed quadratic rate law for O2 disappearance points to a Langmuir-Hinshelwood surface-based reaction mechanism possibly involving semiquinone radical. In the proposed model, the strongly reducing surface site is assumed to be a polycyclic aromatic hydroquinone whose oxidation to the corresponding conjugated quinone is rate-limiting in the catalytic chain reaction. The presence and strength of the reducing surface functional groups are important for explaining the catalytic activity of NP in the presence of oxygen and a reducing agent like DTT. PMID:26683500

  12. Pairing high-frequency data with a link-node model to manage dissolved oxygen impairment in a dredged estuary.

    PubMed

    Camarillo, Mary Kay; Weissmann, Gregory A; Gulati, Shelly; Herr, Joel; Sheeder, Scott; Stringfellow, William T

    2016-08-01

    High-frequency data and a link-node model were used to investigate the relative importance of mass loads of oxygen-demanding substances and channel geometry on recurrent low dissolved oxygen (DO) in the San Joaquin River Estuary in California. The model was calibrated using 6 years of data. The calibrated model was then used to determine the significance of the following factors on low DO: excavation of the river to allow navigation of large vessels, non-point source pollution from the agricultural watershed, effluent from a wastewater treatment plant, and non-point source pollution from an urban area. An alternative metric for low DO, excess net oxygen demand (ENOD), was applied to better characterize DO impairment. Model results indicate that the dredged ship channel had the most significant effect on DO (62 % fewer predicted hourly DO violations), followed by mass load inputs from the watershed (52 % fewer predicted hourly DO violations). Model results suggest that elimination of any one factor will not completely resolve DO impairment and that continued use of supplemental aeration is warranted. Calculation of ENOD proved more informative than the sole use of DO. Application of the simple model allowed for interpretation of the extensive data collected. The current monitoring program could be enhanced by additional monitoring stations that would provide better volumetric estimates of low DO. PMID:27393195

  13. Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations.

    PubMed

    Zielińska, Magdalena; Bernat, Katarzyna; Cydzik-Kwiatkowska, Agnieszka; Sobolewska, Joanna; Wojnowska-Baryła, Irena

    2012-01-01

    The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions. PMID:23505865

  14. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams.

    PubMed

    Corsi, S R; Booth, N L; Hall, D W

    2001-07-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries. PMID:11434287

  15. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 1. Biochemical oxygen demand and dissolved oxygen in receiving streams

    USGS Publications Warehouse

    Corsi, S.R.; Booth, N.L.; Hall, D.W.

    2001-01-01

    Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.

  16. Improved vitamin B(12) production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process.

    PubMed

    Wang, Ze-Jian; Wang, Hui-Yuan; Li, Yong-Liang; Chu, Ju; Huang, Ming-Zhi; Zhuang, Ying-Ping; Zhang, Si-Liang

    2010-04-01

    Effects of different oxygen transfer rates (OTR) on the cell growth and vitamin B(12) biosynthesis of Pseudomonas denitrificans were first investigated under dissolved oxygen limiting conditions. The results demonstrated that high OTR accelerated cell growth and initial vitamin B(12) biosynthesis rate, while lower OTR was critical for higher productivity in the late fermentation process. The oxygen uptake rates (OUR) corresponded well with OTR. Based on the metabolic intermediate analysis, a step-wise OUR control strategy was proposed. The strategy was successfully implemented in scale-up to an industrial fermenter (120,000 l). A stable maximum vitamin B(12) production of 208 + or - 2.5 mg/l was achieved, which was increased by 17.3% compared with the control. Furthermore, the glucose consumption coefficient to vitamin B(12) was 34.4% lower than that of the control. An efficient and economical fermentation process based on OUR criterion was established for industrial vitamin B(12) fermentation by P. denitrificans. PMID:20022743

  17. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for West Fork Blue River, Washington County, Indiana

    USGS Publications Warehouse

    Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.

    1979-01-01

    A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)

  18. Luminescent Nafion membranes dyed with ruthenium(II) complexes as sensing materials for dissolved oxygen

    SciTech Connect

    Garcia-Fresnadillo, D.; Orellana, G.; Marazuela, M.D.; Moreno-Bondi, M.C.

    1999-09-14

    The absorption spectroscopy, photophysics, and dioxygen quenching of [RuL{sub 3}]{sup 2+} luminescent probes, where L stands for 2,2{prime}-bipyridine, 1,10-phenanthroline, 5-octadecanamide-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline (dip), electrostatically loaded onto Nafion ionomer membrane have been investigated in air and in organic solvents and water, with the aim of developing rugged materials for optical sensing of molecular oxygen. The significant differences in size and hydrophobicity of the Ru(II) dyes have been used to probe their location within the perfluorinated ionomer pore network, as well as to gain insight into the oxygen accessibility to its microcrystalline and interfacial domains. While the absorption maximums of the probes (444--458nm) remain relative unchanged, their emission wavelengths (578--622 nm) are extremely sensitive to the degree of Nafion swelling by the solvent. This feature has been characterized by measuring the density (1.19--2.04 g cm{sup {minus}3}) of the solvent-saturated ionomer and the mass and volume fractions of solvents (0.0--0.7) uptake by the original acidic Nafion and Li{sup +}-, Na{sup +}-, or K{sup +}-exchanged films. The excited-state lifetimes of the [RuL{sub 3}]{sup 2+} complexes (0.03--4.9{micro}s) reflect important variations of the microenvironment around the luminescent probes, which are rationalized in terms of their location and oxygen accessibility when loaded onto the polysulfonated material. Emission quenching rate constants of 1.7 {+-} 0.3 M{sup {minus}1}s{sup {minus}1} have been measured for the [Ru(dip){sub 3}]{sup 2+}-dyed films dipped in methanol; their oxygen sensitivity turns out to be independent of the Ru(II) loading and counterion of Nafion. Highly oxygen-sensitive luminescent membranes, suitable for continuous monitoring in organic solvents, water, or gas phase, have been prepared by immobilization of [Ru(dip){sub 3}]{sup 2+} indicator in 178-{micro}m thick Nafion, with response

  19. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGESBeta

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; Li, Ling; Bridges, Craig A.; Paranthaman, M. Parans; Narayanan, S. R.; Quesnel, David J.; Tryk, Donald A.; Manivannan, A.

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La0.6Ca0.4Co1-xFexO3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reaction order towards OH- near unitymore » were achieved for the unsubstituted La0.6Ca0.4CoO3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La0.6Ca0.4Co0.2Fe0.8O3 and La0.6Ca0.4Co0.1Fe0.9O3 showed higher area specific activity towards OER than La0.6Ca0.4CoO3 or La0.6Ca0.4FeO3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  20. Controls on in situ oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen

    NASA Astrophysics Data System (ADS)

    Estop-AragonéS, Cristian; Knorr, Klaus-Holger; Blodau, Christian

    2012-06-01

    Changes in hydrological conditions are expected and may alter carbon cycling in peatlands. Peat aeration with water table change has not commonly been investigated, and the water table is often assumed to constitute the oxic-anoxic boundary in peat. We analyzed temperature, moisture, oxygen (O2), and carbon dioxide (CO2) concentrations in profiles of a temperate fen during two seasons. A drying-rewetting cycle and flooding were induced and compared to controls. The response of moisture and water table position varied greatly and was related to gradients of peat compaction and ash content. Background drought raised air-filled porosity (AFP) to a maximum of 15%-38% in shallow peat and experimental drought up to 50%. Decline in water table and soil moisture broadly led to O2 penetration and CO2 degassing, and rewetting and flooding led to anoxic conditions and CO2 accumulation in peat pore water. In dense peat with ≥20% ash content the unsaturated zone remained partly low in oxygen, however, and up to 5% AFP and 20 cm above water table O2 concentrations frequently remained below 50 μmol L-1. Moderately intense and short drying did not induce substantial oxygen penetration in the compacted soil profiles. The likelihood of the presence of oxygen in the peat was predicted by logistic regression using water table and ash content or bulk density as predictors (p < 0.0005). The model is potentially useful for predicting the position of the redoxcline in peat deposits and may assist in improving statistical models of trace gas emission from peatlands.

  1. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate.

    PubMed

    Wen, Xin; Zhou, Jian; Wang, Jiale; Qing, Xiaoxia; He, Qiang

    2016-10-01

    The performance of four identical sequencing biofilm batch reactors (SBBR) for autotrophic nitrogen removal was investigated with 2000mg/L ammonia-containing mature landfill leachate at 30°C. The main objective of this study was to evaluate the effects of dissolved oxygen (DO) on the performance and microbial community of single-stage nitrogen removal using anammox and partial nitritation (SNAP) system. At an applied load of 0.5kgNm(-3)d(-1), average total nitrogen removal efficiency (TNRE) above 90% was long-term achieved with an optimal DO concentration of 2.7mg/L. The microelectrode-measured profiles showed the microenvironments inside the biofilms. 16S ribosomal Ribonucleic Acid (rRNA) amplicon pyrosequencing and denaturing gradient gel electrophoresis (DGGE) were used to analyze the microbial variations of different DO concentrations and different positions inside one reactor. PMID:27450126

  2. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    PubMed

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs). PMID:19923760

  3. Using River Distances in the Space/Time Estimation of Dissolved Oxygen Along Two Impaired River Networks in New Jersey

    PubMed Central

    Money, Eric; Carter, Gail P.; Serre, Marc L.

    2009-01-01

    Understanding surface water quality is a critical step towards protecting human health and ecological stability. Because of resource deficiencies and the large number of river miles needing assessment, there is a need for a methodology that can accurately depict river water quality where data do not exist. The objective of this research is to implement a methodology that incorporates a river metric into the space/time analysis of dissolved oxygen data for two impaired river basins. An efficient algorithm is developed to calculate river distances within the BMElib statistical package for space/time geostatistics. We find that using a river distance in a space/time context leads to an appreciable 10% reduction in the overall estimation error, and results in maps of DO that are more realistic than those obtained using a Euclidean distance. As a result river distance is used in the subsequent non-attainment assessment of DO for two impaired river basins in New Jersey. PMID:19285333

  4. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. PMID:26318242

  5. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    PubMed

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. PMID:24862001

  6. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Kajiwara, Yoshimichi; Tazaki, Kazue; Ueshima, Masato; Takeda, Nobuyori; Kawahata, Hodaka; Arinobu, Tetsuya; Ishiwatari, Ryoshi; Hirai, Akio; Lamolda, Marcos A.

    1999-08-01

    Thirty-six different geochemical and foraminiferal analyses were conducted on samples collected at closely spaced intervals across the Cretaceous/Tertiary (K/T) boundary exposed at Caravaca, Spain. A rapid reduction in the gradient between δ13C values in fine fraction carbonate and benthic foraminiferal calcite and a decrease in the abundance of phosphorus (a proxy for organic carbon) and calcium were recorded in sediments 0-0.5 cm above the K/T boundary. These trends imply that an abrupt mass mortality occurred among pelagic organisms, leading to a significant reduction in the flux of organic carbon to the seafloor. In addition, variations in sulfur isotope ratios, the hydrocarbon-generating potential of kerogen (measured as the hydrogen index), and foraminiferal indices of dissolved oxygen level all imply that a rapid decrease in dissolved oxygen was coincident with the δ13C event. Evidence of the low oxygen event has also been recognized in Japan and New Zealand, suggesting that intermediate water oxygen minima were widely developed during earliest Danian time. A threefold increase in the kaolinite/illite ratio and a 1.2‰ decrease in δ18O (carbonate fine fraction) were recorded in the basal 0.1-2 cm of Danian age sediments. These trends suggest that atmospheric warming and an increase in surface water temperature occurred 0-3 kyr after the δ13C event. Recovery in the difference between δ13C values in the carbonate fine fraction and in benthic foraminiferal calcite as well as increases in phosphorus and calcium contents occur at the base of planktonic foraminiferal Zone Pla, implying that an increase in primary productivity commenced some 13 kyr after the K/T boundary. Tables A1-A3 are available on diskette or via Anonymous FTP from kosmos.agu.org directory APENO (Username = anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009 or by phone at 800-966-2481; $15.00. Payment must

  7. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards aquifer, Texas, USA

    USGS Publications Warehouse

    Mahler, Barbara J.; Bourgeais, Renan

    2013-01-01

    Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.

  8. An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution.

    PubMed

    Lu, Xue-Feng; Liao, Pei-Qin; Wang, Jia-Wei; Wu, Jun-Xi; Chen, Xun-Wei; He, Chun-Ting; Zhang, Jie-Peng; Li, Gao-Ren; Chen, Xiao-Ming

    2016-07-13

    Postsynthetic ion exchange of [Co2(μ-Cl)2(btta)] (MAF-X27-Cl, H2bbta =1H,5H-benzo(1,2-d:4,5-d')bistriazole) possessing open metal sites on its pore surface yields a material [Co2(μ-OH)2(bbta)] (MAF-X27-OH) functionalized by both open metal sites and hydroxide ligands, giving drastically improved electrocatalytic activities for the oxygen evolution reaction (an overpotential of 292 mV at 10.0 mA cm(-2) in 1.0 M KOH solution). Isotope tracing experiments further confirm that the hydroxide ligands are involved in the OER process to provide a low-energy intraframework coupling pathway. PMID:27356078

  9. Tailored gold nanostructure arrays as catalysts for oxygen reduction in alkaline media and a single molecule SERS platform

    NASA Astrophysics Data System (ADS)

    Nogala, Wojciech; Kannan, Palanisamy; Gawinkowski, Sylwester; Jönsson-Niedziolka, Martin; Kominiak, Magdalena; Waluk, Jacek; Opallo, Marcin

    2015-06-01

    Although plenty of functional nanomaterials are widely applied in science and technology, cost-efficient, controlled and reproducible fabrication of metallic nanostructures is a considerable challenge. Automated electrorefining by scanning electrochemical microscopy (SECM) provides an effective approach to circumvent some drawbacks of traditional homogeneous syntheses of nanoparticles, providing precise control over the amount, time and place of reactant delivery. The precursor is just a raw metal, which is the most economically viable source. This approach ensures reproducibility and the opportunity for fabrication of micropatterns, which can be rapidly analyzed by scanning probe techniques. Here, a cost-effective methodology for the preparation of naked (ligand-free) metallic nanostructures, from polycrystalline gold using a moving microelectrode, is presented. Automated micropatterning of bare gold on indium tin oxide (ITO) demonstrates the versatility of this method to tune the size and shape of the nanostructures. The morphology of the obtained materials and thus their catalytic and plasmonic properties can be tuned using the electrorefining parameters. Programmable fabrication of sample microarrays by microprinting followed by comparative SECM studies or spectroscopic analysis allows quick optimization and characterization for specific purposes. Electrocatalytic oxygen reduction in alkaline media and surface-enhanced Raman spectroscopy (SERS) of single porphycene molecules are presented as model examples.Although plenty of functional nanomaterials are widely applied in science and technology, cost-efficient, controlled and reproducible fabrication of metallic nanostructures is a considerable challenge. Automated electrorefining by scanning electrochemical microscopy (SECM) provides an effective approach to circumvent some drawbacks of traditional homogeneous syntheses of nanoparticles, providing precise control over the amount, time and place of reactant

  10. Bio-desulfurization of biogas using acidic biotrickling filter with dissolved oxygen in step feed recirculation.

    PubMed

    Chaiprapat, Sumate; Charnnok, Boonya; Kantachote, Duangporn; Sung, Shihwu

    2015-03-01

    Triple stage and single stage biotrickling filters (T-BTF and S-BTF) were operated with oxygenated liquid recirculation to enhance bio-desulfurization of biogas. Empty bed retention time (EBRT 100-180 s) and liquid recirculation velocity (q 2.4-7.1 m/h) were applied. H2S removal and sulfuric acid recovery increased with higher EBRT and q. But the highest q at 7.1 m/h induced large amount of liquid through the media, causing a reduction in bed porosity in S-BTF and H2S removal. Equivalent performance of S-BTF and T-BTF was obtained under the lowest loading of 165 gH2S/m(3)/h. In the subsequent continuous operation test, it was found that T-BTF could maintain higher H2S elimination capacity and removal efficiency at 175.6±41.6 gH2S/m(3)/h and 89.0±6.8% versus S-BTF at 159.9±42.8 gH2S/m(3)/h and 80.1±10.2%, respectively. Finally, the relationship between outlet concentration and bed height was modeled. Step feeding of oxygenated liquid recirculation in multiple stages clearly demonstrated an advantage for sulfide oxidation. PMID:25569031

  11. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  12. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi; Wang, Zhangyong; Zhai, Weidong; Moore, Willard S.; Li, Qing; Yan, Xiuli; Qi, Di; Jiang, Yuwu

    2015-01-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.29-0.60 in the spring, 0.69-1.44 in the summer, 0.45-0.93 in the fall, and 0.26-0.54 in the winter. This was equivalent to 8-19% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 45-110% of the concomitant riverine fluxes for DIC and TA, around 14-32% for DSi and 7-19% for DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source (at most 11% of the total input at steady state) that spreads throughout the estuary as a non-point source in contrast to the major point sources of the river and the ocean for the estuary and a true open ocean endmember is likely lacking. Greater water flushing in the summer might dilute the STE effect on the mixing lines even more. The great spatial variation in salinity in the estuary introduced the major uncertainty in our estimates of the flushing time, which further affected the estimate of the subterranean discharge and associated material fluxes. Additionally, the great spatial variation in the STE endmember caused the relatively large ranges in these flux estimates. Despite apparent conservative mixing of DIC, DIN, and DSi in estuaries, net subterranean exports must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  13. Effects of dissolved oxygen level on rapamycin production by pellet-form of Streptomyces hygroscopicus.

    PubMed

    Yen, Hong-Wei; Hsiao, Hsin-Pei

    2013-09-01

    Rapamycin was known to have the functions of being an antibiotic and immunosuppressant; recently it was also recognized as being able to retard the aging process. The effects of dissolved oxygen (DO) level on rapamycin production by pellet-form of Streptomyces hygroscopicus were investigated in this study. The results suggest that a high DO level is required to enhance rapamycin production. However, the premise for getting a high rapamycin concentration by using DO control was keeping the intact of pellet-form of S. hygroscopicus. What if the high DO level achieved was coming from the increase of agitation; it might break down the morphology of pellets-form in the fermentation tank and result in the decrease of rapamycin production. The maximum rapamycin obtained in this study was about 780 mg/L in the 5 L fermentor batch with DO controlled over 30%, with the supplement of pure oxygen in the inlet gas, and the agitation speed limited to less than 200 rpm. Conclusively, a high DO level and the morphology of pellets form both were detrimental to achieving a high rapamycin production by S. hygroscopicus in the agitation fermentor. PMID:23623896

  14. Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments.

    PubMed

    Carpenter, Julian; Bi, Yuqiang; Hayes, Kim F

    2015-01-20

    Iron sulfide precipitates formed under sulfate reducing conditions may buffer U(IV) insoluble solid phases from reoxidation after oxidants re-enter the reducing zone. In this study, sediment column experiments were performed to quantify the effect of biogenic mackinawite on U(IV) stability in the presence of nitrite or dissolved oxygen (DO). Two columns, packed with sediment from an abandoned U contaminated mill tailings site near Rifle, CO, were biostimulated for 62 days with an electron donor (3 mM acetate) in the presence (BRS+) and absence (BRS−) of 7 mM sulfate. The bioreduced sediment was supplemented with synthetic uraninite (UO2(s)), sterilized by gamma-irradiation, and then subjected to a sequential oxidation by nitrite and DO. Biogenic iron sulfides produced in the BRS+ column, mostly as mackinawite, inhibited U(IV) reoxidation and mobilization by both nitrite and oxygen. Most of the influent nitrite (0.53 mM) exited the columns without oxidizing UO2, while a small amount of nitrite was consumed by iron sulfides precipitates. An additional 10-day supply of 0.25 mM DO influent resulted in the release of about 10% and 49% of total U in BRS+ and BRS– columns, respectively. Influent DO was effectively consumed by biogenic iron sulfides in the BRS+ column, while DO and a large U spike were detected after only a brief period in the effluent in the BRS– column. PMID:25525972

  15. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  16. Palladium-coated manganese dioxide catalysts for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Hsu, Andrew; Chen, Rongrong

    2011-05-01

    Pd-coated manganese dioxide catalysts (Pd@MnO2) were synthesized by depositing Pd on the surface of β-MnO2 nanorod particles in aqueous solutions at room temperature. TEM, XRD and electrochemical characterizations indicated that the MnO2 nanorods were successfully coated with Pd particles when the Pd weight percentage was more than 4.6%. The activities of the Pd@MnO2 catalysts for oxygen reduction reaction (ORR) were investigated using a rotating disk electrode (RDE) and a rotating ring-disk electrode (RRDE). The ORR onset potentials on the Pd@MnO2 catalyst shifted positively for more than 250 mV compared with the MnO2 catalyst without Pd coatings. Both the ORR onset potentials and the limiting current density obtained by the RDE measurements on the Pd@MnO2 catalysts were close to those on the Pd black catalyst. The mass activity of the Pd@MnO2 catalysts (normalized by Pd mass) was 2.5 times higher than that of the Pd black catalyst. Based on the Tafel slopes of the Pd@MnO2 catalysts (which is about 60 mV dec-1 at low overpotentials), and based on the fact that the activation energies of the Pd@MnO2 catalysts are very close to the activation energies of the Pd catalysts, one may conclude that the small amount of Pd coating provides the primary ORR activity of the Pd@MnO2 catalysts.

  17. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-01

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future. PMID:27093304

  18. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Wangting; Cao, Feifei; Xiao, Zhidong; Zheng, Xinsheng

    2016-01-01

    Development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is still a great challenge for the large-scale application of fuel cells and metal-air batteries. Herein, a noble metal-free ORR electrocatalyst in the form of N-doped graphene coupled with part of Co nanoparticles encased in N-doped graphitic shells (named as SUCo-0.03-800) is prepared by facile one-step pyrolysis of the mixture of sucrose, urea and cobalt nitrate. The novel structure is confirmed by High Resolution-TEM, XRD, XPS and Raman spectroscopy. SUCo-0.03-800 presents comparable ORR catalytic activity to commercial Pt/C catalyst with a dominating four-electron pathway under alkaline conditions, and both of its mass activity and volume activity also outperform Co-free N-doped graphene and other Co/N-C hybrids with higher Co content, which may probably be ascribed to the high specific surface area, novel structure and synergistic effect between encased Co nanoparticles and N-doped graphitic shell. Additionally, SUCo-0.03-800 also shows outstanding stability and improved selectivity towards ORR, making it a promising alternative to Pt with potential application in fuel cells and metal-air batteries.

  19. Advanced oxygen reduction reaction catalyst based on nitrogen and sulfur co-doped graphene in alkaline medium.

    PubMed

    Li, Yongfeng; Li, Meng; Jiang, Liqing; Lin, Lin; Cui, Lili; He, Xingquan

    2014-11-14

    A novel nitrogen and sulfur co-doped graphene (N-S-G) catalyst for oxygen reduction reaction (ORR) has been prepared by pyrolysing graphite oxide and poly[3-amino-5-mercapto-1,2,4-triazole] composite (PAMTa). The atomic percentage of nitrogen and sulfur for the prepared N-S-G can be adjusted by controlling the pyrolysis temperature. Furthermore, the catalyst pyrolysed at 1000 °C, denoted N-S-G 1000, exhibits the highest catalytic activity for ORR, which displays the highest content of graphitic-N and thiophene-S among all the pyrolysed samples. The electrocatalytic performance of N-S-G 1000 is significantly better than that of PAMTa and reduced graphite oxide composite. Remarkably, the N-S-G 1000 catalyst is comparable with Pt/C in terms of the onset and half-wave potentials, and displays larger kinetic limiting current density and better methanol tolerance and stability than Pt/C for ORR in an alkaline medium. PMID:25255312

  20. Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Yang, Xiaofang; He, Ruihua; Bueno-López, Agustín; Miller, Hamish; Ren, Xiaoming; Yang, Wanli; Koel, Bruce E.

    2012-09-01

    We synthesized two “single-core” Fe-Nx/C and Cu-Nx/C electrocatalysts and a bi-core CuFe-Nx/C composite electrocatalyst using iron and copper phthalocyanine-based precursors and a high-temperature pyrolysis method. The morphology, structure, and activity toward the oxygen reduction reaction (ORR) in alkaline media were evaluated for each electrocatalyst by transmission electron microscopy (TEM), X-ray Diffraction (XRD), and the rotating ring-disk electrode (RRDE) method. Although the Cu-Nx/C catalyst showed lower catalytic activity than Fe-Nx/C, the presence of Cu enhanced the ORR performance of bi-core CuFe-Nx/C, as compared to single-core Fe-Nx/C. To fully understand the synergistic effect between Cu and Fe on this enhancement, high resolution X-ray photoelectron spectroscopy (HR-XPS) and soft X-ray absorption spectroscopy (XAS) was employed to study the electronic structure of as-synthesized electrocatalysts. The HR-XPS analysis showed that metal-nitrogen bonding was maintained and that the oxidation states of Fe and Cu were influenced by the presence of the second metal in the bi-core catalyst. The XAS data revealed that a fraction of an electron was transferred from Fe to Cu, which may help to lower the kinetic barrier during the ORR process. Based on our experimental results and four different models, we briefly discuss ORR mechanisms on these metallic catalysts.

  1. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  2. A novel iron (Ⅱ) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Li, Meng; Jiang, Liqing; Li, Yongfeng; Liu, Dajun; He, Xingquan; Cui, Lili

    2014-12-01

    To realize the large-scale commercial application of direct methanol fuel cells (DMFCs), the catalysts for oxygen reduction reaction (ORR) are the crucial obstacle. Here, an efficient non-noble-metal catalyst for ORR, denoted FePPc/PSS-Gr, has been obtained by anchoring p-phenyl-bis(3,4-dicyanophenyl) ether iron(Ⅱ) polyphthalocyanine (FePPc) on poly(sodium-p-styrenesulfonate) (PSS) modified graphene (PSS-Gr) through a solvothermally assisted π-π assembling approach. The Ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results reveal the π-π interaction between FePPc and PSS-Gr. The rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurements show that the proposed catalyst possesses an excellent catalytic performance towards ORR comparable with the commercial Pt/C catalyst in alkaline medium, such as high onset potential (-0.08 V vs. SCE), half-wave potential (-0.19 V vs. SCE), better tolerance to methanol crossover, excellent stability (81.1%, retention after 10,000 s) and an efficient four-electron pathway. The enhanced electrocatalytic performance could be chiefly attributed to its large electrochemically accessible surface area, fast electron transfer rate of PSS-Gr, in particular, the synergistic effect between the FePPc moieties and the PSS-Gr sheets.

  3. Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Niu, Kexing; Yang, Baoping; Cui, Jinfeng; Jin, Jutao; Fu, Xiaogang; Zhao, Qiuping; Zhang, Junyan

    2013-12-01

    This study develops a promising catalyst for oxygen reduction reaction (ORR) via a simple two-step heat treatment of a mixture of cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O), polyethyleneimine (PEI), and graphene oxide (GO), firstly in argon atmosphere and then in ammonia atmosphere. X-ray photoemission spectroscopy (XPS) result reveals that the catalyst has pyridinic N-dominant (46% atomic concentration among all N components) on the surface. The kinetics measurement of the catalyst in 0.1 M KOH solution using a rotating disk electrode (RDE) reveals that the catalyst (Co/N/rGO(NH3)) has high activity. Furthermore, the number of electrons exchanged during the ORR with the catalyst is determined to be ˜3.9, suggesting that the ORR is dominated by a 4e- reduction of O2 to H2O. The catalyst has good stability, and its performance is superior to the commercial Pt/C(20%) catalyst in alkaline condition, making the material a promising substitute to noble metal ORR electrocatalyst on the cathode side of fuel cells.

  4. Development of a Self-calibrating Dissolved Oxygen Microsensor Array for the Monitoring and Control of Plant Growth in a Space Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Brown, Christopher S.; Nagle, H. Troy

    2004-01-01

    Plant experiments in space will require active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of plant cultivation systems in the space environment. Control of water and oxygen is limited by the current state-of-the-art in sensor technology. Two capabilities of the new microsensor array were tested. First, a novel in situ self-diagnosis/self-calibration capability for the microsensor was explored by dynamically controlling the oxygen microenvironment in close proximity to an amperometric dissolved oxygen microsensors. A pair of integrated electrochemical actuator electrodes provided the microenvironments based on water electrolysis. Miniaturized thin film dissolved oxygen microsensors on a flexible polyimide (Kapton(Registered Trademark)? substrate were fabricated and their performances were tested. Secondly, measurements of dissolved oxygen in two representative plant growth systems were made, which had not been performed previously due to lack of proper sensing technology. The responses of the oxygen microsensor array on a flexible polymer substrate properly reflected the oxygen contents on the surface of a porous tube nutrient delivery system and within a particulate substrate system. Additionally, we demonstrated the feasibility of using a 4-point thin film microprobe for water contents measurements for both plant growth systems. mechanical flexibility, and self-diagnosis. The proposed technology is anticipated to provide a reliable sensor feedback plant growth nutrient delivery systems in both terrestrial environment and the microgravity environment during long term space missions. The unique features of the sensor include small size and volume, multiple-point sensing,

  5. Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012-13

    USGS Publications Warehouse

    Schenk, Liam N.; Bragg, Heather M.

    2014-01-01

    The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.

  6. Impact of minimum daily dissolved oxygen concentration on performance of hybrid female channel catfish Ictalurus punctatus x male blue catfish I. furcatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid Catfish (female Channel Catfish Ictalurus punctatus X male Blue Catfish I. furcatus) were reared during two years as single-batch crops under two different dissolved oxygen (DO) regimes each year; a high-DO (control) treatment in which the minimum daily DO was maintained above 3.8 ppm during ...

  7. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method. PMID:25833146

  8. Mesoporous TiN as a noncarbon support of Ag-rich PtAg nanoalloy catalysts for oxygen reduction reaction in alkaline media.

    PubMed

    Cui, Zhiming; Yang, Minghui; Chen, Hao; Zhao, Mengtian; DiSalvo, Francis J

    2014-12-01

    There has been growing interest in noncarbon supports for fuel cell reactions, especially for the oxygen reduction reaction (ORR) in alkaline media. Herein, we report a robust mesoporous titanium nitride (TiN) which is not only kinetically stable in alkaline media, but also electrochemically stable in the potential range of fuel cell operation. This binary nitride exhibits an order of magnitude higher electronic conductivity than carbon black. Bimetallic Ag-rich PtAg nanoalloy is selected as the catalyst for the ORR in alkaline media due to their superior activity and relatively low cost. TiN-supported Pt1 Ag9 nanoalloy catalysts are synthesized by a new and efficient approach with KEt3 BH as reducing agent and THF as solvent. Pt1 Ag9 /TiN exhibits much higher mass activity and durability for the ORR in alkaline media than Pt1 Ag9 /C, Pt/C and Ag/C catalysts, suggesting that mesoporous TiN is a very promising support in alkaline media. PMID:25320003

  9. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  10. Response of phytoplankton and dissolved oxygen and related marine ecological parameters to typhoon tropical cyclone in the oceans

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    Typhoons (tropical cyclones, or hurricanes) are strong wind events in the weather system, which influence the upper ocean dynamics and the ecosystem, in particular upwelling, water temperature, salinity, chlorophyll-a (Chl-a) concentration and primary production and fish abundances. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in-situ and remote sensing data. The in-situ data were collected one week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 m and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0×10-4 m s-1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects:1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, 2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, 3) transport of DO enriched waters

  11. Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Jingrou; Tang, Danling; Alpers, Werner; Wang, Sufen

    2014-04-01

    It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10-4 m s-1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters.

  12. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  13. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  14. Responses of bluegills and black crappies to dissolved oxygen, temperature, and current in backwater lakes of the upper Mississippi River during winter

    USGS Publications Warehouse

    Knights, B.C.; Johnson, B.L.; Sandheinrich, M.B.

    1995-01-01

    We conducted a radiotelemetry study to examine the effects of dissolved oxygen (DO), water temperature, and current velocity on winter habitat selection by bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus in the Finger Lakes backwater complex, Pool 5, on the upper Mississippi River. When DO was above 2 mg/L, both species selected areas with water temperature greater than 1 degree C and undetectable current. As dissolved oxygen concentrations fell below 2 mg/L, fish moved to areas with higher DO, despite water temperatures of 1 degree C and lower and current velocities of 1 cm/s. Areas with water temperature less than 1 degree C and current velocity greater than 1 cm/s were avoided. To incorporate the winter habitat requirements of bluegills and black crappies into habitat restoration projects, we recommend designs that allow the inflow of oxygenated water to maintain adequate DO without substantially decreasing temperature and increasing current velocity.

  15. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    PubMed

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  16. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    PubMed Central

    Patnaik, Pratap R

    2008-01-01

    Background Although the production of poly-β-hydroxybutyrate (PHB) has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO) concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe) cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs) of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical determinant of fermentation

  17. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.

    PubMed

    Wang, Fei-Fei; Wei, Ping-Jie; Yu, Guo-Qiang; Liu, Jin-Gang

    2016-01-01

    The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high-performance, non-precious-metal catalysts as alternatives to noble metal Pt-based ORR electrocatalysts is highly desirable for the large-scale commercialization of fuel cells. TiO2 -grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2 -ZA-[Cu(phen${{^{{\\rm NO}{_{2}}}}}$)(BTC)] shows surprisingly high selectivity for the 4 e(-) reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole-containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis-phosphoric acid anchoring group. Rational optimization of the copper catalyst's ORR performance was achieved by using an electron-deficient ligand, 5-nitro-1,10-phenanthroline (phen${{^{{\\rm NO}{_{2}}}}}$), and bridging benzene-1,3,5-tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high-performance, non-precious-metal ORR catalysts. PMID:26602327

  18. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations.

    PubMed

    Liu, Fang; Zhao, Chao-Cheng; Zhao, Dong-Feng; Liu, Guo-Hua

    2008-12-15

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%. PMID:18396373

  19. Time-resolved chemiluminescence of firefly luciferin generated by dissolving oxygen in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide

    PubMed Central

    Yanagisawa, Yuki; Hasegawa, Kosuke; Wada, Naohisa; Tanaka, Masatoshi; Sekiya, Takao

    2015-01-01

    Chemiluminescence (CL) of firefly luciferin (Ln) consisting of red and green emission peaks can be generated by dissolving oxygen (O2) gas in deoxygenated dimethyl sulfoxide containing potassium tert-butoxide (t-BuOK) even without the enzyme luciferase. In this study, the characteristics of CL of Ln are examined by varying the concentrations of both Ln ([Ln]) and t-BuOK ([t-BuOK]). The time courses of the green and the red luminescence signals are also measured using a 32-channel photo sensor module. Interestingly, addition of 18-crown-6 ether (18-crown-6), a good clathrate for K+, to the reaction solution before exposure to O2 changes the luminescence from green to red when [t-BuOK] = 20 mM and [18-crown-6] = 80 mM. Based on our experimental results, we propose a two-pathway model where K+ plays an important role in the regulation of Ln CL to explain the two-color luminescence observed from electronically excited oxyluciferin via dioxetanone. PMID:27493856

  20. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    PubMed

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling. PMID:24057665

  1. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater.

    PubMed

    Sui, Qianwen; Liu, Chong; Zhang, Junya; Dong, Hongmin; Zhu, Zhiping; Wang, Yi

    2016-05-01

    The effects of free ammonia (FA) and dissolved oxygen (DO) on nitrite accumulation in the treatment of high ammonium wastewater and on the evolution of the microbial community were investigated. Under high DO conditions (3.75 ± 0.49 mg/L), FA as high as 10.61 ± 2.89 mg NH3/L maintained stable nitrite accumulation rate (NAR) of 84 % with NH4 (+)-N load of 2.05 kg N/(m(3) day) at sludge retention time (SRT) of 15-18 days. After 56 days of operation, Proteobacteria and Nitrosomonas were the dominant phylum and genus, respectively; Nitrosomonas increased from 21.14 to 54.57 %. By contrast, under relative low DO and low FA, nitrite-oxidizing bacteria (NOB) were nearly eliminated (NOB/AOB of 0; ammonium-oxidizing bacteria (AOB)), and NAR of 94 % was achieved with lower NH4 (+)-N load of 0.48 kg N/(m(3) day). DO correlated with AOB and NOB abundance, and FA decreased NOB activity and the NOB/AOB ratio. In conclusion, high FA and high DO conditions are optimal for efficient nitrite accumulation. PMID:26743659

  2. Increased Hepatitis B surface antigen production by recombinant Aspergillus niger through the optimization of agitation and dissolved oxygen concentration.

    PubMed

    James, Emmanuel R; van Zyl, Willem H; Görgens, Johann F

    2007-05-01

    The capacity of the filamentous fungi Aspergillus niger to produce and assemble complex immunogenic viral proteins into virus-like particles (VLPs) in batch culture was enhanced by optimizing the bioprocessing parameters, agitation intensity and dissolved oxygen (dO(2)) concentration. Response surface methodology (RSM) and a two-factor-two-level central composite rotatable design (CCRD) were employed to evaluate the interactive response pattern between parameters and their optimum combination. The recombinant hepatitis B surface antigen (HBsAg) was used as a model VLP system to determine the effect of these parameters on biomass yield, fungal morphology, HBsAg production and bioreactor kinetics. The response surface model predicted optimum cultivation conditions at an agitation of rate of 100 rpm and a dO(2) concentration of 25%, obtaining highest intracellular membrane-associated HBsAg levels of [see text]. HBsAg production levels were increased tenfold compared to yields obtained in shake flask cultivation. Although hepatitis B VLPs mostly accumulated intracellularly, optimal bioreactor conditions resulted in significant HBsAg release in culture supernatant. These results compare favourably with other recombinant VLP systems in batch culture, and therefore, indicate a substantial potential for further engineering of the A. niger production system for the high level of intracellular and extracellular VLP production. PMID:17308907

  3. Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale.

    PubMed

    Demuth, Caspar; Varonier, Joel; Jossen, Valentin; Eibl, Regine; Eibl, Dieter

    2016-05-01

    pH value and the concentration of dissolved oxygen (DO) are key parameters to monitor and control cell growth in cultivation studies. Reliable, robust and accurate methods to measure these parameters in cultivation systems in real time guarantee high product yield and quality. This mini-review summarises the current state of the art of pH and DO sensors that are applied to bioprocesses from millilitre to benchtop scale by means of a short introduction on measuring principles and selected applications. Special emphasis is placed on single-use bioreactors, which have been increasingly employed in bioprocess development and production in recent years. Working principles, applications and the particular requirements of sensors in these cultivation systems are given. In such processes, optical sensors for pH and DO are often preferred to electrochemical probes, as they allow semi-invasive measurements and can be miniaturised to micrometre scale or lower. In addition, selected measuring principles of novel sensing technologies for pH and DO are discussed. These include solid-state sensors and miniaturised devices that are not yet commercially available, but show promising characteristics for possible use in bioprocesses in the near future. PMID:26995606

  4. Flow field and dissolved oxygen distributions in the outer channel of the Orbal oxidation ditch by monitor and CFD simulation.

    PubMed

    Guo, Xuesong; Zhou, Xin; Chen, Qiuwen; Liu, Junxin

    2013-04-01

    In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are not well understood. Therefore, in this study, the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing (China) were monitored under actual operation conditions. The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling. In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel. As a result, the DO was also heterogeneously distributed in the outer channel, with concentration gradients occurring along the flow direction as well as in the cross-section. This heterogeneous DO distribution created many anoxic and aerobic zones, which may have facilitated simultaneous nitrification-denitrification in the channel. These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch. PMID:23923772

  5. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC).

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000Ω, the current density produced by the sensor (5.6 ± 0.5-462.2 ± 0.5 mA/m(2)) increased linearly with DO level up to 8.8 ± 0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4 min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters. PMID:22726635

  6. Analysis and numerical simulation of natural and human-caused low dissolved oxygen in the Minjiang River Estuary.

    PubMed

    Zhang, Peng; Pang, Yong; Shi, Chengchun; Wang, Yishu; Xu, Lei; Pan, Hongche; Xie, Rongrong

    2016-01-01

    The Minjiang River, a typical tidal channel in Southeast China, plays an important role in the supply of drinking water, flood control and drought relief, farming and navigation, as well as shipping and other functions. Dissolved oxygen (DO), as a basic living condition for aquatic biota, has been deteriorating in the Minjiang River in recent years. In order to understand how the spatial distribution of DO responds to river discharge, nutrient loading and water temperature, a three-dimensional Environmental Fluid Dynamics Code model was used to simulate water age and the distribution of DO in the Minjiang River. The model presented in this paper was used for water resource and water quality simulations under various physical, chemical, and biological scenarios. Sensitivity simulation results indicated that the three factors had a significant impact on the spatial distribution variation of DO in the Minjiang River. Increased river discharge or split ratio of the North Channel resulted in decreased water age and increased DO. Increased nutrient loading and water temperature caused lower DO. In order to protect coastal environments in the Minjiang River, river discharge should be increased and pollutants of local cities should be reduced during the high temperature and drought period. PMID:27191570

  7. Environmental mitigation at hydroelectric projects: Volume 1. Current practices for instream flow needs, dissolved oxygen, and fish passage

    SciTech Connect

    Sale, M. J.; Cada, G. F.; Chang, L. H.; Christensen, S. W.; Railsback, S. F.; Francfort, J. E.; Rinehart, B. N.; Sommers, G. L.

    1991-12-01

    The first report of the Environmental Study examines current mitigation practices for water quality [specifically, dissolved oxygen (DO)], instream flows, and upstream and downstream fish passage. This review describes information on the types and frequency of mitigations methods in use, their environmental benefits and effectiveness, and their environmental benefits and effectiveness, and their costs. Information on mitigation practices was obtained directly from three sources: (a) existing records from the Federal Energy Regulatory Commission (FERC), (b) new information provided by nonfederal hydropower developers, and (c) new information obtained from the state and federal natural resource agencies involved in hydropower regulation. Information on specific mitigation practices was obtained from 280 projects, more than 40% of all the projects licensed during the 1980s that were identified a priori as having the mitigation requirements of interest. Of all projects receiving FERC licenses or license exemptions since 1980, instream flow requirements are the most common mitigation requirement, followed by requirements for downstream fish passage, DO protection, and upstream fish passage facilities. The proportion of projects with environmental mitigation requirements has increased significantly during the past decade.

  8. Environmental mitigation at hydroelectric projects. Volume 1, Current practices for instream flow needs, dissolved oxygen, and fish passage

    SciTech Connect

    Sale, M.J.; Cada, G.F.; Chang, L.H.; Christensen, S.W.; Railsback, S.F.; Francfort, J.E.; Rinehart, B.N.; Sommers, G.L.

    1991-12-01

    Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information about instream flows, dissolved oxygen (DO) mitigation, and upstream and downstream fish passage facilities was obtained from project operators, regulatory and resource agencies, and literature reviews. Information provided by the operators includes the specific mitigation requirements imposed on each project, specific objectives or purposes of mitigation, mitigation measures chosen to meet the requirement, the kinds of post-project monitoring conducted, and the costs of mitigation. Costs are examined for each of the four mitigation methods, segmented by capital, study, operations and maintenance, and annual reporting costs. Major findings of the study include: the dominant role of the Instream Flow Incremental Methodology, in conjunction with professional judgment by agency biologists, to set instream flow requirements; reliance on spill flows for DO enhancement; and the widespread use of angled bar racks for downstream fish protection. All of these measures can have high costs and, with few exceptions, there are few data available from nonfederal hydropower projects with which to judge their effectiveness. 100 refs.

  9. Mechanism studies of seasonal variability of dissolved oxygen in Mass Bay: A multi-scale FVCOM/UG-RCA application

    NASA Astrophysics Data System (ADS)

    Xue, Pengfei; Chen, Changsheng; Qi, Jianhua; Beardsley, Robert C.; Tian, Rucheng; Zhao, Liuzhi; Lin, Huichan

    2014-03-01

    Long-term (1992-2010) water quality monitoring records reveal that the dissolved oxygen (DO) concentration in Mass Bay exhibits a well-defined seasonal cycle, highest in March-April and lowest in October. This pattern persists in all years with insignificant interannual variability. A multi-domain-nested coupled physical-biogeochemical model was developed and applied to simulate the DO field over the 16-year period 1995-2010. The model-computed DO and nitrogen concentrations were in good agreement with observations. An EOF analysis of the modeled DO field indicates that DO in Mass Bay features both well-defined seasonal and spatial modes. The magnitude and phase of the DO seasonal cycle vary more significantly in the southern bay than in the northern bay. Horizontal advection, which is connected to the western Gulf of Maine coastal currents, plays a dominant role in the DO variability in the northern bay. The southern bay features a well-defined local retention mechanism with a longer residence time. In this region, the DO variation is controlled predominantly by local biogeochemical processes. Since the photosynthetic minus respiration production of DO is always balanced to a large degree by the oxidation of organic matters, reaeration becomes a major driver for the seasonal cycle of DO.

  10. Dissolved Oxygen decrease near the bottom of the Inner Saronikos Gulf affected by the Athens Sewage Outfall

    NASA Astrophysics Data System (ADS)

    Pavlidou, A.; Hatzianestis, I.; Psillidou-Giouranovits, R.

    2012-04-01

    In this work, the depletion of dissolved oxygen near the bottom of the Inner Saronikos Gulf caused by the sewage discharges from the Psittalia Sewage Treatment Plant of Athens is studied. Evidence of the sewage plume diffusion is given by examining the distribution of the concentrations of coprostanol, a common fecal sterol, in the surface sediments of the area. The environmental quality of Saronikos Gulf has been studied since 1987 within the framework of monitoring programs of Hellenic Center for Marine Research, providing important evidence of environmental change, especially after the operation of the Sewage Treatment Plant on the Psittalia Island. Since 1994, the sewage generated by the city of Athens (population approx. four millions) has been primarily treated in Psittalia Treatment Plant, diverting the effluent from the untreated shoreline discharged to sea-surface, to primarily treated deepwater by using multi-port diffusers at the depth of 63 m. Since the end of 2004, the sewage of Athens city has been secondary treated. An approximate of 800.000 m3 d-1 of treated waste is discharged into the inner Saronikos Gulf, carrying ~100 x 106gC d-1. This area is practically flat with a mean depth of ~90 m, and a volume of ~14 km3. Apart from the treated sewage, no other potential sources of anthropogenic inputs exist in the area of the Inner Gulf. Low Dissolved Oxygen (DO) values (< 3.00 mL/L) were detected near the bottom of the Inner Saronikos Gulf, as the biochemical result of the oxidation of the organic matter which is carried by the wastewater effluents into the Inner Saronikos Gulf. It seems that there is a systematic variation pattern of the DO values throughout a year, with a significant increase during February -March, due to the homogenization of the water column and the oxygenation of the deep layers. The lowest DO concentrations were recorded at the stations located southwest and also in a distance from the Psitallia Sewage Plant (~6-14Km), indicating

  11. The role of iron and reactive oxygen in the degradation of dissolved organic matter draining permafrost soils (Invited)

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Page, S. E.; Kling, G. W.; Sander, M.; Harrold, K. H.; McNeill, K.

    2013-12-01

    As the permafrost boundary deepens from climate warming it will create conditions for redox reactions between soil-derived dissolved organic matter (DOM) and iron where those conditions did not previously exist. These new conditions will facilitate the transformation of DOM, and the overarching question is whether the pathway to CO2 released to the atmosphere or the export of DOM to coastal oceans will be favored. Our findings suggest that in either dark soils or sunlit surface waters, the presence of iron promotes the degradation of DOM to CO2. Evidence in support of iron-mediated oxidation of DOM to CO2 includes (1) strong positive correlations between iron and formation of hydroxyl radical (●OH), a highly reactive oxygen species implicated in DOM mineralization, (2) complete oxidation of DOM in the presence of high iron concentrations, and (3) loss of permafrost-derived DOM and iron from a thermokarst-impacted lake over time. For example, iron and DOM-rich soils or surface waters had the highest dark or photochemical ●OH formation respectively, both consistent with a dark or light Fenton source of ●OH and subsequent oxidation of DOM by ●OH. Photo-oxidation of DOM to CO2 was favored over partial photo-oxidation in surface waters characterized by high DOM and dissolved iron concentrations, consistent with photochemical reactions mediated by iron. Changes in DOM quality and quantity over time in a lake receiving permafrost carbon via a landslide (thermokarst slump) were also consistent with iron-mediated photodegradation of DOM. Given differences in DOM degradation across tundra ecosystems varying in iron, along with the abundance of water-logged soils supplying reduced iron to soil water or shallow streams, preliminary calculations at the landscape scale indicate that iron-mediated mineralization of DOM in soils and surface waters may be at least as important to carbon cycling as is bacterial respiration of DOM in the water column of streams and lakes

  12. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for the Mississinewa River, Grant County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in the Mississinewa River, Grant County, IN was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The hydrology of the Mississinewa River downstream from Gas City is controlled primarily by two factors; low slopes, typical of the Tipton Till Plain, and a 10-foot dam at river mile 35.9, in Marion. All point-source waste loads affecting the modeled segment of the Mississinewa River are in the four incorporated municipalities of Fairmount, Jonesboro, Gas City, and Marion, in a primarily agricultural area. Model simulations indicate that algal photosynthesis and nitrification are the most significant factors affecting the dissolved-oxygen concentration in the Mississinewa River during summer low flows. Natural reaeration without photosynthesis, is not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter in the stream, the State 's water-quality standard. Projected carbonaceous and nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for Owens, Illinois, Inc., and the Gas City and Marion wastewater-treatment facility will result in violations of the instream dissolved-oxygen standard. Fairmount and Jonesboro, because of their distance from the Mississinewa, do not significantly affect the water quality of the modeled segment. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen is the limiting water-quality criterion in the Mississinewa River downstream from the Gas City wastewater-treatment facility. (USGS)

  13. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Silver Creek, Clark and Floyd counties, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a State water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Silver Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Effluents from the Sellersburg and Clarksville-North wastewater-treatment facilities are the only point-source waste loads that significantly affect the water quality in the modeled segment of Silver Creek. Model simulations indicate that nitrification is the most significant factor affecting the dissolved-oxygen concentration in Silver Creek during summer and winter low flows. Natural streamflow in Silver Creek during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. Present ammonia-nitrogen and dissolved-oxygen concentrations of effluent from the Sellersburg and Clarksville-North wastewater-treatment facilities will violate current Indiana water-quality standards for ammonia toxicity and dissolved oxygen during summer and winter low flows. The current biochemical-oxygen demand limits for the Sellersburg and Clarksville-North wastewater-treatment facilities are not sufficient to maintain an average dissolved-oxygen concentration of at least 5 milligrams per liter, the State 's water-quality standard for streams. Calculations of the stream 's assimilative capacity indicate that Silver Creek cannot assimilate additional waste loadings and meet current Indiana water-quality standards. (Kosco-USGS)

  14. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    PubMed

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780

  15. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems

    PubMed Central

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour. PMID:26200780

  16. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Wildcat Creek, Howard County, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1979-01-01

    The Indiana State Board of Health is developing a water-quality management plan that includes establishing limits for wastewater effluents discharged into Indiana streams. A digital model calibrated to conditions in Wildcat Creek was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that benthic-oxygen demand is the most significant factor affecting the dissolved-oxygen concentrations in Wildcat Creek during summer low flows. The Indiana stream dissolved-oxygen standard should not be violated if the Kokomo wastewater-treatment facility meets its current National Pollution Discharge Elimination System permit restrictions (average monthly 5-day biochemical-oxygen demand of 5 milligrams per liter and maximum weekly 5-day biochemical-oxygen demand of 7.5 milligrams per liter) and benthic-oxygen demand becomes negligible. Ammonia-nitrogen toxicity may also be a water-quality limitation in Wildcat Creek. Ammonia-nitrogen waste loads for the Kokomo wastewater-treatment facility, projected by the Indiana State Board of Health, will result in stream ammonia-nitrogen concentrations that exceed the State standard (2.5 milligrams per liter during summer months and 4.0 milligrams per liter during winter months). (Kosco-USGS)

  17. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress. PMID:27112014

  18. Determining Dissolved Oxygen Levels

    ERIC Educational Resources Information Center

    Boucher, Randy

    2010-01-01

    This project was used in a mathematical modeling and introduction to differential equations course for first-year college students. The students worked in two-person groups and were given three weeks to complete the project. Students were given this project three weeks into the course, after basic first order linear differential equation and…

  19. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media

    NASA Astrophysics Data System (ADS)

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-08-01

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media.

  20. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media.

    PubMed

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-01-01

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media. PMID:26310526

  1. Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media

    PubMed Central

    Park, Shin-Ae; Lee, Eun-Kyung; Song, Hannah; Kim, Yong-Tae

    2015-01-01

    Ag is considered to be one of the best candidates for oxygen reduction reaction electrocatalysts in alkaline media for application in various electrochemical energy devices. In this study, we demonstrate that water activation is a key factor in enhancing the ORR activity in alkaline media, unlike in acid environments. Ag supported on LaMnO3 having a high oxophilicity showed a markedly higher ORR activity than that on carbon with inert surfaces. Through various electrochemical tests, it was revealed that the origin of the enhanced ORR activity of Ag/LaMnO3 is the bifunctional effect mainly due to the water activation at the interface between Ag and LaMnO3. Furthermore, the ligand effect due to the charge transfer from Mn to Ag leads to the enhancement of both oxygen activation on Ag and water activation on Mn sites, and hence, an improvement in the ORR activity of Ag/LaMnO3. On the other hand, the strain effect based on the fine structure variation in the lattice was negligible. We therefore suggest that the employment of a co-catalyst or support with highly oxophilic nature and the maximization of the interface between catalyst and support should be considered in the design of electrocatalysts for the ORR in alkaline media. PMID:26310526

  2. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Erler, Dirk; Ye, Liu; Yuan, Zhiguo

    2014-12-01

    Dissolved oxygen (DO) is commonly recognized as an important factor influencing nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). However, it has been difficult to separate the true effect of DO from that of nitrite, as DO variation often affects nitrite accumulation. The effect of DO on N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated in this study. Nitrite accumulation was minimised by augmenting nitrite oxidation through the addition of an enriched NOB sludge. It was demonstrated that the specific N2O production rate increased from 0 to 1.9 ± 0.09 (n = 3) mg N2O-N/hr/g VSS with an increase of DO concentration from 0 to 3.0 mg O2/L, whereas N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) decreased from 10.6 ± 1.7% (n = 3) at DO = 0.2 mg O2/L to 2.4 ± 0.1% (n = 3) at DO = 3.0 mg O2/L. The site preference measurements indicated that both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways contributed to N2O production, and DO had an important effect on the relative contributions of the two pathways. This finding is supported by analysis of the process data using an N2O model describing both pathways. As DO increased from 0.2 to 3.0 mg O2/L, the contribution of AOB denitrification decreased from 92% - 95%-66% - 73%, accompanied by a corresponding increase in the contribution by the NH2OH oxidation pathway. PMID:25179869

  3. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    PubMed

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (<5 μg l(−1)) and high bottom DO (>4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO <2 mg l(−1)) was episodically observed near sewage effluent site and in southern waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season. PMID:24122158

  4. Dissolved Oxygen Concentration Profiles in the Hyporheic Zone Through the Use of a High-Density Fiber Optic Measurement Network

    NASA Astrophysics Data System (ADS)

    Reeder, William Jeffrey; Quick, Annika; Farrell, Tiffany B.; Benner, Shawn G.; Feris, Kevin P.; Tonina, Daniele

    2015-04-01

    The majority of chemical reactions in riverine systems occur within the hyporheic zone (HZ). Hyporheic exchange, flow into and out of the hyporheic zone, represents a primary control over those reactions because the flow rate will determine the residence time and amount of chemical constituents in the HZ. Hyporheic flow can be conceptualized as discreet streamlines that collectively represent a broad distribution of residence times. Within this context, dissolved oxygen (DO) concentration becomes a primary indicator of the redox and biochemical state of the HZ including, for example, the fate of carbon, contaminant behavior, nutrient cycling, stream DO levels and nitrous oxide (N2O) production. River systems have been identified as a significant source of N2O emissions, contributing an estimated 10% of anthropogenically generated N2O. The primary biochemical transformations that lead to N2O production are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2) reactions that are mediated by microbes living in the HZ. Current theory describes a process in which DO enters the stoss side of the HZ and is consumed by respiration and nitrification in the upstream, oxic portion of the streamlines leading to a progressive partitioning of the HZ from oxic to anoxic. This conceptualization, however, has not been well validated in a physical sense, due to inherent difficulties associated with measuring chemical concentrations in the HZ. To test current theory, we measured HZ DO concentrations, in a large-scale flume experiment, almost continuously for five months using a multiplexed optical network and a precision robotic surface probe system. We were able to measure DO at higher spatial and temporal resolution than has been previously demonstrated. These measurements, coupled with detailed numerical modeling of HZ flowlines, allowed us to map HZ DO concentrations spatially and over time. Our findings validate the models that describe the consumption of DO through

  5. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.

    PubMed

    Yuan, Jianfeng; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-07-01

    The rapid and incomplete oxidation of sugars, alcohols, and polyols by the gram-negative bacterium Gluconobacter oxydans facilitates a wide variety of biological applications. For the conversion of glucose to 5-keto-d-gluconate (5-KGA), a promising precursor of the industrial substance L-(+)-tartaric acid, G. oxydans DSM2343 was genetically engineered to strain ZJU2, in which the GOX1231 and GOX1081 genes were knocked out in a markerless fashion. Then, a secondary alcohol dehydrogenase (GCD) from Xanthomonas campestris DSM3586 was heterologously expressed in G. oxydans ZJU2. The 5-KGA production and cell yield were increased by 10% and 24.5%, respectively. The specific activity of GCD towards gluconate was 1.75±0.02 U/mg protein, which was 7-fold higher than that of the sldAB in G. oxydans. Based on the analysis of kinetic parameters including specific cell growth rate (μ), specific glucose consumption rate (qs) and specific 5-KGA production rate (qp), a dissolved oxygen (DO) control strategy was proposed. Finally, batch fermentation was carried out in a 15-L bioreactor using an initial agitation speed of 600 rpm to obtain a high μ for cell growth. Subsequently, DO was continuously maintained above 20% to achieve a high qp to ensure a high accumulation of 5-KGA. Under these conditions, the maximum concentration of 5-KGA reached 117.75 g/L with a productivity of 2.10 g/(L·h). PMID:26896860

  6. [Startup, stable operation and process failure of EBPR system under the low temperature and low dissolved oxygen condition].

    PubMed

    Ma, Juan; Li, Lu; Yu, Xiao-Jun; Wei, Xue-Fen; Liu, Juan-Li

    2015-02-01

    A sequencing batch reactor (SBR) was started up and operated with alternating anaerobic/oxic (An/O) to perform enhanced biological phosphorus removal (EBPR) under the condition of 13-16 degrees C. The results showed that under the condition of low temperature, the EBPR system was successfully started up in a short time (<6 d). The reactor achieved a high and stable phosphorus removal performance with an influent phosphate concentration of 20 mg x L(-1) and the dissolved oxygen (DO) concentration of 2 mg x L(-1). The effluent phosphate concentration was lower than 0.5 mg x L(-1). It was found that decreasing DO had an influence on the steady operation of EBPR system. As DO concentration of aerobic phase decreased from 2 mg x L(-1) to 1 mg x L(-1), the system could still perform EBPR and the phosphorus removal efficiency was greater than 97.4%. However, the amount of phosphate released during anaerobic phase was observed to decrease slightly compared with that of 2 mg x L(-1) DO condition. Moreover, the phosphorus removal performance of the system deteriorated immediately and the effluent phosphate concentration couldn't meet the national integrated wastewater discharge standard when DO concentration was further lowered to 0.5 mg x L(-1). The experiments of increasing DO to recover phosphorus removal performance of the EBPR suggested the process failure resulted from low DO was not reversible in the short-term. It was also found that the batch tests of anoxic phosphorus uptake using nitrite and nitrate as electron acceptors had an impact on the stable operation of EBPR system, whereas the resulting negative influence could be recovered within 6 cycles. In addition, the mixed liquid suspended solids (MLSS) of the EBPR system remained stable and the sludge volume index (SVI) decreased to a certain extend in a long run, implying long-term low temperature and low DO condition favored the sludge sedimentation. PMID:26031088

  7. Dissolved Oxygen in Guadalupe Slough and Pond A3W, South San Francisco Bay, California, August and September 2007

    USGS Publications Warehouse

    Shellenbarger, Gregory; Schoellhamer, David H.; Morgan, Tara L.; Takekawa, John Y.; Athearn, Nicole D.; Henderson, Kathleen D.

    2008-01-01

    Initial restoration of former salt evaporation ponds under the South Bay Salt Pond Restoration Project in San Francisco Bay included the changing of water-flow patterns and the monitoring of water quality of discharge waters from the ponds. Low dissolved oxygen (DO) concentrations became evident in discharge waters when the ponds first were opened in 2004. This was a concern, because of the potential for low-DO pond discharge to decrease the DO concentrations in the sloughs that receive water from the ponds. However, as of summer 2007, only limited point-measurements of DO concentrations had been made in the receiving sloughs adjacent to the discharge ponds. In this report, we describe two short studies aimed at understanding the natural variability of slough DO and the effect of pond discharge on the DO concentrations in the sloughs. Pond A3W (a discharge pond) and the adjacent Guadalupe Slough were instrumented in August and September 2007 to measure DO, temperature, conductivity, and pH. In addition, Mowry and Newark Sloughs were instrumented during the August study to document DO variability in nearby sloughs that were unaffected by pond discharge. The results showed that natural tidal variability in the slough appeared to dominate and control the slough DO concentrations. Water-quality parameters between Guadalupe Slough and Mowry and Newark Sloughs could not be directly compared because deployment locations were different distances from the bay. Pond-discharge water was identified in Guadalupe Slough using the deployed instruments, but, counter to the previous assumption, the pond discharge, at times, increased DO concentrations in the slough. The effects of altering the volume of pond discharge were overwhelmed by natural spring-neap tidal variability in the slough. This work represents a preliminary investigation by the U.S. Geological Survey of the effects of pond discharge on adjacent sloughs, and the results will be used in designing a comprehensive DO

  8. Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors.

    PubMed

    Tan, Teck Wee; Ng, How Yong

    2008-02-01

    The conflicting influence of mixed liquor recycle ratio and dissolved oxygen on nitrogen removal and membrane fouling of a pre-denitrification submerged MBR was investigated in this study. It was found that a high aeration rate of 10 L air/min was able to minimize membrane fouling as compared with lower aeration rates of 5 and 2.5L air/min in this study. Faster fouling at lower aeration rate was due to the decrease in cross-flow velocity across the membrane surface. However, high DO concentration (average of 5.1+/-0.5mg O2/L) present in the recycle mixed liquor at an aeration rate of 10 L air/min deteriorated the TN removal efficiency when operating at a recycle ratio of more than 3. A lower aeration rate of 5L air/min, resulting in an average DO concentration of 3.4+/-0.7 mg O2/L in the recycle mixed liquor, led to an improvement in TN removal efficiency: 63%, 80%, 84% and 89% for mixed liquor recycle ratio of 1, 3, 5 and 10, respectively. Further decrease in aeration rate to 2.5L air/min, resulting in an average DO concentration of 1.9+/-0.8 mg O2/L, did not improve the TN removal efficiency. Using a newly developed simplified nitrification-denitrification model, it was calculated that the COD/NO3(-)-N required for denitrification at 10 L air/min aeration rate was higher than those associated with 5 and 2.5L air/min aeration rates. The model also revealed that denitrification at an aeration rate of 10 L air/min was limited by COD concentration present in the wastewater when operating at a mixed liquor recycle ratio of 3 and higher. PMID:17905406

  9. The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer

    NASA Astrophysics Data System (ADS)

    Ni, Xiaobo; Huang, Daji; Zeng, Dingyong; Zhang, Tao; Li, Hongliang; Chen, Jianfang

    2016-02-01

    Hypoxia off the Changjiang Estuary has been frequently reported using short time duration field data. However, its evolution was unknown because of a lack of long-term data and its associated dominant factor. A 104-day long dataset was collected with a bottom mounted system off the Changjiang Estuary in summer 2009. The monitored parameters were bottom dissolved oxygen (DO), temperature, pressure and current. Two hypoxia events were identified, showing that hypoxia was severe and lasted for more than a half month. The first event appeared on July 18 and lasted 17 days. During this hypoxia period, the minimum DO was down to 0.17 mg/L, which broke the historical record. The second hypoxia event appeared on August 30 and lasted 18 days with a minimum DO of 1.29 mg/L. The variation of bottom DO was closely related to that of stratification. The monitored data showed that almost every increase/decrease of DO was associated with a weakening/enhancing of stratification, which were recorded as many as 12 times during the monitoring period. Wind mixing modulated or broke the stratification, which affected the variation of bottom DO and hypoxia events. Using a lagged correlation analysis, the stratification and wind mixing were significantly correlated with a coefficient of determination r2 = 0.72, and stratification lagged wind by 35 h. The bottom DO and wind mixing were significantly correlated with a coefficient of determination r2 = 0.65, and DO lagged wind by 33 h. The formation periods of two hypoxia events estimated from monitored data were 20 and 15 days, which were much shorter than that from on-board experiments. Strong wind mixing played a dual role on hypoxia. It could relieve hypoxia conditions by supplying DO through mixing. It accelerated the formation of hypoxia afterward as a result of the enhanced phytoplankton bloom induced by wind mixing and high organic decomposition rates consuming more DO.

  10. Effects of Elevated CO2 and Decreased Dissolved Oxygen on Phototactic Behaviors of Juvenile Dungeness Crab (Cancer magister)

    NASA Astrophysics Data System (ADS)

    Imm, J.

    2015-12-01

    Anthropogenic CO2 emissions are increasing the concentration of CO2 in the oceans, and contributing to ocean acidification (OA), while increasing ocean temperatures and eutrophication are causing decreased levels of dissolved oxygen (DO). Due to coastal upwelling and limited water flow, the Puget Sound ecosystem is naturally high in CO2 and seasonally low in DO, making it particularly susceptible to increased acidification and hypoxia. Dungeness crabs (Cancer magister) are both ecologically and economically important to the Puget Sound region. To investigate the threat of low pH and DO to C. magister behavior, megalopae and juveniles were exposed to current and predicted future levels of pH and DO. Juveniles were then placed in a dark container with a single bright light, and movement and phototaxis were studied during three-minute trials. We hypothesized that low pH and low DO conditions would alter phototactic behaviors of juvenile C. magister, through changes in neurotransmission and metabolism. C. magister reared in control (High pH-High DO) conditions spent a greater proportion of their time near the light, and were significantly more likely to touch the light during the three-minute trial, as compared to juveniles in the other treatment conditions. These results suggest that future predicted CO2 and DO conditions in Puget Sound could disrupt the behavioral and cognitive abilities of juvenile crabs, leading to decreased survival and recruitment in the C. magister population. Given the importance of C. magister to the Puget Sound, these population changes could have significant ecological and economic implications for the region.

  11. Stress corrosion cracking of A471 turbine disk steels: Effects of dissolved oxygen and carbon dioxide in high-purity water: Final report

    SciTech Connect

    Eiselstein, L.E.; Caligiuri, R.D.

    1987-06-01

    Experiments were performed to determine the effect of dilute impurities in high purity water on the rate of initiation and growth of stress corrosion cracks in NiCrMoV steels. 3.5 NiCrMoV steels of commercial quality, high purity, and high purity with intentionally added tramp elements were investigated. Dissolved oxygen and carbon dioxide were the primary water impurities investigated. The tests were conducted on constant load, smooth bar tensile specimens of the NiCrMoV steels in flowing 160C high purity water containing various dilute levels of impurities. It was determined that the initiation rate is very sensitive to changes in dissolved oxygen content; the peak initiation rate are achieved between 20 and 80 ppB dissolved oxygen. The initiation rate is less sensitive to dissolved CO2 content. The crack growth rate in high purity water is only weakly dependent on dissolved O2 and CO2. This work shows that the crack growth rate is strongly dependent on the yield strength (and therefore the microstructure that develops as a result of tempering) of the turbine disc alloy, whereas the initiation rate is only weakly dependent on material yield strength. In addition, crack growth rates decrease as grain sizes are decreased. In general, crack growth rates are very slow (less than 10 m/s) in these dilute environments in materials with yield strengths below 690 Mpa (100 ksi). The results of these experiments indicate that a hydrogen-assisted process may be an important cracking mechanism in these alloys in these dilute environments. Implication of a hydrogen-assisted mechanism could have important consequences in the design and selection of turbine disc alloys.

  12. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Sand Creek, Decatur County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, James G.

    1979-01-01

    A digital model calibrated to conditions in Sand Creek near Greensburg, Ind., was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The only point-source waste load affecting Sand Creek in the vicinity of Greensburg is the Greensburg wastewater-treatment facility. Non-point, unrecorded waste loads seemed to be significant during three water-quality surveys done by the Indiana State Board of Health. Natural streamflow in Sand Creek during the summer and annual 7-day, 10-year low flow is zero so no benefit from dilution is provided. Effluent ammonia-nitrogen concentrations from the Greensburg wastewater-treatment facility will not meet Indiana water-quality standards during summer and winter low flows. To meet the water-quality standard the wastewater-effluent would be limited to a maximum total ammonia-nitrogen concentration of 2.5 mg/l for summer months (June through August) and 4.0 mg/l for winter months (November through March). Model simulations indicate that benthic-oxygen demand, nitrification, and the dissolved-oxygen concentration of the wastewater effluent are the most significant factors affecting the in-stream dissolved-oxygen concentration during summer low flows. The model predicts that with a benthic-oxygen demand of 1.5 grams per square meter per day at 20C the stream has no additional waste-load assimilative capacity. Present carbonaceous biochemical-oxygen demand loads from the Greensburg wastewater-treatment facility will not result in violations of the in-stream dissolved-oxygen standard (5 mg/l) during winter low flows. (Kosco-USGS)

  13. Summary statistics and graphical comparisons of specific conductance, temperature, and dissolved oxygen data, Buffalo Bayou, Houston, Texas, April 1986-March 1991

    USGS Publications Warehouse

    Brown, D.W.; Paul, E.M.

    1995-01-01

    Buffalo Bayou is the major stream that drains the Houston, Texas, metropolitan area. The U.S. Geological Survey has provided specific conductance, temperature, and dissolved oxygen data to the City of Houston for three sites along a 7.7-mile reach of Buffalo Bayou since 1986. Summary statistics and graphical comparisons of the data show substantial variability in the properties during 1986-91. Specific conductance ranged from about 100 microsiemens per centimeter at 25 degrees Celsius at each of the three sites to 17,100 microsiemens per centimeter at 25 degrees Celsius at the most downstream site, at the headwaters of the Houston Ship Channel. Water temperatures ranged from 5 to 33 degrees Celsius. Temperatures were very similar at the two upstream sites and slightly warmer at the most downstream site. Dissolved oxygen ranged from zero at the most downstream site to 11.7 milligrams per liter at the most upstream site.

  14. Evaluation and use of a diffusion-controlled sampler for determining chemical and dissolved oxygen gradients at the sediment-water interface

    USGS Publications Warehouse

    Simon, N.S.; Kennedy, M.M.; Massoni, C.S.

    1985-01-01

    Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.

  15. Porous Mn2 O3 : A Low-Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C.

    PubMed

    Wang, Wenhai; Geng, Jing; Kuai, Long; Li, Min; Geng, Baoyou

    2016-07-11

    Preparing nonprecious metal catalysts with high activity in the oxygen reduction reaction (ORR) can promote the development of energy conversion devices. Support-free porous Mn2 O3 was synthesized by a facile aerosol-spray-assisted approach (ASAA) and subsequent thermal treatment, and exhibited ORR activity that is comparable to commercial Pt/C The catalyst also exhibits notably higher activity than other Mn-based oxides, such as Mn3 O4 and MnO2 . The rotating ring disk electrode (RRDE) study indicates a typical 4-electron ORR pathway on Mn2 O3 . Furthermore, the porous Mn2 O3 demonstrates considerable stability and a good methanol tolerance in alkaline media. In light of the low cost and high earth abundance of Mn, the highly active Mn2 O3 is a promising candidate to be used as a cathode material in metal-air batteries and alkaline fuel cells. PMID:27258474

  16. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy. PMID:24052227

  17. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    PubMed

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS. PMID:24520715

  18. [The state of acid-alkaline balance and oxygen-transport function of blood in patients with acute carotid ischemic stroke].

    PubMed

    Zhdanova, S G; Aliev, E S; Kamchatnov, P R; Mikhaĭlova, N A

    2012-01-01

    The gas composition, acid-alkaline state of arterial and venous blood and oxygen-transport function in carotid ischemic stroke was studied in 97 patients admitted to a hospital in the first 24h after stroke. Measurements were made at admission and after 5-7 days and 21-23 days. The relative hyperoxia, which reached maximal values to the first day, was found in patients in the acute stage of ischemic stroke. The increase in partial pressure of CO2 (pCO2) and relative acidosis seen to 5-7 days represent the compensatory reaction and lead to the increase in affinity of hemoglobin to oxygen thus improving the tissue oxygenation. We found the inverse correlations between the parameters of oxygen delivery (OD) and oxygen consumption (OC) in the first day and the severity of neurological deficit assessed with the NIHSS in the 21-23 days (r = -0.42; p < 0.01 and r = -0.55; p < 0.01 for OD and OC, respectively), i.e., the decrease in oxygen delivery and consumption corresponded to the greater severity of the stroke course. PMID:23390649

  19. Effect of dissolved oxygen on swimming ability and physiological response to swimming fatigue of whiteleg shrimp (Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Duan, Yan; Zhang, Xiumei; Liu, Xuxu; Thakur, Dhanrajsingh N.

    2013-11-01

    The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm ± 0.25 mm, 7.73 g ± 0.06 g) was examined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6 mg L-1) in a swimming channel against one of the five flow velocities (v 1, v 2, v 3, v 4 and v 5). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp were quantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significant factors that affected the swimming endurance of L. vannamei. The relationship between swimming endurance and swimming speed at various DO concentrations can be described by the power model (ν·t b = a). The relationship between DO concentration (mg L-1) and the swimming ability index (SAI), defined as SAI = Σ{0/9000} vdt(cm), can be described as SAI = 27.947 DO0.137 (R 2 = 0.9312). The level of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increases in lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimming stress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by the utilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss of plasma triglyceride at v 1, v 2, and v 3 with 1.9 mg L-1 DO, and at v 1 with 3.8, 6.8 and 13.6 mg L-1 DO, whereas the plasma glucose content increased significantly at v 3, v 4 and v 5 with 3.8 and 6.8 mg L-1 DO, and at v 5 with 13.6 mg L-1 DO. The plasma total protein and hepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasma lactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to understanding the locomotory ability of whiteleg

  20. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    SciTech Connect

    Bevelhimer, Mark S; Coutant, Charles C

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be used

  1. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  2. Monochloramine-sensitive amperometric microelectrode: optimization of gold, platinum, and carbon fiber sensing materials for removal of dissolved oxygen interference

    EPA Science Inventory

    Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...

  3. Electrochemical Kinetics and X-ray Absorption Spectroscopic Investigations of Oxygen Reduction on Chalcogen-Modified Ruthenium Catalysts in Alkaline Media

    SciTech Connect

    N Ramaswamy; R Allen; S Mukerjee; Y

    2011-12-31

    The oxygen reduction reaction (ORR) in alkaline media has been investigated on chalcogen-modified ruthenium nanoparticles (Ru/C, Se/Ru/C, Se/RuMo/C, S/Ru/C, S/RuMo/C) synthesized in-house via aqueous routes. In acidic medium, it is well known that modification by a chalcogen prevents the oxidation of the underlying transition-metal (Ru) surface, thereby promoting direct molecular O{sub 2} adsorption on the Ru metal. On an unmodified Ru catalyst in alkaline media, the surface oxides on Ru mediate the 2e{sup -} reduction of molecular O{sub 2} to a stable peroxide anion (HO{sub 2}{sup -}) intermediate via an outer-sphere electron-transfer mechanism. This increases the activity of HO{sub 2}{sup -} near the electrode surface and decreases the overpotential for ORR by effectively carrying out the reduction of HO{sub 2}{sup -} to OH{sup -} at the oxide-free ruthenium metal site. An increase in ORR activity of Ru is observed by modification with a chalcogen; however, the increase is not as significant as observed in acidic media. Ternary additives, such as Mo, were found to significantly improve the stability of the chalcogen-modified catalysts. Detailed investigations of the ORR activity of this class of catalyst have been carried out in alkaline media along with comparisons to acidic media wherever necessary. A combination of electrochemical and X-ray absorption spectroscopic (EXAFS, XANES, {Delta}{mu}) studies has been performed in order to understand the structure/property relationships of these catalysts within the context of ORR in alkaline electrolytes.

  4. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  5. Sulfur (34SSO4) and oxygen (18OSO4) isotopic investigation of origin of dissolved sulfate at the Lake Acıgöl, Turkey

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2016-04-01

    A dual isotope method containing the sulfur (34SSO4) and oxygen (18OSO4) isotopic composition of dissolved sulfate (SO4) was used for surveying SO4 sources from lake water and springs from the Acı göl Basin. Lake Acı göl is a Na-Cl-SO4-typehypersaline lake that is bordered by sulfate-rich springs to the south. The concentration of the dissolved sulfate of the springs ranges between 34 and 1100 mg L‑1, and the lake water contains an average of 22635 mg L‑1dissolved sulfate. The measured dissolved sulfate value of rain during the sampling season is 36 mg L‑1. The type of spring waters bordering the lake is Na-Ca-SO4-Cl-HCO3, and the others are Mg-Ca-HCO3 and Mg-Ca-Na-SO4-HCO3. The 34SSO4 and 18OSO4 isotopic compositions were checked in 19 aqueous samples. The results showed that δ34SSO4 values of the springs varied from -4.6 to +24.1‰ and δ18OSO4values from +1.8 to +13.1‰Ṡulfate rich springs feeding the lake have sulfur isotopes that range between +22.1 and +24.1‰Ṡprings at the north side of the lake contain the lowest sulfur and oxygen isotope values (δ34SSO4= -4.6‰ δ18OSO4=+1.8). The maximum δ34SSO4values are collected from borehole drilled in the western/dry part of lake area (δ34SSO4=+32.6). The variations in δ34SSO4and δ18OSO4measuredvalues of lake water were less than 2.5‰Ṫhe δ18OSO4 values of the lake range from +16.6‰ to +18.1‰ (mean = +17.4), while the δ34SSO4 values are between +25.3 and +27.5‰ (mean = +26.6). The slope of the 18OSO4 vs. 34SSO4linear relationship (R2=0.91, n=10) of the springs is 0.4, which indicates the sulfur isotopes increase rapidly relative to the oxygen isotopes. The linear relationship (R2=0.64, n=9) between 18OSO4 and 34SSO4has a negative slope value (-0.67) for lake water. This indicates the sulfur isotopes decreases rapidly relative to the oxygen isotopes. Sulfate reduction and re-oxidation control the 18OSO4 vs. 34SSO4ratio in spring and lake water. The dual isotopes of the δ34SSO4 and

  6. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Clear Creek, Monroe County, Indiana

    USGS Publications Warehouse

    Wilber, William G.; Crawford, Charles G.; Peters, J.G.; Girardi, F.P.

    1979-01-01

    A digital model calibrated to conditions in Clear Creek, Monroe County, IN, was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The Winston Thomas wastewater-treatment facility is the only point-source waste load affecting the modeled reach of Clear Creek. A new waste-water-treatment facility under construction at Dillman Road (river mile 13.78) will replace the Winston Thomas wastewater-treatment facility (river mile 16.96) in 1980. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero, so no benefit from dilution is provided. The model indicates that ammonia-nitrogen toxicity is the most significant factor affecting the stream water quality during summer and winter low flows. The ammonia-nitrogen concentration of the wastewater effluent exceeds the maximum total ammonia-nitrogen concentration of 2.5 milligrams per liter for summer months (June through August) and 4.0 milligrams per liter for winter months (November through March) required for Indiana streams. Nitrification, benthic-oxygen demand, and algal respiration were the most significant factors affecting the dissolved-oxygen concentration in Clear Creek during the model calibration. Nitrification should not significantly affect the dissolved-oxygen concentration in Clear Creek during summer low flows when the ammonia-nitrogen toxicity standards are met. (USGS)

  7. Water Temperature, Specific Conductance, pH, and Dissolved-Oxygen Concentrations in the Lower White River and the Puyallup River Estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1oC (degrees Celsius) at river mile 4.9 and 19.6oC at river mile 1.8 exceeded the water-quality standard of 18oC at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River. Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  8. Changes of Nitrogen Transformation Rates and Related Functional Genes Abundance under Different Dissolved Oxygen Levels in sediments form an Urban River

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    In the nitrogen rich urban river sediments, we investigated the nitrogen transformation rates and nitrogen-cycling genes in response to different dissolved oxygen (DO) supply levels (saturation, DO > 8.00 mg L-1; aerobic, 2.50 mg L-1 dissolved oxygen levels, but the amount of ammonium release decreased inversely. The increasing DO level also raised the total amount of nitrogen loss (from 6.12 mg N to 35.44 mg N) and its proportion to ammonium liberated (from 12.96% to 99.84%), but the contributions of anammox to nitrogen loss in each incubation showed no significant difference (83.36% to 89.19%). The dissolved oxygen facilitated an exponential increasing of the anammox oxidizing archaea (AOA) and bacteria (AOB), and raised the denitrifiers (nirK and nirS gene) abundance by an order, but its influence on anammox (hzsB) was insignificant. Four quantitative response relationships between nitrogen transformation rates, nitrogen functional genes abundances, and nitrogen concentrations were established by stepwise linear regression analysis. These relationships confirmed that different nitrogen transformation processes were coupled at the molecular level (functional genes), especially for the coupling of ammonium oxidation and anammox.

  9. Comparison of temperature, specific conductance, pH, and dissolved oxygen at selected basic fixed sites in south-central Texas, 1996-98

    USGS Publications Warehouse

    Ging, Patricia B.; Otero, Cassi L.

    2003-01-01

    One component of the surface-water part of the U.S. Geological Survey National Water-Quality Assessment Program is the use of continuous water-quality monitors to help characterize the spatial and temporal distribution of general water quality in relation to hydrologic conditions. During 1996?98, six continuous water-quality monitors in the South-Central Texas study unit collected water temperature, specific conductance, pH, and dissolved oxygen data. The data were compared among the six sites using boxplots of monthly mean values, summary statistics of monthly values, and hydrographs of daily mean values.

  10. [Carbon/nitrogen Removal and Bacterial Community Structure Change in an A/O Activated Sludge System Under Different Dissolved Oxygen Conditions].

    PubMed

    Chen, Yan; Liu, Guo-hua; Fan, Qiang; Wang, Jun-yan; Qi, Lu; Wang, Hong-chen

    2015-07-01

    Carbon and nitrogen removal performance and microbial community structure under different dissolved oxygen (DO) conditions (3, 2, 1 and 0. 5 mg . L -1) in an anoxic/oxic (A/O) system were investigated. The results showed that the A/O activated sludge system still had an excellent performance in removing carbon and nutrient under low DO condition (0. 5 mg . L-1). The removal rates of chemical oxygen demand (COD), ammonia (NH4+ -N) and total nitrogen (TN) were 89. 7%, 98. 3% and 88. 0% respectively. The PCR-DGGE analysis showed that the bacterial community structure changed greatly under different DO conditions. However, there was still a high bacterial diversity even at low DO level, which ensured the functional stability of the A/O system. On the basis of the results of the phylogenetic tree, bacterial communities were observed to be very abundant, and Proteobacteria was identified as the dominant bacteria. PMID:26489332

  11. Inner epidermis of onion bulb scale: As natural support for immobilization of glucose oxidase and its application in dissolved oxygen based biosensor.

    PubMed

    Kumar, Jitendra; D'Souza, S F

    2009-02-15

    Inner epidermal membrane of the onion bulb scales was studied as a natural polymer support for immobilization of the glucose oxidase (GOD) enzyme for biosensor application. Onion epidermal membrane was used for immobilization of glucose oxidase and was associated with dissolved oxygen (DO) probe for biosensor reading. Glucose was detected on the basis of depletion of oxygen, when immobilized GOD oxidizes glucose into gluconolactone. A wide detection range between 22.5 and 450 mg/dl was estimated from calibration plot. A single membrane was reused for 127 reactions with retention of approximately 90% of its initial enzyme activity. Membrane was stable for 45 days ( approximately 90% activity) when stored in buffer at 4 degrees C. Surface structure studies of the immobilized membranes were carried under SEM. To our knowledge, this is the first report on employing inner epidermal membrane of onion bulb scales as the solid support for immobilization of enzyme. PMID:18838267

  12. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. PMID:25770445

  13. Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions.

    PubMed

    Ferrero, Guillermo A; Preuss, Kathrin; Marinovic, Adam; Jorge, Ana Belen; Mansor, Noramalina; Brett, Dan J L; Fuertes, Antonio B; Sevilla, Marta; Titirici, Maria-Magdalena

    2016-06-28

    High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst. PMID:27214056

  14. Enhancing yield of infectious Bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen.

    PubMed

    Hu, Y C; Bentley, W E

    1999-01-01

    Structural proteins of the poultry pathogen, infectious bursal disease virus (IBDV), were expressed in the baculovirus/insect cell expression system. To date, several reports have indicated that animal virus structural proteins are expressed only at low yield in this system. In this article, several factors were examined to enhance yield. These include medium, dissolved oxygen level, and the addition (in vivo and in vitro) of protease inhibitors. Specifically, two media were compared, and SF-900 II was superior to Ex-Cell 401 for cell growth and IBDV protein expression. A cocktail of protease inhibitors including phenylmethyl sulfonyl fluoride (PMSF), leupeptin, and ethylenediamine tetraacetic acid (EDTA) minimized proteolysis in vitro. Also, aprotinin and pepstatin A deterred product degradation in vivo and increased the product yield nearly 2-fold. Finally, in 3 L bioreactors, a dissolved oxygen tension of 50% DO (air saturation) was optimal. Results demonstrated that several relatively simple adjustments to the baculovirus system significantly improved the yield of IBD virus structural proteins. PMID:10585191

  15. Measuring in-stream productivity: the potential of continuous chlorophyll and dissolved oxygen monitoring for assessing the ecological status of surface waters.

    PubMed

    Jarvie, H P; Love, A J; Williams, R J; Neal, C

    2003-01-01

    Continuous (hourly) measurements of dissolved oxygen and chlorophyll (determined by fluorimetry) were made for an inter-linked lowland river and canal system. The dissolved oxygen data were used to estimate daily rates of re-aeration, photosynthesis and respiration, using a process-based analytical technique (the Delta method). In-situ fluorimeter measurements of chlorophyll were ground-truthed on a fortnightly basis using laboratory methanol extraction of chlorophyll and spectrophotometric analysis. Water samples were also analysed for algal species on a fortnightly basis. The river and canal exhibited very similar rates of photosynthesis and respiration during the summer of 2001, despite much higher chlorophyll concentrations and total algal counts, indicating that benthic algae and/or aquatic macrophytes may be making an important contribution to photosynthesis rates in the river. Suspended algal populations in the canal are dominated by planktonic species, whereas the river has a higher proportion of species which are predominantly benthic in habitat. The river exhibited higher rates of respiration, reflecting a higher organic loading from external (e.g. sewage effluent) sources. PMID:15137170

  16. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.

    PubMed

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; Yu, Xiao-Bin; Jiang, Yun; Lin, Chi-Chung

    2011-07-01

    Expression at the mRNA level of ten selected genes in Agrobacterium sp. ATCC 31749 under various dissolved oxygen (DO) levels during curdlan fermentation related to electron transfer chain (ETC), tricarboxylic acid (TCA) cycle, peptidoglycan/lipopolysaccharide biosynthesis, and uridine diphosphate (UDP)-glucose biosynthesis were determined by qRT-PCR. Experiments were performed at DO levels of 30%, 50%, and 75%, as well as under low-oxygen conditions. The effect of high cell density on transcriptional response of the above genes under low oxygen was also studied. Besides cytochrome d (cyd A), the transcription levels of all the other genes were increased at higher DO and reached maximum at 50% DO. Under 75% DO, the transcriptional levels of all the genes were repressed. In addition, transcription levels of icd, sdh, cyo A, and fix N genes did not exhibit significant fluctuation with high cell density culture under low oxygen. These results suggested a mechanism for DO regulation of curdlan synthesis through regulation of transcriptional levels of ETCs, TCA, and UDP-glucose synthesis genes during curdlan fermentation. To our knowledge, this is the first report that DO concentration apparently regulates curdlan biosynthesis in Agrobacterium sp. ATCC 31749 providing essential lead for the optimization of the fermentation at the industrial scale. PMID:21472535

  17. Controlled Burning of Forest Detritus Altering Spectroscopic Characteristics and Chlorine Reactivity of Dissolved Organic Matter: Effects of Temperature and Oxygen Availability.

    PubMed

    Wang, Jun-Jian; Dahlgren, Randy A; Chow, Alex T

    2015-12-15

    Forest fires occur with increasing frequency and severity in the western United States, potentially altering the chemistry and quantity of dissolved organic matter (DOM) and disinfection byproduct (DBP) precursors exported from forested watersheds. However, little is known concerning effects of the fire triangle (heat, oxygen, and fuel) on DOM alteration. Using detritus from Pinus ponderosa and Abies concolor (dominant species in forests in the western United States), we prepared DOM from unburned and burned detritus under hypoxic (pyrolysis) and oxic conditions (thermal oxidation) at 250 and 400 °C. DOM characteristics and chlorine reactivity were evaluated by absorption and fluorescence spectroscopy and chlorination-based DBP formation potential tests. Spectroscopic results suggest that burned-detritus extracts had lower molecular weight (reflected by increased E2:E3 and fluorescence index) and divergent aromaticity (reflected by SUVA254) depending on oxygen availability. Temperature and oxygen availability interacted to alter the chlorine reactivity of fire-affected DOM. Increasing temperature from 50 to 400 °C resulted in decreased reactivities for trihalomethane and chloral hydrate formation and divergent reactivities for haloacetonitrile formation (unchanged for pyrolysis and increased for oxidation) and haloketone formation (increased for pyrolysis and decreased for oxidation). We demonstrate that DBP precursors in fire-affected forest detritus are highly dependent on temperature and oxygen availability. PMID:26496434

  18. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  19. Effect of dissolved oxygen on the photodecomposition of monochloramine and dichloramine in aqueous solution by UV irradiation at 253.7 nm.

    PubMed

    De Laat, Joseph; Boudiaf, Nicolas; Dossier-Berne, Florence

    2010-05-01

    The effect of dissolved oxygen on the photodecomposition of monochloramine (7.5 < pH < 10) and dichloramine (pH = 3.7 +/- 0.2) at 253.7 nm has been investigated. The kinetic study shows that the rate of photodecomposition of monochloramine is about two times faster in the absence of oxygen than in the presence of oxygen, is not significantly affected by pH and by the presence of hydroxyl radical scavengers (hydrogenocarbonate ion and tert-butanol). The apparent quantum yields of photodecomposition of monochloramine at 253.7 nm ([NH(2)Cl](0) approximately 1.5-2 mM, epsilon(253.7 nm) = 371 M(-1) cm(-1)) were equal to 0.28 +/- 0.03 and 0.54 +/- 0.03 mol E(-1) in oxygenated-saturated and in oxygen-free solutions, respectively. The photodecomposition rates or the apparent quantum yields of photodecomposition of dichloramine ([NHCl(2)](0) approximately 1.5-2 mM, pH = 3.7 +/- 0.2) in oxygen-free and in oxygen-saturated solutions were quite identical (Phi = 0.82 +/- 0.08 mol E(-1); epsilon(253.7 nm) = 126 M(-1) cm(-1)). Under O(2) saturation, UV irradiation of NH(2)Cl leads to the formation of nitrite ( approximately 0.37 mol/mol of NH(2)Cl decomposed), nitrate ( approximately 0.073 mol/mol) and does not form ammonia (<0.01 mol/mol). In oxygen-free solutions, monochloramine decomposes to form ammonia ( approximately 0.37 mol/mol). Photodecomposition of dichloramine did not lead to significant amounts of nitrite and nitrate in the presence and in the absence of oxygen. The nitrogen mass balances also indicate the formation of other nitrogen species (probably N(2) and/or N(2)O) during the photodecomposition of monochloramine and dichloramine by UV irradiation at 253.7 nm. PMID:20362321

  20. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    PubMed

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  1. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors.

    PubMed

    Luo, Guozhi; Xu, Guimei; Gao, Jinfang; Tan, Hongxin

    2016-05-01

    Nitrate-nitrogen (NO3(-)-N) always accumulates in commercial recirculating aquaculture systems (RASs) with aerobic nitrification units. The ability to reduce NO3(-)-N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen (DO) content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO3(-)-N from RASs. The effect of dissolved oxygen (DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone (PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group (Group A, average DO concentration of 0.28±0.05mg/L), the low-oxygen treatment DO group (Group B, average DO concentration of 2.50±0.24mg/L) and the aerated treatment group (Group C, average DO concentration of 5.63±0.57mg/L). Feeding with 200mg/L of NO3(-)-N, the NO3(-)-N removal rates were 1.53, 1.60 and 1.42kg/m(3) PCL/day in Groups A, B and C, respectively. No significant difference in NO3(-)-N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated. PMID:27155419

  2. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  3. The {sup 18}O:{sup 16}O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters

    SciTech Connect

    Quay, P.D.; Wilbur, D.O.; Richey, J.E.

    1995-06-01

    The concentration and {sup 18}O:{sup 16}O ratio of dissolved oxygen were measured for 23 rivers and lakes of the Amazon Basin during 1988, 1990, and 1991. With only two exceptions, the rivers and lakes had dissolved oxygen concentrations that were at 20-90% of atmospheric saturation levels. The {delta}{sup 18}O of the dissolved oxygen ranged from 15 to 30% (vs. SMOW). The {delta}{sup 18}O for the lakes were the lowest at 15-23%. {delta}{sup 18}O < 24.2{per_thousand} (the atmospheric equilibrium value) are the result of photosynthetic oxygen input. The {delta}{sup 18}O of the rivers, in contrast, ranged from 24 to 30{per_thousand} > 24.2{per_thousand} resulted from respiration. Despite this clear difference between the {delta}{sup 18}O for rivers and lakes, these water bodies had similar levels of oxygen undersaturation. The {delta}{sup 18}O and dissolved oxygen concentrations are used to determine the ratio of community respiration (R) to gross photosynthesis (P) rates. R:P varied between {approximately}1 and 1.5 for lakes and between 1.5 and 4 for rivers. For all rivers and lakes, the measured {delta}{sup 18}O indicated the presence of photosynthetically produced oxygen, with the highest proportion occurring in lakes. The {delta}{sup 18}O of dissolved oxygen is a unique tracer of photosynthetic oxygen and provides, through a determination of R:P, a means of quantifying the heterotrophic state of freshwaters. 29 refs., 8 figs., 4 tabs.

  4. High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film.

    PubMed

    Zhang, Ke; Zhang, Honglin; Wang, Ying; Tian, Yanqing; Zhao, Jiupeng; Li, Yao

    2017-01-01

    Fluorinated acrylate polymer has received great interest in recent years due to its extraordinary characteristics such as high oxygen permeability, good stability, low surface energy and refractive index. In this work, platinum octaethylporphyrin/poly(methylmethacrylate-co-trifluoroethyl methacrylate) (PtOEP/poly(MMA-co-TFEMA)) oxygen sensing film was prepared by the immobilizing of PtOEP in a poly(MMA-co-TFEMA) matrix and the technological readiness of optical properties was established based on the principle of luminescence quenching. It was found that the oxygen-sensing performance could be improved by optimizing the monomer ratio (MMA/TFEMA=1:1), tributylphosphate(TBP, 0.05mL) and PtOEP (5μg) content. Under this condition, the maximum quenching ratio I0/I100 of the oxygen sensing film is obtained to be about 8.16, Stern-Volmer equation is I0/I=1.003+2.663[O2] (R(2)=0.999), exhibiting a linear relationship, good photo-stability, high sensitivity and accuracy. Finally, the synthesized PtOEP/poly(MMA-co-TFEMA) sensing film was used for DO detection in different water samples. PMID:27450122

  5. Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yan, Xingxu; Liu, Kexi; Wang, Xiangqing; Wang, Tuo; Luo, Jun; Zhu, Jing

    2015-04-01

    To achieve iron-nitrogen-carbon (Fe-N-C) nanofibers with excellent electrocatalysis for replacing high-cost Pt-based catalysts in the cathodes of fuel cells and metal-air batteries, we have investigated and evaluated the effects of polyacrylonitrile (PAN) concentration and the proportion of iron to PAN, along with voltage and flow rate during the electrospinning process, and thus proposed three criteria to optimize these parameters for ideal nanofiber catalysts. The best half-wave potential of an optimized catalysts is 0.82 V versus reversible hydrogen electrode in an alkaline medium, which reaches the best range of the non-precious-metal catalysts reported and is very close to that of commercial Pt/C catalysts. Furthermore, the electron-transfer number of our catalysts is superior to that of the Pt/C, indicating the catalysts undergo a four-electron process. The durability of the optimized Fe-N-C nanofibers is also better than that of the Pt/C, which is attributed to the homogeneous distribution o